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Abstract

Primal and dual nondegeneracy conditions are defined for semidef-
inite programming. Given the existence of primal and dual solutions,
it is shown that primal nondegeneracy implies a unique dual solution
and that dual nondegeneracy implies a unique primal solution. The
converses hold if strict complementarity is assumed. Primal and dual
nondegeneracy assumptions do not imply strict complementarity, as
they do in LP. The primal and dual nondegeneracy assumptions im-
ply a range of possible ranks for primal and dual solutions X and Z.
This is in contrast with LP where nondegeneracy assumptions exactly
determine the number of variables which are zero. It is shown that
primal and dual nondegeneracy and strict complementarity all hold
generically. Numerical experiments suggest probability distributions
for the ranks of X and Z which are consistent with the nondegeneracy
conditions.
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1 Duality and Complementarity

Let 8™ denote the set of real symmetric nXn matrices. Denote the dimension
of this space by

n* =mn(n+1)/2. (1)

The standard inner product on 87 is

AeB =tr AB = Zai]’bi]’.
-7‘7‘

By X > 0, where X € §", we mean that X is positive semidefinite. The
set X = {X € 8" : X » 0} is called the positive semidefinite cone. The
constraint X > 0 is equivalent to a bound constraint on the least eigenvalue
of X, which is not a differentiable function of X.

The semidefinite programming problem (SDP) is

min C e X 2)
st. ApeX =0bp k=1,....m; X =0.
Here C' and Ag, k = 1,...,m, are all fixed matrices in $™, and the unknown

variable X also lies in S§™. If the constraints are chosen to enforce X to be
diagonal one obtains linear programming (LP) as a special case of SDP. The

dual of SDP is

max bly (3)
st. Z4+ 0 i wAr)=C; Z =0

where Z is a dual slack matrix variable, which also lies in S™.
As is well known, the SDP primal-dual pair has many of the properties
of LP. For feasible X, y, Z the duality gap is X e Z = tr X Z, since

CoX-bly=ZoeX+ (D yrAr)e X —bly=XeZ>0.
k=1

The following are assumed to hold throughout the paper.

Assumption 1. At least one of the following holds: there exists a primal
feasible point X > 0, or there exists a dual feasible point (y, Z) with Z > 0.

Assumption 2. There exist finite primal and dual optimal solutions X and
(4, 2).

Assumption 3. The matrices Ay, k = 1,..., m, are linearly independent,
i.e. they span an m-dimensional linear space in S™.
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Assumption 1 (the Slater condition) and Assumption 2 imply (see e.g.
[NN94]) that the duality gap X e Z = 0 for optimal solutions (X,y, 7). As
is well known, this implies the complementary condition

XZ=0. (4)

To prove this, observe that X > 0, Z > 0 and tr XZ = 0 imply that the
matrix X/2ZX1/? is symmetric, positive semidefinite, and has zero trace.
It follows that X/2ZX1/2 = 0, and therefore that X Z = 0.

The complementarity condition (4) implies that X and Z commute, so
they share a common system of eigenvectors. Thus we have:

Lemma 1 Let X and (y, Z) be respectively primal and dual feasible. Then
they are optimal if and only if there exists Q € R™*", with QTQ = I, such
that

X = Q Diag(Ay,..., ) QF, (5)
Z = Q Diag(w,...,w,) Q7T (6)
and
Aw; =0, i=1,---,n. (7)
all hold.

Equation (7) expresses complementarity in terms of the eigenvalues of X and
Z. If X has rank r and Z has rank s, complementarity implies r+s < n. We
say that strict complementarity holds if r4+s = n, i.e. foreach i € {1,...,n},
exactly one of A; = 0 or w; = 0 holds.

2 Nondegeneracy and Strict Complementarity

In Section 1 we noted the similarities between SDP and LP, but in this
section we shall emphasize the differences. To some extent our discussion
is motivated by results for eigenvalue optimization given by Overton and
Womersley[OW93,0W95] and Shapiro and Fan[SF95]. Shapiro [Sha95] gives
related results and extends these to nonlinear SDP’s.

Consider the set

M ={X €S8": rank(X)=Fk}.

Since the eigenvalues of a matrix X are continuous functions of X, it is clear
that, for k£ > 0, the boundary of My, is

OMp = MoU - UMp_;.
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Let
MP=KnNnMp={X€eS&": X >0 andrank(X)= k}.

Then the boundary of K is given by
OK=MFu- UM, (8)

and the interior of K is

Int £ = M},

Before going further, let us consider analogous definitions for the non-
negative orthant 7 = {& € " : 2 > 0}. Consider the set

Lr={z €RN" : z has exactly k nonzero elements}.
For k& > 0 the boundary of £}, is

0Ly =LoU-+-ULp_q.

Let
,C;: =JNLg.
The boundary of 7 is
T =LFu---uLt | (9)
and the interior of J is
Int 7 = ,C;'L'.

However, the decompositions (8) and (9) have very different characters.
The set E; is not connected, except in the cases £ = 0 and £k = n. For
example, for n = 2, the set L] consists of the two positive coordinate axes
(excluding the origin). By contrast, the set ./\/l: is a path-connected smooth
submanifold of §™ for all k£, 0 < k < n. For example, in the case n = 2, we
have

Miz{lj g,]: a>0,8>0, aﬂ#o,vzim},

a connected, smooth submanifold of S2.
Let X be primal feasible with rank(X) = r and

X = Q Diag(\y,..., A\, 0,---,0) Q7 (10)
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where Q7@ = I. The tangent space to M, at X is [Arn71,SF95]

7
Tx = {Ql ‘gT ‘() ]QT : UeS',Ve %TXTL—’I’} ]

Recalling the notation (1), dim7x = 72 + r(n — r) = n2 — (n —r)?. For
AX € Tx we have
vl 0

QT(X +eAX)Q = l Diag(Ar,..., Ar) + €U €V ]

Thus X + €AX is not contained in K, for € > 0, unless V = 0.

Definition 1. X is primal nondegenerate if it is primal feasible and
Tx + N = S™, (11)

where

N={XeS": A e X =0}. (12)

Theorem 1 Let X be primal feasible with rank(X) = r. A necessary con-
dition for X to be primal nondegenerate is that

(n—71)°> <n?—m. (13)

Furthermore, let Qy € R and Q4 € R**("=7) respectively denote the first
r columns and the last n — r columns of Q) given by (10). Then X is primal
nondegenerate if and only if the matrices

| eTAQ _
Bk_[QépAinl,k_L...,m (14)

are linearly independent. By this we mean that they span an m-dimensional

linear space in 8" x RU""7)X" 4 space whose dimension is r* + r(n—r), i.e

n? —(n— 'r)2.

Proof. Condition (13) follows directly from Definition 1, since dim 7x =

n? — (n—r)? and dim A" = n2 — m. The condition (11) is equivalent to

T& NNt = {0} (15)
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where 7¢ and N1 are respectively the orthogonal complements of 7x and
N, namely
7§::{Ql0 ()]QT: erswq}
0 w

N+ = Span{A;}.

If the By are linearly dependent, there exist 6; not all zero such that
> 0rBr = 0. This contradicts (15), since then Y 0, A; € T)é‘. If the B,
are linearly independent, (15) holds. O

Note that Theorem 1 holds for any @ satisfying (10).

and

Theorem 2 Let X be primal nondegenerate and optimal. Then there exists
a unique optimal dual solution (y, 7).

Proof. By Assumption 2, a dual optimal solution (y, Z) exists, so that
complementarity holds. As above, let ()1 and ()9 respectively denote the
first r columns and the last n — r columns of ¢ given in (10). Any 7
satisfying the complementarity condition X Z = 0 must be of the form

7 = Q,wQY

for some W € 8™ 7, so the feasibility condition (3) requires the existence of
g€ RN™and W € S"" such that

Q:2WQF + > Giwdr = C.
k=1

The linear independence conditions given by Assumption 3 and Theorem 1
guarantee that any solution of this linear system is unique. O

Note that if we assume @) satisfies (6) as well as (10) we find that W =
Diag(wyy1,...,wn).

Now we turn to dual nondegeneracy. Let (y,Z) be dual feasible with
rank(Z) = s and

Z =@ Diag(0,...,0,wp—s41, ..., wn) Qt (16)

with Q7@ = I. The tangent space to M7 at Z is

,
%:{Qb& %]wﬂ VEWWWiW%S%. (17)
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We have dim(77) = s? + s(n — s) = n? — (n — 5)5.

Definition 2. The point (y, Z) is dual nondegenerate if it is dual feasible
and Z satisfies
Tz + Span{A;} = S". (18)

Theorem 3 Let (y,7Z) be dual feasible with rank(Z) = s. A necessary
condition for (y,Z) to be dual nondegenerate is that

(n—s)? < m. (19)

Furthermore, let Q1 € R™("=%) and Qy € R"X* respectively denote the
first n — s and the last s columns of Q given by (16). Then (y,7Z) is dual
nondegenerate if and only if the matrices

By = [@{AkQIL k=1,...,m (20)
span 8™%,

Proof. It is an immediate consequence of the definition.

Note that Theorem 3 holds for any @ satisfying (16).

Theorem 4 Let (y, Z) be dual nondegenerate and optimal. Then there ex-
ists a unique optimal primal solution X .

Proof. By Assumption 2, a primal optimal solution X exists. As above let
@1 and Q3 respectively denote the first n—s columns and the last s columns
of @ given by (16). Any X satisfying the complementarity condition X7 = 0
must be of the form o
X =QuUQY
for some U € §"7°. Thus the feasibility condition (2) reduces to
QT AL Q10U =by, k=1,....m (21)

Theorem 3 guarantees that any solution of this linear system is unique. O

Note that if we assume @) satisfies (5) as well as (16) we find that U =
Diag(A1,..., An_s).

Note also the distinction between the partitionings of ) used in Theorems
and 3. The former uses @ = [()1 Q2] where @1 has r columns and the latter
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uses () = [@1 @2] where @1 has n — s columns. These partitionings are the
same if and only if r + s = n, i.e. strict complementarity holds.

It is instructive to compare our SDP nondegeneracy definitions with
those of the LP

min ¢’z subject to Az =b, z >0,

where A € R™*"™, Suppose that r is the number of nonzero primal solution
variables z;, with 2,41 = --- = 2, = 0, and s is the number of corresponding
nonzero dual slacks z;, with 2; = -+ = 2z,_, = 0. By complementarity,
r + s < n. Consider the partitionings

A=[A; A)] and A=[A; A,

where A; has r columns and gl has n — s columns. These partitionings are
identical if strict complementarity holds. LP primal nondegeneracy states
that the m rows of A; must be a linearly independent set in R”, which
requires r > m. LP dual nondegeneracy states that the m rows of A; should
span R"*~% which requires s > n — m. Combined with the complementarity
condition r + s < n, these conditions imply » = m and s = n — m. Thus in
LP, primal and dual nondegeneracy imply strict complementarity. This is
not the case for SDP.

Example. Let n = 3,m = 3, with b = [1 0 0]7,

000 100 00 1 010
C=1000|,A41=[000][,A4=|010]|A4=]|100
00 1 000 100 00 1

which has the solution
X = Diag(1,0,0), y=1[000], Z = Diag(0,0,1).

That this solution is valid is easily verified by checking the optimality con-
ditions (2), (3), (4). We have @ = I, with the eigenvalues A; and w; equal
to the diagonal elements of X and Z respectively. Note that r = 1 and
s = 1, so strict complementarity does not hold. Let us check the primal
nondegeneracy condition. We have

)

i

|

o

O

[}

|
o~ o
— o o
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so the matrices BY, k = 1,2,3, defined by (14), are
[1 0 0], [0 0 1], [0 1 0].

Since these are linearly independent, the primal nondegeneracy condition
holds, and the dual solution must be unique. Now let us check the dual
nondegeneracy condition. We have

o = o

1
Q1=10
0

and the matrices By, k = 1,2, 3, defined by (20), are given by

ol Lot [t

Since these span S?, the dual nondegeneracy condition holds, and the pri-
mal solution must be unique. Note especially that, in this example, strict
complementarity fails to hold even in the presence of primal and dual non-
degeneracy.

Theorems 2 and 4 show that primal and dual nondegeneracy respectively
imply dual and primal unique solutions. The converses are true assuming
strict complementarity:

Theorem 5 Suppose that X and (y, Z) are respectively primal and dual op-
timal solutions satisfying strict complementarity. Then if the primal solution
X is unique, the dual nondegeneracy condition must hold, and if the dual
solution (y, Z) is unique, the primal nondegeneracy condition must hold.

Proof. Let @ satisfy conditions (10) and (16), as in Lemma 1. Strict
complementarity states that r + s = n, so the partitionings of ¢} used in
Theorems 1 and 3 are the same. Thus

X = Q1 Diag(Aq,...,\)) Qf, z=0, Diag(wy41,---,wWp) Qr.

Suppose first that the dual nondegeneracy assumption (18) fails to hold.
We shall show that in this case X cannot be a unique primal solution.
Complementarity states that any solution X must satisfy

X =quQf
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for some U € 8§, and so the primal feasibility condition (2) reduces to
QT A,QreU =by, k=1,...,m.

Because the dual nondegeneracy assumption does not hold, the solution set
of this equation is not unique, but holds on an affine subset of 8", say U,
with positive dimension. The condition that X > 0 holds if and only if
U = 0. But the particular choice U = Diag(Ay,...,A,) lies in & and is
positive definite, so there is an open set in U for which the same is true.
Every such U defines an X which satisfies the optimality conditions.

Now suppose that the primal nondegeneracy assumption (11) fails to
hold. We shall show that in this case (y, Z) cannot be a unique dual solution.
Complementarity states that any solution 7 must satisfy

7 =Q.wqQt

for some W € &%, and so the dual feasibility condition (3) reduces to the
solvability of

m
Q:WQ3 + > irAr=C.

k=1
for some § € ™ and W € S§°. Because the primal nondegeneracy assump-
tion does not hold, the solution set of this equation is not unique, but holds
on an affine subset of S° x R™, say W, with positive dimension. The con-
dition Z * 0 in (3) holds if and only if W > 0. But the particular choice
(§ = y,W = Diag(w,41,...,wy,)) lies in W with W positive definite, so
there is an open set in W for which the same is true. Every such W defines
a Z which satisfies the optimality conditions. O

If the assumption of strict complementarity is not made, it is possible
that the primal solution is unique even if the dual nondegeneracy assumption
fails. Consider Example 1, changing it so that

and therefore the dual nondegeneracy assumption does not hold. It follows
that U is not uniquely defined by (21): we can take

=[ad]
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for any 6 € . However, only 6§ = 0 gives U > 0 and therefore X = 0.
It is convenient to introduce some further notation at this point. Let

Vk = {max j i2<k, j= 1,2,---,k},
ie. k= || where h is the positive real root of h? = k. We then have:

Theorem 6 Suppose that X and (y,Z) are respectively primal and dual
nondegenerate and optimal, with rank(X) = r and rank(Z) = s. Then

n— YnZ—m < r < Ym (22)
and B
n—JYm < s < /n?—m. (23)

Proof. The lower bounds in (22), (23) are the necessary conditions (13)
and (19) given by Theorems 1 and 3. The upper bounds follow from the
complementarity condition r + s < n. O

The ranges of possible values for the ranks of solutions X and Z stand in
contrast with LP, where nondegeneracy assumptions give precise formulas
for the number of nonzero primal and dual variables. In fact, (22), (23)

reduce to equalities only in the cases m = 0 (r = 0, s = n) and m = n?

(r=mn,s=0).

Pataki [Pat94] has shown that there always exist optimal solutions X and
Z satisfying the upper bounds in (22) and (23). Nondegeneracy assumptions
are not required for these results. However, without nondegeneracy assump-
tions the upper bounds need not hold for all solutions, and the lower bounds
may not hold for any solution.

We now compare our nondegeneracy conditions with that given by An-
derson and Nash [AN87, p.21] in the context of infinite-dimensional LP over
general cones. Let By be the linear span of the face of K generated by X (the
face of K containing X and having minimal dimension). The Anderson-Nash
nondegeneracy condition applied to SDP is

Bx + N = 8" (24)

It is well known, e.g.[Tau67, p.182], that

BX:{QH S]QT : UES’"}. (25)
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To prove this, note that for AX in (25),

Diag(A1,...,A)+ €U 0 ]

T _
QT(X +AX)Q = [ ’ .

so that X + eAX € M} C K for sufficiently small e. This is not true for

AX ¢ Bx. We have Bx C 7Tx, with dim By = r2. Likewise

BZ:{QH V(I)/]QT : WeSS}

and so the Anderson-Nash nondegeneracy condition applied to the dual is
Bz + Span{A;} = S". (26)
Assumptions (24) and (26) imply that
7'52 m and 552 n?—m

must both hold. However, these inequalities can never hold simultaneously,
except in the trivial cases m = 0 and m = n?, because r + s < n. The
relationship between the Anderson-Nash conditions and ours is clarified by
noting that (13) and (19) can be written

7‘5—|—7‘(n— r) > m and s2 4 s(n—s)> n? = m.
Anderson and Nash define X to be basic if
Bx NN ={0}. (27)

They show that a point is basic if and only if it is an extreme point of the
feasible set, and, that if an optimal solution exists, there is a basic optimal
solution. This provides another way to recover Pataki’s results since (27)
implies B
dim Bx < n? — dim NV
ie. 3
r? < m.

We also have:

Theorem 7 Suppose that X and (y,Z) are respectively primal and dual
optimal solutions satisfying strict complementarity. Then X is basic if and
only if the dual nondegeneracy condition holds.

Proof. Since r + s = n, we have By = 74 (see (25) and (17)). Thus the
condition that X be primal basic, namely (27), is equivalent to the condition
that (y, Z) be dual nondegenerate, namely (18). O
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3 Generic Properties and Probability Distribu-
tions

Primal nondegeneracy, dual nondegeneracy and strict complementarity hold
generically, in a sense we shall now describe. A semidefinite program is
completely determined by C, {A;} and b; in other words its data is taken
from the space

m+1
5 (H S”) .
k=1
with dimension d = dim S = ni(m + 1)+ m.
Definition 3. Let S be a (Lebesgue) measurable subset of & with nonzero

measure. A property P is a generic property of semidefinite programs in S
if it fails to hold only on a subset of measure zero of S ([Hal50]).

In other words, a property is generic in S if it holds almost everywhere.

Assumption 3 is a generic property in §. Assumption 2 holds on a subset
of § with nonzero measure, say S. Assumption 1 holds generically on S.
Let S be the set of semidefinite programs for which Assumptions 1, 2 and 3
hold. Then S has nonzero measure.

Lemma 2 Primal nondegeneracy, dual nondegeneracy and strict comple-
mentarily each hold generically in S.

Proof: Because of Theorem 5, it suffices to prove that primal uniqueness,
dual uniqueness and strict complementarity each hold generically. For pri-
mal uniqueness to be violated it is necessary that C' be orthogonal to some
face of the primal feasible region. Similarly for dual uniqueness to be vio-
lated it is necessary that b be orthogonal to some face of the dual feasible
region. Both of these properties are generically false in S.

To complete the proof, we need to show that strict complementarity
holds generically. If an SDP has primal and dual solutions X and (y, Z)
with rank(X ) = r and rank(Z) = s, then the algebraic system of equations

Ap e Q Diag(Ay,...,0,0,...,0) QT = by, k=1,....,m
Y oie1 YAk + Q Diag(0,...,0,wp—s41,...,wn) QT = C
QTQ =1

must hold. This is a system of m + m2 = m +n24+n equations in the
T+ s+ m + n? variables A;, w;, yx, Qi;. If 7+ s < n, the property that this
system is solvable is generically false in S. ad
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Now suppose we consider properties of SDP’s whose data are distributed
according to a given probability distribution, e.g. uniformly in [0, 1], dis-
carding those for which the Assumptions do not hold. We may consider the
probability of occurrence of given solution ranks r and s. It follows from
Lemma 2 that the probability that r and s satisfy the bounds in (22), (23)
is one. A natural question is: what is the probability distribution describing
the values that 7 and s take in the ranges (22), (23)? We shall now show the
results of some experiments which address this question. This is a promising
area for further theoretical investigation.

Let n = 10, and consider m ranging from 5 to 50, since the dimension of
the primal variable space is n? = 55. We solved 20 different randomly gener-
ated problems for each pair r, s, using a primal-dual interior-point method.
Tables 1 and 2 show the number of times each rank pair (r, s) was achieved.
Table 3 shows the generic possible range for r and s for each m, given by
(22), (23). The results are consistent with the fact, proved above, that the
nondegeneracy and strict complementarity conditions hold with probability
one. The results also show clearly that values of r and s in the center of
their ranges are much more likely to occur than values equal to the bounds.

We close by noting that the issues of primal and dual nondegeneracy
are fundamental to the analysis of convergence rates of primal-dual interior-
point methods for SDP. These issues will be discussed in a forthcoming

paper.

Acknowledgment. It is a pleasure to thank Mike Todd for many helpful
conversations.
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