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Abstract

Outsourcing to the cloud is based on assuming that remote servers behave as expected, even under

failures, bugs, miscon�gurations, operational mistakes, insider threats, and external attacks. Can

we instead verify their behavior? There have been various attempts at such veri�cation, but these

attempts have had to choose: comprehensive guarantees or good performance? This dissertation

studies how to get both.

This dissertation focuses on two essential services: outsourced computation and outsourced

databases. Verifying them correspondingly introduces two new abstract problems. We call the

�rst problem the E�cient Server Audit Problem, which examines how to e�ciently verify a con-

current and untrusted server. The second problem is verifying a core correctness contract of

black-box databases while scaling to real-world online workloads.

To address the two problems, this dissertation respectively introduces two systems: orochi

and cobra. Both systems tolerate arbitrary failures in the service provider, and have good per-

formance: in our experiments, orochi’s veri�er achieves 5.6–10.9× speedup versus simply re-

executing inputs, with less than 10% CPU overhead on the server side; cobra improves over

baselines by 10× in veri�cation cost, with modest overhead on clients (less than 5% throughput

degradation and about 7% 90-percentile latency increases).
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1 | Introduction

How can users verify that remote applications (such as web applications and databases) execute

as promised?

This question is particularly vital today because companies and individuals outsource their

computation and data to the cloud [10, 19]. However, users can legitimately wonder whether

cloud providers indeed execute the services faithfully. For one thing, clouds are complicated black

boxes, running in di�erent administrative domains from users. Any internal corruption on the

cloud—as could happen from bugs [126], miscon�gurations [16], operational mistakes [42], in-

sider attacks [28], unexpected failures [56, 115, 135, 219], or adversarial control at any layer of

the execution stack—can cause incorrect results.

Beyond that, cloud providers may not be fully trustworthy. They have little incentive to pro-

vide unfailingly correct services, as “most of the time” [25] is good enough to defeat spot-checks.

Even worse, they might undermine their services for pro�t. For example, in 2019, a startup com-

pany sued Tencent Cloud—the second largest cloud provider in mainland China—for downgrad-

ing the accuracy of its machine learning service because another department of Tencent was a

business rival to this startup company [43]. Unfortunately, there was no audit mechanism, so the

startup company was unable to provide direct evidence of Tencent’s misconduct.

In light of the motivation above, this dissertation argues that auditing outsourced services is

crucial for users. The abstract problem of auditing outsourced services has been studied before.

We call the overall topic Execution integrity. Execution integrity ensures that a program runs as

written. This topic is separate from—but complementary to—program veri�cation, which is con-

cerned with developing bug-free programs. Prior work studies execution integrity under various
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assumptions, system models, and usage scenarios. But these works trade o� trust assumptions

and performance (see §2.1). This dissertation explores a new design point: comprehensive exe-

cution guarantees and good performance for both normal executions and auditing. Speci�cally,

this dissertation has two main goals:

1. Strong model. This dissertation makes no assumptions about the failure modes of service

providers; they can behave arbitrarily. In particular, we do not assume any software or hard-

ware trusted components in their execution stacks.

2. Pragmatic orientation. This dissertation aims at providing veri�ability with reasonable per-

formance: clients should experience modest performance overheads for their normal exe-

cutions, and veri�cation should cost substantially less in computational resources than the

original executions.

This dissertation focuses on two essential services: outsourced computing (such as AWS Lambda,

Google Web Hosting, Azure App Service, and Heroku cloud) and outsourced databases (such as

Amazon DynamoDB, Amazon Aurora, Azure Cosmos DB, and Google Cloud Datastore). To verify

the two services, this dissertation presents two systems, orochi and cobra. Orochi veri�es the

execution of a concurrent application on untrusted servers. Cobra veri�es an essential database

property: serializability, the “gold standard” isolation level [69] and the correctness contract that

many applications and programmers implicitly assume [205].

1.1 Overview and contributions

This section gives a brief overview of the problems, challenges, and techniques of orochi and

cobra as well as our contributions.

Orochi: verifying the execution of programs on untrusted servers. Orochi is motivated

by scenarios where people run programs on remote, rented servers. One example is hosting web

applications on the cloud: the deployer of a web application submits their code to a cloud provider,

who executes the code on servers over which the deployer has no control.

This dissertation abstracts the underlying problem as the E�cient Sever Audit problem: a prin-
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cipal uploads a program to an untrusted server; the server is supposed to run the program repeat-

edly and concurrently on di�erent inputs, and respond with the program’s outputs; periodically,

a veri�er gets the inputs and outputs as ground truth, and must answer the question: were the

received outputs truly derived from running the program on the received inputs? Answering this

question should be computationally cheaper than naively re-executing the program on all inputs.

This problem is both novel and fundamental. It combines for the �rst time an untrusted and

concurrent server, legacy programs, low server overhead, and e�cient veri�cation. To solve the

problem, we design and implement orochi.

Orochi includes several techniques. The �rst enables the veri�er to accelerate re-execution.

The underlying observation is that similar executions have redundant computation, so the veri�er

can deduplicate computation. In particular, the veri�er batches similar executions that have the

same control �ow, and re-executes them in a single instruction multiple data (SIMD [41]) style: it

handles the instructions with the same opcodes and possibly diverse operands at the same time.

Crucially, the re-execution saves CPU cycles by performing identical instructions—meaning that

instructions have the same opcode and operands—once for the whole batch.

One challenge is that, for accelerating re-execution, the veri�er needs to know which exe-

cutions share the same control �ow—a piece of information supplied by the server. Meanwhile,

the veri�er does not trust the server. To tackle this challenge, the veri�er optimistically follows

the server’s information (called advice); at the same time, the veri�er checks, at every branch

point, whether the batched executions indeed go to the same branch, as alleged. If the batched

executions diverge, the veri�er rejects.

The second technique in orochi solves the problem that, because of batching, the veri�er’s

reads to shared objects (such as databases and key-value stores) are unde�ned. As re-execution at

the veri�er does not respect the original execution order, a question to answer when re-executing

reads is: what value should be returned for a read, if the corresponding write has not been re-

executed yet? The standard way of handling an analogous issue in record-replay systems is to

record the return values of reads and feed them back during replay. However, this solution funda-

mentally trusts the recorder (the server), which con�icts with our setup. Instead, orochi solves
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this problem by mandating that the server record operations (instead of values) into the advice;

then, during re-execution, the veri�er simulates reads—using the writes in the untrusted advice—

and checks the alleged writes when they are regenerated from re-execution.

The third technique in orochi checks whether alleged operations on shared objects are con-

sistently ordered with respect to externally observable events, such as the ground truth requests

and responses. This is critical because, in the advice, the server can fabricate an operation order

that con�icts with the order of external observations, but is arranged to be consistent with the

server’s bogus outputs. To audit the ordering of intertwined operations and external events, we

introduce consistent ordering veri�cation, which works as follows. The veri�er builds a directed

graph that has vertices for operations and external events, and edges for observable orderings,

including real-time order, program order, and shared objects’ schedule order. Importantly, if this

graph is acyclic, then the veri�er knows there exists a valid ordering of operations and events.

We have proved (Appendix A) that the techniques together produce a veri�cation protocol

such that if it passes, there exists a valid execution schedule to generate the received outputs;

otherwise, the outputs do not match any physically possible honest execution. As a consequence,

an honest server can always pass the veri�cation while a bogus execution always fails veri�cation.

To evaluate the e�ectiveness of the techniques, we implemented orochi for PHP applications.

Orochi’s veri�er re-executes all requests but in a deduplicated and accelerated manner: the ver-

i�er achieves 5.6–10.9× speedup versus simply re-executing inputs, with <10% CPU overhead

on the server side. The storage overhead is relatively high: the veri�er must keep a copy of the

server’s persistent state.

Cobra: verifying serializability of black-box databases.A new generation of cloud databases

has emerged that supports ACID transactions and claims to be serializable [79, 206]. Yet, users

have no assurance that this contract holds. In this dissertation, we study the problem of verifying

serializability of black-box databases with real-world online transactional processing workloads.

Cobra faces two main challenges. First, the problem of verifying serializability of black-box

databases has long been known to be NP-complete [79]. Nevertheless, inspired by advanced

SAT/SMT solvers and their remarkable achievements in “solving” NP-complete problems in prac-
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tice (where often the computationally intractable instances don’t arise), we hypothesize that it

ought to be possible to verify serializability in many real-world workloads. But, it turns out that,

even in real cases, the problem is too hard for SMT solvers alone. To reduce the di�culty of

the problem, cobra introduces new SMT encodings that exploit common patterns in practice

(for example, read-modify-write transactions), and leverages the computational power of parallel

hardware (GPUs) to accelerate the veri�cation. As a result, cobra can verify 10,000 transactions

in less than 14 seconds for all workloads we experiment with, which improves over natural base-

lines by at least 10× in the problem size.

Second, to verify serializability continually (for example, for an online database), the veri-

�er must trim transaction history; otherwise, veri�cation would become too costly. The chal-

lenge is that the checker seemingly needs to retain all history; this is because serializability does

not respect real-time ordering, so future transactions can legitimately read from values that (in

a real-time view) have been overwritten. To enable trimming history, cobra introduces fence

transactions, which impose coarse-grained synchronization and divide the transaction history

into epochs. Meanwhile, based on epochs, cobra runs an algorithm that discards transactions

that will no longer be referenced. With these techniques, cobra can sustainably verify 1,000–

2,000 transaction/sec, or 86–173M/day (for comparison, Apple Pay handles 33M/day [5], and Visa

handles 150M/day [47]).

1.2 Limitations

Both orochi and cobra require the full set of inputs to, and outputs from, the audited service,

for example HTTP requests and responses for a web application, and queries and results for a

database. Faithfully recording the inputs and outputs is natural for some scenarios (see §3) but

not for all. Consider the case where both a cloud database and its clients (say web servers) stay

in the same cloud. It is unclear how to collect the database’s inputs and outputs without trusting

any pieces of the cloud because the communication is internal to the cloud. One solution [65] is to

deploy a trace collector between the database and clients that is implemented in trusted hardware

(such as Intel SGX [137]); the assumption here is that the collector has a simple implementation
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and its correctness is easy to reason about, and the trusted hardware can prevent a (malicious)

cloud from tampering with the collector’s execution.

The trace requirement also means that the collectors and veri�er have to tolerate crashes.

But orochi and cobra do not have fault tolerant mechanisms, so we are in e�ect assuming no

crashes. Making the collectors and veri�er fault-tolerant is future work (see §5); a natural starting

point is transparent state machine replication [48, 104].

Another limitation of orochi is that accelerating re-execution requires repeated control �ow

among normal executions. While this requirement holds for web applications [54, 144], desk-

top applications [110], map-reduce workloads [213], image processing [103], and blockchain

applications, it is unclear whether other classes of applications contain such repetition. If not,

orochi’s veri�cation performance would su�er, which in the worst case is equivalent to simply

re-executing all inputs.

Finally, cobra has several limitations in theory and in practice. First, there is no guarantee that

cobra terminates quickly, as the underlying problem is NP-complete (though it terminates in all

our experiments; §4.6). Second, cobra supports only a key-value API, and thus does not support

range queries and other SQL operations, such as “join” and “sum”; if an application requires them,

then one must translate these queries and operations to a key-value API. Third, cobra does not

yet support async (event-driven) I/O patterns in clients (only multithreading).

1.3 Roadmap

The rest of this dissertation is organized as follows. Chapter 2 surveys the literature on general

solutions of execution integrity (§2.1), systems that speci�cally relate to orochi (§2.2), and sys-

tems that speci�cally relate to cobra (§2.3). Chapter 3 de�nes the E�cient Server Audit Problem

(§3.1), proposes an abstract solution (§3.2), and describes an instantiation system (§3.3) targeting

PHP web applications. Chapter 4 introduces the problem of verifying serializability of black-box

databases (§4.1 and 4.2), as well as the design (§4.3 and 4.4), implementation (§4.5), and evaluation

(§4.6) of cobra, a system that addresses this problem. Finally, Chapter 5 summarizes this disser-

tation and discusses orochi’s and cobra’s limitations, which point to the way to future work.
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2 | Related Work

We discuss general solutions of execution integrity in Section 2.1. In Section 2.2, we describe

systems that speci�cally relate to orochi, including deterministic record-replay systems (§2.2.1)

and systems that provide integrity for web applications (§2.2.2). Finally, in Section 2.3, we discuss

systems that speci�cally relate to cobra, which verify or enforce the correctness of databases.

2.1 Execution integrity

Execution integrity—giving some principal con�dence that an executor’s outputs are consistent

with an expected program—is a broad topic. As mentioned in Section 1.1, this dissertation ex-

plores a new variant, the E�cient Server Audit Problem (full de�nition in §3.1), which combines

for the �rst time: (1) no assumptions about the executor (though our veri�er gets a trace of re-

quests/responses), (2) a concurrent executor, and (3) a requirement of scaling to real applications,

including legacy ones.

Replication. A classic solution to execution integrity is Byzantine replication [91, 121, 146]; the

principal needs no veri�cation algorithm but assumes that a super-majority of nodes operates

fault-free. With a similar assumption that some nodes must be honest, auditing systems like

PeerReview [129] and FullReview [107] require honest nodes in the system to re-execute other

nodes’ tasks and verify whether the results are faithfully produced. Decentralized platforms like

Ethereum [208] also use replication to ensure a consistent status among decentralized nodes, with

the assumption that honest nodes own the majority of the system’s resources.

Attestation. Another classic technique is attestation: proving to the principal that the execu-
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tor runs the expected software. This includes TPM-based approaches [93, 131, 160, 161, 171, 180,

184, 193], systems [63, 72, 136, 182, 187] built on SGX hardware [137], and software-based ap-

proaches [66, 94, 183, 217] that trust privileged software like hypervisor. But attesting to a (pos-

sibly vulnerable) stack does not guarantee the execution integrity of the program atop that stack.

Using SGX, we can place the program in its own enclave, but it is di�cult to rigorously establish

that the checks performed by the in-enclave code on the out-enclave code [63, 72, 187] compre-

hensively detect deviations from expected behavior (though see [192]). In addition, the integrity

guarantee provided by hardware is questionable according to a recent attack to SGX [165].

Probabilistic proofs. Execution integrity has long been studied by theorists [67, 118, 119, 125,

163], and these ideas have been re�ned and implemented [75, 99, 170, 186] (see [204] for a survey

and [58, 74, 203, 218] for recent developments). This theory makes no assumptions about the

executor or the workload. But none of these works handle concurrent executors except for one

case [185]. Also, because these works generally represent programs as static circuits in which

state operations exhaust a very limited “gate budget”, and because the executor’s overhead is

generally at least six orders of magnitude, they are for now unsuited to legacy applications.

2.2 Deterministic record-replay and integrity for the web

Orochi veri�es remote program executions by re-executing the program on a trusted veri�er,

which can be categorized as deterministic record-replay [100, 108], discussed in Section 2.2.1. Also,

the implemented system orochi targets web applications, and we discuss related systems that

provide execution integrity for web applications in Section 2.2.2.

2.2.1 Deterministic record-replay

Orochi is the �rst record-replay system to achieve the following combination: (a) the recorder

is untrusted (and the replayer has an input/output trace), (b) replay is accelerated versus re-

executing, and (c) there are concurrent accesses to shared objects.

Untrusted recorder. In AVM [128], an untrusted hypervisor records alleged network I/O and
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non-deterministic events. A replayer checks this log against the ground truth network messages

and then re-executes, using VM replay [86, 111]. In Ripley [202], a web server re-executes client-

side code to determine whether the output matches what the client claimed. In both cases, the

replayer does not trust the recorder, but in neither case is re-execution accelerated. A pioneer in

this line of work is DIVA [64], a microprocessor architecture that comprises a DIVA checker (the

“trusted replayer”) to verify the computation of a core processor (the “untrusted recorder”). The

checker runs with fewer resources (in DIVA’s case, larger transistors to resist faults such as nat-

ural radiation interference); re-execution can in principle be cheaper than the original execution

because it goes second and can exploit hints from the �rst run.

Accelerated replay. Poirot [144] accelerates the re-execution of web applications. orochi im-

itates Poirot: we borrow the observation that web applications have repeated control �ow and

the notion of grouping re-execution accordingly, and we follow some of Poirot’s implementation

and evaluation choices (§3.3.7, §3.4). But there is a crucial distinction. Poirot analyzes patches

in application code; its techniques for acceleration (construct templates for each claimed control

�ow group) and shared objects (replay “reads”) fundamentally trust the language runtime and all

layers below [144, §2.4].

Shared objects and concurrency. We focus on solutions that enable an o�ine replayer to de-

terministically re-execute concurrent operations. First, the replayer can be given a thread sched-

ule explicitly [152, 200]. Second, the replayer can be given information to reconstruct the thread

schedule, for example operation precedence using CREW protocols [95, 112, 148, 151, 214]. Third,

the replayer can be given information to approximately reconstruct the thread schedule, for ex-

ample, synchronization precedence or sketches [57, 169, 179].1 Closest to orochi is LEAP [134]

(see also [211]), which is in the second category: for each shared Java variable, LEAP logs the

sequence of thread accesses. But orochi’s logs also contain operands. Simulate-and-check relates

to record-replay speculation [152]: it is reminiscent of the way that the epoch-parallel processors

in DoublePlay [200] check the starting conditions of optimistically executing future splices.
1DoublePlay [200] and Respec [152] use these techniques but do so online, while searching for a thread schedule

to give to an o�ine replayer.
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2.2.2 Execution integrity for web applications

Orochi, the implemented system, targets web applications and PHP. There are other systems

sharing similar motivations. EVE [139] examines a web application by spot-checking for stor-

age consistency violations but assumes correct application execution. Verena [142] checks the

integrity of a remote web application; it doesn’t require a trace but does assume a trusted hash

server. Verena’s techniques are built on authenticated data structures with a restricted API; it

does not support general-purpose or legacy web applications. Web tripwires [178] detects in-

�ight page changes between users and the web application, as could happen because of scripts

inserted by client software, malicious ISPs, and attacks like ARP poisoning, which complements

systems like orochi. WaRR [61], on the contrary, allows web applications to check users’ behav-

iors, which has an “opposite” threat model that distrusts users.

2.3 Checking correctness of databases

Cobra veri�es serializability, a correctness contract [101] of a cloud database, which necessitates

solving a new technical problem (§4.1): (a) black-box checking (no cooperation from the database,

no prior knowledge of the workload, and sticking to a standard key-value API) of (b) serializabil-

ity, while (c) scaling to real-world online transactional processing workloads.

Checking serializability of black-box databases. All prior works that tackle (a) and (b) to-

gether do not meet (c). Sinha et al. [190] record the ordering of operations in a modi�ed software

transactional memory library to reduce the search space in checking serializability; this work uses

a “brute-force” polygraph approach (details in §4.2.3), which runs in exponential time. Biswas and

Enea (BE) [83] introduce a serializability checking algorithm that runs in O(nc ) where n is the

number of transactions and c is the number of clients (see more details in §4.1 and performance

comparison with cobra in §4.6.1). Gretchen [26] uses an o�-the-shelf constraint solver to check

serializability. All these works can only solve small workloads (<1k transactions), which is far

from meeting real-world requirements (for example, Visa handles 1.7k transaction/sec [47]). And

none of them supports checking an online database with continuous transactions.
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Checking serializability with internal/extra information. A line of work [130, 145, 189, 197,

210, 215] checks serializability where the ordering of all con�icting operations are known. But,

such internal ordering information is unavailable for users of a black-box database. Some of the

works [130, 197, 210, 215] infer the ordering by heuristics, hence imposes false positives. Sinha et

al. [189] acquire the con�icting operation ordering by recording the accesses to shared objects in

software transactional memory (STM), but doing so requires (intrusive) modi�cation to the STM

system. Elle [145] selects a workload that makes the write-write ordering manifest; speci�cally,

the database client invokes “append”, and writes become appends to a list. This approach is not

black box according to our notion: it relies on a non-standard API and a speci�c workload for

testing purposes, rather than monitoring a production workload.

Another body of work examines cloud storage consistency [55, 60, 156, 157]. These works rely

on extra ordering information obtained through techniques like loosely- or well-synchronized

clocks [55, 60, 123, 143, 157], or client-to-client communication [156, 188]. As another example,

a gateway that sequences the requests can ensure consistency by enforcing ordering [138, 174,

188, 191], thereby dramatically reducing concurrency.

Di�erent from above approaches, Concerto [62] uses deferred veri�cation, allowing it to ex-

ploit an o�ine memory checking algorithm [84] to check online the sequential consistency of a

highly concurrent key-value store. Concerto’s design achieves orders-of-magnitude performance

improvement compared to Merkle tree-based approaches [84, 162], but it also requires modi�ca-

tions of the database. (See elsewhere [113, 153] for related algorithms.)

Some of cobra’s techniques are reminiscent of these works, such as its use of serialization

graphs [60, 123]. However, a substantial di�erence is that cobra neither modi�es the “memory”

(the database) to get information about the actual internal schedule nor depends on external

synchronization.

Consistency testing. Serializability is a particular isolation level in a transactional system—the

I in ACID transactions. In shared memory systems and systems that o�er replication (but do not

necessarily support transactions), there is an analogous correctness contract, namely consistency.

(Confusingly, the “C(onsistency)” in ACID transactions refers to something else [68].) Example
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consistency models are linearizability [132], sequential consistency [149], and eventual consis-

tency [173]. Testing adherence to these models is an analogous problem to ours. In both cases, one

searches for a schedule that �ts the ordering constraints of both the model and the history [123].

As in checking serializability, the computational complexity of checking consistency decreases if

a stronger model is targeted (for example, linearizability vs. sequential consistency) [120], or if

more ordering information can be (intrusively) acquired (by opening black boxes) [207].

Detecting application anomalies caused by weak consistency. Several works [88, 166, 177]

detect anomalies for applications deployed on weakly consistent storage. Like cobra, these works

use SAT/SMT solvers on graph-related problems. But the similarities end there: these works an-

alyze application behavior, taking the storage layer as trusted input. As a consequence, the tech-

nical mechanisms are very di�erent.

De�nitions and interpretations of isolation levels.Cobra of course uses serialization graphs,

which are a common tool for reasoning about isolation levels [53, 80, 167]. However, isolation

levels can be interpreted via other means such as excluding anomalies [77] and client-centric ob-

servations [102]; it remains an open and intriguing question whether the other de�nitions would

yield a more intuitive and easily-implemented encoding and algorithm than the one in cobra.
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3 | The Efficient Server Audit Problem

This chapter studies verifying outsourced computation. To articulate the underlying problem,

let’s start with a concrete example.

Dana the Deployer works for a company whose employees use an open-source web applica-

tion built from PHP and a SQL database. The application is critical: it is a project management

tool (such as JIRA), a wiki, or a forum. For convenience and performance, Dana wants to run

the application on a cloud platform, say AWS [4]. However, Dana has no visibility into AWS.

Meanwhile, undetected corrupt execution—as could happen from miscon�guration, errors, com-

promise, or adversarial control at any layer of the execution stack: the language run-time, the

HTTP server, the OS, the hypervisor, the hardware—would be catastrophic for Dana’s company.

So Dana would like assurance that AWS is executing the actual application as written. How can

Dana gain this assurance?

Dana’s situation is one example of a fundamental problem, which this dissertation de�nes

and studies: the E�cient Server Audit Problem. The general shape of this problem is as follows.

A principal supplies a program to an untrusted executor that is supposed to perform repeated

and possibly concurrent executions of the program, on di�erent inputs. The principal later wants

to verify that the outputs delivered by the executor were produced by running the program. The

veri�cation algorithm, or veri�er, is given an accurate trace of the executor’s inputs and delivered

outputs. In addition, the executor gives the veri�er reports, but these are untrusted and possibly

spurious. The veri�er must somehow use the reports to determine whether the outputs in the

trace are consistent with having actually executed the program. Furthermore, the veri�er must

make this determination e�ciently; it should take less work than re-executing the program on
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every input in the trace.

The requirement of a trace is fundamental: if we are auditing a server’s outputs, then we need

to know those outputs. Of course, getting a trace may not be feasible in all cases. In Dana’s case,

the company can place a middlebox at the network border, to capture end-clients’ tra�c to and

from the application. We discuss other scenarios later (§3.3.1).

The E�cient Server Audit Problem is a variant of execution integrity. The novelty in this

variant is in combining three characteristics: (1) we make no assumptions about the failure modes

of the executor, (2) we allow the executor to be concurrent, and (3) we insist on solutions that

scale beyond toy programs and are compatible with (at least some) legacy programs.

The contents of this chapter are organized as follows.

§3.1 De�nition of the E�cient Server Audit Problem. We �rst present the problem in theo-

retical terms. We do this to show the generality and the fundamental challenges.

§3.2 An abstract solution: ssco. We exhibit a solution at a theoretical level, so as to highlight

the core concepts, techniques, and algorithms. These include:

§3.2.1 SIMD [41]-on-demand. The veri�er re-executes all requests, in an accelerated way. For

a group of requests with the same control �ow, the veri�er executes a “superposition”:

instructions with identical operands across requests are performed once, whereas instruc-

tions with di�erent operands are executed individually and merged into the superposed

execution. This solution assumes that the workload has repeated traversal of similar code

paths—which is at least the case for some web applications, as observed by Poirot [144, §5].

§3.2.3 Simulate-and-check.How can the veri�er re-execute reads of persistent or shared state?

Because it re-executes requests out of order, it cannot physically re-invoke operations

on such state, but neither can it trust reports that are allegedly the originally read val-

ues (§3.2.2). Instead, the executor (purportedly) logs each operation’s operands; during re-

execution, the veri�er simulates reads, using the writes in the logs, and checks the logged

writes opportunistically.

§3.2.5 Consistent ordering. The veri�er must ensure that operations can be consistently or-

dered (§3.2.4). To this end, the veri�er builds a directed graph with a node for every external
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observation or alleged operation, and checks whether the graph is acyclic. This step incor-

porates an e�cient algorithm for converting a trace into a time precedence graph. This

algorithm would accelerate prior work [60, 139] and may be useful elsewhere.

ssco has other aspects besides, and the uni�ed whole was di�cult to get right: our prior

attempts had errors that came to light when we tried to prove correctness. This version, how-

ever, is proved correct Appendix A.

§3.3 A built system: orochi. We describe a system that implements ssco for PHP web applica-

tions. This is for the purpose of illustration, as we expect the system to generalize to other

web languages, and the theoretical techniques in ssco to apply in other contexts. orochi

includes a record-replay system [100, 108] for PHP [92, 144]. The replayer is a modi�ed lan-

guage runtime that implements SIMD-on-demand execution using multivalue types that hold

the program state for multiple re-executions. orochi also introduces mechanisms, based on a

versioned database [34, 92, 122, 194], to adapt simulate-and-check to databases and to dedu-

plicate database queries.

§3.4 Experimental evaluation of orochi. In experiments with several applications, the veri�er

can audit 5.6–10.9× faster than simple re-execution; this is a loose lower bound, as the baseline

is very pessimistic for orochi (§3.4.1). orochi imposes overhead of roughly 10% on the web

server. orochi’s reports, per-request, are 3%–11% of the size of a request-response pair. Most

signi�cantly, the veri�er must keep a copy of the server’s persistent state.

ssco and orochi have limitations (also see §1.2 and §3.4.5): �rst, in ssco the executor has

discretion over scheduling concurrent requests, and it gets additional discretion, in orochi, over

the return values of non-deterministic PHP built-ins. Second, orochi is restricted to applications

that do not interact much with other applications; nevertheless, there are suitable application

classes, for example LAMP [30]. Third, orochi requires minor modi�cations in some applications,

owing to the ssco model. Finally, the principal can audit an application only after activating

orochi; if the server was previously running, the veri�er has to bootstrap from the pre-orochi

state.
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Figure 3.1: The E�cient Server Audit Problem. The objects abstract shared state (databases, key-
value stores, memory, etc.). The technical problem is to design the veri�er and the reports to
enable the veri�er, given a trace and a program, to e�ciently validate (or invalidate) the contents
of responses.

3.1 Problem definition

This section de�nes the E�cient Server Audit Problem. The actors and components are depicted

in Figure 3.1.

A principal chooses or develops a program, and deploys that program on a powerful but

untrusted executor.

Clients (the outside world) issue requests (inputs) to the executor, and receive responses (out-

puts). A response is supposed to be the output of the program, when the corresponding request

is the input. But the executor is untrusted, so the response could be anything.

A collector captures an ordered list, or trace, of requests and responses. We assume that the

collector does its job accurately, meaning that the trace exactly records the requests and the

(possibly wrong) responses that actually �ow into and out of the executor.

The executor maintains reports whose purpose is to assist an audit; like the responses, the

reports are untrusted.

Periodically, the principal conducts an audit; we often refer to the audit procedure as a veri�er.

The veri�er gets a trace (from the accurate collector) and reports (from the untrusted executor).

The veri�er needs to determine whether executing the program on each input in the trace truly
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produces the respective output in the trace.

Two features of our setting makes this determination challenging. First, the veri�er is much

weaker than the executor, so it cannot simply re-execute all of the requests.

The second challenge arises from concurrency: the executor is permitted to handle multiple

requests at the same time (for example, by assigning each to a separate thread), and the invoked

program is permitted to issue operations to objects. An object abstracts state shared among ex-

ecutions, for example a database, key-value store, or memory cells (if shared). We will be more

precise about the concurrency model later (§3.2.2). For now, a key point is that, given a trace—in

particular, given the ordering of requests and responses in the trace, and given the contents of

requests—the number of valid possibilities for the contents of responses could be immense. This is

because an executor’s responses depend on the contents of shared objects; as usual in concurrent

systems, those contents depend on the operation order, which depends on the executor’s internal

scheduling choices.

Somehow, the reports, though unreliable, will have to help the veri�er e�ciently tell the

di�erence between valid and invalid traces. In detail, the problem is to design the veri�er and

the reports to meet these properties:

• Completeness. If the executor behaved during the time period of the trace, meaning that it

executed the given program under the appropriate concurrency model, then the veri�er must

accept the given trace.

• Soundness. The veri�er must reject if the executor misbehaved during the time period of the

trace. Speci�cally, the veri�er accepts only if there is some schedule S, meaning an interleav-

ing or context-switching among (possibly concurrent) executions, such that: (a) executing the

given program against the inputs in the trace, while following S, reproduces exactly the respec-

tive outputs in the trace, and (b) S is consistent with the ordering in the trace. (Appendix A

states Soundness precisely.) This property means that the executor can pass the audit only by

executing the program on the received requests—or by doing something externally indistin-

guishable from that.

• E�ciency. The veri�er must require only a small fraction of the computational resources that
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would be required to re-execute each request. Additionally, the executor’s overhead must be

only a small fraction of its usual costs to serve requests (that is, without capturing reports).

Finally, the solution has to work for applications of reasonable scale.

We acknowledge that “small fraction” and “reasonable scale” may seem out of place in a theo-

retical description. But these characterizations are intended to capture something essential about

the class of admissible solutions. As an example, there is a rich theory that studies execution in-

tegrity (§2.1), but the solutions (besides not handling concurrency) are so far from scaling to the

kinds of servers that run real applications that we must look for something qualitatively di�erent.

3.2 A solution: SSCO

This section describes an abstract solution to the E�cient Server Audit Problem, called ssco

(a rough abbreviation of the key techniques). ssco assumes that there is similarity among the

executions, in particular that there are a relatively small number of control �ow paths induced

by requests (§3.2.1). ssco also assumes a certain concurrency model (§3.2.2).

Overview and key techniques. In ssco, the reports are:

• Control �ow groupings: For each request, the executor records an opaque tag that purportedly

identi�es the control �ow of the execution; requests that induce the same control �ow are

supposed to receive the same tag.

• Operation logs: For each shared object, the executor maintains an ordered log of all operations

(across all requests).

• Operation counts: For each request execution, the executor records the total number of object

operations that it issued.

The veri�er begins the audit by checking that the trace is balanced: every response must

be associated with an earlier request, and every request must have a single response or some

information that explains why there is none (a network reset by a client, for example). Also, the

veri�er checks that every request-response pair has a unique requestID; a well-behaved executor
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ensures this by labeling responses. If these checks pass, we (and the veri�er) can refer to request-

response pairs by requestID, without ambiguity.

The core of veri�cation is as follows. The veri�er re-executes each control �ow group in a

batch; this happens via SIMD [41]-on-demand execution (§3.2.1). During this process, re-executed

object operations don’t happen directly—they can’t, as re-execution follows a di�erent order

from the original (§3.2.2). Instead, the operation logs contain a record of reads and writes, and

re-execution follows a discipline that we call simulate-and-check (§3.2.3): re-executed read opera-

tions are fed (or simulated) based on the most recent write entry in the logs, and the veri�er checks

logged write operations opportunistically. In our context, simulate-and-check makes sense only

if alleged operations can be ordered consistent with observed requests and responses (§3.2.4); the

veri�er determines whether this is so using a technique that we call consistent ordering veri�ca-

tion (§3.2.5).

At the end, the veri�er compares each request’s produced output to the request’s output in

the trace, and accepts if and only if all of them match, across all control �ow groups.

The full audit logic is described in Figures 3.3, 3.5, and 3.6, and proved correct in Appendix A.

3.2.1 SIMD-on-demand execution

We assume here that requests do not interact with shared objects; we remove that assumption

in Section 3.2.2. (As we have just done, we will sometimes use “request” as shorthand for “the

execution of the program when that request is input.”)

The idea in SIMD-on-demand execution is that, for each control �ow group, the veri�er con-

ducts a single “superposed” execution that logically executes all requests in that group together,

at the same time. Instructions whose operands are di�erent across the separate logical executions

are performed separately (we call this multivalent execution of an instruction), whereas an in-

struction executes only once (univalently) if its operands are identical across the executions. The

concept is depicted in Figure 3.2.

The control �ow groupings are structured as a mapC from opaque tag to set-of-requestIDs. Of

course, the map is part of the untrusted report, so the veri�er does not trust it. However, if the map
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Figure 3.2: Abstract depiction of SIMD-on-demand, for a simple computation. Rectangles repre-
sent program variables, circles represent instructions. On the right, thick lines represent explicitly
materialized outputs; thin lines represent collapsed outputs.

is incorrect (meaning, two requests in the same control �ow group diverge under re-execution),

then the veri�er rejects. Furthermore, if the map is incomplete (meaning, not including particular

requestIDs), then the re-generated responses will not match the outputs in the trace. The veri�er

can �lter out duplicates, but it does not have to do so, since re-execution is idempotent (even with

shared objects, below).

Observe that this approach meets the veri�er’s e�ciency requirement (§3.1), if (1) the number

of control paths taken is much smaller than the number of requests in the audit, (2) most instruc-

tions in a control �ow group execute univalently, and (3) it is inexpensive to switch between

multivalent and univalent execution, and to decide which to perform. (We say “if” and not “only

if” because there may be platforms where, for example, condition (1) alone is su�cient.)

System preview. The �rst two conditions hold in the setting for our built system, orochi (§3.3):

LAMP web applications. Condition (1) holds because these applications are in a sense routine

(they do similar things for di�erent users) and because the programming language is high-level
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(for example, string operations or calls like sort() or max() induce the same control �ow [144]).

Condition (2) holds because the logical outputs have a lot of overlap: di�erent users wind up

seeing similar-looking web pages, which implies that the computations that produce these web

pages include identical data �ows. This commonality was previously observed by Poirot [144],

and our experiments con�rm it (§3.4.2). Condition (3) is achieved, in orochi, by augmenting the

language run-time with multivalue versions of basic datatypes, which encapsulate the di�erent

values of a given operand in the separate executions. Re-execution moves dynamically between

a vector, or SIMD, mode (which operates on multivalues) and a scalar mode (which operates on

normal program variables).

3.2.2 Confronting concurrency and shared objects

As noted earlier, a key question is: how does the veri�er re-execute an operation that reads from

a shared object? An approach taken elsewhere [92, 144] is to record the values that had been read

by each request, and then to supply those values during re-execution. One might guess that, were

we to apply this approach to our context where reports are untrusted, the worst thing that could

happen is that the veri�er would fail to reproduce the observed outputs in the trace—in other

words, the executor would be incriminating itself. But the problem is much worse than that: the

reported values and the responses could both be bogus. As a result, if the veri�er’s re-execution

dutifully incorporated the purported read values, it could end up reproducing, and thereby vali-

dating, a spurious response from a misbehaved executor; this violates Soundness (§3.1).

Presentation plan. Below, we de�ne the concurrency model and object semantics, as necessary

context. We then cover the core object-handling mechanisms (§3.2.3–§3.2.5). However, that de-

scription will be incomplete, in two ways. First, we will not cover every check or justify each line

of the algorithms. Second, although we will show with reference to examples why certain alter-

natives fail, that will be intuition and motivation, only; correctness, meaning Completeness and

Soundness (§3.1), is actually established end-to-end, with a chain of logic that does not enumerate

or reason about all the ways in which reports and responses could be invalid (Appendix A).

Concurrency model and object semantics. In a well-behaved executor, each request induces
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Input Trace Tr Input Reports R Global OpMap : (requestID, opnum) → (i, seqnum)

Components of the reports R:
// purported groups; §3.2.1
C : CtlFlowTag→ Set(requestIDs)
// purported op logs; §3.2.3
OLi : N+ → (requestID, opnum, optype, opcontents)
// purported op counts; §3.2.3
M : requestID→ N

1: procedure ssco_audit()
2: // Partially validate reports and constructOpMap

3: ProcessOpReports() // de�ned in Figure 3.5
4:
5: return ReExec() // line 24
6:
7: procedure CheckOp(rid, opnum, i, optype, oc)
8: if (rid, opnum) not in OpMap : reject
9:

10: î, s ← OpMap[rid, opnum]
11: ôt, ôc← (OLi[s].optype,OLi[s].opcontents)
12: if i , î or optype , ôt or oc , ôc :
13: reject
14: return s

15:
16: procedure SimOp(i, s, optype, opcontents)
17: ret← ⊥

18: writeop← walk backward in OLi from s; stop
19: when optype=RegisterWrite
20: if writeop doesn’t exist :
21: reject
22: ret = writeop.opcontents
23: return ret

24: procedure ReExec()
25: Re-execute Tr in groups according to C:
26:
27: (1) Initialize a group as follows:
28: Read in inputs for all requests in the group
29: Allocate structures for each req in the group
30: // opnum is a per-group running counter
31: opnum← 1
32:
33: (2) During SIMD-on-demand execution:
34:
35: if execution within the group diverges:
36: return reject
37:
38: When the group makes a state operation:
39: optype← the type of state operation
40: for all rid in the group:
41: i, oc← op params from execution
42: s ← CheckOp(rid, opnum, i,
43: optype, oc) // line 7
44: if optype = RegisterRead:
45: op result← SimOp(i, s, optype, oc)
46: opnum← opnum + 1
47:
48: (3) When a request rid �nishes:
49: if opnum < M (rid): return reject
50:
51: (4) Write out the produced outputs
52:
53: if the outputs from (4) equal the responses in Tr :
54: return accept
55: return reject

Figure 3.3: The ssco audit procedure. The supplied trace Tr must be balanced (§3.2), which the
veri�er ensures before invoking ssco_audit. A rigorous proof of correctness is in Appendix A.
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the creation of a separate thread that is destroyed after the corresponding response is delivered.

A thread runs concurrently with the threads of any other requests whose responses have not

yet been delivered. Each thread sequentially performs instructions against an isolated execution

context: registers and local memory. As stated earlier, threads perform operations on shared ob-

jects (§3.1). These operations are blocking, and the objects expose atomic semantics. We assume

for simplicity in this section that objects expose a read-write interface; they are thus atomic reg-

isters [150]. Later, we will permit more complex interfaces, such as SQL transactions (§3.3.4).

3.2.3 Simulate-and-check

The reports in ssco include the (alleged) operations themselves, in terms of their operands. Below,

we describe the format and how the veri�er uses these operation logs.

Operation log contents. Each shared object is labeled with an index i. The operation log for

object i is denoted OLi, and it has the following form (N+ denotes the set {1, 2, . . .}):

OLi : N+ → (requestID, opnum, optype, opcontents).

The opnum is per-requestID; a correct executor tracks and increments it as requestID executes.

An operation is thus identi�ed with a unique (rid, opnum) pair. The optype and opcontents de-

pend on the object type. For registers, optype can be RegisterRead (and opcontents are supposed

to be empty) or RegisterWrite (and opcontents is the value to write).

What the veri�er does. The core re-execution logic is contained in ReExec (Figure 3.3, line 24).

The veri�er feeds re-executed reads by identifying the latest write before that read in the log. Of

course, the logs might be spurious, so for write operations, the veri�er opportunistically checks

that the operands (produced by re-execution) match the log entries.

In more detail, when re-executing an operation (rid, opnum), the veri�er uses OpMap (as de-

�ned in Fig. 3.3) to identify the log entry; it then checks that the parameters (generated by pro-

gram logic) match the logs. Speci�cally, the veri�er checks that the targeted object corresponds

to the (unique) log that holds (rid, opnum) (uniqueness is ensured by checks in Figure 3.5), and
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f(){
  …………………………
  …………………………
  write(A,1)
  …………………………
  …………………………
  read(B) ! x
  …………………………
  output(x)
}

g(){
  …………………………
  write(B,1)
  …………………………
  …………………………

  read(A) ! y
  …………………………
  …………………………
  …………………………
  output(y)
}

r1 OLA
r2

read
r1

write 1

 

…

OLB
r2 

write 1
r1

read

 

…

OLA
r2

read
r1

write 1

 

…

OLB
r1

read
r2

write 1

 

…

OLA
r1

write 1
r2

read

 

…

OLB
r2

write 1
r1

read

 

…

r2
a

b

c

r1 req
r1: 1
r2 req

r2: 0

executor

r1 req

r1: 0
r2 req

r2: 0

executor

r1 req

r1: 1
r2 req

r2: 1

executor

Figure 3.4: Three examples to highlight the veri�er’s challenge and to motivate consistent order-
ing veri�cation (§3.2.5). As explained in the text, a correct veri�er (meaning Complete and Sound;
§3.1) must reject examples a and b, and accept c. In these examples, r1 and r2 are requestIDs in
di�erent control �ow groups, and their executions invoke di�erent subroutines of the given pro-
gram. For simplicity, there is only one request per control �ow group, and objects are assumed
to be initialized to 0. What varies among examples are the timing of requests and responses, the
contents of the executor’s responses, and the alleged operation logs for objects A and B (denoted
OLA, OLB). The opnum component of the log entries is not depicted.

that the produced operands (such as the value to be written) are the same as in the given log entry

(lines 39–43, Figure 3.3). If the re-executed operation is a read, the veri�er feeds it by identifying

the write that precedes (rid, opnum); this is done in SimOp.

Notice that an operation that reads a given write might re-execute long before the write is

validated. The intuition here is that a read’s validity is contingent on the validity of all prior write

operations in the log. Meanwhile, the audit procedure succeeds only if all checks—including the

ones of write operations—succeed, thereby retroactively discharging the assumption underlying

every read.

What prevents the executor from justifying a spurious response by inserting into the logs

additional operations? Various checks in the algorithm would detect this and other cases. For

example, the op count reports M enforce certain invariants, and interlocking checks in the algo-

rithms validate M .
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3.2.4 Simulate-and-check is not enough

To show why simulate-and-check is insu�cient by itself, and to illustrate the challenge of aug-

menting it, this section walks through several simple examples. This will give intuition for the

techniques in the next section (§3.2.5).

The examples are depicted in Figure 3.4 and denoted a, b, c. Each of them involves two re-

quests, r1 and r2. Each example consists of a particular trace—or, equivalently, a particular request-

response pattern—and particular reports. As a shorthand, we notate the delivered responses with

a pair (r1resp, r2resp); for example, the responses in a are (1, 0).

A correct veri�er must reject a, reject b, and accept c.

To see why, note that in a, the executor delivers a response to r1 before r2 arrives. So the

executor must have executed r1 and then executed r2. Under that schedule, there is no way to

produce the observed output (1, 0); in fact, the only output consistent with the observed events

is (0, 1). Thus, accepting a would violate Soundness (§3.1).

In b, r1 and r2 are concurrent. A well-behaved executor can deliver any of (0, 1), (1, 0), or (1, 1),

depending on the schedule that it chooses. Yet, the executor delivered (0, 0), which is consistent

with no schedule. So accepting b would also violate Soundness.

In c, r1 and r2 are again concurrent. This time, the executor delivered (1, 1), which a well-

behaved executor can produce, by executing the two writes before either read. Therefore, reject-

ing c would violate Completeness (§3.1).

Now, if the veri�er used only simulate-and-check (Figure 3.3), the veri�er would accept in all

three of the examples. We encourage curious readers to convince themselves of this behavior by

inspecting the veri�er’s logic and the examples. Something to note is that in a and b, the operation

logs and responses are both spurious, but they are arranged to be consistent with each other.

Below are some strawman attempts to augment simulate-and-check, by analyzing all opera-

tion logs prior to re-execution.

• What if the veri�er (i) creates a global order O of requests that is consistent with the real-time

order (in a, r1 would be prior to r2 in O; in b and c, either order is acceptable), and (ii) for each

log, checks that the order of its operations is consistent with O? This would rightly reject a
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(r1 is before r2 in O but not in the logs), rightly reject b (regardless of the choice of O, one

of the two logs will violate it), and wrongly reject c (for the same reason it would reject b).

This approach would be tantamount to insisting that entire requests execute atomically (or

transactionally)—which is contrary to the concurrency model.

• What if the veri�er creates only a partial order O′ on requests that is consistent with the real-

time order, and then insists that, for each log, the order of operations is consistent with O
′?

That is, operations from concurrent requests can interleave in the logs. This would rightly

reject a and rightly accept c. But it would wrongly accept b.

• Now notice that the operations in b cannot be ordered: considering log and program order,

the operations form a cycle, depicted in Figure 3.4. So what if the veri�er (a) creates a directed

graph whose nodes are all operations in the log and whose edges are given by log order and

program order, and (b) checks that there are no cycles? That would rightly reject b and accept

c. But it would wrongly accept a.

The veri�er’s remaining techniques, described next, can be understood as combining the pre-

ceding failed attempts.

3.2.5 Consistent ordering verification

At a high level, the veri�er ensures the existence of an implied schedule that is consistent with

external observations and alleged operations. Prior to re-executing, the veri�er builds a directed

graph G with a node for every event (an observed request or response, or an alleged operation);

edges represent precedence [150]. The veri�er checks whether G is acyclic. If so, then all events

can be consistently ordered, and the implied schedule is exactly the ordering implied byG’s edges.

Note, however, that the veri�er does not follow that order when re-executing nor does the veri�er

consult G again.

Figures 3.5 and 3.6 depict the algorithms. G contains nodes labeled (rid, opnum), one for each

alleged operation in the logs. G also has, for each request rid in the trace, nodes (rid, 0) and

(rid,∞), representing the arrival of the request and the departure of the response, respectively.G’s

edges capture program order via AddProgramEdges and alleged operation order via AddStateEdges.
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1: Global Trace Tr , Reports R, Graph G, OpMap
OpMap

2: procedure ProcessOpReports()
3:
4: GTr ← CreateTimePrecedenceGraph() // Fig 3.6
5: SplitNodes(GTr)
6: AddProgramEdges()
7:
8: CheckLogs() // also builds the OpMap
9: AddStateEdges()

10:
11: // standard algorithm [98, Ch. 22]
12: if CycleDetect(G) : reject
13:
14: procedure SplitNodes(Graph GTr)
15: G.Nodes← {}, G.Edges← {}
16: for each node rid ∈ GTr.Nodes :
17: G.Nodes += { (rid, 0), (rid,∞) }

18: for each edge 〈rid1, rid2〉 ∈ GTr.Edges :
19: G.Edges += 〈(rid1,∞), (rid2, 0)〉
20:
21: procedure AddProgramEdges()
22: for all rid that appear in the events in Tr :
23: for opnum = 1, . . . , R.M (rid) :
24: G.Nodes += (rid, opnum)
25: G.Edges +=

〈
(rid, opnum-1), (rid, opnum)

〉
26: G.Edges += 〈(rid, R.M (rid)), (rid,∞)〉

27: procedure CheckLogs()
28: for log = R.OL1, . . . , R.OLn :
29: for j = 1, . . . , length(log) :
30: if log[j].rid does not appear in Tr or

31: log[j].opnum ≤ 0 or
32: log[j].opnum > R.M (log[j].rid) or
33: (log[j].rid, log[j].opnum) is in OpMap :
34: reject
35:
36: let curr_op = (log[j].rid, log[j].opnum)
37: // i is the index such that log = R.OLi
38: OpMap[curr_op]← (i, j)
39:
40: for all rid that appear in the events in Tr :
41: for opnum = 1, . . . , R.M (rid) :
42: if (rid, opnum) is not in OpMap : reject
43:
44: procedure AddStateEdges()
45: // Add edge to G if adjacent log entries are
46: // from di�erent requests. If they are from
47: // the same request, check that the
48: // intra-request opnum increases
49: for log = R.OL1, . . . , R.OLn :
50: for j = 2, . . . , length(log) :
51: let curr_r, curr_op, prev_r, prev_op =
52: (log[j].rid, log[j].opnum, log[j−1].rid, log[j−1].opnum)
53: if prev_r , curr_r :
54: G.Edges += 〈(prev_r, prev_op),
55: (curr_r, curr_op)〉
56: else if prev_op > curr_op : reject

Figure 3.5: ProcessOpReports ensures that events (request arrival, departure of response, and
operations) can be consistently ordered. It does this by constructing a graph G—the nodes are
events; the edges re�ect request precedence in Tr , program order, and the operation logs—and
ensuring that G has no cycles. OpMap is constructed here as an index of the operation logs.
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1: procedure CreateTimePrecedenceGraph()
2: // “Latest” requests; “parent(s)” of any new request
3: Frontier← {}

4: GTr.Nodes← {}, GTr.Edges← {}
5:
6: for each input and output event in Tr , in time order :
7: if the event is reqest(rid) :
8: GTr.Nodes += rid

9: for each r in Frontier :
10: GTr.Edges += 〈r , rid〉
11: if the event is response(rid) :
12: // rid enters Frontier, evicting its parents
13: Frontier −= { r | 〈r , rid〉 ∈ GTr.Edges }
14: Frontier += rid

15: return GTr

Figure 3.6: Algorithm for explicitly materializing the time-precedence partial order, <Tr, in a
graph. The algorithm constructs GTr so that r1 <Tr r2 ⇐⇒ GTr has a directed path from r1
to r2. Tr is assumed to be a (balanced; §3.2) list of reqest and response events in time order.

Capturing time precedence. To be consistent with external observations, G must also capture

time precedence. (This is what was missing in the �nal attempt in §3.2.4.) We say that r1 precedes

r2 (notated r1 <Tr r2) if the trace Tr shows that r1 departed from the system before r2 arrived [150].

If r1 <Tr r2, then the operations issued by r1 must occur in the implied schedule prior to those

issued by r2.

Therefore, the veri�er needs to construct edges that capture the <Tr partial order, in the sense

that r1 <Tr r2 ⇐⇒ G has a directed path from (r1,∞) to (r2, 0). How can the veri�er construct

these edges from the trace? Prior work [60] gives an o�ine algorithm for this problem that runs

in time O(X · logX + Z ), where X is the number of requests, and Z is the minimum number of

time-precedence edges needed (perhaps counter-intuitively, more concurrency leads to higher Z ).

By contrast, our solution runs in time O(X + Z ) (see complexity analysis in §A.8), and works

in streaming fashion. The key algorithm is CreateTimePrecedenceGraph, given in Figure 3.6 and

proved correct in Appendix A (Lemma 2). The algorithm tracks a “frontier”: the set of latest,

mutually concurrent requests. Every new arrival descends from all members of the frontier. Once

a request leaves, it evicts all of its parents from the frontier. This algorithm may be of independent

interest; for example, it could be used to accelerate prior work [60, 139].

Overall, the algorithms in Figures 3.5 and 3.6 cost O(X + Y + Z ) time and O(Y ) space (see
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analysis in §A.8), with good constants (Fig. 3.10; §3.4.2); here, Y is the number of object operations

in the logs.

3.3 A built system: orochi

The prior two sections described the E�cient Server Audit Problem, and how it can be solved

with ssco. This section applies the model to an example system that we built.

Consider again Dana, who wishes to verify execution of a SQL-backed PHP web application

running on AWS. In this context, the program is a PHP application (and the separate PHP scripts

are subroutines). The executor is the entire remote stack, from the hardware to the hypervisor and

all the way up to and including the PHP runtime; we often call the executor just the server. The

requests and responses are the HTTP requests and responses that �ow in and out of the application.

The collector is a middlebox at the edge of Dana’s company, and is placed to inspect and capture

end-clients’ requests and the responses that they receive. An object can be a SQL database, per-

client data that persists across requests, or other external state accessed by the application.

We can apply ssco to this context, if we:

• Develop a record-replay system for PHP in which replay is batched according to SIMD-on-

demand (§3.2.1).

• De�ne a set of object types that (a) abstract PHP state constructs (session data, databases,

etc.) and (b) obey the semantics in ssco (§3.2.2). Each object type requires adapting simulate-

and-check (§3.2.3) and, possibly, modifying the application to respect the interfaces of these

objects.

• Incorporate the capture (and ideally validation) of certain sources of non-determinism, such

as PHP built-ins.

The above items represent the main work of our system, orochi. We describe the details in

Sections 3.3.3–3.3.7.
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3.3.1 Applicability of orochi, theory vs. practice

orochi is relevant in scenarios besides Dana’s. As an example, Pat the Principal runs a public-

facing web application on local hardware and is worried about compromise of the server, but

trusts a middlebox in front of the server to collect the trace.

orochi is implemented for PHP-based HTTP applications but in principle generalizes to other

web standards. Also, orochi veri�es an application’s interactions with its clients; verifying com-

munication with external services requires additional mechanism (§3.4.5). Ultimately, orochi is

geared to applications with few such interactions. This is certainly restrictive, but there is a useful

class within scope: the LAMP [30] stack. The canonical LAMP application is a PHP front-end to

a database, for example a wiki or bug database.

The model in Sections 3.1 and 3.2 was very general and abstracted away certain considerations

that are relevant in orochi’s setting. We describe these below:

Persistent objects. The veri�er needs the server’s objects as they were at the beginning of the

audited period. If audit periods are contiguous, then the veri�er in orochi produces the required

state during the previous audit (§3.3.5).

Server-client collusion. In Section 3.1, we made no assumptions about the server and clients.

Here, however, we assume that the server cannot cause end-clients to issue spurious requests;

otherwise, the server might be able to “legally” insert events into history. This assumption �ts

Dana’s situation though is admittedly shakier in Pat’s.

Di�erences in stack versions. The veri�er’s and server’s stacks need not be the same. How-

ever, it is conceivable that di�erent versions could cause the veri�er to erroneously reject a well-

behaved server (the inverse error does not arise: validity is de�ned by the veri�er’s re-execution).

If the veri�er wanted to eliminate this risk, it could run a stack with precise functional equiva-

lence to the server’s. Another option is to obtain the server-side stack in the event of a divergent

re-execution, so as to exonerate the server if warranted.

Modi�cations by the network. Responses modi�ed en route to the collector appear to orochi to

be the server’s responses; modi�cations between the collector and end-clients—a real concern in

Pat’s scenario, given that ISPs have hosted ad-inserting middleboxes [96, 209]—can be addressed
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by Web Tripwires (WT) [178], which are complementary to orochi.

3.3.2 Some basics of PHP

PHP [36] is a high-level language. When a PHP script is run by a web server, the components

of HTTP requests are materialized as program variables. For example, if the end-user submits

http://www.site.org/s.php?a=7, then the web server invokes a PHP runtime that executes

s.php; within the script s.php, $_GET['a'] evaluates to 7.

The data types are primitive (int, double, bool, string); container (arrays, objects); reference;

class; resource (an abstraction of an external resource, such as a connection to a database system);

and callables (closures, anonymous functions, callable objects).

The PHP runtime translates each program line to byte code: one or more virtual machine

(VM) instructions, together with their operands. (Some PHP implementations, such as HHVM,

support JIT, though orochi’s veri�er does not support this mode.) Besides running PHP code,

the PHP VM can call built-in functions, written in C/C++.

3.3.3 SIMD-on-demand execution in orochi

The server and veri�er run modi�ed PHP runtimes. The server’s maintains an incremental digest

for each execution. When the program reaches a branch, this runtime updates the digest based on

the type of the branch (jump, switch, or iteration) and the location to which the program jumps.

The digest thereby identi�es the control �ow, and the server records it.

The veri�er’s PHP runtime is called acc-PHP; it performs SIMD-on-demand execution (§3.2.1),

as we describe below.

Acc-PHP works at the VM level, though in our examples and description below, we will be

loose and often refer to the original source. Acc-PHP broadens the set of PHP types to include

multivalue versions of the basic types. For example, a multivalue int can be thought of as a vector

of ints. A container’s cells can hold multivalues; and a container can itself be a multivalue. Anal-

ogously, a reference can name a multivalue; and a reference can itself be a multivalue, in which

case each of the references in the vector is logically distinct. A variable that is not a multivalue
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is called a univalue.

All requests in a control �ow group invoke the same PHP script s. At the beginning of re-

executing a control �ow group, acc-PHP sets the input variables in s to multivalues, based on the

inputs in the trace. Roughly speaking, instructions with univalue operands produce univalues,

and instructions with multivalue operands produce multivalues. But when acc-PHP produces a

multivalue whose components are identical, re�ecting a variable that is the same across execu-

tions, acc-PHP collapses it down to a univalue; this is crucial to deduplication (§3.4.2). A collapse is

all or nothing: every multivalue has cardinality equal to the number of requests being re-executed.

Primitive types. When the operands of an instruction or function are primitive multivalues,

acc-PHP executes that instruction or function componentwise. Also, if there are mixed multi-

value and univalue operands, acc-PHP performs scalar expansion (as in Matlab, etc.): it creates a

multivalue, all of whose components are equal to the original univalue. As an example, consider:

1 $sum = $_GET['x'] + $_GET['y'];

2 $larger = max ($sum , $_GET['z']);

3 $odd = ($larger % 2) ? "True" : "False";

4 echo $odd;

r1: /prog.php?x=1&y=3&z=10

r2: /prog.php?x=2&y=4&z=10

There are two requests: r1 and r2. Each has three inputs: x, y, and z, which are materialized

in the program as $_GET['x'], etc. Acc-PHP represents these inputs as multivalues: $_GET['x']

evaluates to [1, 2], and $_GET['y'] evaluates to [3, 4]. In line 1, both operands of + are multivalues,

and $sum receives the elementwise sum: [4, 6]. In line 2, $larger receives [10, 10], and acc-PHP

merges the multivalue to make it a univalue. As a result, lines 3 and 4 execute once, rather than

once for each request.

A multivalue can comprise di�erent types. For example, in two requests that took the same

code path, a program variable was an int in one request and a �oat in the other. Our acc-PHP

implementation handles an int-and-�oat mixture. However, if acc-PHP encounters a di�erent
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mixture, it retries, by separately re-executing the requests in sequence.

Containers. We use the example of a “set” on an object: $obj->$key = $val. Acc-PHP handles

“gets” similarly, and likewise other containers (arrays, arrays of arrays, etc.).

Assume �rst that $obj is a multivalue. If either of $key and $val are univalues, acc-PHP

performs scalar expansion to create a multivalue for $key and $val. Then, acc-PHP assigns the

ith component of $val to the property named by the ith component of $key in the ith object in

$obj.

Now, if $obj is a univalue and $key is a multivalue, acc-PHP expands the $obj into a multi-

value, performs scalar expansion on $val (if a univalue), and then proceeds as in the preceding

paragraph. The reason for the expansion is that in the original executions, the objects were no

longer equivalent.

When $obj and $key are univalues, and $val is a multivalue, acc-PHP assigns $val to the

given object’s given property. This is similar to the way that acc-PHP set up $_GET['a'] as a

multivalue in the example above.

Built-in functions. For acc-PHP’s re-execution to be correct, PHP’s built-in functions (§3.3.2)

would need to be extended to understand multivalues, perform scalar expansion as needed, etc.

But there are thousands of built-in functions.

To avoid modifying them all, acc-PHP does the following. When invoking a built-in function,

it checks whether any of the arguments are multivalues (if the function is a built-in method, it

also checks whether $this is a multivalue). If so, acc-PHP splits the multivalue argument into a

set of univalues; assume for ease of exposition that there is only one such multivalue argument.

Acc-PHP then clones the environment (argument list, function frame); performs a deep copy

of any objects referenced by any of the arguments; and executes the function, once for each

univalue. Finally, acc-PHP returns the separate function results as a multivalue and maintains

the object copies as multivalues. The reason for the deep copy is that the built-in function could

have modi�ed the object di�erently in the original executions.

Global variables. There are two cases to handle. First, if a multi-invoked built-in (as above)

modi�es a global and if the global is a univalue, acc-PHP dynamically expands it to a multivalue.
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Second, a global can be modi�ed by PHP code, implicitly. For example, referencing a nonexistent

property from an object causes invocation of a PHP function, known as a magic method [35],

which could modify a global. Acc-PHP detects this case, and expands the global into a multivalue.

3.3.4 Concurrency and shared objects in orochi

ssco’s concurrency model (§3.2.2) �ts PHP-based applications, which commonly have concurrent

threads, each handling a single end-client request sequentially. orochi supports several objects

that obey ssco’s required semantics (§3.2.2) and that abstract key PHP programming constructs:

• Registers, with atomic semantics [150]. These work well for modeling per-user persistent state,

known as “session data.” Speci�cally, PHP applications index per-user state by browser cookie

(this is the “name” of the register) and materialize the state in a program variable. Constructing

this variable is the “read” operation; a “write” is performed by PHP code, or by the runtime at

the end of a request.

• Key-value stores, exposing a single-key get/set interface, with linearizable semantics [132]. This

models various PHP structures that provide shared memory to requests: the Alternative PHP

Cache (APC), etc.

• SQL databases, which support single-query statements and multi-query transactions. To make

a SQL database behave as one atomic object, we impose two restrictions. First, the database’s

isolation level must be strict serializability [80, 167].1 Second, a multi-statement transaction

cannot enclose other object operations (such as a nested transaction).

The �rst DB restriction can be met by con�guration, as many DBMSes provide strict serializ-

ability as an option. However, this isolation level sacri�ces some concurrency compared to, say,

MySQL’s default [45]. The second DB restriction sometimes necessitates minor code changes,

depending on the application (§3.4.4).

To adapt simulate-and-check to an object type, orochi must �rst collect an operation log (§3.2.3).

To that end, some entity (this step is untrusted) wraps relevant PHP statements, to invoke a
1Confusingly, our required atomicity is, in the context of ACID databases, not the “A” but the kind of “I” (isolation);

see Bailis [68] for an untangling.
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recording library. Second, orochi’s veri�er needs a mechanism for e�ciently re-executing op-

erations on the object. We showed the solution for registers in §3.2.3. But that technique would

not be e�cient for databases or key-value stores: to re-execute a DB “select” query, for example,

could require going backward through the entire log.

3.3.5 Adapting simulate-and-check to databases

Given a database object d—orochi handles key-value stores similarly—the veri�er performs a

versioned redo pass over OLd at the beginning of the audit: it issues every transaction to a ver-

sioned database [34, 92, 122, 194], setting the version to be the sequence number in OLd . During

re-execution, the veri�er handles a “write” query (update, etc.) by checking that the program-

generated SQL matches the opcontents �eld in the corresponding log entry. The veri�er handles

“read” queries (select, etc.) by issuing the SQL to the versioned DB, specifying the version to be

the log sequence number of the current operation. The foregoing corresponds to an additional

step in ssco_audit and further cases in SimOp (Figure 3.3); the augmented algorithms are in Ap-

pendix A.

As an optimization, orochi applies read query deduplication. If two select queries P and Q

are lexically identical and if the parts of the DB covered by P and Q do not change between the

redo of P and Q, then it su�ces to issue the query once during re-execution. To exploit this fact,

the veri�er, during re-execution, clusters all queries in a control �ow group and sorts each cluster

by version number. Within a cluster, it de-duplicates queries P and Q if the tables that P and Q

touch were not modi�ed between P’s and Q’s versions.

To speed the versioned redo pass, the veri�er directs update queries to an in-memory ver-

sioned database M , which acts as a bu�er in front of the audit-time versioned database V . When

the log is fully consumed, the veri�er migrates the �nal state of M to V using a small number

of transactions: the veri�er dumps each table in M as a single SQL update statement that, when

issued to V , reproduces the table. The migration could also happen when M reaches a memory

limit (although we do not implement this). This would require subsequently re-populating M by

reading records from V .

35



3.3.6 Non-determinism

orochi includes non-determinism that is not part of the ssco model: non-deterministic PHP built-

ins (time, getpid, etc.), non-determinism in a database (e.g., auto increment ids), and whether a

given transaction aborts.

Replay systems commonly record non-determinism during online execution and then, dur-

ing replay, supply the recorded information in response to a non-deterministic call (see §2.2.1

for references). orochi does this too. Speci�cally, orochi adds a fourth report type (§3.2): non-

deterministic information, such as the return values of certain PHP built-in invocations. The

server collects these reports by wrapping the relevant PHP statements (as in §3.3.4).

But, because reports are untrusted, orochi’s veri�er also checks the reported non-determinism

against expected behavior. For example, the veri�er checks that queries about time are mono-

tonically increasing and that the process id is constant within requests. For random numbers,

the application could seed a pseudorandom number generator, and the seed would be the non-

deterministic report, though we have not implemented this.

Unfortunately, we cannot give rigorous guarantees about the e�cacy of these checks, as our

de�nitions and proofs Appendix A do not capture this kind of non-determinism. This is disap-

pointing, but the issue seems fundamental, unless we pull the semantics of PHP into our proofs.

Furthermore, this issue exists in all systems that “check” an untrusted lower layer’s return values

for validity [63, 72, 94, 133, 217].

Beyond that, the server gets discretion over the thread schedule, which is a kind of non-

determinism, albeit one that is captured by our de�nitions and proofs Appendix A. As an example,

if the web service performs a lottery, the server could delay responding to a collection of requests,

invoke the random number library, choose which request wins, and then arrange the reports and

responses accordingly.

3.3.7 Implementation details

Figure 3.7 depicts the main components of orochi.
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orochi component Base LOC written/changed

Server PHP (§3.3.3) HHVM [46] 400 lines of C++
Acc-PHP (§3.3.3–§3.3.6) HHVM [46] 13k lines of C++
Record library (§3.3.4, §3.3.6) N/A 1.6k lines of PHP
DB logging (§3.3.4) MySQL 320 lines of C++
In-memory versioned DB (§3.3.5) SQLite 1.8k lines of C++
Other audit logic (§3.2, §3.3) N/A 2.5k lines of C++/PHP/Bash
Rewriting tool (§3.3.7) N/A 470 lines of Python, Bash

Figure 3.7: Orochi’s software components.

A rewrite tool performs required PHP application modi�cations: inserting wrappers (§3.3.4,

§3.3.6), and adding hooks to record control �ow digests and maximum operation number. Given

some engineering, this rewriting can be fully automatic; our implementation sometimes needs

manual help.

To log DB operations (§3.3.4), the server’s PHP runtime passes (rid, opnum) in the comment

�eld of a SQL query; our code in MySQL (v5.6) assigns a unique sequence number to the query (or

transaction), necessitating minor synchronization. Each DB connection locally logs its queries in

sub-logs; later, a stitching daemon merges these sub-logs to create the database operation log.

orochi’s versioned DB implementation (§3.3.5) borrows Warp’s [92] schema, and uses the

same query rewriting technique. We implemented orochi’s audit-time key-value store as a new

component (in acc-PHP) to provide a versioned put/get interface.

Acc-PHP has several implementation limitations. One is the limited handling of mixed types,

mentioned earlier (§3.3.3); another is that an object that points to itself (such as $a->b->a) is

not recognized as such, if the object is a multivalue. When acc-PHP encounters such cases, it

re-executes requests separately. In addition, acc-PHP runs with a maximum number of requests

in a control �ow group (3,000 in our implementation); this is because the memory consumed by

larger sizes would cause thrashing and slow down re-execution.

In orochi, the server must be drained prior to an audit, but this is not fundamental; natural

extensions of the algorithms would handle pre�xes or su�xes of requests’ executions.
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audit server CPU avg reports (per request) DB overhead
App speedup overhead request baseline orochi orochi ovhd temp permanent

MediaWiki 10.9× 4.7% 7.1KB 0.8KB 1.7KB 11.4% 1.0× 1×
phpBB 5.6× 8.6% 5.7KB 0.1KB 0.3KB 2.7% 1.7× 1×
HotCRP 6.2× 5.9% 3.2KB 0.0KB 0.4KB 10.9% 1.5× 1×

Figure 3.8: Orochi compared to simple re-execution (§3.4.1). “Audit speedup” is the ratio of audit-
time CPU costs, assuming (conservatively) that auditing in simple re-execution is the same cost as
serving the legacy application, and (perhaps optimistically) that simple re-execution and orochi
are given HTTP requests and responses from the trace collector. “Server CPU overhead” is the
CPU cost added by orochi, conservatively assuming that the baseline imposes no server CPU
costs. The reports are compressed (orochi’s overheads include the CPU cost of compression/de-
compression; the baseline is not charged for this). “orochi ovhd” in those columns is the ratio of
(the trace plus orochi’s reports) to (the trace plus the baseline’s reports). “Temp” DB overhead
refers to the ratio of the size of the on-disk versioned DB (§3.3.5) to the size of a non-versioned DB.

3.4 Evaluation of orochi

This section answers the following questions:

• How do orochi’s veri�er speedup and server overhead compare to a baseline of simple re-

execution? (§3.4.1)

• What are the sources of acceleration? (§3.4.2)

• What is the “price of veri�ability”, meaning orochi’s costs compared to the legacy con�gura-

tion? (§3.4.3)

• What kinds of web applications work with orochi? (§3.4.4)

Applications and workloads. We answer the �rst two questions with experiments, which use

three applications: MediaWiki (a wiki used by Wikipedia and others), phpBB (an open source

bulletin board), and HotCRP (a conference review application). These applications stress di�erent

workloads. Also, MediaWiki and phpBB are in common use, and HotCRP has become a reference

point for systems security publications that deal with PHP-based web applications [92, 144, 172,

175, 181, 212]. Indeed, MediaWiki and HotCRP are the applications evaluated by Poirot [144] (§2.2.1).

Our experimental workloads are as follows:

38



 0

 200

 400

 600

 800

 1000

 1200

 0  50  100  150  200  250  300
la

te
n

cy
 (

m
s)

throughput (req/sec)

baseline
Orochi

Figure 3.9: orochi compared to simple re-execution (§3.4.1). Latency vs. server throughput for
phpBB (the other two workloads are similar). Points are 90th (bars are 50th and 99th) percentile
latency for a given request rate, generated by a Poisson process. The depicted data are the medians
of their respective statistics over 5 runs.

MediaWiki (v1.26.2). Our workload is derived from a 2007 Wikipedia trace, which we down-

sampled to 20,000 requests to 200 pages, while retaining its Zipf distribution (β = 0.53) [199].

We used a 10 year-old trace because we were unable to �nd something more recent; we down-

sampled because the original has billions of requests to millions of pages, which is too large for

our testbed (on the other hand, smaller workloads produce fewer batching opportunities so are

pessimistic to orochi).

phpBB (v3.2.0). On September 21, 2017, we pulled posts created over the preceding week from

a real-world phpBB instance: CentOS [9]. We chose the most popular topic. There were 63 posts,

tens to thousands of views per post, and zero to tens of replies per post. We assume that the ratio

of page views from registered users (who log in) to guests (who do not) is 1:40, based on sampling

reports from the forum (4–9 registered users and 200–414 guests were online). We create 83 users

(the number of distinct users in the posts) to view and reply to the posts. The workload contains

30k requests.

HotCRP. We build a workload from 269 papers, 58 reviewers, and 820 reviews, with average

review length of 3625 characters; the numbers are from SIGCOMM 2009 [38, 168]. We impose

synthetic parameters: one registered author submits one valid paper, with a number of updates

distributed uniformly from 1 to 20; each paper gets 3 reviews; each reviewer submits two versions
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of each review; and each reviewer views 100 pages. In all, there are 52k requests.

As detailed later (§3.4.4), we made relatively small modi�cations to these applications. A lim-

itation of our investigation is that all modeled clients use the same browser; however, our pre-

liminary investigation indicates that PHP control �ow is insensitive to browser details.

Setup andmeasurement. Our testbed comprises two machines connected to a switch. Each

machine has a 3.3GHz Intel i5-6600 (4-core) CPU with 16GB memory and a 250GB SSD, and runs

Ubuntu 14.04. One of the machines alternates between the roles of server (running Nginx 1.4.6)

and veri�er; the other generates load. We measure CPU costs from Linux’s /proc. We measure

throughput and latency at the client.

3.4.1 orochi versus the baseline

What is the baseline? We want to compare orochi to a system that audits comprehensively

without trusting reports. A possibility is probabilistic proofs [76, 85, 99, 170, 186, 204], but they

cannot handle our workloads, so we would have to estimate, and the estimates would yield out-

landish speedups for orochi (over 106×). Another option is untrusted full-machine replay, as

in AVM [128]. However, AVM’s implementation supports only single-core servers, and handling

untrusted reports and concurrency in VM replay might require research.

Instead, we evaluate against a baseline that is less expensive than both of these approaches,

and hence is pessimistic to orochi: the legacy application (without orochi), which can be seen

as a lower bound on hypothetical simple re-execution.

We capture this baseline’s audit-time CPU cost by measuring the legacy server CPU costs;

in reality, an audit not designed for acceleration would likely proceed more slowly. We assume

this baseline has no server CPU overhead; in reality, the baseline would have some overhead. We

capture the baseline’s report size with orochi’s non-deterministic reports (§3.3.6), because record-

replay systems need non-deterministic advice; in reality, the baseline would likely need additional

reports to reconstruct the thread schedule. Finally, we assume that the baseline tolerates arbitrary

database con�gurations (unlike orochi; §3.3.4), although we assume that the baseline needs to

reconstruct the database (as in orochi).
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Figure 3.10: Decomposition of audit-time CPU costs. “PHP” (in orochi) is the time to perform
SIMD-on-demand execution (§3.2.1,§3.3.3) and simulate-and-check (§3.2.3,§3.3.4). “DB query” is
the time spent on DB queries during re-execution (§3.3.5). “ProcOpRep” is the time to execute the
logic in Figures 3.5 and 3.6. “DB redo” is the time to reconstruct the versioned storage (§3.3.5).
“Other” includes miscellaneous costs such as initializing inputs as multivalues, output compari-
son, etc.

Comparison. Figure 3.8 compares orochi to the aforementioned baseline. At a high level, orochi

accelerates the audit compared to the baseline (we delve into this in §3.4.2) but introduces some

server CPU cost, with some degradation in throughput, and minor degradation in latency.

The throughput reductions are respectively 13.0%, 11.1% and 17.8% for phpBB, MediaWiki, and

HotCRP. The throughput comparison includes the e�ect of requiring strict serializability (§3.3.4),

because the baseline’s databases are con�gured with MySQL’s default isolation level (repeatable

read).

The report overhead depends on the frequency of object operations (§3.3.4) and non-deterministic

calls (§3.3.6). Still, the report size is generally a small fraction of the size of the trace, as is orochi’s

“report overhead” versus the baseline. orochi’s audit-time DB storage requirement is higher than

the baseline’s, because of versioning (§3.3.5), but after the audit, orochi needs only the “latest”

state (for the next audit).
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Figure 3.11: Cost of various instructions in unmodi�ed PHP and acc-PHP (§3.3.3). Execution times
are normalized clusterwise to unmodi�ed PHP, for which the absolute time is given (in µs). See
text for interpretation.

3.4.2 A closer look at acceleration

Figure 3.10 decomposes the audit-time CPU costs. The “DB query” portion illustrates query dedu-

plication (§3.3.5). Without this technique, every DB operation would have to be re-issued during

re-execution. (orochi’s veri�er re-issues every register and key-value operation, but these are

inexpensive.) Query deduplication is more e�ective when the workload is read-dominated, as in

our MediaWiki experiment.

We now investigate the sources of PHP acceleration; we wish to know the costs and bene-

�ts of univalent and multivalent instructions (§3.2.1, §3.3.3). We divide the 100+ PHP byte code

instructions into 10 categories (arithmetic, container, control �ow, etc.); choose category repre-

sentatives; and run a microbenchmark that performs 107 invocations of the instruction and com-

putes the average cost. We run each microbenchmark against unmodi�ed PHP, acc-PHP with

univalent instructions, and acc-PHP with multivalent instructions; we decompose the latter into

marginal cost (the cost of an additional request in the group) and �xed cost (the cost if acc-PHP

were maintaining a multivalue with zero requests).

Figure 3.11 depicts the results. The �xed cost of multivalent instructions is high, and the

marginal cost is sometimes worse than the unmodi�ed baseline. In general, multivalent execution
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Figure 3.12: Characteristics of control �ow groups in the MediaWiki workload. Each bubble is a
control �ow group; the center of a bubble gives the group’s n (number of requests in the group)
and α (proportion of univalent instructions); the size of a bubble is proportional to ` (number of
instructions in the group). This workload has 527 total groups (bubbles), 237 groups with n >
1, and 200 unique URLs. All groups have α > 0.95; only the occupied portion of the x-axis is
depicted.

is worse than simply executing the instruction n times!2 So how does orochi accelerate? We

hypothesize that (i) many requests share control �ow, and (ii) within a shared control �ow group,

the vast majority of instructions are executed univalently. If this holds, then the gain of SIMD-

on-demand execution comes not from the “SIMD” part but rather from the “on demand” part: the

opportunistic collapsing of multivalues enables a lot of deduplication.

To con�rm the hypothesis, we analyze all of the control �ow groups in our workloads. Each

group c is assigned a triple (nc ,αc , `c ), where nc is the number of requests in the group, αc is the

proportion of univalent instructions in that group, and `c is the number of instructions in the

group. (Note that if nc = 1, then αc = 1.0.) Figure 3.12 depicts these triples for the MediaWiki

workload. There are many groups with high nc , and most groups have very high αc (the same

holds for the other two workloads), con�rming our hypothesis. Something else to note is a slight

negative correlation between nc and αc within a workload, which is not ideal for orochi.
2One might wonder: would it be better to batch by control �ow and identical inputs? No; that approach still

produces multivalent executions because of shared object reads and non-determinism, and the batch sizes are smaller.
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3.4.3 The price of verifiability

We now take stock of orochi’s total overhead by comparing orochi to the legacy con�guration.

orochi introduces a modest cost to the server: 4.7%–8.6% CPU overhead (Figure 3.8) and tempo-

rary storage for trace and reports. But the main price of veri�ability is the veri�er’s resources:

CPU. Since the veri�er’s audit-time CPU costs are between 1/5.6 and 1/10.9 those of the

server’s costs (per §3.4.1, Figure 3.8), orochi requires that the veri�er have 9.1%–18.0% of the

CPU capacity that the server does.

Storage. The veri�er has to store the database between audits, so the veri�er e�ectively main-

tains a copy of the database. During the audit, the veri�er also stores the trace, reports, and

additional DB state (the versioning information).

Network.The veri�er receives the trace and reports over the network. Note that in the Dana (§3)

and Pat (§3.3.1) scenarios, the principal is already paying (on behalf of clients or the server, re-

spectively) to send requests and responses over the wide area network—which likely swamps the

cost of sending the same data to the veri�er over a local network.

3.4.4 Compatibility

We performed an informal survey of popular PHP applications to understand the e�ect of orochi’s

two major compatibility restrictions: the non-veri�cation of interactions with other applica-

tions (§3.3.1) and the non-nesting of object operations inside DB transactions (§3.3.4).

We sorted GitHub Trending by stars in decreasing order, �ltered for PHP applications (�lter-

ing out projects that are libraries or plugins), and chose the top 10: Wordpress, Piwik, Cachet,

October, Paperwork, Magento2, Pagekit, Lychee, Opencart, and Drupal. We inspected the code

(and its con�guration and documentation), ran it, and logged object operations. For eight of them,

the sole external service is email; the other two (Magento2 and Opencart) additionally interact

with a payment server. Also, all but Drupal and October are consistent with the DB requirement.

This study does not imply that orochi runs with these applications out of the box. It generally

takes some adjustment to �t an application to orochi, as we outline below.
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MediaWiki does not obey the DB requirement. We modi�ed it so that requests read in the

relevant APC keys (which we obtain through static inspection plus a dynamic list of needed keys,

itself stored in the APC), execute against a local cache of those keys, and �ush them back to the

APC. This gives up some consistency in the APC, but MediaWiki anyway assumes that the APC

is providing loose consistency. We made several other minor modi�cations to MediaWiki; for

example, changing an absolute path (stored in the database) to a relative one. In all, we modi�ed

346 lines of MediaWiki (of 410k total and 74k invoked in our experiments).

We also modi�ed phpBB (270 lines, of 300k total and 44k invoked), to address a SQL parsing

di�erence between the actual database (§3.3.4) and the in-memory one (§3.3.5) and to create more

audit-time acceleration opportunities (by reducing the frequency of updates to login times and

page view counters). We modify HotCRP (67 lines, of 53k total and 37k invoked), mainly to rewrite

select * from queries to request individual columns; the original would fetch the begin/end

timestamp columns in the versioned DB (§3.3.5, §3.3.7).

3.4.5 Discussion and limitations of orochi

Below we summarize orochi and discuss its limitations.

Guarantees. orochi is based on ssco, which has provable properties. However, orochi does

not provide ssco’s idealized Soundness guarantee (§3.1), because of the leeway discussed ear-

lier (§3.3.6). And observable di�erences in the veri�er’s and server’s stacks (§3.3.1) would make

orochi fall short of ssco’s idealized Completeness guarantee.

Performance and price. Relative to a pessimistic baseline, orochi’s veri�er accelerates by fac-

tors between 5.6–10.9× in our experiments, and server overhead is below 10% (§3.4.1). The CPU

costs introduced by orochi are small, compared to what one sometimes sees in secure systems

research; one reason is that orochi is not based on cryptography. And while the biggest per-

centage cost for the veri�er is storage (because the veri�er has to duplicate it; §3.4.3), storage is

generally inexpensive in dollar terms.

Compatibility and usability. On the one hand, orochi is limited to a class of applications, as

discussed (§3.3.1, §3.4.4). On the other hand, the applications in our experiments—which were
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largely chosen by following prior work (discussed early in §3.4)—did not require much modi�-

cation (§3.4.4). Best of all, orochi is fully compatible with today’s infrastructure: it works with

today’s end-clients and cloud o�erings as-is.

Of course, orochi would bene�t from extensions. All of the applications we surveyed make

requests of an email server (§3.4.4). We could verify those requests—but not the email server

itself; that is future work—with a modest addition to orochi, namely treating external requests

as another kind of response. This would require capturing the requests themselves; that could be

done, in Pat’s scenario (§3.3.1), by the trace collector or, in Dana’s scenario (§3), by redirecting

email to a trusted proxy on the veri�er.

Another extension is adding a �le abstraction to our three object types (§3.3.4). This isn’t

crucial—many applications, including �ve of the 10 in our survey (§3.4.4), can be con�gured to

use alternatives such as a key-value store—but some deployers might prefer a �le system back-

end. Another extension is �ltering large objects from the trace, before it is delivered to the veri-

�er. A possible solution is to leverage browser support for Resource Integrity: the veri�er would

check that the correct digest was supplied to the browser, leaving the actual object check to the

browser. Other future work is HTTPS; one option is for the server to record non-deterministic

cryptographic input, and the veri�er uses it to recover the plaintext stream.

A more fundamental limitation is that if orochi’s veri�er does not have a trace from a period

(for example, before orochi was deployed on a given server), then orochi can verify only by

getting the pre-orochi collection of objects from the server (requiring a large download) and

treating those objects as the true initial state (requiring trust).
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4 | Verifying Serializability of

Black-box Databases

This chapter focuses on auditing another cloud service—cloud databases, which is one of the most

popular services, for example, in AWS [6]. Speci�cally, we aim at verifying serializability [79, 167]

of black-box databases.

Why serializabiliy? First, serializability is the gold-standard isolation level [69] that implies all

transactions (a group of operations) appear to execute in a single, sequential order. It is also the

one that many applications and programmers implicitly assume: their code would be incorrect

if the database provided a weaker contract [141, 205]. Note that serializability is a correctness

contract. For example, serializability implies basic integrity: if a returned value does not read

from a valid write (which every value should), that will manifest as a non-serializable result. Se-

rializabiliy also implies that the database handles failures robustly: non-tolerated server failures,

particularly in the case of a distributed database, are a potential source of non-serializable results.

Second, a new class of cloud databases supporting serializability has emerged, including Ama-

zon DynamoDB and Aurora [2, 3, 201], Azure CosmosDB [7], CockroachDB [11], YugaByte DB [51],

and others [18, 20, 23, 24, 97]. This trend started in part because serializability prevents classes of

application bugs [32].

However, a user of a cloud database can legitimately wonder whether the database provides

the promised contract. Indeed, today’s production systems have exhibited various serializability

violations [1, 21, 22, 29, 31] (see also §4.6.1). Furthermore, users often have no visibility into a

cloud database’s implementation. In fact, even when the source code is available [11, 18, 20, 51],
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that does not necessarily yield visibility: if the database is hosted by someone else, you can’t

really be sure of its operation. Meanwhile, any internal corruption—as could happen from mis-

con�guration, misoperation, compromise, or adversarial control at any layer of the execution

stack—can cause a serializability violation. Beyond that, one need not adopt a paranoid stance

(“the cloud as malicious adversary”) to acknowledge that it is di�cult, as a technical matter, to

provide serializability and geo-distribution and geo-replication and high performance under var-

ious failures [56, 115, 219]. Doing so usually involves a consensus protocol that interacts with an

atomic commit protocol [97, 147, 158]—a complex combination, and hence potentially bug-prone.

4.1 The underlying problem

The core question of this chapter is: how can clients verify the serializability of a black-box database?

To be clear, related questions have been addressed before. The novelty in our problem is in com-

bining three aspects:

(a) Black box, unmodi�ed database. In our setting, the database does not “know” it’s being

checked; the input to the veri�cation machinery will be only the inputs to, and outputs from, the

database. This matches the cloud context (even when the database is open source, as noted above),

and contrasts with work that checks for isolation or consistency anomalies by using “inside in-

formation” [87, 130, 166, 189, 197, 210, 216], for example, access to internal scheduling choices.

On the client side, we target production workloads that use standard key-value APIs (§4.2), and

we do not require prior knowledge of the workloads.

(b) Serializability. We focus on serializability, both its strict and non-strict variants, in contrast

to weaker isolation levels. The di�erence between strict and non-strict serializability [80, 167] is

that the strict variant has a real-time constraint, which dictates real-time happened-before rela-

tionships among transactions, and makes strict serializability computationally simpler to check

(by, in e�ect, reducing the number of possibly-valid execution schedules).

Checking both strict and non-strict serializability has real-world applicability. Many systems

today provide strict serializability, including MySQL, Google Spanner, and FaunaDB. At the same
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time, an increasing number of production systems provide non-strict serializability, for perfor-

mance reasons [155]. In PostgreSQL, for example, serializability is implemented not with two-

phase locking but with the SSI technique [90], which does not yield strict serializability (see the

excellent report by Ports and Grittner [176] for details). Other examples are CockroachDB (its

consistency model, while stronger than serializability, is weaker than strict serializability [13]);

and YugaByte DB (it provides serializability rather than strict serializability, if there is clock

skew [50]).

Most of the intellectual work and e�ort enters in checking non-strict serializability. That

said, even the strict case has aspects of the non-strict case, if the real-time relationships leave

the ordering relatively unconstrained. For example, under su�cient concurrency, a workload’s

non-strict portion—the transactions that are concurrent and have no real-time happened-before

relationships—can be large. As a special case of concurrency, under clock drift (see §4.3.5), many

transactions would be considered as concurrent, thus makes checking strict serializability com-

putationally expensive (§4.6.1).

(c) Scalability. This means, �rst, scaling to real-world online transactional processing workloads

at reasonable cost. It also means incorporating mechanisms that enable a veri�er to work incre-

mentally and to keep up with an ever-growing history.

However, aspects (a) and (b) set up a challenge: checking black-box serializability is NP-

complete, as Papadimitriou proved 41 years ago [167]. Recent work of Biswas and Enea (BE) [83]

lowered the complexity to polynomial time, under natural restrictions (which hold in our con-

text); see also pioneering work by Sinha et al. [190]. However, these two approaches don’t meet

our goal of scalability. For example, in BE, the number of clients appears in the exponent of the al-

gorithm’s running time (§4.6) (e.g., 14 clients means the algorithm is O(n14)). Furthermore, even if

there were a small number of clients, BE does not include mechanisms for handling a continuous

and ever-growing history.

Despite the computational complexity, there is cause for hope: one of the remarkable aspects

in the �eld of formal veri�cation has been the use of heuristics to “solve” problems whose general

form is intractable. This owes to major advances in solvers (advanced SAT and SMT solvers) [70,
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81, 89, 106, 124, 154, 164, 196], coupled with an explosion of computing power. Thus, our guiding

intuition is that it ought to be possible to verify serializability in many real-world cases. This

chapter describes a system called cobra, which starts from this intuition, and provides a solution

to the problem posed by (a)–(c).

As stated in Section 1.2, cobra applies to transactional key-value stores (everywhere in this

chapter it says “database”, this is what we mean). Cobra consists of a third-party, unmodi�ed

database that is not assumed to “cooperate”; a set of legacy database clients that cobra modi�es

to link to a library; one or more history collectors that are assumed to record the actual requests

to and responses from the database; and a veri�er that comprehensively checks serializability,

in a way that “keeps up” with the database’s (average) load. The database is untrusted while the

clients, collectors, and veri�er are all in the same trust domain (for example, deployed by the same

organization). Section 4.2 further details the setup and gives example scenarios. cobra solves two

main problems:

1. E�cient witness search (§4.3). A brute-force way to validate serializability is to demonstrate

the existence of a graph G whose nodes are transactions in the history and whose edges meet cer-

tain constraints, one of which is acyclicity (§4.2.3). From our starting intuition and the structure of

the constraints, we are motivated to use a SAT or SMT solver [49, 71, 106, 195]. But complications

arise. To begin with, encoding acyclicity in a SAT instance brings overhead [116, 117, 140] (we

see this too; §4.6.1). Instead, cobra uses a recent SMT solver, MonoSAT [73], that is well-suited

to checking graph properties (§4.3.4). However, using MonoSAT alone on the aforementioned

brute-force search problem is still too expensive (§4.6.1).

To address this issue, cobra develops domain-speci�c pruning techniques and reduces the

search problem size. First, cobra introduces a new encoding that exploits common patterns in

real workloads, such as read-modify-write transactions, to e�ciently infer ordering relation-

ships from a history (§4.3.1–§4.3.2). (We prove that cobra’s encoding is a valid reduction in

Appendix B.1.) Second, cobra uses parallel hardware (our implementation uses GPUs; §4.5) to

compute all-paths reachability over a graph whose nodes are transactions and whose edges are

known happened-before relationships; then, cobra is able to e�ciently resolve some of the con-
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straints, by testing whether a candidate edge would generate a cycle with an existing path.

2. Scaling to a continuous and ever-growing history (§4.4). Online cloud databases run in a

continuous fashion, where the corresponding history is uninterrupted and grows unboundedly.

To support online databases, cobra veri�es in rounds. From round-to-round, the veri�er checks

serializability on a portion of the history. However, the challenge is that the veri�er seemingly

needs to involve all history, because serializability does not respect real-time ordering, so future

transactions can read from values that (in a real-time view) have been overwritten. To solve

this problem, clients issue periodic fence transactions (§4.4.2). The epochs impose coarse-grained

synchronization, creating a window from which future reads, if they are to be serializable, are

permitted to read. This allows the veri�er to discard transactions prior to the window.

To be clear, cobra veri�es a given history, not a database implementation per se. Also, cobra

performs ex post facto veri�cation, which cannot prevent databases’ misbehavior from happening

but nonetheless has real-world applicability (see applicable scenarios in §4.2.1 and more cases in

Concerto [62, §1.1]).

We implement cobra (§4.5) and experiment with it on production databases with various

workloads (§4.6). cobra detects all serializability violations we collect from real systems’ bug re-

ports. cobra’s core (single-round) veri�cation improves on baselines by 10× in the problem size

it can handle for a given time budget. For example, cobra �nishes checking 10k transactions in

14 seconds, whereas baselines can handle only 1k or less in the same time budget. For an on-

line database with continuous tra�c, cobra achieves a sustainable veri�cation throughput of 2k

txn/sec on the workloads that we experiment with (this corresponds to a workload of 170M/day;

for comparison, Apple Pay handles 33M txn/day [5], and Visa handles 150M txn/day [47]). cobra

imposes modest overhead (3.7% throughput degradation and 7.0% 90-percentile latency increases

for PostgreSQL).
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Figure 4.1: Cobra’s architecture. The dashed rectangle is a trust domain. The veri�er is o� the
critical path but must keep up on average.

4.2 Overview and technical background

4.2.1 Architecture and scenarios.

Figure 4.1 depicts cobra’s high-level architecture. Clients issue requests to a database (a transac-

tional key-value store) and receive results. The database is untrusted: the results can be arbitrary.

Each client request is one of �ve operations: start, commit, abort (which refer to transactions),

and read and write (which refer to keys).

A set of history collectors sit between clients and the database, and capture the requests that

clients issue and the (possibly wrong) results delivered by the database. This capture is a fragment

of a history. A history is a set of operations; it is the union of the fragments from all collectors.

A veri�er retrieves history fragments from collectors and attempts to verify whether the his-

tory is serializable; we make this term precise below (§4.2.2). The veri�er requires the full history

including all requests to, and responses from, the database. As stated in Section 1.2, that assumes

no crash in the collectors and the veri�er (see also §5). The requirement of all requests and re-

sponses is fundamental: if we are auditing a database’s outputs, then we need to know those.

The veri�er proceeds veri�cation in rounds; each round consists of a witness search, the input

to which is logically the output of the previous round and new history fragments. The veri�er

must work against an online and continuously available database; however, the veri�er performs

its work in the background, o� the critical path.
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Clients, history collectors, and the veri�er are in the same trust domain. This architecture is

relevant in real-world scenarios. Consider for example an enterprise web application whose end-

users are geo-distributed employees of the enterprise. Owing to legacy software and systems in-

tegration issues, the application servers run on the enterprise’s hardware while for performance,

fault-tolerance, and durability, the back-end of the web application is a database is operated by a

cloud provider [33]. Note that our clients are the application servers, as clients of the database. A

similarly structured example is online gaming, where the main program runs on company-owned

servers while the user data is stored in a cloud database [27].

In these scenarios, the veri�er runs on hardware belonging to the trust domain. There are

several options, meanwhile, for the collectors. Collectors can be middleboxes situated at the edge

of the enterprise or gaming company, allowing them to capture the requests and responses be-

tween the database clients and the cloud database. Another option is to run the collector in an

untrusted cloud, using a Trusted Execution Environment (TEE), such as Intel’s SGX. Recent work

has demonstrated such a collector [65], as a TLS proxy that logs inbound/outbound messages,

thereby ensuring (via the fact that clients expect the server to present a valid SSL/TLS certi�cate)

that clients’ requests and responses are indeed logged.

Veri�er’s performance requirement. The veri�er’s performance will be reported as capacity

(transactions/sec); this capacity must be at least the average o�ered load seen by the database

over some long interval, for example a day. Note that the veri�er’s capacity need not match the

database’s peak load: because the veri�er is o� the critical path, it can catch up.

4.2.2 Verification problem statement

In the description below, we use Adya’s formalism [53], with one di�erence: Adya’s history in-

cludes write-write ordering for each key (called version order, de�ned below), which comes from

the actual execution schedule, a piece of information within the database; in contrast, cobra’s

history (de�ned below) is collected outside the database so doesn’t contain version order.

Preliminaries. First, assume that each value written to the database is unique, and each trans-

action reads and writes a key at most once; thus, any read can be associated with the unique
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transaction that issued the corresponding write. cobra discharges this assumption with logic

in the cobra client library (§4.5) that embeds a unique id in each write and consumes the id

on a read.

A history is a set of read and write operations, each associated with a transaction. Each read

operation must read from a particular write operation in the history. A history is serializable if it

is equivalent to a serial schedule [53]. A serial schedule is a total order of all operations that does

not have overlapping transactions. A history and a serial schedule are equivalent, if they have the

same operations and have the same reads-from relationships; that is, for each read, it returns the

same value.

An important notion is version order, denoted as �, which represents, for each key, a total

order over all of the versions of this key written in a history. Another notion is con�icts: two

operations (and the transactions that enclose them) are said to con�ict if they access the same

key from di�erent transactions, and at least one of the operations is a write. With a version order,

one can identify the ordering of all con�icting operations in a history: (i) con�icting writes are

ordered by the version order�; (ii) a con�icting read ri and write wj have an ordering determined

by the write-write order betweenwj and the write (wk) that ri reads. That is, ifwj � wk orwj = wk ,

ri happens after wj ; otherwise, ri happens before wj .

From a history H and a version order �, one can construct a serialization graph [53] that

has a vertex for every transaction in the history and a directed edge or path for every pair of

con�icting transactions. An important fact is that the serialization graph is acyclic if and only

if the history H is serializable [78, §3.4]. Note that aborted transactions are not included in the

serialization graph [53].

The core problem. Based on the immediately preceding fact, the question of whether a history is

serializable can be converted to whether there exists an acyclic serialization graph from the history

and some version order. So, the core problem is to identify such a serialization graph, or assert that

none exists.

Notice that this question would be straightforward if the database revealed its version or-

der (thus ruling out any other possible version order): one could construct the corresponding
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serialization graph, and test it for acyclicity. Indeed, this is the problem of testing con�ict serial-

izability [206].

In our context, where the database is a black box (§4.1) and the version order is unknown,

we have to (implicitly) �nd version orders and test those version orders’ serialization graphs for

acyclicity.

4.2.3 Starting point: intuition and brute force

This section describes a brute-force solution, which serves as the starting point for cobra and

gives intuition. The approach relies on a data structure called a polygraph [167], which captures

all possible serialization graphs when the version order is unavailable.

In a polygraph, vertices (V ) are transactions and edges (E) are read-dependencies (cases when

a transaction writes a key, and another transaction reads the value written to that key). Note that

read-dependencies are evident from the history because values are unique, by assumption (§4.2.2).

There is a set, C, which we call constraints, that captures possible (but unknown) dependencies.

Here is an example polygraph:

W2(x=2)

W1(x=1) R3(x):1
T1

T2

T3

It has three vertices V = {T1, T2, T3}, one known edge in E = {(T1, T3)} from the known read-

dependency W1(x)
wr(x)
−−−−→ R3(x), and one constraint 〈 (T3, T2), (T2, T1) 〉 which is shown as two

dashed arrows connected by an arc. This constraint captures the fact that T2 cannot happen in

between T1 and T3, because otherwise T3 should have read x from T2 instead of from T1, which

contradicts the fact that T3 reads x from T1. Hence T2 has to happen either after T3 or before T1,

but it is unknown which option is the truth.

Formally, a polygraph P = (V , E, C) is a directed graph (V , E) together with a set of bipaths,

C; that is, pairs of edges—not necessarily in E—of the form 〈(v, u), (u, w)〉 such that (w, v) ∈ E.

A bipath of that form can be read as “either u happened after v, or else u happened before w”.
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Now, de�ne the polygraph (V , E, C) associated with a history, as follows [206]:

• V are all committed transactions in the history

• E = {(Ti, Tj ) | Tj reads from Ti}; that is, Ti
wr(x)
−−−−→ Tj , for some x.

• C = {〈 (Tj , Tk ), (Tk , Ti) 〉 | (Ti
wr(x)
−−−−→ Tj ) ∧

(Tk writes to x) ∧ Tk , Ti ∧ Tk , Tj }.

The edges in E captures all read-dependencies, which as noted are evident from the history.

C captures how uncertainty is encoded into constraints. Speci�cally, for each read-dependency

in the history, all other transactions that write the same key either happen before the given write

or else after the given read.

A graph is called compatible with a polygraph if the graph has the same nodes and known

edges in the polygraph, and the graph chooses one edge out of each constraint; one can think

of such a graph as a “solution” to the constraint satisfaction problem posed by the polygraph.

Formally, a graph (V ′, E′) is compatible with a polygraph (V , E, C) if: V = V
′, E ⊆ E

′, and

∀〈e1, e2〉 ∈ C, (e1 ∈ E′ ∧ e2 < E
′) ∨ (e1 < E

′ ∧ e2 ∈ E
′).

A crucial fact is: if a graph G is compatible with a given polygraph (based on a history H ), then

G is in fact a serialization graph (§4.2.2) for H with some version order � [206]. Furthermore,

we have seen that a history H is serializable (§4.2.2) i� there exists a version order� such that a

serialization graph from H and� is acyclic [78]. Putting these facts together yields a brute-force

approach for verifying serializability: �rst, construct a polygraph from a history; second, search

for a compatible graph that is acyclic. However, not only does this approach need to consider |C |

binary choices (2|C | possibilities) but also |C | is massive: it is a sum of quadratic terms, speci�cally∑
k∈K rk · (wk − 1), where K is the set of keys in the history, and each rk and wk are the number

of reads and writes of key k.

4.3 Verifying serializability in cobra

Figure 4.2 depicts the veri�er and the major components of veri�cation. This section covers one

round of veri�cation. As a simpli�cation, assume that the round runs in a vacuum; Section 4.4
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Figure 4.2: The veri�er’s process, within a round and across rounds.

discusses how rounds are linked.

cobra uses an SMT solver geared to graph properties, speci�cally MonoSAT [73] (§4.3.4). Yet,

despite MonoSAT’s power, encoding the problem as in Section 4.2.3 would generate too much

work for it (§4.6.1).

cobra re�nes that encoding in several ways. It introduceswrite combining (§4.3.1) and coalesc-

ing (§4.3.2). These techniques are motivated by common patterns in workloads, and e�ciently

extract restrictions on the search space that are available in the history. cobra’s veri�er also

does its own inference (§4.3.3), prior to invoking the solver. This is motivated by observing that

(a) having all-pairs reachability information (in the “known edges”) yields quick resolution of

many constraints, and (b) computing that information is amenable to acceleration on parallel

hardware such as GPUs (the computation is iterated matrix multiplication; §4.5).

Figure 4.3 depicts the algorithm that constructs cobra’s encoding and shows how the tech-

niques combine. Note that cobra relies on a generalized notion of constraints. Whereas pre-

viously a constraint was a pair of edges, now a constraint is a pair of sets of edges. Meeting a

constraint 〈A,B〉 means including all edges in A and excluding all in B, or vice versa. More for-

mally, we say that a graph (V ′, E′) is compatible with a known graph G = (V , E) and generalized

constraints C if: V = V
′, E ⊆ E

′, and ∀〈A, B〉 ∈ C, (A ⊆ E
′ ∧ B ∩ E

′ = ∅) ∨ (A ∩ E
′ = ∅ ∧ B ⊆ E

′).

We prove the validity of cobra’s encoding in Appendix B.1. Speci�cally we prove that there

exists an acyclic graph that is compatible with the constraints constructed by cobra on a given

history if and only if the history is serializable.
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1: procedure ConstructEncoding(history)
2: g, readfrom, wwpairs← CreateKnownGraph(history)
3: con← GenConstraints(g, readfrom, wwpairs)
4: // §4.3.3, executed one or more times
5: con, g← Prune(con, g)
6: return con, g
7:
8: procedure CreateKnownGraph(history)
9: g← empty Graph // the known graph

10: wwpairs←Map {〈Key,Tx〉 → Tx} // consecutive writes
11: // maps a write to its readers
12: readfrom←Map {〈Key,Tx〉 → Set〈Tx〉}
13: for transaction tx in history :
14: g.Nodes += tx

15: for read operation rop in tx :
16: // “rf_tx” is the tx rop reads from
17: g.Edges += (rop.rf_tx, tx) // wr-edge
18: readfrom[〈rop.key, rop.rf_tx〉] += tx

19:
20: // detect read-modify-write transactions
21: for Keys key that tx both reads and writes :
22: rop← the operation in tx that reads key
23: if wwpairs[〈key, rop.rf_tx〉] , null :
24: reject // write overwritten twice, not SER
25: wwpairs[〈key, rop.rf_tx〉]← tx

26:
27: return g, readfrom, wwpairs
28:
29: procedure GenConstraints(g, readfrom,wwpairs)
30: // each key maps to set of chains; each chain is an ordered list
31: chains← empty Map {Key→ Set〈List〉}
32: for transaction tx in g :
33: for write wrop in tx :
34: chains[wrop.key] += [ tx ] // one-element list
35:
36: CombineWrites(chains, wwpairs) // §4.3.1
37: InferRWEdges(chains, readfrom, g) // infer anti-dependency
38:
39: con← empty Set
40: for 〈key, chainset〉 in chains :
41: for every pair {chaini , chainj } in chainset :
42: con += Coalesce(chaini , chainj , key, readfrom) // §4.3.2
43:
44: return con

45: procedure CombineWrites(chains, wwpairs)
46: for 〈key, tx1, tx2〉 in wwpairs :
47: // By construction of wwpairs, tx1 is the write immediately
48: // preceding tx2 on key. Thus, we can sequence all writes
49: // prior to tx1 before all writes after tx2, as follows:
50: chain1 ← the list in chains[key] whose last elem is tx1
51: chain2 ← the list in chains[key] whose �rst elem is tx2
52: chains[key] \= {chain1, chain2 }
53: chains[key] += concat(chain1, chain2)
54:
55: procedure InferRWEdges(chains, readfrom, g)
56: for 〈key, chainset〉 in chains :
57: for chain in chainset :
58: for i in [0, length(chain) − 2] :
59: for rtx in readfrom[〈key, chain[i]〉] :
60: if (rtx , chain[i+1]): g.Edges += (rtx, chain[i+1])
61:
62: procedure Coalesce(chain1, chain2, key, readfrom)
63: edge_set1 ← GenChainToChainEdges(chain1, chain2, key, readfrom)
64: edge_set2 ← GenChainToChainEdges(chain2, chain1, key, readfrom)
65: return 〈edge_set1, edge_set2〉
66:
67: procedureGenChainToChainEdges(chaini , chainj , key, readfrom)
68: if readfrom[〈key, chaini .tail〉] = ∅ :
69: edge_set← {(chaini .tail, chainj .head) }
70: return edge_set

71:
72: edge_set← empty Set
73: for rtx in readfrom[〈key, chaini .tail〉] :
74: edge_set += (rtx, chainj .head)
75: return edge_set

76:
77: procedure Prune(con, g)
78: // tr is the transitive closure (reachability of two nodes) of g
79: tr← TransitiveClosure(g) // standard algorithm; see [98, Ch.25]
80: for c =〈edge_set1, edge_set2〉 in con :
81: if ∃(txi , txj ) ∈ edge_set1 s.t. txj  txi in tr :
82: g.Edges← g.Edges ∪ edge_set2
83: con −= c

84: else if ∃(txi , txj ) ∈ edge_set2 s.t. txj  txi in tr :
85: g.Edges← g.Edges ∪ edge_set1
86: con −= c

87: return con, g

Figure 4.3: Cobra’s procedure for converting a history into a constraint satisfaction prob-
lem (§4.3). After this procedure, cobra feeds the results (a graph of known edges G and set of
constraints C) to a constraint solver (§4.3.4), which searches for a graph that includes the known
edges from G, meets the constraints in C, and is acyclic. We prove the algorithm’s validity in
Appendix B.1.
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4.3.1 Combining writes

cobra exploits the read-modify-write (RMW) pattern, in which a transaction reads a key and

then writes the same key. The pattern is common in real-world scenarios, for example shopping:

in one transaction, get the number of an item in stock, decrement, and write back the number.

cobra uses RMWs to impose order on writes; this reduces the orderings that the veri�cation

procedure would otherwise have to consider. Here is an example:

W3

W1 R2 W2

R4 W4 W3

W1 R2 W2

R4 W4

There are four transactions, all operating on the same key. Two of the transactions are RMW,

namely R2,W2 and R4,W4. On the left is the basic polygraph (§4.2.3); it has four constraints (each

in a di�erent color), which are derived from considering read-dependencies.

cobra, however, infers chains. A single chain comprises a sequence of transactions whose write

operations are consecutive; in the �gure, a chain is indicated by a shaded area. Notice that the only

ordering possibilities exist at the granularity of chains (rather than individual writes); in the ex-

ample, the two possibilities of course are [W1, W2]→ [W3, W4] and [W3, W4]→ [W1, W2]. This

is a reduction in the possibility space; for instance, the original version considers the possibility

that W3 is immediately prior to W1 (the upward dashed black arrow), but cobra “recognizes” the

impossibility of that.

To construct chains, cobra initializes every write as a one-element chain (Figure 4.3, line 34).

Then, cobra consolidates chains: for each RMW transaction t and the transaction t
′ that contains

the prior write, cobra concatenates the chain containing t
′ and the chain containing t (lines 25

and 46–53).

Note that if a transaction t, which is not an RMW, reads from a transaction u, then t requires

an edge (known as an anti-dependency in the literature [53]) to u’s successor (call it v); otherwise,
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t could appear in the graph downstream of v, which would mean t actually read from v (or even

from a later write), which does not respect history. cobra creates the needed edge t → v in

InferRWEdges (Figure 4.3, line 55). (Note that in the brute-force approach (§4.2.3), analogous

edges appear as the �rst component in a constraint.)

4.3.2 Coalescing constraints

This technique exploits the fact that, in many real-world workloads, there are far more reads

than writes. At a high level, cobra combines all reads that read-from the same write. We give an

example and then generalize.

W2

W1 R3

R4

R5 W2

W1 R3

R4

R5

A AB

three constraints one coalesced constraint 

In the above �gure, there are �ve single-operation transactions, to the same key. On the left is

the basic polygraph (§4.2.3), which contains three constraints; each is in a di�erent color. Notice

that all three constraints involve the question: which write happened �rst, W1 or W2?

One can represent the possibilities as a constraint 〈A′, B′〉whereA′ = {(W1,W2), (R3, W2), (R4, W2)}

and B
′ = {(W2,W1), (R5, W1)}. In fact, cobra does not include (W1,W2) because there is a known

edge (W1, R3), which, together with (R3,W2) in A
′, implies the ordering W1 → R3 → W2, so there

is no need to include (W1,W2). Likewise, cobra does not include (W2,W1) on the basis of the

known edge (W2, R5). So cobra includes the constraint 〈A,B〉 = 〈{(R3, W2), (R4, W2)}, {(R5, W1)}〉

in the �gure.

To construct constraints using the above reductions, cobra does the following. Whereas the

brute-force approach uses all reads and their prior writes (§4.2.3), cobra considers particular pairs

of writes, and creates constraints from these writes and their following reads. The particular pairs

of writes are the �rst and last writes from all pairs of chains pertaining to that key. In more detail,
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given two chains, chaini, chainj , cobra constructs a constraint c by (i) creating a set of edges ES1

that point from reads of chaini.tail to chainj .head (Figure 4.3, lines 73–74); this is why cobra does

not include the (W1,W2) edge above. If there are no such reads, ES1 is chaini.tail → chainj .head

(Figure 4.3, line 69); (ii) building another edge set ES2 that is the other way around (reads of

chainj .tail point to chaini.head, etc.), and (iii) setting c to be 〈ES1, ES2〉 (Figure 4.3, line 65).

4.3.3 Pruning constraints

Our �nal technique leverages the information that is encoded in paths in the known graph. This

technique culls irrelevant possibilities en masse (§4.6.1, Fig. 4.8). The underlying logic of the

technique is almost trivial. The interesting aspect here is that the technique is enabled by a design

decision to accelerate the computation of reachability on parallel hardware (§4.5 and Figure 4.3,

line 79); this can be done since the computation is iterated (Boolean) matrix multiplication. Here

is an example:

W2

W1 R3

The constraint is 〈(R3,W2), (W2,W1)〉. Having precomputed reachability, cobra knows that

the �rst choice cannot hold, as it creates a cycle with the path W2 R3; cobra thereby concludes

that the second choice holds. Generalizing, if cobra determines that an edge in a constraint

generates a cycle, cobra throws away both components of the entire constraint and adds all the

other edges to the known graph (Figure 4.3, lines 80–86). In fact, cobra does pruning multiple

times, if necessary (§4.5).

4.3.4 Solving

The remaining step is to search for an acyclic graph that is compatible with the known graph

and constraints, as computed in Figure 4.3. cobra does this by leveraging a constraint solver.

However, traditional solvers do not perform well on this task because encoding the acyclicity
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of a graph as a set of SAT formulas is expensive (a claim by Janota et al. [140], which we also

observed, using their acyclicity encodings on Z3 [106]; §4.6.1).

cobra instead leverages MonoSAT, which is a particular kind of SMT solver [81] that includes

SAT modulo monotonic theories [73]. This solver e�ciently encodes and checks graph properties,

such as acyclicity.

cobra represents a veri�cation problem instance (a graph G and constraints C) as follows.

cobra creates a Boolean variable E(i,j) for each edge: True means the ith node has an edge to

the jth node; False means there is no such edge. cobra sets all the edges in G to be True. For

the constraints C, recall that each constraint 〈A,B〉 is a pair of sets of edges, and represents a

mutually exclusive choice to include either all edges in A or else all edges in B. cobra encodes

this in the natural way: ((∀ea ∈ A, ea) ∧ (∀eb ∈ B,¬eb)) ∨ ((∀ea ∈ A,¬ea) ∧ (∀eb ∈ B, eb)). Finally,

cobra enforces the acyclicity of the searched-for compatible graph (whose candidate edges are

given by the known edges and the constrained edge variables) by invoking a primitive provided

by the solver.

cobra vs. MonoSAT. One might ask: if cobra’s encoding makes MonoSAT faster, why use

MonoSAT? Can we take the domain knowledge further? Indeed, in the limiting case, cobra could

re-implement the solver! However, MonoSAT, as an SMT solver, leverages many prior optimiza-

tions. One way to understand cobra’s decomposition of function is that cobra’s preprocessing

exploits some of the structure created by the problem of verifying serializability, whereas the

solver is exploiting residual structure common to many graph problems.

4.3.5 On strict serializability

Cobra’s veri�er checks strict serializability [80, 167] by adding a new type of edges, time-ordering

edges, which are derived from timestamps associated to operations (described below). With these

time-ordering edges in the known graph, the veri�er performs the serializability checking algo-

rithm that we have seen (Figure 4.3).

To get time-ordering edges, the veri�er needs operations’ timestamps. For those databases

which provide internal timestamps (for example, Google Spanner), the veri�er uses the database’s
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timestamps for time-ordering edges. But for others which do not provide internal timestamps (for

example, CockroachDB and YugaByte DB), cobra’s collectors tag each operation with a (local)

timestamp. During veri�cation, the veri�er adds a time-ordering edge if one transaction’s com-

mit operation has a smaller timestamp than another transaction’s begin operation. To capture

these edges e�ciently, cobra borrows the algorithm CreateTimePrecedenceGraph from orochi

(Figure 3.6), which materializes the time precedence partial order among operations.

However, clock drift among collectors becomes a challenge: under clock drift, the timestamps

from di�erent collectors can be skewed, thus it is unsafe to infer real-time happened-before re-

lationships simply by comparing timestamps. To tackle this problem, cobra introduces clock

drift threshold (100ms [17] by default), a parameter that indicates the maximum clock di�erence

among collectors. Cobra’s veri�er creates a time-ordering edge only when one transaction’s

commit timestamp is earlier than the other transaction’s begin timestamp by at least a clock

drift threshold. That means all transactions within a clock drift threshold are concurrent, which

makes checking strict serializability computationally expensive and requires cobra’s techniques

(§4.3.1–§4.3.3) to accelerate veri�cation (see §4.6.1).

4.4 Garbage collection and scaling

cobra veri�es in rounds. There are two motivations for rounds. First, new history is continually

produced, of course. Second, there are limits on the maximum problem size (number of transac-

tions) that the veri�er can handle (§4.6.2); breaking the task into rounds keeps each solving task

manageable.

In the �rst round, a veri�er starts with nothing and creates a graph from CreateKnownGraph,

then does veri�cation. After that, the veri�er receives more client histories; it reuses the graph

from the last round (the g in ConstructEncoding, Figure 4.3, line 6), and adds new nodes and

edges to it from the new history fragments received (Figure 4.2).

The technical problem is to keep the input to veri�cation bounded. So the question cobra

must answer is: which transactions can be deleted safely from history? Below, we describe the

challenge (§4.4.1), the core mechanism of fence transactions (§4.4.2), and how the veri�er deletes
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safely (§4.4.3). Due to space restrictions, we only describe the general rules and insights. A com-

plete speci�cation and correctness proof are in Appendix B.2.

4.4.1 The challenge

The core challenge is that past transactions can be relevant to future veri�cations, even when

those transactions’ writes have been overwritten. Here is an example:

W3(y)W1(x) R2(x) W2(x)

R4(x) R4(y)

W3(y)W1(x)

R4(x) R4(y)

before deletion after deletion

T1 T2
T3

T4

T1
T3

T4

Suppose a veri�er saw three transactions (T1, T2, T3) and wanted to remove T2 (the shaded trans-

action) from consideration in future veri�cation rounds. Later, the veri�er observes a new trans-

action T4 that violates serializability by reading from T1 and T3. To see the violation, notice that

T2 is logically subsequent to T4, which generates a cycle (T4
rw
−−→ T2  T3

wr
−−→ T4). Yet, if we

remove T2, there is no cycle. Hence, removing T2 is not safe: future veri�cations would fail to

detect certain kinds of serializability violations.

Note that this does not require malicious or exotic behavior from the database. For example,

consider an underlying database that uses multi-version values and is geo-replicated: a client can

retrieve a stale version from a local replica.

4.4.2 Epochs and fence transactions

cobra addresses this challenge by creating epochs that impose a coarse-grained ordering on trans-

actions; the veri�er can then discard information from older epochs. To avoid confusion, note that

epochs are a separate notion from rounds: a veri�cation round includes multiple epochs.

To memorialize epoch boundaries in history, clients issue fence transactions. A fence trans-

action is a transaction that reads-and-writes a single key named “fence” (a dedicated key that is
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used by fence transactions only). Each client issues fence transactions periodically (for example,

every 20 transactions).

What prevents the database from defeating the point of epochs by placing all of the fence

transactions at the beginning of a notional serial schedule? cobra leverages a property that many

serializable databases provide: preserved session-order. That is, the serialization order obeys the

execution order at each client-database session (for example, a JDBC connection). Many produc-

tion databases (for example, PostgreSQL, Azure Cosmos DB, and Google Cloud Datastore) provide

this property; for those which do not, cobra requires clients to build the session-order explicitly,

for example, by mandating that all transactions from the same client read-modify-write the same

(per-client) key. As a consequence, the epoch ordering intertwines with the workload.

Meanwhile, the veri�er adds “client-order edges” to the set of known edges in g (the veri�er

knows the client order from the history collector). The veri�er also assigns an epoch number

to each transaction. To do so, the veri�er traverses the known graph (g), locates all the fence

transactions, chains them into a list based on the RMW relation (§4.3), and assigns their position

in the list as their epoch numbers. Then, the veri�er scans the graph again, and for each normal

transaction on a client that is between fences with epoch i and epoch j (j > i), the veri�er assigns

epoch number j − 1.

During the scan, assume the largest epoch number that has been seen or surpassed by every

client is epochagree. Then we have the following guarantee.

Guarantee. For any transaction Ti whose epoch ≤ (epochagree − 2), and for any transaction

(including future ones) Tj whose epoch ≥ epochagree, the known graph g contains a path Ti  Tj .

To see why the guarantee holds, consider the problem in three parts. First, for the fence trans-

action with epoch number epochagree (denoted as Fea), g must have a path Fea  Tj . Second, for

the fence transaction with epoch number (epochagree − 1) (denoted as Fea−1), g must have a path

as Ti  Fea−1. Third, Fea−1 → Fea in g.

The guarantee suggests that no future transaction (with epoch ≥ epochagree) can be a direct

predecessor of such Ti, otherwise a cycle will appear in g. We can extend this property to use in

garbage collection. In particular, if all predecessors of Ti have epoch number ≤ (epochagree − 2),
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we call Ti a frozen transaction, as no future transaction can precede it.

4.4.3 Safe garbage collection

cobra’s garbage collection algorithm targets frozen transactions—as they are guaranteed not to

be subsequent (in the notional serial schedule) to any future transaction. The veri�er needs to

keep those frozen transactions that have the most recent writes to some key (because they might

be read by future transactions). If there are multiple writes to the same key and the veri�er can-

not distinguish the most recent, the veri�er keeps them all. Meanwhile, if a future transaction

reads from a deleted transaction (which, owing to fence transactions, will manifest as a serializ-

ability violation), the veri�er detects this and rejects the history. One might think this approach

is enough. However, consider:

W2(d) W2(a) R3(a) W3(b)

R5(b) W5(c)

W1(d) W1(a)
W4(b) W4(c) R7(d)

R8(c)

 ≤ epochagree - 2 > epochagree

W6(b)

The shaded transaction (T3; transaction ids indicated by operation subscripts) is frozen and is not

the most recent write to any key. But with the two future transactions (T7 and T8), deleting the

shaded transaction results in failing to detect cycles in g.

To see why, consider operations on key c: W4(c), W5(c), and R8(c). By the epoch guarantee

(§4.4.2), both T4 and T5 happen before T8. Plus, R8(c) reads from W5(c), hence W4(c) must happen

before W5(c) (otherwise, R8(c) should have read from W4(c)). As a consequence, the constraint

〈(T5, T4), (T4, T3)〉 is solved: T4 → T3 is chosen. Similarly, because of R7(d), the other constraint

is solved and T3 → T1. With these two solved constraints, there is a cycle (T1 T4 → T3 → T1).

Yet, if the veri�er deletes T3, the cycle would be undetected.

What’s going on here is that the future transactions “�nalized” some constraints from the past,

causing cycles whereas in the past the constraints were “chosen” in a di�erent way. To prevent
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cobra component LOC written/changed

cobra client library
history recording 620 lines of Java
database adapters 900 lines of Java

cobra veri�er
data structures and algorithms 2k lines of Java
GPU optimizations 550 lines of CUDA/C++
history parser and others 1.2k lines of Java

Figure 4.4: Components of cobra implementation.

cases like this, cobra’s veri�er keeps transactions that are involved in any potentially cyclic

constraints, which works as follow. During garbage collection, the veri�er clones the known

graph, adds all edges in constraints as actual edges, and checks whether a candidate transaction

belongs to cycles that contain most-recent-writes. If so, the veri�er keeps it and otherwise garbage

collects it.

This approach is safe (a deleted transaction will never generate a cycle with future transac-

tions) because a candidate transaction is a frozen transaction and does not contain any most-

recent-writes; hence it cannot be read by future transactions. In addition, it has no cycles with

most-recent-writes in the cloned graph, which means that the candidate transaction has no pre-

decessors that could be read by future transactions. Thus, this candidate transaction will not be

a�ected by future transactions and is safe to delete.

4.5 Implementation

The components of cobra’s implementation are listed in Fig. 4.4. Our implementation includes

a client library and a veri�er. cobra’s client library wraps other database libraries: JDBC, Google

Datastore library, and RocksJava. It enforces the assumption of uniquely written values (§4.2.2). ,

by adding a unique id to a client’s writes, and stripping them out of reads. It also issues fence trans-

actions (§4.4.2). Finally, in our current implementation, we simulate history collection (§4.2.1) by

collecting histories in this library; future work is to move this function to a proxy.

The veri�er iterates the pruning logic within a round, stopping when it �nds nothing more to

67



prune or when it reaches a con�gurable max number of iterations (to bound the veri�er’s work);

a better implementation would stop when the cost of the marginal pruning iteration exceeds the

improvement in the solver’s running time brought by this iteration.

Another aspect of pruning is GPU acceleration. Recall that pruning works by computing the

transitive closure of the known edges (Fig. 4.3, line 79). cobra uses the standard algorithm: re-

peated squaring of the Boolean adjacency matrix [98, Ch.25] as long as the matrix keeps changing,

up to log |V |matrix multiplications. (log |V | is the worst case and occurs when two nodes are con-

nected by a (≥ |V |/2+1)-step path; at least in our experiments, this case does not arise much.) The

execution platform is cuBLAS [14] (a dense linear algebra library on GPUs) and cuSPARSE [15]

(a sparse linear algebra library on GPUs), which contain matrix multiplication routines.

cobra includes several optimizations. It invokes a specialized routine for triangular matrix

multiplication. (cobra �rst tests the graph for acyclicity, and then indexes the vertices according

to a topological sort, creating a triangular matrix.) cobra also exploits sparse matrix multiplica-

tion (cuSPARSE), and moves to ordinary (dense) matrix multiplication when the density of the

matrix exceeds a threshold (chosen to be ≥ 5% of the matrix elements are non-zero, the empirical

cross-over point that we observed).

Whenever cobra’s veri�er detects a serializability violation, it creates a certi�cate with prob-

lematic transactions. The problematic transactions are either a cycle in the known graph detected

by cobra’s algorithms, or a unsatis�able core (a set of unsatis�able clauses that translates to prob-

lematic transactions) produced by the SMT solver.

4.6 Experimental evaluation

We answer three questions:

• What are the veri�er’s costs and limits, and how do these compare to baselines?

• What is the veri�er’s end-to-end, round-to-round sustainable capacity? This determines the

o�ered load (on the actual database) that the veri�er can support.

• How much runtime overhead (in terms of throughput and latency) does cobra impose for
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clients? And what are cobra’s storage and network overheads?

Benchmarks and workloads. We use four benchmarks:

• TPC-C [44] is a standard. A warehouse has 10 districts with 30k customers. There are �ve types

of transactions (frequencies in parentheses): new order (45%), payment (43%), order status (4%),

delivery (4%), and stock level (4%). In our experiments, we use one warehouse, and clients issue

transactions based on the frequencies.

• C-Twitter [8] is a simple clone of Twitter, according to Twitter’s own description [8]. It allows

users to tweet a new post, follow/unfollow other users, and show a timeline (the latest tweets

from followed users). Our experiments include one thousand users. Each user tweets 140-word

posts and follows/unfollows other users based on a Zip�an distribution (α = 100).

• C-RUBiS [40, 59] simulates bidding systems like eBay [40]. Users can register accounts, register

items, bid for items, and comment on items. We initialize the market with 20k users and 200k

items.

• BlindW is a microbenchmark to demonstrate cobra’s performance in extreme scenarios. It

creates 10k keys, and runs read-only and write-only transactions, each of which has eight op-

erations. This benchmark has two variants: (1) BlindW-RM represents a read-mostly workload

that contains 90% read-only transactions; and (2) BlindW-RW represents a read-write work-

load, evenly divided between read-only and write-only transactions. (Of course, there are more

challenging workloads: > 50% writes. We do not experiment with them because cobra targets

common online transaction processing workloads (OLTP) in which reads are the majority.)

Databases and setup. We evaluate cobra on Google Cloud Datastore [23], PostgreSQL [37, 176],

and RocksDB [39, 109]. In our experimental setup, clients interact with Google Cloud Datastore

through the wide-area Internet, and connect to a local PostgreSQL server through a local 1Gbps

network.

Database clients run on two machines with a 3.3GHz Intel i5-6600 (4-core) CPU, 16GB mem-

ory, a 250GB SSD, and Ubuntu 16.04. For PostgreSQL, a database instance runs on a machine

with a 3.8GHz Intel Xeon E5-1630 (8-core) CPU, 32GB memory, a 1TB disk, and Ubuntu 16.04.

For RocksDB, the same machine hosts the client threads and RocksDB threads, which all run in
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the same process. We use a p3.2xlarge Amazon EC2 instance as the veri�er, with an NVIDIA Tesla

V100 GPU, a 8-core CPU, and 64GB memory.

4.6.1 One-shot verification

In this section, we consider “one-shot veri�cation” a veri�er gets a history and decides whether

that history is serializable. In our setup, clients record history fragments and store them as �les; a

veri�er reads them from the local �le system. In this section, the database is RocksDB (PostgreSQL

and Google Cloud Datastore give similar results).

Baselines. We have four baselines:

• Aserializability-checking algorithm:To the best of our knowledge, the algorithm of Biswas

and Enea [83] is the most e�cient algorithm to check serializability. In our experiments, we

use their Rust implementation [82].

• SAT solver: We use the same solving baseline that Biswas and Enea use for their own compar-

isons [83]: encoding serializability veri�cation into SAT formulas, and feeding this encoding

to MiniSAT [114], a popular SAT solver.

• cobra, subtracted: We implement the original polygraph (§4.2.3), directly encode the con-

straints (without the techniques of §4.3), and feed them to the MonoSAT SMT solver [73].

• SMT solver: An alternative use of SMT, and a natural baseline, is a linear arithmetic encoding:

each node is assigned a distinct integer index, with read-from relationships creating inequality

constraints, and writes inducing additional constraints (for a total of O( |V |2) constraints, as

in §4.2.3). The solver is then asked to map nodes to integers, subject to those constraints [117,

140]. We use Z3 [106] as the solver.

Veri�cation runtime vs. number of transactions. We compare cobra to other baselines, on

the various workloads. There are 24 clients. We vary the number of transactions in the workload,

and measure the veri�cation time. Figure 4.5 depicts the results on the BlindW-RW benchmark.

On all �ve benchmarks, cobra does better than MonoSAT and Z3, which do better than MiniSAT

and the serializability-checking algorithm. As a special case, there is, for TPC-C, an alternative
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Figure 4.5: Cobra’s running time is shorter than other baselines’ on the BlindW-RW workload.
The same holds on the other benchmarks (not depicted). Veri�cation runtime grows superlinearly.

Violation Database #Txns Time

G2-anomaly [22] YugaByteDB 1.3.1.0 37.2k 66.3s
Disappearing writes [1] YugaByteDB 1.1.10.0 2.8k 5.0s
G2-anomaly [21] CockroachDB-beta 20160829 446 1.0s
Read uncommitted [31] CockroachDB 2.1 20? 1.0s
Read skew [29] FaunaDB 2.5.4 8.2k 11.4s

Figure 4.6: Serializability violations that cobra checks. “Violation” describes the phenomenon
that clients experience. “Database” is the database (with version number) that causes the violation.
“#Txns” is the size of the violation history. “Time” is the runtime for cobra to detect the violation.
? The bug report only contains a small fragment of the history.

that beats MonoSAT and Z3 and has the same performance as cobra. Namely, add edges that

are inferred from RMW operations in history to a candidate graph (without constraints, and so

missing a lot of dependency information), topologically sort it, and check whether the result

matches history; if not, repeat. This process has even worse order complexity than the one in

§4.2.3, but it works for TPC-C because that workload has only RMW transactions, and thus the

candidate graph is (luckily) a serialization graph.
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Figure 4.7: Decomposition of cobra runtime, on 10k-transaction workloads. In benchmarks with
RMWs only (the left one), there is no constraint, so cobra doesn’t do pruning; in benchmarks
with many reads and RMWs (the middle three), the dominant component is pruning not solving,
because cobra’s own logic can identify concrete dependencies; in benchmarks with many blind
writes (the last one), solving is a much larger contributor because cobra is not able to eliminate
as many constraints.

Detecting serializability violations. We investigate cobra’s performance on an unsatis�able

instance: does it trigger an exhaustive search, at least on the real-world workloads we found?

We evaluate cobra on �ve real-world workloads that are known to have serializability violations

(we downloaded the given database’s reported histories from the and fed them to cobra). cobra

detects them in reasonable time. Figure 4.6 shows the results.

Decomposition of cobra’s veri�cation runtime. We measure the wall clock time of co-

bra’s veri�cation on our setup, broken into three stages: constructing, which includes creat-

ing the graph of known edges, combining writes, and creating constraints (§4.3.1–§4.3.2); prun-

ing (§4.3.3), which includes the time taken by the GPU; and solving (§4.3.4), which includes the

time spent within MonoSAT. We experiment with all benchmarks, with 10k transactions. Fig-

ure 4.7 depicts the results.
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Di�erential analysis. We experiment with four variants: cobra itself; cobra without prun-

ing (§4.3.3); cobra without pruning and coalescing (§4.3.2), which is equivalent to MonoSAT

plus write combining (§4.3.1); and the MonoSAT baseline. We experiment with three benchmarks,

with 10k transactions. Figure 4.8 depicts the results.
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Figure 4.9: Cobra’s running time is shorter than other baselines’ on checking strict serializability
under clock drift. The workload is 2,000 transactions of BlindW-RW. The maximum clock drift
threshold (100 ms) follows this report [17]; similar thresholds can be found elsewhere [12, 52].
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Checking strict serializability under clock drift. As we mentioned (§4.1, §4.3.5), clock drift

happens in reality and adds complexity to checking strict serializability. To measure this e�ect,

we experiment with cobra and the two baselines MonoSAT (with original polygraph encoding)

and Z3 (with the linear SMT encoding), under di�erent clock drifts, on the same workload. The

workload has eight clients running BlindW-RW on 1k keys for one second with a throughput

of 2k transaction/sec. To make checking strict serializability easier, clients avoid issuing trans-

actions all at the same time: they spread the workload evenly by issuing 20 transactions every

10ms. Figure 4.9 shows the results; cobra outperforms other two baselines by 45× and 107× in

veri�cation time under the default clock drift (100ms).

4.6.2 Scaling

We want to know: what o�ered load (to the database) can cobra support on an ongoing basis?

To answer this question, we must quantify cobra’s veri�cation capacity, in txns/second. This de-

pends on the characteristics of the workload, the number of transactions one round (§4.4) veri�es

(#txr ), and the average time for one round of veri�cation (tr ). Note that the variable here is #txr ;

tr is a function of that choice. So the veri�cation capacity for a particular workload is de�ned as:

max#txr (#txr/tr ).

To investigate this quantity, we run our benchmarks on RocksDB with 24 concurrent clients,

a fence transaction every 20 transactions. We generate a 100k-transaction history ahead of time.

For that same history, we vary #txr , plot #txr/tr , and choose the optimum.
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Figure 4.10 depicts the results. When #txr is smaller, cobra does not have enough transac-

tions for garbage collection, hence wastes cycles on redundantly analyzing transactions from

prior rounds; when #txr is larger, cobra su�ers from a problem size that is too large (recall that

veri�cation time increases superlinearly; §4.6.1). For di�erent workloads, the optimal choices of

#txr are di�erent.

In workload BlindW-RW, cobra runs out of GPU memory. The reason is that due to many

blind writes in this workload, cobra is unable to garbage collect enough transactions and �t the

remaining history into the GPU memory. Our future work is to investigate this case and design

a more e�cient (in terms of deleting more transactions) garbage collection algorithm.

4.6.3 cobra online overheads

The baseline in this section is the legacy system; that is, clients use the unmodi�ed database

library (for example, JDBC), with no recording of history.

Latency-versus-throughput. We evaluate cobra’s client-side throughput and latency in

the three setups, tuning the number of clients (up to 256) to saturate the databases. Figure 4.11

depicts the results.
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(c) Google Datastore

Figure 4.11: Throughput and latency, for C-Twitter benchmark. For our RocksDB setup, 90th
percentile latency increases by 2×, with 50% throughput penalty, an artifact of history collection
(disk bandwidth contention between clients and the DB). cobra imposes minor overhead for our
PostgreSQL. For Google Datastore, the throughput penalty re�ects a ceiling (a maximum number
of operations per second) imposed by the cloud service and the extra operations caused by fence
transactions.

Network cost andhistory size.We evaluate the network tra�c on the client side by tracking

the number of bytes sent over the NIC. We measure the history size by summing sizes of the

history �les. Figure 4.12 summarizes.

workload network overhead history
tra�c percentage size

BlindW-RW 227.4 KB 7.28% 245.5 KB
C-Twitter 292.9 KB 4.46% 200.7 KB
C-RUBiS 107.5 KB 4.53% 148.9 KB
TPC-C 78.2 KB 2.17% 1380.8 KB

Figure 4.12: Network and storage overheads per 1k transactions. The network overheads comes
from fence transactions and the metadata (transaction ids and write ids) added by cobra’s client
library.
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5 | Summary and Next Steps

This dissertation studied how to audit two essential services: outsourced computing and out-

sourced databases. We proposed two systems, orochi and cobra, that verify the respective ser-

vices, without making any assumptions about remote servers, while having good performance.

In particular, Chapter 3 de�ned a general problem of execution integrity for concurrent servers (§3.1);

exhibited an abstract solution, ssco, based on new kinds of replay (§3.2); and described a sys-

tem, orochi, that instantiates ssco for web applications and runs on today’s cloud infrastruc-

ture (§3.3–§3.4). Chapter 4 introduced another system, cobra. It is the �rst system that tackles

the problem of (a) black-box checking of (b) serializability (§4.3), while (c) scaling to real-world

online transactional processing workloads (§4.4).

Next steps. Orochi and cobra have limitations (see also §1.2). These limitations suggest next

steps for both systems. We elaborate below.

First, orochi and cobra perform ex post facto veri�cations, which cannot prevent a service

from misbehaving. An interesting problem is to recover from misbehavior. To recover, when

detecting a misbehavior, orochi and cobra can generate a report about the misbehavior, ask

users to provide a candidate correct behavior, then roll back the service to a point before the

misbehavior, and replay the following requests. A similar topic is patch-based auditing, proposed

in Poirot [144] (see also [159, 198]); here, one replays prior requests against patched code to see if

the responses are now di�erent. The above proposed recovery procedure can address this patch-

based auditing as well, by patching code before the replay; and in addition, it can audit the e�ect

of a patch at any layer, not just in PHP code (as in Poirot).

Second, both orochi and cobra require all requests to, and responses from, the audited ser-
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vice. This assumes the veri�er and the collectors do not crash. To achieve fault tolerance of the

veri�er and the collectors, one readily applicable approach is to deploy transparent state machine

replication (such as VMware vSphere Replication [48] or Crane [104]). But this approach is costly.

Instead, it might be possible to tolerate faults by storing the veri�er’s state and collectors’ logs

in the cloud as well, which requires a “double veri�cation”—one for verifying the integrity and

freshness of the state and logs, and the other for verifying the actual service. Moreover, this ap-

proach could help mitigate another limitation, namely that the veri�er has to store all service’s

persistent state (for example, the database). Now, by o�oading state to the cloud, the veri�er

could have much smaller storage, at the cost of verifying state when fetching it from the cloud.

Third, orochi and cobra audit the service comprehensively. Though accelerated, the audit

is still expensive (for example, requiring one tenth of the server’s computational resources). To

further lower the veri�cation cost, one approach is to sacri�ce the comprehensiveness of the audit

and spot-check the service with a probabilistic guarantee. This approach of course contradicts the

goals of this dissertation (§1), but it might be attractive to users who have limited local resources

(for example, mobile devices) but still want to gain some correctness guarantees. However, the

challenge here is that spot-checking might fail to provide any guarantee, if tampering to the

service’s state hasn’t been detected. In particular, not checking a single malicious request (for

example, adding a malicious user as an administrator in the database) may cause accepting all

future incorrect requests (for example, all administrative operations issued by this malicious user).

Finally, so far, orochi and cobra require strong consistency models: orochi requires shared

objects to be linearizable or strict serializable, and cobra only checks serializability. However, for

performance reasons, many applications use weak consistency models (for example, Sequential

Consistency and Casual Consistency) and weak isolation levels (for example, Snapshot Isolation

and Read Committed). It will greatly expand orochi’s and cobra’s applicability to support weak

consistency models.

Closing words. Despite the limitations, orochi and cobra open a new design point for audit

systems—comprehensive guarantees together with good performance. In addition, the two sys-

tems introduced many new techniques and algorithms—SIMD-on-demand execution, simulate-
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and-check, consistent ordering veri�cation, an e�cient SMT-encoding for polygraphs, a GPU-

based transitive closure algorithm, and so on. Some of these may be of independent interest.

Finally, we hope that this dissertation can motivate service providers to release veri�able ver-

sions of today’s cloud services, so that future users don’t have to assume, but can be sure, that

their services perform as expected.
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A | Correctness Proof of orochi’s

Audit Algorithm

This appendix states the de�nition of correctness and then proves that orochi’s audit algorithm

(and associated report collection process) meets that de�nition. The algorithm is de�ned in Sec-

tion 3.2 and extended with additional object types in Sections 3.3.4–3.3.5. For completeness, the

algorithm is included in this appendix in Figure A.1, where it is called ssco_audit2.

A.1 Definition of correctness

The two correctness properties are Completeness and Soundness. We have described these prop-

erties (§3.1) and now make them more precise.

Model. We presume the setting of Section 3.1 and the concurrency model of Section 3.2.2. We

use those de�nitions. Additionally, in this appendix, we will sometimes use the word “request” as

a shorthand for “the execution of the program, on input given by the request”; there are examples

of this use in the next several sentences.

Each request consists of a sequence of instructions. A special instruction allows a request to

invoke an operation on a shared object, which we often call a state item. A request can execute any

number of such state operations over the lifetime of request, but it can issue only one at a time. Our

algorithm handles three kinds of state items (§3.2.2, §3.3.4): atomic registers [150]; linearizable

key-value stores exposing single-key get/set operations; and strictly serializable databases, with

the restrictions stated in Section 3.3.4.
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It will be convenient to have a notation for events (requests and responses) in the trace. We

represent such events as a tuple:

(response | reqest, rid, [contents])

A trace is a timestamped or ordered list of such tuples (the exact timing does not matter, only

the relative order of events). We assume that traces are balanced: every response is associated

to a request, and every request has exactly one response. In practice, the veri�er can ensure this

property prior to beginning the audit.

De�nition 1 (Completeness). A report collection and audit procedure are de�ned to be Complete

if the following holds. If the executor executes the program (under the model above) and the given

report collection procedure, then the given audit procedure (applied to the resulting trace and reports)

accepts.

To de�ne Soundness in our context requires several additional notions.

Request schedule. A request schedule models the thread context switch schedule, and is an

ordered list of requestIDs. For example:

req 1, req 23, req 1, req 14, req 5, req 1, . . .

Notice that requestIDs are permitted to repeat in the schedule.

Operationwise execution. Consider a (physically impossible) model where, instead of requests

arriving and departing, the executor has access to all requestIDs in a trace and their inputs. Oper-

ationwise execution means executing the program against all requestIDs by following a request

schedule. Speci�cally, for each request id (rid) in the request schedule, in order:

• If it is the rid’s �rst appearance, the executor reads in that request’s input and allocates the

structures needed to run the program on that input.

• Otherwise, the executor runs the request up to and including the request’s next interaction

with the outside world. This will either be an operation on a state object, or the delivered
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output (as the response).

After each such event, the request is held, until the executor reschedules it. If a request is sched-

uled after it has delivered its response, the executor immediately yields and chooses the next rid

in the request schedule.

Request precedence. A trace Tr induces a partial order on requests. We say that a request r1

precedes another request r2 in a trace if the trace shows that (the execution of) r1 must have

ended before (the execution of) r2 began. We notate this relation as <Tr. That is, r1 <Tr r2 if the

event (response, r1, ·) occurs in Tr before (reqest, r2, ·).

Real-time consistency. A request schedule S of the kind speci�ed above is real-time consistent

with <Tr if for any r1, r2 that appear in S, r1 <Tr r2 =⇒ all instances of r1 in S are sequenced

before all instances of r2 in S.

Now we can de�ne Soundness:

De�nition 2 (Soundness). A report collection and audit procedure are de�ned to be Sound if the

following holds. If the given audit procedure accepts a trace Tr and reports R, then there exists some

request schedule, S, such that:

(a) The outputs produced by operationwise execution according to S (on the inputs in Tr) are exactly

the responses in the trace Tr, and

(b) S is real-time consistent with <Tr.

Comments on the Soundness definition. The Soundness de�nition is bulky, and it may be

unintuitive. But it is capturing something natural: it says that a trace Tr and reports can pass the

given audit process only if the Tr is consistent with having actually executed the requests in Tr ,

according to a physical schedule at the executor.

Here is a potentially more intuitive description. The veri�er accepts only if the following

holds: there exists a schedule S such that if we feed requests to a well-behaved executor, in the

exact order that they arrived, and if the executor physically context-switches among them ac-

cording to S, then the executor will emit the precise responses that are in the trace, in the precise

order (relative to the requests and the other responses) that they appear in the trace.
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One might wonder why do we not simply phrase the de�nition as, “If the audit procedure

accepts, then it means that the executor executed the program.” The reason is that making this

determination in our model is impossible: the trace collector, and the veri�er, have no visibility

to look “inside” the executor. For all they can tell, the executor is passing their checks by doing

something radically di�erent from executing the program. The key point, however, is that if the

veri�er accepts, it means that what the executor actually did and what it is supposed to be doing

are completely indistinguishable from outside the executor.

The de�nition does contain some leeway for an untrusted executor: any physical schedule

that it chooses will result in the veri�er accepting (provided the executor actually executes the

requests according to that schedule). But that leeway seems unavoidable: in this execution and

concurrency model, even a well-behaved executor has complete discretion over the schedule.

Model vs. proofs. Our pseudocode and proofs assume the model stated at the outset of this

section, but with one simpli�cation. Speci�cally, the pseudocode and the proofs treat a database

transaction as a series of statements, with no code interspersed (see, for example, line 29 in Fig-

ure A.1). We impose the simpli�cation to avoid some tedium in the proofs. However, the model

itself re�ects the implementation (§3.3), which does permit code (for example, PHP) to execute

in between SQL statements that are part of the same transaction. We address the complexity in

Section A.7.

Model vs. reality. A major di�erence between our model and web applications is that we

are assuming that state operations and scheduling are the sole sources of non-determinism. In

reality, there is another source of non-determinism: the return values of some functions (those

that query the time, etc.). To take this into account would complicate the de�nitions and proofs;

for example, Soundness and Operationwise execution would need to explicitly refer to the reports

that hold the return values of non-deterministic functions (§3.3.6). To avoid this complexity, our

claims here ignore this source of non-determinism.
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Input Trace Tr Input Reports R Global OpMap : (requestID, opnum) → (i, seqnum) Global kv, db // versioned storage

Components of the reports R:
C : CtlFlowTag→ Set(requestIDs) // alleged groups; §3.2.1
OLi : N+ → (requestID, opnum, optype, opcontents) // §3.2.3
M : requestID→ N // op counts; §3.2.3

The form of the opcontents depends on the optype:
optype opcontents

RegisterRead empty
RegisterWrite value to write
KvGet key to read

optype opcontents

KvSet key and value to write
DBOp SQL statement(s),

whether succeeds

1: procedure ssco_audit2()
2: // Partially validate reports (§3.2.5) and construct OpMap

3: ProcessOpReports() // de�ned in Figure 3.5
4:
5: // OLikv is op log for versioned key-value store (§3.3.5)
6: kv.Build(OLikv )
7: // OLidb is op log for versioned database (§3.3.5)
8: db.Build(OLidb )
9:

10: return ReExec2 () // line 31
11:
12: procedure CheckOp(rid, opnum, i, optype, opcontents)
13: if (rid, opnum) not in OpMap : reject
14: î, s ← OpMap[rid, opnum]
15: ôt, ôc← (OLi[s].optype,OLi[s].opcontents)
16: if i , î or optype , ôt or opcontents , ôc : reject
17: return s

18:
19: procedure SimOp(i, s, optype, opcontents)
20: ret← ⊥

21: if optype = RegisterRead :
22: writeop← walk backward in OLi from s; stop when
23: optype=RegisterWrite
24: if writeop doesn’t exist : reject
25: ret = writeop.opcontents
26: else if optype = KvGet :
27: ret = kv.get(opcontents.key, s)
28: else if optype = DBOp :
29: ret = db.do_trans(opcontents.transaction, s)
30: return ret

31: procedure ReExec2()
32: Re-execute Tr in groups according to C:
33:
34: (1) Initialize a group as follows:
35: Read in inputs for all requests in the group
36: Allocate program structures for each request in the group
37: opnum← 1 // opnum is a per-group running counter
38:
39: (2) During SIMD-on-demand execution (§3.2.1):
40:
41: if execution within the group diverges: return reject
42:
43: When the group makes a state operation:
44: optype← the type of state operation
45: for all rid in the group:
46: i, oc← state op parameters from execution
47: s ← CheckOp(rid, opnum, i, optype, oc) // ln 12
48: if optype ∈ {RegisterRead, KvGet, DBOp}:
49: state op result← SimOp(i, s, optype, oc) // ln 19
50: opnum← opnum + 1
51:
52: (3) When a request rid �nishes:
53: if opnum < M (rid): return reject
54:
55: (4) Write out the produced outputs
56:
57: if the outputs from (4) are exactly the responses in Tr :
58: return accept
59: return reject

Figure A.1: ssco audit procedure. This is a re�nement of Figure 3.3. This one includes additional
objects: a versioned database and key-value store, as used by orochi (§3.3.5). As in Figure 3.3,
the Trace Tr is assumed to be balanced.
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A.2 Proof outline and preliminaries

Our objective is to prove that ssco_audit2 (Figure A.1), together with the corresponding report

collection process (§3.2–§3.3), meets Completeness (De�nition 1) and Soundness (De�nition 2).

Below, we outline the main idea of the proof. However, this is just a rough description; the proofs

themselves go in a di�erent order (as be�ts the technique).

• A central element in the proofs is a variant of ssco_audit2 that we de�ne, called OOOAudit (§A.4).

This variant relies on out-of-order, simulated execution, which we call OOOExec (in contrast to

ReExec2, Figure A.1). OOOExec follows some supplied op schedule S (a list of requestIDs), and

executes one request at a time up through the request’s next op (rather than the grouped exe-

cution; §3.2.1). S is required to respect program order. Thus, while requests can be arbitrarily

interleaved in S, each executes sequentially.

• We establish that OOOExec (following some schedule S) is equivalent to ReExec2 (follow-

ing some control �ow reports C); the argument for this is fairly natural and happens at the

end (§A.6).

The proof focuses on OOOAudit. The rough argument for the Soundness of OOOAudit is as

follows (§A.5). Assume that OOOAudit accepts on some schedule S.

• We establish that OOOAudit is indi�erent to the schedule (§A.4): following S1 is equivalent to

following any other schedule S2, provided both respect program order.

• Let schedule S
′ be an ordering (a topological sort) of the graph G. An ordering exists because

G has no cycles (otherwise, OOOAudit would not have accepted S). We establish that G, and

hence S′, respects the partial order given by externally observable events (§A.3). By the previous

bullet, OOOAudit accepts when following S
′.

• We establish that this simulated execution (that is, OOOAudit following S
′) is equivalent to

physical execution according to S
′. The idea underlying the argument is that the checks in the

simulated execution (which pass) ensure that the op parameters in the logs, and the ops in the

graph, match physical execution. That in turn means that simulating certain operations (such
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as reads) by consulting the logs produces the same result as in the physical execution.

• Meanwhile, the �nal check of OOOAudit (which, again, passes) establishes that the produced

outputs (produced by the simulated execution) equal the responses in the trace. This bullet and

the previous together imply that physical execution according to S
′ produces the responses in

the trace. Combining with the second bullet, we get that S′ is a schedule of the kind required

by the soundness de�nition.

The argument for Completeness of OOOAudit uses similar reasoning to the argument for

Soundness (§A.5). The essence of the argument is as follows. If the executor operates correctly,

then (1) the reports supplied to the veri�er constitute a precise record of online execution, and

(2) OOOAudit, when supplied S
′, reproduces that same online execution. As a result, the contents

that OOOAudit expects to see in the reports are in fact the actual contents of the reports (both

re�ect online execution). Therefore, the checks in OOOAudit pass. That implies that OOOAudit

accepts any schedule that respects program order.

Conventions and notation. Per Section 3.2 and Figure A.1, the reports R have components

C,M ,OL1, . . . ,OLn, where n is the number of state items. For convenience, we will use this nota-

tion, rather than R.M , R.OLi, etc. Note that for a DB log, the opcontents is the SQL statement(s)

in a transaction. For example, if a DB is labeled with i = 3, then OL3[j].opcontents contains the

SQL statements in the j
th DB transaction.

A ubiquitous element in the proofs is the graph G that is constructed by ProcessOpReports. G

depends on Tr and R, but we will not notate this dependence explicitly. Likewise, when notating

directed paths in G, we leave G implicit; speci�cally, the notation p { q means that there is

directed path from node p to node q in graph G.

A.3 Ordering reqests and operations

Our �rst lemma performs a bit of advance housekeeping; it relates the graph G, the Op Count

reports (M), and the operation log reports (OL). (The lemma is phrased in terms of OpMap, rather
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than operation log reports, but in a successful run, OpMap contains one entry for each log entry,

per Figure 3.5, line 38.) The lemma says that, if ProcessOpReports succeeds, then G “matches”

OpMap, in the sense that every operation label in G has an entry in OpMap, and every entry in

OpMap appears in G. This in turn means that there is a correspondence between the nodes of G

and the operations in the logs.

Note that if ProcessOpReports succeeds, it does not mean that G or the operation logs are

“correct”; overall, they could be nonsense. For example, M (rid) could be too big or too small for

a given rid, meaning that there are spurious or insu�cient entries in the logs (and G). Or the

operations of a given rid could be in the wrong operation log (meaning that the reports include a

wrong claim about which state item a given operation targets). Or the logged contents of a write

operation could be spurious. There are many other cases besides. All of them will be detected

during re-execution. Importantly, we do not need to enumerate the forms of incorrectness. Rather,

we let the proofs establish end-to-end correctness.

Lemma 1 (Report consistency). If ProcessOpReports accepts, then the domain of OpMap (which is

all entries in the log �les) is exactly the set

T = {(rid, j) | rid is in the trace and 1 ≤ j ≤ M (rid)} ,

and

G.Nodes = T ∪ {(rid, 0), (rid,∞) | rid is in the trace} .

Proof. Take (rid, j) in T . By de�nition of T , rid is in the trace and 1 ≤ j ≤ M (rid). The �nal

check in CheckLogs (which passed, per the premise) considers this element, and ensures that it

is indeed in OpMap. Now consider the domain of OpMap. An element (rid, j) can be inserted into

OpMap (Figure 3.5, line 38) only if rid is in the trace, j > 0, and j ≤ M (rid) (lines 30–32).

The second part of the lemma is immediate from the logic in AddProgramEdges (Figure 3.5).

�

The remaining lemmas in this section establish that the order inG is consistent with externally

observable events, as well as the claimed ordering in the operation logs. The �rst step is to prove
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that the graph GTr produced by CreateTimePrecedenceGraph (Figure 3.6) explicitly materializes

the <Tr relation. We use r1 ≺ r2 to denote that there is a directed path from r1 to r2 in GTr.

Lemma 2 (Correctness of CreateTimePrecedenceGraph). For all r1, r2 in Tr, r1 <Tr r2 ⇐⇒ r1 ≺

r2.

Proof. We begin with the =⇒ direction. Take r1, r2 with r1 <Tr r2. Consider a sequence T

r1 <Tr s1 <Tr · · · <Tr sn <Tr r2

that is “tight” in that one cannot insert further elements that obey <Tr between the members of

this sequence. (At least one such sequence must exist.) We claim that there is a directed path:

r1 ≺ s1 ≺ · · · ≺ sn ≺ r2.

Now, if for all adjacent elements t, u in sequence T , there is an edge 〈t, u〉 in GTr, then the claim

holds.

Assume toward a contradiction that there are adjacent t, u without such an edge. Then, at the

time that CreateTimePrecedenceGraph (Figure 3.6) processes the event (reqest, u, ·), request

t must have been already evicted from Frontier (if t had not been evicted, then line 10 would

have created the edge 〈t, u〉). This eviction must have been caused by some request v. But this

implies that (response, t, ·) precedes (reqest, v, ·) in the trace.1 Furthermore, (response, v, ·)

precedes (reqest, u, ·) (because the eviction occurred before CreateTimePrecedenceGraph han-

dled (reqest, u, ·)). Summarizing, there is a request v for which:

t <Tr v <Tr u,

which contradicts the assumption that t and u were adjacent in sequence T .

For the ⇐= direction, consider r1, r2 with r1 ≺ r2. If r1 6<Tr r2, then the directed path
1The detailed justi�cation is that the eviction could have happened only if there is an edge 〈t, v〉 (by line 13);

such an edge can exist only if t was in the Frontier when CreateTimePrecedenceGraph processed (reqest, v, ·) (by
line 10); and t entered the Frontier after CreateTimePrecedenceGraph processed (response, t, ·) (by line 14).
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includes an edge e = 〈s1, s2〉 for which s1 6<Tr s2; this follows from the fact that <Tr is transitive.

Now, consider the point in CreateTimePrecedenceGraph at which e was added (line 10). At that

point, s1 was in Frontier, which implies that (response, s1, ·) was observed already in the scan.

This implies that (response, s1, ·) precedes (reqest, s2, ·) in the trace, which means s1 <Tr s2:

contradiction. �

Lemma3 (G obeys request precedence). At the end of ProcessOpReports, r1 <Tr r2 ⇐⇒ (r1,∞) {

(r2, 0).

Proof. =⇒ : This follows from the proof of the prior lemma, the application of SplitNodes (Fig-

ure 3.5) to GTr, and the fact that for each si in T , (si, 0) { (si,∞) (which itself follows from the

program edges, added in Figure 3.5, lines 25–26).

⇐= : Consider r1, r2 with (r1,∞) { (r2, 0). If r1 6<Tr r2, then the directed path includes an

edge e = 〈(s1,∞), (s2, 0)〉 for which s1 6<Tr s2; this follows from the fact that <Tr is transitive. But

if e is an edge in G, then 〈s1, s2〉 is an edge in GTr, which implies, by application of Lemma 2, that

s1 <Tr s2: contradiction. �

Lemma 4 (G obeys log precedence). If ProcessOpReports accepts, then for all operation logs OLi,

1 ≤ j < k ≤ length(OLi) =⇒

(OLi[j].rid, OLi[j].opnum) { (OLi[k].rid, OLi[k].opnum).

Proof. Fix OLi, j; induct over k. Base case: k = j + 1. If OLi[j].rid = OLi[j+1].rid, then the check in

Figure 3.5, line 56 and the existing program edges together ensure that (OLi[j].rid, OLi[j].opnum) {

(OLi[j+1].rid, OLi[j+1].opnum). If on the other hand OLi[j].rid , OLi[j+1].rid, then line 55 in

AddStateEdges inserts an edge between the two nodes.

Inductive step: consider k+1. Reasoning identical to the base case gives (OLi[k].rid, OLi[k].opnum) {

(OLi[k+1].rid, OLi[k+1].opnum). And the induction hypothesis gives (OLi[j].rid, OLi[j].opnum) {

(OLi[k].rid, OLi[k].opnum). Combining the two paths establishes the result. �
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1: Global Trace Tr , Reports R // includes OLi
2:
3: // S is an op schedule (§A.4)
4: procedure OOOExec(S)
5: for each (rid, opnum) in S :
6: if opnum = 0 :
7: Read in inputs from request rid in Tr

8: Allocate program structures for a thread to run rid

9:
10: else if opnum = ∞ : // check that the thread produces output
11: Run rid’s allocated thread until the next event.
12: If the event is a state operation or silent exit:
13: return reject
14: Write out the produced output
15:
16: else

17: Run rid up to, but not including the next event; if the
18: event is not a state operation, return reject
19:
20: i, optype, oc← state op parameters from execution
21: s ← CheckOp(rid, opnum, i, optype, oc)
22: if optype ∈ {RegisterRead, KvGet, DBOp} :
23: state op result← SimOp(i, s, optype, oc)
24:
25: if all produced outputs exactly match the responses in Tr :
26: return accept
27: return reject

Figure A.2: De�nition of OOOExec, a variant of ReExec2 (Figure A.1) that executes according
to an op schedule (§A.4). A central concept in the correctness proofs is OOOAudit, which is the
same as ssco_audit2 (Figure A.1), except that ReExec2 is replaced with OOOExec.

A.4 Op schedules and OOOAudit

A lot of the analysis in the proof is with respect to a hypothetical audit procedure, which we

call OOOAudit, that is a variant of ssco_audit2. OOOAudit performs out-of-order execution of

requests but not in a grouped way (as in §3.2.1); the speci�cs are given shortly. OOOAudit relies

on an augmented notion of a request schedule, de�ned below, in which requests are annotated

with a per-request op number (or in�nity). These annotations are not algorithmically necessary;

they are a convenience for the proofs.
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De�nition 3 (Op schedule). An op schedule is a map:

S : N→ RequestId × (N ∪ {∞}).

For example,

(1, 0), (23, 0), (1, 1), (23, 1), (23, 2), (23,∞), (1, 2), . . .

De�nition 4 (Well-formed op schedule). An op schedule S is well-formed (with respect to a trace

Tr and set of reports R) if (a) S is a permutation of the nodes of the graph G that is constructed by

ProcessOpReports, and (b) S respects program order.

De�nition 5 (OOOAudit). De�ne a procedure

OOOAudit(Trace Tr, Reports R, OpSched S) that is the same as ssco_audit2(Trace Tr, Reports R),

except that

ReExec2() (Figure A.1, line 31)

is replaced with

OOOExec(S) (Figure A.2)

Lemma 5 (Equivalence of well-formed schedules). For all op schedules S1, S2 that are well-formed

(with respect to Tr and R),

OOOAudit(Tr, R, S1) = OOOAudit(Tr, R, S2).

Proof. Consider both invocations, one with S1 and one with S2. The schedule (S1 versus S2) does

not a�ect OOOAudit until the line that invokes OOOExec. So ProcessOpReports fails in both

executions, or neither. Assume that these procedures succeed, so that both executions reach

OOOExec. We need to show that OOOExec(S1) = OOOExec(S2).

S1 and S2 have the same operations, because they are both constructed from the same graph G.
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Meanwhile, OOOExec re-executes each request (meaning each rid) in isolation. To see this, notice

that none of the lines of OOOExec modi�es state that is shared across requests (OpMap, kv, etc.).

Therefore, the program state (contents of PHP variables, current instruction, etc.) of a re-executed

request rid evolves deterministically from operation to operation, and hence the handling of each

operation for each rid is deterministic. This holds regardless of where the operations of an rid

appear in an op schedule, or how the operations are interleaved.

Now, if OOOExec(S1) accepts, then all checks pass, and all produced outputs match the re-

sponses in the trace. The preceding paragraph implies that OOOExec(S2) would encounter the

same checks (and pass them), and produce the same outputs. On the other hand, if OOOExec(S1)

rejects, then there was a discrepancy in one of the checks or in the produced output. OOOExec(S2)

either observes the same discrepancy, or else it rejected earlier than this, where “early” is with

reference to the sequencing in S2. Summarizing, OOOExec(S1) and OOOExec(S2) deliver the same

accept or reject decision, as was to be shown. �

A.5 Soundness and completeness of OOOAudit

Lemma6 (OOOAudit Soundness). If there exists a well-formed op schedule S for whichOOOAudit(Tr, R, S)

accepts, then there exists a request schedule S
′′
with properties (a) and (b) from De�nition 2 (Sound-

ness).

Proof. If OOOAudit(Tr, R, S) accepts, then there are no cycles in the graphG produced by ProcessOpReports

(OOOAudit calls into ProcessOpReports, and ProcessOpReports—speci�cally lines 12–12 in Fig-

ure 3.5—would reject if there were a cycle). This means that G can be sorted topologically. Let the

op schedule S′ be such a topological sort. De�ne the request schedule S′′ to be the same as S′ but

with the opnum component discarded.

S
′ is well-formed: it contains the operations of G, and it respects program order because

there are edges of G between every two state operations in the same request. By Lemma 5,

OOOAudit(Tr, R, S′) returns accept.

Property (b). Observe that no (rid, opnum) appears twice in S
′; this follows from the construc-
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tion of S′ and G. Thus, one can label each (rid, opnum) in S
′ with its sequence number in S

′; call

that labeling Seq. Also, note that for nodes n1, n2 in G, if n1 { n2, then Seq(n1) < Seq(n2); this is

immediate from the construction of S′ as a topological sort of G, and below we refer to this fact

as “{ implies <”.

Now, assume to the contrary that S′′ does not meet property (b) in De�nition 2. Then there

exist r1, r2 with r1 <Tr r2 and at least one appearance of r2 occurring in S
′′ before at least one

appearance of r1. In that case, S′ must contain (r1, i), (r2, j) such that Seq(r2, j) < Seq(r1, i). Thus,

we have:

Seq(r2, j) < Seq(r1, i) [from contrary hypothesis]

≤ Seq(r1,∞) [{ implies <]

< Seq(r2, 0) [Lemma 3;{ implies <]

≤ Seq(r2, j) [{ implies <]

which is a contradiction.

Property (a).We establish this property by arguing, �rst, that re-executing (according to the op

schedule S′) is the same as a physical (online) execution, in which the request scheduling is given

by S
′. This is the longest (and most tedious) step in the proof of soundness. Second, we argue that

such a physical execution is equivalent to the earlier notion of operationwise execution (§A.1).

To make these arguments, we de�ne two variants of the audit immediately below, and then prove

the two equivalences in sub-lemmas:

Actual. De�ne a variant of OOOAudit(Tr, R, S) called Actual(Trace Tr, Reports R, OpSched S).

In Actual, there is a physical state object i for each operation log OLi. Execution in Actual pro-

ceeds identically to execution in OOOAudit, except that state operations are concretely executed,

instead of simulated. Speci�cally, Actual invokes CheckOp but then, instead of simulating certain

operations (Figure A.2, lines 22–23), it performs all operations against the corresponding physical

state object.

Operationwise. De�ne Operationwise(Trace Tr , RequestSched RS) to be the same as Actual,
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except that:

(i) All checks, including CheckOp, are discarded (notice that the signature of Operationwise

does not include the reports that would enable checks).

(ii) Operationwise is not presented with opnums (notice that the schedule argument RS is a

request schedule, not an op schedule). Instead, Operationwise simulates opnums: when an

rid �rst appears in RS, Operationwise does what Actual does when the opnum is 0 (it reads in

the inputs, allocates program structures, etc.). Subsequent appearances of rid cause execution

through the next operation or the ultimate output.

Sub-lemma 6a. OOOAudit(Tr, R, S′) and Actual(Tr, R, S′) produce the same outputs.

Proof. We will argue that every schedule step preserves program state in the two runs. Speci�-

cally, we claim that for each (rid, opnum), both runs have the same state at line 24 (Figure A.2).

We induct over the state operations in S
′, turning to the inductive step �rst.

Inductive step.Consider a state operation in S
′; it has the form (rid, j), where j ∈ {1, 2, . . . ,M (rid)}.

The induction hypothesis is that for all entries before (rid, j) in S
′, the two runs have the same

state in line 24 (Figure A.2).

If j = 1, note that execution proceeds deterministically from thread creation, so lines 20–22

execute the same in the two runs. If j > 1, then execution of operation (rid, j−1) was earlier in S
′

and execution of rid “left o�” at line 24. The induction hypothesis implies that, at that point, the

state in the two runs was the same. From that point, through the current operation’s lines 20–22,

execution is deterministic. In both cases (j = 1 and j > 1), CheckOp (line 21) passes in Actual;

this is because it passes in OOOAudit (which we know because, as established at the beginning of

the proof of the overall lemma, OOOAudit(Tr, R, S′) accepts), and Actual and OOOAudit invoke

CheckOp with the same parameters.

It remains to show that, if optype ∈ {RegisterRead, KvGet, DBOp}, then both runs read the

same value in line 23. To this end, we establish below a correspondence between the history of

operations in Actual and OOOAudit. Let î, ŝ ← OpMap[rid, j]. Because CheckOp passes in both

Actual and OOOAudit (with the same parameters in both runs), i = î, and thus both Actual

and OOOAudit will interact with the same logical object (Actual does so via physical operations;
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OOOAudit consults the corresponding log). We refer to this object as i below.

Claim. De�ne Q as (OLi[1], . . . ,OLi[ŝ − 1]); if ŝ = 1, Q is de�ned to be empty. Then Q describes

the operations, in order, that Actual issues against physical state object i, prior to (rid, j).

Proof. We will move back and forth between referring to operations by their location in a log

(OLi[k]) and by (rid, opnum) (the domain of OpMap). There is no ambiguity because CheckLogs

(Figure 3.5) ensures a bijection between log entries and (rid, opnum) pairs.

Each of the elements of Q, meaning each (OLi[k].rid, OLi[k].opnum), 1 ≤ k ≤ ŝ−1, appears in

S
′ before the current operation (in an order that respects the log sequence numbers 1, . . . , ŝ − 1);

this follows from Lemma 4 (and the fact that S′ is a topological sort). Furthermore, in OOOAudit,

these are the only operations in S
′ (before the current operation) that interact with OLi. To es-

tablish this, assume to the contrary that there is an additional operation (rid′, j′) that appears in

S
′ before the current operation, with OpMap[rid′, j′] = (i, t), for some t. If t ≤ ŝ, that violates the

aforementioned bijection; if t > ŝ, that violates Lemma 4.

Now, consider the execution in Actual. If the history of operations to the corresponding phys-

ical state object does not match Q, then there is an operation in the relevant pre�x of S′ for which

the two runs diverge. Consider the earliest such divergence (that is, Actual and OOOAudit are

tracking each other up to this operation); call that earliest diverging operation (rid∗, j∗).

Consider what happens when (rid∗, j∗) executes. Both runs produce i
∗, optype∗, oc∗, the state

op parameters yielded by execution (Figure A.2, line 20). These three parameters are the same

across Actual and OOOExec, by application of the induction hypothesis (again using reasoning as

we did above: for operation (rid∗, j∗−1), program state was the same in line 24, etc.). Now, consider

CheckOp (line 21). Both runs obtain i
′, s′ ← OpMap[rid∗, j∗], and ot′, oc′ ← OLi∗[s′].optype,OLi∗[s′].opcontents

(Figure A.1, lines 14–15). But CheckOp passes in OOOExec (as argued earlier), and hence, i∗ =

i
′, optype∗ = ot

′, oc∗ = oc
′. This means that the state operation issued by Actual corresponds

precisely to what the log dictates (same logical object, same operation type, same parameters,

etc.).

Thus, if the two runs diverge, it must be in the sequence number. In OOOExec, (rid∗, j∗)

causes operation s
′ (ordinally) to log OLi′ . If the operation in Actual would be operation number
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s
∗ (ordinally) to object i′, where s

∗ , s
′, then there was an earlier divergence—either Actual did

not issue an operation to object i′ when OOOExec issued an operation to OLi′ , or Actual issued

an operation to object i′ when OOOExec did not issue an operation to OLi′ . But (rid∗, j∗) was the

earliest divergence, so we have a contradiction. �

Now we must establish that the operations actually return the same values in Actual and

OOOExec (in Figure A.2, line 23). We begin with RegisterRead. For such operations, Actual returns

the current value of the register; by register semantics, this value is that of the most recent “write”

in time. Because Q precisely re�ects the history of operations in Actual (per the Claim), this

most recent write is the RegisterWrite operation in Q with the highest log sequence number. The

contents of this operation is precisely what OOOAudit “reads” into program variables in SimOp

(see Figure A.1, line 23). Thus, OOOAudit and Actual read the same value into program variables

(Figure A.2, line 23).

Now let us consider what happens if optype is KvGet or DBOp. OOOAudit invokes either

kv.get(key, s) or db.do_trans(transaction, s) (Figure A.1, lines 27 and 29). Each of these calls is

equivalent to:

• Constructing state by replaying in sequence OLi[1], . . . ,OLi[ŝ−1] (speci�cally, the opcontents

�eld of these log entries), and then

• Issuing the operation given by OLi[ŝ].opcontents.

This equivalence is intuitively what db and kv provide, and we impose this equivalence as the

required speci�cation (see §A.7 for implementation considerations). Meanwhile, by the earlier

Claim, the history of operations to object i in Actual before the current operation isOLi[1], . . . ,OLi[ŝ−

1]. Moreover, the current operation in Actual is given by optype and oc (Figure A.2, line 20), which

respectively equal OLi[ŝ].optype and OLi[ŝ].opcontents; this follows from the fact that CheckOp

passes for operation (rid, j) in both executions. Therefore, Actual and OOOExec “see” equivalent

histories and an equivalent current operation, for the state object in question. They therefore

return the same result (Figure A.2, line 23).

Base case. The �rst state operation in S
′ has the form (rid, 1). The reasoning proceeds identi-
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cally to the inductive step, for j = 1. Here in the base case, Q is always empty,2 but this does not

a�ect the logic. �

Sub-lemma6b. Execution of program logic and state operations proceeds identically in Actual(Tr, R, S′)

and Operationwise(Tr, S′′). In particular, they produce the same outputs.

Proof. Actual(Tr, R, S′) passes all checks, so eliminating them does not a�ect the �ow of exe-

cution. Furthermore, aside from the case opnum=0, the opnum component in S
′ does not in-

�uence the �ow of execution in Actual; the component only induces checks, which aren’t run in

Operationwise. For the opnum=0 case, notice that for each rid, (rid, 0) always appears in S
′ before

(rid, j), for any j > 0 or j = ∞ (this is because S′ is a topological sort of G). Thus, the treatment by

Operationwise(Tr, S′′) of the �rst occurrence of rid—namely that it is as if Actual is encountering

(rid, 0)—means that Operationwise and Actual execute this case identically. �

To conclude, recall from the outset of the proof that OOOAudit(Tr, R, S′) accepts, which im-

plies that it produces as outputs precisely the responses in the trace. Sub-lemmas 6a and 6b then

imply that Operationwise(Tr, S′′) produces those outputs too. Meanwhile, Operationwise(Tr, S′′)

has the precise form of operationwise execution (de�ned in Section A.1), which completes the

argument. �

Lemma 7 (OOOAudit Completeness). If the executor executes the given program (under the concur-

rency model given earlier) and the given report collection procedure, producing trace Tr and reports

R, then for any well-formed op schedule S, OOOAudit(Tr, R, S) accepts.

Proof. Consider ProcessOpReports and OOOExec in turn.

Sub-lemma 7a. ProcessOpReports passes.

Proof. If the executor is well-behaved, then CheckLogs passes; this is because a well-behaved

executor correctly sets M and places each operation in exactly one log. Under those conditions,

the checks in CheckLogs pass.
2We know that Q is empty, as follows. Let î, ŝ ← OpMap[rid, 1]. If ŝ > 1, then operation OL

î
[1] would have

appeared earlier in S
′, by Lemma 4. Therefore, ŝ = 1, which, by de�nition of Q, makes Q empty.
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Now we need to show that CycleDetect (Figure 3.5, line 12) passes, i.e., we need to show that

there are no cycles. If the executor is well-behaved, then there is a total ordering that de�nes

when all log entries were written in the actual online execution; this is because entries are part of

the “emissions” from a sequentially consistent execution. Furthermore, we can de�ne in this total

ordering “request begin” (which happens at the instant a request begins executing) and “request

end” (which happens at the instant a request �nishes executing). Notate these events as (rid, 0)

and (rid,∞), respectively. By sequential consistency, the (rid, 0) event must precede all other

(rid, ·) events in the total ordering, and likewise (rid,∞) must succeed all other (rid, ·) in the total

ordering. Also, in the actual execution, if one request began after another ended, a well-behaved

executor must have executed all operations for the former after all operations for the latter, so

the total ordering respects that property too.

Now, in ProcessOpReports (Figure 3.5), an edge can be added to G only in four cases (lines 55,

25, 26, and 10):

• An edge (n1, n2) can be added to indicate that operation n1 occurred before operation n2, in

the same log.

• An edge (n1, n2) can be added to indicate that operation n1 preceded operation n2 in the same

request.

• Edges for 〈(rid, 0), (rid, 1)〉 and 〈(rid,m), (rid,∞)〉 are added, where m is the purported maxi-

mum opnum for rid.

• If an edge of the form 〈(r1,∞), (r2, 0)〉 is added, then r2 began after r1 ended.

Observe that in all four cases, an edge 〈n1, n2〉 is added to the audit-time graph only if operation

n1 preceded operation n2 in the total ordering given by the online execution. In other words, the

graph edges are always consistent with the total ordering. Thus, if there is a cycle n1 { · · · { n1

in G, it means that n1 preceded itself in the total ordering, which contradicts the notion of total

ordering. So there are no cycles. �

As established immediately above, G has no cycles. It can therefore be topologically sorted.

Sub-lemma 7b. De�ne op schedule S
′
to be a topological sort of graph G. Then, the invocation
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OOOExec(S′):

(i) reproduces the program state of online execution, and

(ii) passes all checks

Proof. Induct on the sequence S
′.

Base case: The �rst operation in S
′ has no ancestors in G. It is thus the �rst occurrence of its

request and has the form (rid, 0). OOOExec(S′) handles this by reading in input and allocating

program structures deterministically; this is the same behavior as in the online execution.

Inductive step: assume that the claim holds for the �rst ` − 1 operations in S
′. Denote the op

with sequence ` as (rid, j). We reason by cases.

Case I: j = 0. Same reasoning as the base case.

Case II: j = ∞. Recall thatM is the Op Count report (§A.2). Consider the operation (rid,M (rid));

it appears in S
′ prior to (rid, j) and as the most recent entry for rid. This follows from the logic

in ProcessOpReports and its callees. The induction hypothesis implies that program state in

OOOExec(S′) is identical to the original online execution at (rid,M (rid)). This means that OOOExec(S′)

will take the same next step that the original took, in terms of state operation versus exit versus

output (because the original followed the program code, just as OOOExec(S′) is doing). Now, if

that step were something other than an output, that would imply that M (rid) was unfaithful to

the online execution, contradicting the premise of a well-behaved executor. So the next inter-

action is indeed an output (in both executions), meaning that the check in OOOExec(S′) in the

opnum=∞ case passes (Figure A.2, line 12). And the produced output is the same; in other words,

the output produced by OOOExec(S′) is the same as what was produced online, which is what is

in the trace. Thus, the output sameness check passes.

Case III: j = 1. By the induction hypothesis, OOOExec(S′) and the online execution had the

same program state at (rid, 0). This implies that OOOExec(S′) will take the same next step that the

original took (in terms of state operation versus exit versus output). If that step is an output or exit

rather than a state operation, that would imply that the executor inserted a spurious operation in

the logs, contradicting the premise of a well-behaved executor. So the step is indeed an operation

(in both executions). Being well-behaved, the executor recorded that operation as (rid, 1) in the
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appropriate operation log, and this is the operation in question. Furthermore, the contents of the

log entry (meaning the �elds optype and opcontents) are faithful to the execution. Because of

the determinism in passing from (rid, 0) to (rid, 1), the same program state is reproduced during

OOOExec(S′), implying that all checks in CheckOp pass.

RegisterWrite and KvSet operations do not a�ect program state. Our remaining task under this

case is to show that if the op has optype of RegisterRead, KvGet, or DBOp, then OOOExec(S′)

produces the same value that the online execution did. To this end, let (i, s) = OpMap[rid, 1],

and consider the �rst s − 1 operations to OLi in the original execution. These operations have

been recorded as OLi[1], . . . ,OLi[s − 1], because the executor, being well-behaved, is tracking

operations correctly. Thus, these log entries give the precise history to this state object (in the

original execution) at the time of operation number s. (Note that this log could be any kind of

log: register, key-value, etc.) Call the s − 1 ops collectively Q. At this point, we can pick up the

reasoning in the inductive step of Sub-lemma 6a after the Claim, only replacing “Actual” with

“online execution”.

Case IV: 1 < j ≤ M (rid). S′ respects program order, so we can invoke the induction hypothesis

on (rid, j−1) to conclude that program state after executing (rid, j−1) is the same in OOOExec(S′)

as it was when that operation was executed online. At this point, the same reasoning as in Case

III applies, substituting (rid, j) for (rid, 1) and (rid, j − 1) for (rid, 0). �

Sub-lemmas 7a and 7b imply that OOOAudit(Tr, R, S′) accepts. Applying Lemma 5 to S and S
′

completes the proof. �

A.6 Eqivalence of OOOAudit and ssco_audit2

Having established the Completeness and Soundness of OOOAudit, it remains to connect the

grouped executions (§3.2.1) to those of OOOAudit.

Lemma 8. Given trace Tr and reports R, if ssco_audit2(Tr, R) accepts, then there is a well-formed

op schedule S that causes OOOAudit(Tr, R, S) to accept.
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Proof. Recall that C denotes the control �ow grouping within R (§A.2). One can construct S as fol-

lows: Initialize S to empty. Then run ssco_audit2(Tr, R) (Figure A.1), and every time ssco_audit2

begins auditing a control �ow group t, add to S entries (rid, 0) for each rid in the set C (t). When-

ever a group issues an operation (which, because the grouped execution does not diverge, the

group does together), add (rid, j) to S for each rid in C (t), where j is the running tally of opnums.

When the requests write their output (which, again, they do together), add (rid,∞) to S for each

rid in C (t).

Claim. For each rid, the value of j in S prior to the (rid,∞) insertion is equal to M (rid). Proof:

ssco_audit2 accepted so passes the line that checks whether a request issues at least M (rid)

operations (Figure A.1, line 53), implying that j ≥ M (rid). But (rid, j) is in OpMap (otherwise

line 13 would have rejected), and so, by Lemma 1, j ≤ M (rid). So this Claim is established. �

By the Claim, by the fact that j increments (starting from 0), and by the fact that ssco_audit2’s

acceptance implies that all trace responses are produced (so all requests are executed), the con-

structed op schedule S has all nodes from G. S also respects program order. It is thus well-formed.

Meanwhile, executing OOOAudit(Tr, R, S) would precisely replicate what happens in ssco_audit2(Tr, R)

because the only di�erence in execution is that the latter interleaves at the instruction and operand

level, which does not a�ect program state; the �ow and ordering is otherwise the same. This

means that program state is also the same across the two algorithms at the time of issued opera-

tions, and hence the produced output is the same.

The checks are also the same. There is a super�cial di�erence in how the “end state” is handled,

but observe that both executions reject if a request rid attempts to issue more than M (rid) opera-

tions (in that case, the corresponding operation is not in OpMap, so CheckOp rejects, speci�cally

line 13, Figure A.1) or if a request attempts to exit, having issued fewer than M (rid) operations

(this happens in ReExec2 with an explicit check in Figure A.1, line 53, and in OOOExec because

if an operation produces output before the opnum=∞ case, the algorithm rejects in Figure A.2,

lines 17–18).

Therefore, if all checks pass in ssco_audit2(Tr, R), so do all checks in OOOAudit(Tr, R, S),

and OOOAudit(Tr, R, S) accepts. �
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Combining Lemma 8 with Lemma 6, we obtain ssco_audit2’s soundness:

Theorem 9 (ssco_audit2 soundness). Given trace Tr and reports R, if ssco_audit2(Tr, R) accepts,

then there exists a request schedule with properties (a) and (b) from De�nition 2 (Soundness).

Theorem 10 (ssco_audit2 completeness). If the executor executes the given program (under the

concurrency model given earlier) and the given report collection procedure, producing trace Tr and

reports R, then ssco_audit2(Tr, R) accepts.

Proof. Use C (the control �ow grouping reports) to construct the following op schedule S: take

each control �ow group that ssco_audit2 would execute, and insert each request’s operations

in layers: �rst all of the opnum=0 entries appear for each rid in the control �ow group, then all

of the opnum=1 entries, etc., up through M (rid) for each rid in the control �ow group, and then

all of the (rid,∞) entries, again for each rid in the control �ow group. Note that M (rid) must be

constant for all rids in a control �ow group because otherwise M is wrong or else the control �ow

grouping is not valid, either of which contradicts the executor being well-behaved.

S respects program order, by construction. S also includes all nodes from G. This follows

because the executor is well-behaved, implying that C includes all requestIDs in the trace. Mean-

while, S includes (rid, 0), (rid, 1), . . . , (rid,M (rid)), (rid,∞) for each of these rids, and those are

exactly the nodes of G. Thus, S is well-formed.

Lemma 7 implies that OOOAudit(Tr, R, S) accepts. Compare the executions in ssco_audit2(Tr, R)

and OOOAudit(Tr, R, S); the executions have the same logic, except for three di�erences:

(i) ReExec2 has an explicit check about whether a request issues fewer than M (rid) operations

(Figure A.1, line 53), whereas OOOExec has a separate opnum=∞ case (Figure A.2, line 10).

(ii) ReExec2 executes a group from operation j− 1 to operation j in SIMD-style (§3.2.1) whereas

OOOExec round-robins the execution from j − 1 to j, for a group of requests.

(iii) ReExec2 rejects if execution diverges.

Di�erence (i) was handled in the proof of Lemma 8: the di�erence is super�cial, in that both

executions are requiring a request rid to issue exactly M (rid) operations.

102



Di�erence (ii) does not result in di�erent program state across the two executions. This is

because any implementation of SIMD-on-demand (for example, orochi’s acc-PHP; §3.3.3) is sup-

posed to ensure that the SIMD-style execution is identical to executing each request in the group

individually (as is done in OOOAudit(Tr, R, S)), and so the results of all instructions (including op

values, etc.) are the same between ssco_audit2(Tr, R) and OOOAudit(Tr, R, S).

For di�erence (iii), we have to argue that there is no divergence across requests within a

control �ow group in ssco_audit2(Tr, R). Assume otherwise. Say that the divergence happens

between (rid, j) and (rid, j+1), for one or more rids (in some control �ow group), and consider the

execution of all requests in the group up to (rid, j) in ssco_audit2(Tr, R). The program state pro-

duced by this execution is equivalent to the program state at the same point in S when executing

OOOAudit(Tr, R, S), because that is the whole point to the SIMD-style execution.

Consider now OOOAudit(Tr, R, S′), where S
′ is a topological sort of G (we know that a topo-

logical sort exists because there are no cycles inG, and we know that there are no cycles inG using

the same reasoning as in Sub-lemma 7a). This execution results in the identical program state for

each request as OOOAudit(Tr, R, S), as argued in the proof of Lemma 5. But by Sub-lemma 7b,

OOOAudit(Tr, R, S′) reproduces the original online execution. This implies that if execution di-

verges during ssco_audit2(Tr, R) for two requests in some control �ow grouping, then the two

requests had di�erent executions during the original online execution. But if they did and if the

executor placed them in the same control �ow group, the executor is not well-behaved, in con-

tradiction to the premise. �

A.7 Details of versioned storage

Key-value stores. Recall the requirement referenced in the proof of Sub-lemma 6a: letting i
∗

identify the key-value store object and its operation log, invoking kv.get(k, s) must be equivalent

to creating a snapshot of a key-value store by replaying the operations OLi∗[1], . . . ,OLi∗[s − 1], and

then invoking “get(k)” on that snapshot.

To meet this requirement, orochi (§3.3) implements kv as a map from keys to (seq,value)

pairs. The invocation kv.Build(OLi∗ ) (Figure A.1, line 6) constructs this map from all of the KvSet
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operations in OLi∗ . During re-execution, kv.get(k, s) (Figure A.1, line 27) performs a lookup on

key k to get a list of (seq,value) pairs, and then performs a search to identify, of these pairs, the one

with the highest seq less than s (or false if there is no such pair); kv.get returns the corresponding

value.

Summarizing, kv.get(k, s) returns, of all of the entries in OLi∗ , the KvSet to key k with highest

sequence less than s. Meanwhile, if one were to replay OLi[1], . . . ,OLi[s − 1] to an abstract key-

value store and then issue a “get(k)”, one would get the most recent write—which is the same as

the highest sequenced one in the set OLi[1], . . . ,OLi[s − 1]. Thus, the implementation matches

the requirement.

Databases. Transactions create some complexity. On the one hand, the pseudocode (Figures A.1

and A.2) and proofs treat multiple SQL statements in a transaction as if they are a single opera-

tion. On the other hand, in the implementation (and in the model given at the outset; §A.1), code

can execute between the individual SQL statements of a transaction.

We brie�y describe how to adapt the pseudocode and proofs to the actual system. Our point

of reference will be Figure A.1. As a bookkeeping detail, the system maintains a per-query unique

timestamp. This identi�er is not in the operation logs; it’s constructed by the veri�er. When build-

ing the versioned database (Figure A.1, line 8), the veri�er assigns each query the timestamp

ts = s · maxq + q, where s is the enclosing transaction’s sequence number in the operation log,

maxq is the maximum queries allowed in one transaction (10000 in our implementation), and q is

the query number within the transaction. Another detail is that, for the database operation log,

each entry’s opcontents �eld is structured as an array of queries.

In the pseudocode, we alter lines 46–49 (in Figure A.1). For DBOps, CheckOp and SimOp need

to happen in a loop, interleaved with PHP execution. Instead of checking the entire transaction

at once, these functions check the individual queries within the transaction. Speci�cally, using a

query’s timestamp, CheckOp and SimOp check whether each query produced by program execu-

tion is the same as the corresponding query in the operation log, and simulate the queries against

versioned storage.

The proofs can regard program state as proceeding deterministically from query to query, in
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analogy with how the proofs currently regard program state proceeding deterministically from

op to op. This is valid because, per the concurrency and atomic object model, there are no state

operations interleaved with the enclosing transaction (§3.3.4, §A.1).

For the system and the proofs to make sense, the versioned database implementation has to

meet the following requirement, which is analogous to that given for key-value stores earlier. Let

i
∗ identify the database object and its operation log.

• For timestamp ts, let s = bts/maxqc and let q = ts mod maxq; for convenience, let queries =

OLi[s].opcontents.queries.

• The values returned by invoking db.do_query(sql, ts) must be equivalent to:

— Creating a snapshot of a database by replaying the transactions OLi∗[1], . . . ,OLi∗[s − 1]

followed by the queries queries[1], . . . , queries[q − 1], and then

— Issuing the query sql.

To meet this requirement, orochi (§3.3) implements db atop a traditional SQL database, in

a manner similar to WARP [92]. Speci�cally, the database used for the application is augmented

with two columns: start_ts indicates when a given row was updated to its current value, and

end_ts indicates when this row is updated to the next value. The invocation db.Build(OLi∗ ) (Fig-

ure A.1, line 8) inserts rows with the relevant column values, using all of the queries in OLi∗ .

During re-execution, db.do_query(sql, ts) obtains its results by passing sql to the underlying stor-

age, augmented with the condition start_ts ≤ ts < end_ts.

One can show that this implementation meets the requirement above, but the details are

tedious.

A.8 Efficiency of ProcessOpReports (time, space)

In this section, we analyze the time and space needed to execute ProcessOpReports (Figure 3.5)

and the space needed to hold OpMap. Let X be the total number of requests, Y be the total number

of state operations, and Z be the cardinality of the minimum set of edges needed to represent the

<Tr relation. Roughly speaking, the more concurrency there is, the higher Z is. For intuition, if
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there are always P concurrent requests, which arrive in X/P epochs (so all requests in an epoch

are concurrent with each other but succeed all of the requests in the prior epoch), then Z ≈ X ·P/2

(every two adjacent epochs is a bipartite graph with all nodes on one side connecting to all nodes

on the other).

Lemma 11. The time and space complexity of ProcessOpReports are both O(X + Y + Z ). The space

complexity of OpMap is O(Y ).

Proof. We begin with time complexity. The graph G is maintained as an adjacency list, so we

assume that inserting a node or edge is a constant-time operation. ProcessOpReports �rst con-

structs R.M , at a cost of O(X ); this is not depicted.

After that, ProcessOpReports comprises six procedures: CreateTimePrecedenceGraph, SplitNodes,

AddProgramEdges, CheckLogs, AddStateEdges, and CycleDetect.

To analyze CreateTimePrecedenceGraph, notice that, when handling a request’s arrival, the

algorithm iterates over Frontier, the number of iterations being equal to the number of edges con-

necting this edge to its predecessors. Similarly, when handling the request’s arrival, the algorithm

iterates over those same edges. So the total number of iterations has the same order complexity as

the number of edges added; this is exactly Z , because CreateTimePrecedenceGraph adds the op-

timal number of edges (shown in the next claim). This implies that CreateTimePrecedenceGraph

runs in time O(X + Z ).

SplitNodes performs a linear pass over the nodes and edges of GTr so runs in time O(X + Z ).

AddProgramEdges and CheckLogs each perform at least one iteration for each state operation

and each request, so these are both O(X + Y ). AddStateEdges iterates over every state operation

in the logs, so it is O(Y ).

The dominant cost is CycleDetect. This is done with a standard depth-�rst search [98, Ch. 22],

which is O(V + E), where V is the number of vertices and E is the number of edges in the graph

G. In our context, V = 2 · X + Y , because each state op has a vertex, and we have the (·, 0) and

(·,∞) vertices for each rid. To upper-bound E, let us analyze each vertex type. The edges into

(rid, 0) and out of (rid,∞) are “split” from the original Z edges that CreateTimePrecedenceGraph

added to GTr; additionally, the out-edges from the (rid, 0) vertices and the in-edges to the (rid,∞)
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vertices add an additional 2X edges total. An op vertex can have 4 edges at most: 2 in-edges and

2 out-edges, because in the worst case there is one in-edge imposed by program order and one

in-edge imposed by log order, and likewise for out-edges. So an upper-bound on the number of

edges is 2 · X + 4 · Y + Z (which is loose, as there cannot be more than Y “log” edges). Summing,

O(V + E) = O(X + Y + Z ), as claimed.

Space complexity. The trace Tr and reports are O(X ) and O(Y ), respectively; R.M is O(X ). The

space of the graph G is proportional to the sum of vertices and edges, which as established above

is O(X + Y + Z ). Finally, OpMap is O(Y ) because there is one entry for each state operation. �

Lemma 12. CreateTimePrecedenceGraph adds the minimum number of edges su�cient to capture

the <Tr relation.

Proof. The argument is very similar to Theorem 5 in the full version of Anderson et al. [60]; we

rehearse it here.

De�ne the set of edges OPT as the minimum-sized set of edges in GTr such that for all requests

r1, r2: r1 <Tr r2 ⇐⇒ there is a directed path in OPT from r1 to r2. We want to establish that the

set of edges added by CreateTimePrecedenceGraph, call it E, is a subset of OPT.

If not, then there is an edge e ∈ E but e <OPT; label the vertices of e as r1 and r2. Because e ∈ E,

Lemma 2 implies that r1 <Tr r2. But this implies, by de�nition of OPT, that there is a directed path

from r1 to r2 in OPT. Yet, e < OPT, which implies that there is at least one other request r3 such

that there are directed paths in OPT from r1 to r3 and from r3 to r2. This in turn means, again by

de�nition of OPT, that

r1 <Tr r3 <Tr r2.

However, if this is the case, then r3 would have evicted r1 (or an intermediate request) from the

frontier by the time that r2 arrived. Which implies that r2 could not have been connected to r1 in

E. This is a contradiction. �

We established that E, which captures the relation <Tr (per Lemma 2), is a subset of OPT. Yet,

OPT is the smallest set of edges needed to capture the relation. Therefore, E and OPT are equal.
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B | Correctness Proof of cobra’s Audit

Algorithm

B.1 The validity of cobra’s encoding

Recall the crucial fact in Section 4.2.3: an acyclic graph that is compatible with a polygraph con-

structed from a history exists i� that history is serializable [167]. In this section, we establish the

analogous statement for cobra’s encoding. We do this by following the contours of Papadim-

itriou’s proof of the baseline statement [167]. However cobra’s algorithm requires that we attend

to additional details, complicating the argument somewhat.

B.1.1 Definitions and preliminaries

In this section, we de�ne the terms used in our main argument (§B.1.2): history, serial schedule,

cobra polygraph, and chains.

History and serial schedule. The description of histories and serial schedules below restates

what is in section 4.2.2.

A history is a set of read and write operations, each of which belongs to a transaction.1 Each

write operation in the history has a key and a value as its arguments; each read operation has a

key as argument, and a value as its result. The result of a read operation is the same as the value

argument of a particular write operation; we say that this read operation reads from this write
1The term “history” [167] was originally de�ned on a fork-join parallel program schema. We have adjusted the

de�nition to �t our setup (§4.2).
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operation. We assume each value is unique and can be associated to the corresponding write; in

practice, this is guaranteed by cobra’s client library described in Section 4.5. We also say that a

transaction txi reads (a key k) from another transaction txj if: txi contains a read rop, rop reads

from write wrop on k, and txj contains the write wrop.

A serial schedule is a total order of all operations in a history such that no transactions overlap.

A history is equivalent to a serial schedule if: they have the same operations, and executing the

operations in the schedule order on a single-copy set of data results in the same read results as in

the history. So a read reading-from a write indicates that this write is the read’s most recent write

(to this key) in a serial schedule.

De�nition 1 (Serializable history). A serializable history is a history that is equivalent to a serial

schedule.

cobra polygraph. In the following, we de�ne a cobra polygraph; this is a helper notion for the

known graph (g in the de�nition below) and generalized constraints (con in the de�nition below)

mentioned in Section 4.3.

De�nition 2 (cobra polygraph). Given a history h, a cobra polygraph Q(h) = (g, con) where g

and con are generated by ConstructEncoding from Figure 4.3.

We call a directed graph ĝ compatible with a cobra polygraph Q(h) = (g, con), if ĝ has the

same vertices as g, includes the edges from g, and selects one edge set from each constraint in

con.

De�nition 3 (Acyclic cobra polygraph). A cobra polygraph Q(h) is acyclic if there exists an

acyclic graph that is compatible with Q(h).

Chains. When constructing a cobra polygraph from a history, function CombineWrites in

cobra’s algorithm (Figure 4.3) produces chains. One chain is an ordered list of transactions, as-

sociated to a key k, that (supposedly) contains a sequence of consecutive writes (de�ned below

in De�nition 5) on key k. In the following, we will �rst de�ne what is a sequence of consecutive

writes and then prove that a chain is indeed such a sequence.
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De�nition 4 (Successive write). In a history, a transaction txi is a successive write of another

transaction txj on a key k, if (1) both txi and txj write to k and (2) txi reads k from txj .

De�nition 5 (A sequence of consecutive writes). A sequence of consecutive writes on a key k

of length n is a list of transactions [tx1, . . . , txn] for which txi is a successive write of txi−1 on k, for

1 < i ≤ n.

Although the overall problem of detecting serializability is NP-complete [167], there are local

malformations, which immediately indicate that a history is not serializable. We capture two of

them in the following de�nition:

De�nition 6 (An easily rejectable history). An easily rejectable history h is a history that either

(1) contains a transaction that has multiple successive writes on one key, or (2) has a cyclic known

graph g of Q(h).

An easily rejectable history is not serializable. First, if a history has condition (1) in the above

de�nition, there exist at least two transactions that are successive writes of the same transaction

(say txi) on some key k. And, these two successive writes cannot be ordered in a serial schedule,

because whichever is scheduled later would read k from the other rather than from txi. Second, if

there is a cycle in the known graph, this cycle must include multiple transactions (because there

are no self-loops, since we assume that transactions never read keys after writing to them). The

members of this cycle cannot be ordered in a serial schedule.

Lemma 7. cobra rejects easily rejectable histories.

Proof. cobra (the algorithm in Figure 4.3 and the constraint solver) detects and rejects easily

rejectable histories as follows. (1) If a transaction has multiple successive writes on the same

key in h, cobra’s algorithm explicitly detects this case. The algorithm checks, for transactions

reading and writing the same key (line 21), whether multiple of them read this key from the

same transaction (line 23). If so, the transaction being read has multiple successive writes, hence

the algorithm rejects (line 24). (2) If the known graph has a cycle, cobra detects and rejects this

history when checking acyclicity in the constraint solver. �
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On the other hand, if a history is not easily rejectable, we want to argue that each chain

produced by the algorithm is a sequence of consecutive writes.

Claim 8. If cobra’s algorithm makes it to line 35 (immediately before CombineWrites), then from

this line on, any transaction writing to a key k appears in exactly one chain on k.

Proof. Prior to line 35, cobra’s algorithm loops over all the write operations (line 32–33), creating

a chain for each one (line 34). As in the literature [167, 206], we assume that each transaction

writes to a key only once. Thus, any tx writing to a key k has exactly one write operation to k

and hence appears in exactly one chain on k in line 35.

Next, we argue that CombineWrites preserves this invariant. This su�ces to prove the claim,

because after line 35, only CombineWrites updates chains (variable chains in the algorithm).

The invariant is preserved by CombineWrites because each of its loop iterations splices two

chains on the same key into a new chain (line 53) and deletes the two old chains (line 52). From

the perspective of a transaction involved in a splicing operation, its old chain on key k has been

destroyed, and it has joined a new one on key k, meaning that the number of chains it belongs to

on key k is unchanged: the number remains 1. �

One clarifying fact is that a transaction can appear in multiple chains on di�erent keys, be-

cause a transaction can write to multiple keys.

Claim 9. If cobra’s algorithm does not reject in line 24, then after CreateKnownGraph, for any

two distinct entries ent1 and ent2 (in the form of 〈key, txi, txj〉) in wwpairs: if ent1.key = ent2.key,

then ent1.txi , ent2.txi and ent1.txj , ent2.txj .

Proof. First, we prove ent1.txi , ent2.txi. In cobra’s algorithm, line 25 is the only point where new

entries are inserted into wwpairs. Because of the check in line 23–24, the algorithm guarantees

that a new entry will not be inserted into wwpairs if an existing entry has the same 〈key, txi〉.

Also, existing entries are never modi�ed. Thus, there can never be two entries in wwpairs indexed

by the same 〈key, txi〉.
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Second, we prove ent1.txj , ent2.txj . As in the literature [167, 206], we assume that one trans-

action reads a key at most once.2 As a consequence, the body of the loop in line 21, including

line 25, is executed at most once for each (key,tx) pair. Therefore, there cannot be two entries in

wwpairs that match 〈key, _, tx〉. �

Claim 10. In one iteration of CombineWrites (line 46), for enti = 〈key, tx1, tx2〉 retrieved from

wwpairs, there exist chain1 and chain2, such that tx1 is the tail of chain1 and tx2 is the head of

chain2.

Proof. Invoking Claim 8, denote the chain on key that tx1 is in as chaini; similarly, denote tx2’s

chain as chainj .

Assume to the contrary that tx1 is not the tail of chaini. Then there is a transaction tx
′ next to

tx1 in chaini. But the only way for two transactions (tx1 and tx
′) to appear adjacent in a chain is

through the concatenation in line 53, and that requires an entry entj = 〈key, tx1, tx′〉 in wwpairs.

Because tx′ is already in chaini when the current iteration happens, entj must have been retrieved

in some prior iteration. Since enti and entj appear in di�erent iterations, they are two distinct

entries in wwpairs. Yet, both of them are indexed by 〈key, tx1〉, which is impossible, by Claim 9.

Now assume to the contrary that tx2 is not the head of chainj . Then tx2 has an immediate

predecessor tx′ in chainj . In order to have tx
′ and tx2 appear adjacent in chainj , there must be an

entry entk = 〈key, tx′, tx2〉 in wwpairs. Because tx′ is already in chainj when the current iteration

happens, entk must have been retrieved in an earlier iteration. So, entk = 〈key, tx′, tx2〉 and enti =

〈key, tx1, tx2〉 are distinct entries in wwpairs, which is impossible, by Claim 9. �

Lemma11. If h is not easily rejectable, every chain is a sequence of consecutive writes afterCombineWrites.

Proof. Because h is not easily rejectable, it doesn’t contain any transaction that has multiple suc-

cessive writes. Hence, cobra’s algorithm does not reject in line 24 and can make it to CombineWrites.

At the beginning (immediately before CombineWrites), all chains are single-element lists

(line 34). By De�nition 5, each chain is a sequence of consecutive writes with only one transaction.
2In our implementation, this assumption is guaranteed by cobra’s client library (§4.5).
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Assume that, before loop iteration t, each chain is a sequence of consecutive writes. We show

that after iteration t (before iteration t + 1), chains are still sequences of consecutive writes.

If t ≤ size(wwpairs), then in line 46, cobra’s algorithm gets an entry 〈key, tx1, tx2〉 from

wwpairs, where tx2 is tx1’s successive write on key. Also, we assume one transaction does not

read from itself (as in the literature [167, 206]), and since tx2 reads from tx1, tx1 , tx2. Then, the

algorithm references the chains that they are in: chain1 and chain2.

First, we argue that chain1 and chain2 are distinct chains. By Claim 8, no transaction can

appear in two chains on the same key, so chain1 and chain2 are either distinct chains or the same

chain. Assume they are the same chain (chain1 = chain2). If chain1 (= chain2) is a single-element

chain, then tx1 (in chain1) is tx2 (in chain2), a contradiction to tx1 , tx2.

Consider the case that chain1 (= chain2) contains multiple transactions. Because tx2 reads from

tx1, there is an edge tx1 → tx2 (generated from line 17) in the known graph of Q(h). Similarly,

because chain1 is a sequence of consecutive writes (the induction hypothesis), any transaction

tx in chain1 reads from its immediate prior transaction, hence there is an edge from this prior

transaction to tx. Since every pair of adjacent transactions in chain1 has such an edge, the head

of chain1 has a path to the tail of chain1. Finally, by Claim 10, tx2 is the head of chain2 and tx1

is the tail of chain1, as well as chain1 = chain2, there is a path tx2  tx1. Thus, there is a cycle

(tx1 → tx2 tx1) in the known graph, so h is easily rejectable, a contradiction.

Second, we argue that the concatenation of chain1 and chain2, denoted as chain1+2, is a se-

quence of consecutive writes. Say the lengths of chain1 and chain2 are n and m respectively.

Since chain1 and chain2 are distinct sequences of consecutive writes, all transactions in chain1+2

are distinct and chain1+2[i] reads from chain1+2[i − 1] for i ∈ {2, . . . , n + m} \ {n + 1}. For

i = n + 1, the preceding also holds, because tx1 is chain1’s tail (= chain1+2[n]), tx2 is chain2’s

head (= chain1+2[n+ 1]), and tx2 is the successive write of tx1 (tx2 reads from tx1). Thus, chain1+2

is a sequence of consecutive writes, according to De�nition 5.

If t > size(wwpairs) and the loop ends, then chains don’t change. As they are sequences of con-

secutive writes after the �nal step (when t = size(wwpairs)), they still are after CombineWrites.

�
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In the following, when we refer to chains, we mean the state of chains after executing CombineWrites.

B.1.2 The main argument

In this section, the two theorems (Theorem 12 and 17) together prove the validity of cobra’s

encoding.

Theorem 12. If a history h is serializable, then Q(h) is acyclic.

Proof. Because h is serializable, there exists a serial schedule ŝ that h is equivalent to.

Claim 13. For any transaction rtx that reads from a transaction wtx in h, rtx appears after wtx in

ŝ.

Proof. This follows from the de�nitions given at the start of the section: if rtx reads from wtx in

h, then there is a read operation rop in rtx that reads from a write operation wrop in wtx. Thus,

as stated earlier and by de�nition of matching, rop appears later than wrop in ŝ. Furthermore, by

de�nition of serial schedule, transactions don’t overlap in ŝ. Therefore, all of rtx appears after all

of wtx in ŝ. �

Claim 14. For any pair of transactions (rtx, wtx) where rtx reads a key k from wtx in h, no trans-

action wtx
′
that writes to k can appear between wtx and rtx in ŝ.

Proof. Assume to the contrary that there exists wtx′ that appears in between wtx and rtx in ŝ. By

Claim 13, rtx appears after wtx in ŝ. Therefore, wtx′ appears in ŝ before rtx and after wtx. Thus,

in ŝ, rtx does not return the value of k written by wtx. But in h, rtx returns the value of k written

by wtx. Thus, ŝ and h are not equivalent, a contradiction. �

In the following, we use headk and tailk as shorthands to represent, respectively, the head

transaction and the tail transaction of chaink . And, we denote that txi appears before txj in ŝ as

txi <ŝ txj .

Claim 15. For any pair of chains (chaini, chainj ) on the same key k, if headi <ŝ headj , then (1)

taili <ŝ headj and (2) for any transaction rtx that reads k from taili, rtx <ŝ headj .
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Proof. First, we prove taili <ŝ headj . If headj ∈ chainj then headj < chaini, by Claim 8. If chaini

has only one transaction (meaning headi = taili), then taili = headi <ŝ headj .

Next, if chaini is a multi-transaction chain, it can be written as

tx1, · · · txp, txp+1, · · · txn.

By Lemma 11, chaini is a sequence of consecutive writes on k, so each transaction reads k from

its prior transaction in chaini. Then, by Claim 13, txp <ŝ txp+1, for 1 ≤ p < n. Now, assume to the

contrary that headj <ŝ taili (= txn). Then, by the given, tx1(= headi) <ŝ headj <ŝ txn. Thus, for

some 1 ≤ p < n, we have txp <ŝ headj <ŝ txp+1. But this is a contradiction, because txp+1 reads k

from txp, and thus by Claim 14, headj cannot appear between them in ŝ.

Second, we prove that any transaction rtx that reads k from taili appears before headj in ŝ.

Assume to the contrary that headj <ŝ rtx. We have from the �rst half of the claim that taili <ŝ

headj . Thus, headj appears between taili and rtx in ŝ, which is again a contradiction, by Claim 14.

�

Now we prove that Q(h) is acyclic by constructing a compatible graph ĝ and proving ĝ is

acyclic. We have the following fact from function Coalesce.

Fact 16. In Coalesce, each constraint 〈A, B〉 is generated from a pair of chains (chain1, chain2) on

the same key k in line 62. All edges in edge setA point to head2, and all edges in B point to head1. This

is because all edges in A have the form either (rtx, head2) or (tail1, head2); see lines 69 and 73–74.

Similarly by swapping chain1 and chain2 (line 63 and 64), edges in B point to head1.

We construct graph ĝ as follows: �rst, let ĝ be the known graph of Q(h). Then, for each

constraint 〈A, B〉 in Q(h), and letting head1 and head2 be de�ned as in Fact 16, add A to ĝ if

head1 <ŝ head2, and otherwise add B to ĝ. This process results in a directed graph ĝ.

Next, we show that all edges in ĝ are a subset of the total ordering in ŝ; this implies ĝ is acyclic.

First, the edges in the known graph (line 17 and 60) are a subset of the total ordering given by

ŝ. Each edge added in line 17 represents that the destination vertex reads from the source vertex

in h. By Claim 13, this ordering holds in ŝ. As for the edges in line 60, they are added to capture
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the fact that a read operation (in transaction rtx) that reads from a write (in transaction chain[i])

is sequenced before the next write on the same key (in transaction chain[i + 1]), an ordering that

also holds in ŝ. (This is known as an anti-dependency in the literature [53].) If this ordering doesn’t

hold in ŝ, then chain[i + 1] <ŝ rtx, and thus chain[i] <ŝ chain[i + 1] <ŝ rtx, which contradicts

Claim 14.

Second, consider the edges in ĝ that come from constraints. Take a constraint 〈A,B〉 generated

from chains (chain1, chain2) on the same key. If head1 <ŝ head2, then by Fact 16 and construction

of ĝ, all added edges have the form (tail1, head2) or (rtx, head2), where rtx reads from tail1. By

Claim 15, the source vertex of these edges appears prior to head2 in ŝ; thus, these edges respect

the ordering in ŝ. When head2 <ŝ head1, the foregoing argument works the same, with appropriate

relabeling. Hence, all constraint edges chosen in ĝ are a subset of the total ordering given by ŝ.

This completes the proof. �

Theorem 17. If Q(h) is acyclic, then the history h is serializable.

Proof. Given that Q(h) is acyclic, cobra accepts h. Hence, by Lemma 7, h is not easily rejectable.

And, by Lemma 11, each chain (after CombineWrites) is a sequence of consecutive writes.

Because Q(h) is acyclic, there must exist an acyclic directed graph q that is compatible with

Q(h).

Claim 18. If txi appears before txj in a chain chaink , then graph q has txi  txj .

Proof. Because chaink is a sequence of consecutive writes, a transaction tx in chaink reads from

its immediate predecessor in chaink , hence there is an edge in the known graph (generated by

line 17) from the predecessor to tx. Because every pair of adjacent transactions in chaink has such

an edge and txi appears before txj in chaink , txi  txj in Q(h)’s known graph. As q is compatible

with Q(h), such a path from txi to txj also exists in q. �

Claim 19. For any chain chaini (on a key k) and any transaction wtxj < chaini that writes to k,

graph q has either: (1) paths from taili and transactions that read keyfrom taili (if any) to wtxj , or

(2) paths from wtxj to all the transactions in chaini.
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Proof. Call the chain that wtxj is in chainj . By Claim 8, chainj exists and chainj , chaini.

For chaini and chainj , Q(h) has a constraint 〈A, B〉 that is generated from them (line 29). This

is because chaini and chainj touch the same key k, and cobra’s algorithm creates one constraint

for every pair of chains on the same key (line 41). (We assume chaini is the �rst argument of

function Coalesce and chainj is the second.)

First, we argue that the edges in edge set A establish taili  headj and rtx headj (rtx reads

k from taili) in the known graph; and B establishes tailj  headi. Consider edge set A. There

are two cases: (i) there are reads rtx reading from taili, and (ii) there is no such read. In case (i),

the algorithm adds rtx → headj for every rtx reading-from taili (line 73–74). And rtx → headj

together with the edge taili → rtx (added in line 17) establish taili  headj . In case (ii), cobra’s

algorithm adds an edge taili → headj to A (line 69), and there is no rtx in this case. Similarly, by

switching i and j in the above reasoning (except we don’t care about the reads in this case), edges

in B establish tailj  headi.

Second, because q is compatible with Q(h), it either (1) contains A:

taili/rtx headj [proved in the �rst half]

 wtxj [Claim 18; wtxj ∈ chainj]

or else (2) contains B:

wtxj  tailj [Claim 18; wtxj ∈ chainj]

 headi [proved in the �rst half]

 tx [Claim 18; tx ∈ chaini]

The argument still holds if wtxj = headj in case (1): remove the second step in (1). Likewise, if

wtxj = tailj in case (2), remove the �rst step in (2). �

Claim 20. For any pair of transactions (wtx, rtx) where rtx reads a key k from wtx and any other

transaction wtx
′
that writes to k, graph q has either wtx

′ wtx or rtx wtx
′
.
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Proof. By Claim 8, wtx must appear in some chain chaini on k. Each of the three transactions

(wtx, rtx, and wtx
′) has two possibilities relative to chaini:

1. wtx is either the tail or non-tail of chaini.

2. rtx is either in chaini or not.

3. wtx
′ is either in chaini or not.

In the following, we enumerate all combinations of the above possibilities and prove the claim

in all cases.

• wtx = taili.

Then, rtx is not in chaini. (If rtx is in chaini, its enclosing transaction would have to be subse-

quent to wtx in chaini, which is a contradiction, since wtx is last in the chain.)

• wtx
′ ∈ chaini.

Because wtx is the tail, wtx′ appears before wtx in chaini. Thus, wtx′ wtx in q (Claim 18).

• wtx
′ < chaini.

By invoking Claim 19 for chaini and wtx
′, q either has (1) paths from each read (rtx is one

of them) reading-from taili (= wtx) to wtx
′, therefore rtx  wtx

′. Or else q has (2) paths

from wtx
′ to every transaction in chaini, and wtx ∈ chaini, thus wtx′ wtx.

• wtx , taili ∧ wtx ∈ chaini.

• rtx ∈ chaini.

Because chaini is a sequence of consecutive writes on k (Lemma 11) and rtx reads k from

wtx, rtx is the successive write ofwtx. Therefore, rtx appears immediately afterwtx in chaini.

• wtx
′ ∈ chaini.

Because rtx appears immediately after wtx in chaini, wtx′ either appears before wtx or

after rtx. By Claim 18, there is either wtx′ wtx or rtx wtx
′ in q.

• wtx
′ < chaini.

By invoking Claim 19 for chaini and wtx
′, q either has (1) taili  wtx

′, together with

rtx taili (or rtx = taili) by Claim 18, therefore rtx wtx
′. Or else q has (2)wtx′ wtx

(wtx′ has a path to every transaction in chaini, and wtx ∈ chaini).

• rtx < chaini.
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If rtx < chaini, because of InferRWEdges (line 55), rtx has an edge (in the known graph,

hence in q) to the transaction that immediately follows wtx in chaini, denoted as wtx∗ (and

wtx
∗ must exist because wtx is not the tail of the chain).

• wtx
′ ∈ chaini.

Because wtx∗ appears immediately after wtx in chaini, wtx′ either appears before wtx or

after wtx∗. By Claim 18, q has either wtx′  wtx or wtx∗  wtx
′ which, together with

edge rtx→ wtx
∗ from InferRWEdges, means rtx wtx

′.

• wtx
′ < chaini.

By invoking Claim 19 for chaini and wtx
′, q has either (1) taili  wtx

′ which, together

with rtx→ wtx
∗ (from InferRWEdges) and wtx

∗ taili (Claim 18), means rtx wtx
′.

Or else q has (2) wtx′  wtx (wtx′ has a path to every transaction in chaini, and wtx ∈

chaini).

�

By topologically sorting q, we get a serial schedule ŝ. Next, we prove h is equivalent to ŝ, hence

h is serializable (De�nition 1).

Since h and ŝ have the same set of transactions (because q has the same transactions as the

known graph of Q(h), and thus also the same as h), we need to prove only that for every read

that reads from a write in h, the write is the most recent write to that read in ŝ.

First, for every pair of transactions (wtx, rtx) such that rtx reads a key k from wtx in h, q

has an edge wtx → rtx (added to the known graph in line 17); thus rtx appears after wtx in ŝ (a

topological sort of q). Second, by invoking Claim 20 for (wtx, rtx), any other transaction writing

to k is either “topologically prior” to wtx or “topologically subsequent” to rtx. This ensures that,

the most recent write of rtx’s read (to k) belongs to wtx in ŝ, hence rtx reads the value of k written

by wtx in ŝ as it does in h. This completes the proof. �
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B.2 Garbage collection correctness proof

Section 4.3 and Appendix B.1 describe how cobra checks serializabilty for a �xed set of trans-

actions. In this section, we will introduce how cobra supports an online database which has an

ever-growing history, by veri�cation in rounds.

B.2.1 Verification in rounds

To handle a continuous and ever-growing history, cobra veri�es in rounds. In each round, co-

bra’s veri�er checks serializability on the transactions that have been newly received. Figure B.1

depicts the algorithm of veri�cation in rounds.

In the following, we de�ne terms used in the context of veri�cation in rounds: complete history,

continuation, strong session serializable, and extended history.

Complete history and continuation. A complete history is a prerequisite of checking serializ-

ability. If a history is incomplete and some of the transactions are unknown, it is impossible to

decide whether this history is serializable.

De�nition 21 (Complete history). A history h is a complete history if all read operations in h read

from write operations in h.

In each round of veri�cation, cobra’s veri�er receives a set of transactions that read from

the transactions in prior rounds. We call such newly received transactions a continuation [127]

of the previously received history, de�ned below.

De�nition 22 (Continuation). A continuation r of a complete history h is a set of transactions in

which all the read operations read from transactions in either h or r .

We denote the combination of a complete history h and its continuation r as h ◦ r . By De�ni-

tion 21, h ◦ r is also a complete history.

In the following, we assume that the transactions received in each round are a continuation

of the known history. However, in practice, the received transactions may not form a complete
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1: procedure VerifySerializability()
2: g← empty graph
3: wwpairs← empty map {〈Key,Tx〉 → Tx}
4: readfrom← empty map {〈Key,Tx〉 → Set〈Tx〉}
5: while True :
6: h← fetch a continuation from history collectors

7: g, readfrom,wwpairs←
8: CreateKnownGraph2(g, readfrom, wwpairs, h) // ln 14
9:

10: g, con← EncodeAndSolve(g, readfrom, wwpairs) // ln 35
11:
12: g, readfrom,wwpairs← GarbageCollection(g, con) // ln 44
13:
14: procedure CreateKnownGraph2(g, readfrom, wwpairs, h)
15: for transaction tx in h :
16: g.Nodes += tx

17: for read operation rop in tx :
18: // if read from deleted transactions, reject
19: if rop.read_from_tx not in g: reject
20: g.Edges += (rop.read_from_tx, tx)
21: readfrom[〈rop.key, rop.read_from_tx〉] += tx

22: for all Keys key that are both read and written by tx :
23: rop← the operation in tx that reads key
24: if wwpairs[〈key, rop.read_from_tx〉] , null :
25: reject
26: wwpairs[〈key, rop.read_from_tx〉]← tx

27:
28: for each session s : // add SO-edges
29: lists ← an ordered list of transactions issued through s in g

30: for i in [0, length(lists ) − 2] :
31: g.Edges += (lists[i], lists[i + 1])
32:
33: return g, readfrom, wwpairs
34:
35: procedure EncodeAndSolve(g, readfrom, wwpairs)
36: con← GenConstraints(g, readfrom, wwpairs) // Fig 4.3, ln 29
37: con, g← Prune(con, g) // Fig 4.3, ln 77
38:
39: encode (con, g); use MonoSAT to solve // §4.3.4
40: if MonoSAT outputs unsat: reject
41:
42: return g, con
43:
44: procedure GarbageCollection(g, con)
45: epochagree ← AssignEpoch(g) // ln 56
46: SetFrozen(g, epochagree) // ln 81
47: SetFrontier(g, epochagree) // ln 87
48: SetRemovable(g, con) // ln 97
49: return SafeDeletion2(g, readfrom, wwpairs) // ln 104
50:
51: procedure GenPolySCCs(g, con)
52: g

′ ← g

53: g
′.Edges← g

′.Edges ∪ {all edges in con}
54: psccs← CalcStronglyConnectedComponents(g′) //[98, Ch22]
55: return psccs

56: procedure AssignEpoch(g)
57: epoch_num← 0
58: topo_tx← TopologicalSort(g) // see [98, Ch22]
59: for tx in topo_tx : // assign epoch to Wfences
60: if tx writes to key “EPOCH” :
61: tx.epoch← epoch_num

62: epoch_num← epoch_num + 1
63: for tx in topo_tx : // assign epoch to Rfences
64: if tx reads but not writes key “EPOCH” :
65: tx.epoch← tx.read_from_tx.epoch
66:
67: epochagree ← inf
68: for each session s : // assign epoch to normal transactions
69: lists ← an ordered list of transactions issued through s in g

70: rlists ← reversed ordered list of lists
71: cur_epoch← inf
72: for tx in rlists :
73: if tx touches key “EPOCH” :
74: if cur_epoch = inf :
75: epochagree ← min(epochagree, tx.epoch)

76: cur_epoch← tx.epoch
77: else:
78: tx.epoch← (cur_epoch = inf ? inf : cur_epoch − 1)
79: return epochagree

80:
81: procedure SetFrozen(g, epochagree)
82: fepoch← epochagree − 2
83: for tx in g :
84: if tx.epoch ≤ fepoch and all tx’s predecessors have ≤ fepoch

:
85: tx.frozen← True

86:
87: procedure SetFrontier(g, epochagree)
88: fepoch← epochagree − 2
89: frt ← ∅

90: for Key key in g :
91: frt += { txi ∈ g | txi .epoch ≤ fepoch ∧ txi writes key
92: ∧(@txj ∈ g, s.t. txi  txj

93: ∧txj .epoch ≤ fepoch ∧ txj writes key) }
94: for tx in frt :
95: tx.frontier← True

96:
97: procedure SetRemovable(g, con)
98: psccs← GenPolySCCs(g, con) // ln 51
99: for pscc in psccs :
100: if ∀tx ∈ pscc, tx.frozen = True ∧ tx.frontier = False :
101: for tx in pscc :
102: tx.removable← True

103:
104: procedure SafeDeletion2(g, readfrom, wwpairs)
105: for tx in g :
106: if tx.removable = True and tx doesn’t touch key “EPOCH” :
107: g.Nodes −= tx

108: g.Edges −= {edges with tx as one endpoint}
109: readfrom −= {tuples containing tx }

110: wwpairs −= {tuples containing tx }

111: return g, readfrom,wwpairs

Figure B.1: Cobra’s algorithm for veri�cation in rounds.
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history. To have a complete history for the veri�cation algorithm, cobra’s veri�er preprocesses

the received history fragments, �lters out the transactions whose predecessors are unknown, and

saves them for future rounds.

Strong session serializable. As mentioned in Section 4.4.2, transactions’ serialization order in

practice should respect their causality which, in our context, is the transaction issuing order by

sessions. So, if a history satis�es serializability (De�nition 1) and the corresponding serial sched-

ule preserves the transaction issuing order, we say this history is strong session serializable [105],

de�ned below.

De�nition 23 (Strong session serializable history). A strong session serializable history is a his-

tory that is equivalent to a serial schedule ŝ, such that ŝ preserves the transaction issuing order for

all sessions.

Notice that cobra requires that queries in each session are blocking (§4.2). So, for one session,

its transaction issuing order is the order seen by the corresponding history collector (one session

connects to one collector). The veri�er also knows such ordering by referring to the history frag-

ments.

Extended history. In the following, we de�ne a helper notion extended history which is the

data structure passing between rounds. An extended history is a tuple (g, readfrom, wwpairs)

generated by CreateKnownGraph2 (Figure B.1, line 8), which contains the known graph g and

reading-from and consecutive-write relationships (readfrom and wwpairs) extracted from the his-

tory.

In the following, we use E(h) to represent an extended history generated from a history h; and

we use E(gi
e
, r ) to represent an extended history generated from (i) the previous round’s extended

history g
i

e
and (ii) a continuation r , namely:

E(gi
e
, r ) = CreateKnownGraph2(gi

e
.g, gi

e
.readfrom, gi

e
.wwpairs, r ).

In fact, E(h) is a shortened form of E(∅, h).

Fact 24. For a complete history h and its continuation r , E(h ◦ r ) = E(E(h), r ). Because readfrom
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and wwpairs only depend on the information carried by each transaction, and this information is

the same no matter whether processing h and r together or separately. For client ordering edges

(Figure B.1, line 28–31), since they are the ordering of transactions seen by the collectors, the edges

remain the same as well.

To verify an ever-growing history, cobra’s veri�er needs to delete transactions. Next, we

de�ne cobra’s deletion on an extended history.

De�nition 25 (Deletion from an extended history). A deletion of a transaction txi from an ex-

tended history E(h) is to (1) delete the vertex txi and edges containing txi from the known graph g in

E(h); and (2) delete tuples that include txi from readfrom and wwpairs.

We use E(h) 	 txi to denote deleting txi from extended history E(h).

B.2.2 Polygraph and cobra polygraph

Notice that an extended history contains all information from a history. So both polygraph (§4.2.3)

and cobra polygraph (De�nition 2) can be built from an extended history, instead of a history,

Speci�cally, constructing a polygraph (V , E, C) from an extended history E(h) works as fol-

lows (which is similar to what is in §4.2.3):

• V are all vertices in E(h).g.

• E = {(txi, txj ) | 〈 _, txi, txj 〉 ∈ E(h).readfrom}; that is, txi
wr(x)
−−−−→ txj , for some x.

• C = {〈 (txj , txk ), (txk , txi) 〉 | (txi
wr(x)
−−−−→ txj ) ∧

(txk writes to x) ∧ txk , txi ∧ txk , txj }.

We denote the polygraph generated from extended history E(h) as P (E(h)).

Since constructing an extended history is part of cobra’s algorithm, it is natural to construct

a cobra polygraph from an extended history, which works as follow: assign cobra polygraph’s

known graph to be E(h).g and generate constraints by invoking

GenConstraints(E(h).g, E(h).readfrom, E(h).wwpairs).

We denote the cobra polygraph generated from extended history E(h) as Q(E(h)).
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Lemma 26. Given a complete history h and its extended history E(h), the following logical expres-

sions are equivalent:

(1) history h is strong session serializable.

(2) polygraph P (E(h)) is acyclic.

(3) cobra polygraph Q(E(h)) is acyclic.

Proof. Papadimitriou [167, Lemma 2] proves (1) ⇐⇒ (2) . Theorem 12 and Theorem 17 in

Appendix B.1 prove (1) ⇐⇒ (3). �

Note that, in order to test strong session serializability, the veri�er adds transactions’ session

order to polygraph and cobra polygraph by inserting edges for transactions in the same session

(Figure B.1, line 28–31). We call such edges session order edges (short as SO-edges). These SO-edges

establish Lemma 26 for strong session serializability, which can be proved by adding session

order constraints to both the serial schedules and the (original and cobra) polygraphs in the

Papadimitriou’s proof [167, Lemma 2] and proofs in Appendix B.1.

Everywhere in the following it says “strong session serializable” we mean “strong session

serializable”.

B.2.3 Fence transactions, epoch, and frozen transactions

As stated in Section 4.4.1, the challenge of deleting transactions is that serializability does not

respect real-time order across sessions and it is unclear which transactions can be safely deleted.

To address this challenge, cobra uses fence transactions to split the history into epochs; based on

epochs, the veri�er can mark transactions as frozen which indicates that future transactions can

never be predecessors of these transactions.

Fence transactions. As described in Section 4.4.2, fence transactions (de�ned below) are prede-

�ned transactions that are periodically issued by clients. They read and write a prede�ned key

called the epoch key.
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1 begin_tx ()

2 epoch = read("EPOCH")

3 if epoch > local_epoch:

4 local_epoch = epoch

5 else:

6 local_epoch = local_epoch + 1

7 write("EPOCH", local_epoch)

8 commit_tx ()

Based on the value read from the epoch key, a fence transaction is either a write fence transac-

tion (short as Wfence) or a read fence transaction (short as Rfence): Wfences read-and-modify the

epoch key; and Rfences only read the epoch key. In a complete history, we de�ne that the fence

transactions are well-formed as follows.

De�nition 27 (Well-formed fence transactions). In a history, fence transactions are well-formed

when (1) all write fence transactions are a sequence of consecutive writes to the epoch key; and (2)

all read fence transactions read from known write fence transactions.

Claim 28. For a history h that is not easily rejectable, fence transactions in h are well-formed.

Proof. First, we prove that all Wfences are a sequence of consecutive writes. Because the epoch

key is prede�ned and reserved for fence transactions, Wfences are the only transactions that

update this key. Given that Wfences read-modify-write the epoch key, a Wfence read from either

another Wfence or the (abstract) initial transaction if the epoch key hasn’t been created.

Given that h is not easily rejectable, by De�nition 6, there is no cycle in the known graph.

Hence, if we start from any Wfence and repeatedly �nd the predecessor of current Wfence on

the epoch key (the predecessor is known because Wfences also read the epoch key), we will

eventually reach the initial transaction (because the number of write fence transactions in h is

�nite). Thus, all Wfences and the initial transaction are connected and form a tree (the root is the

initial transaction). Also, because h is not easily rejectable, no write transaction has two successive
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writes on the same key. So there is no Wfence that has two children in this tree, which means

that the tree is actually a list. And each node in this list reads the epoch key from its preceding

node and all of them write the epoch key. By De�nition 5, this list of Wfences is a sequence of

consecutive writes.

Second, because h is a complete history, all Rfences read from transactions in h. Plus, only

Wfences update the epoch key, so Rfences read from known Wfences in h. �

Epochs. Well-formed fence transactions cluster normal transactions (transactions that are not

fence transactions) into epochs. Epochs are generated as follows (AssignEpoch in Figure B.1,

line 56). First, the veri�er traverses the Wfences (they are a sequence of consecutive writes) and

assigns them epoch numbers which are their positions in the write fence sequence (Figure B.1,

line 59–62). Second, the veri�er assigns epoch numbers to Rfences which are the epoch numbers

from the Wfences they read from (Figure B.1, line 63–65). Finally, the veri�er assigns epoch num-

bers to normal transactions and uses the epoch number of their successive fence transactions (in

the same session) minus one (Figure B.1, line 78).

During epoch assigning process, the veri�er keeps track of the largest epoch number that all

sessions have exceeded, denoted as epoch
agree

(Figure B.1, line 75). In other words, every session

has issued at least one fence transaction that has epoch number ≥ epochagree.

One clarifying fact is that the epoch number assigned to each transaction is not the value (an

integer) stored in the epoch key; the epoch comes from the index of the Wfence sequence. The

veri�er doesn’t need the actual values in the epoch key to assign epochs.

In the following, we denote a transaction with an epoch number t as a transaction with

epoch[t].

Lemma 29. If a history h is not easily rejectable, then a fence transaction with epoch[t] has a path

to any fence transaction with epoch[> t] in the known graph of E(h).

Proof. First, we prove that a fence transaction with epoch[t] has a path to another fence trans-

action with epoch[t + 1]. Given history h is not easily rejectable, by Claim 28, fence transactions

are well-formed, which means all the Wfences are a sequence of consecutive writes (by De�-

nition 27). Because the Wfence with epoch[t] (t is its position in the sequence) and the Wfence
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with epoch[t + 1] are adjacent in the sequence, there is an edge (generated from reading-from

dependency from Wfence with epoch[t] to Wfence with epoch[t + 1].

Now consider a Rfence with epoch[t] which reads the epoch key from the Wfence with

epoch[t]. Because cobra’s algorithm adds anti-dependency edges which point from one write

transaction’s succeeding read transactions to its successive write on the same key (Figure 4.3,

line 60), there is an edge from the Rfence with epoch[t] to the Wfence with epoch[t + 1]. Plus, all

Rfences with epoch[t + 1] read from the Wfence with epoch[t + 1], hence fence transactions with

epoch[t] have paths to fence transactions with epoch[t + 1].

By induction, for any fence transaction with epoch[t + ∆] (∆ ≥ 1), a fence transaction with

epoch[t] has a path to it. �

Claim 30. For a history h and any its continuation r , if h ◦ r is not easily rejectable, then any

transaction with epoch[≤ epoch
agree
− 2] has a path in E(h ◦ r ) to any transaction in r .

Proof. Take any normal transaction txi with epoch[t] (t ≤ epochagree − 2) and call txi’s session

S1. Because the epoch of a normal transaction equals the epoch number of its successive fence

transactions in the same session minus one (Figure B.1, line 78), there is a fence transaction txf in

S1 with epoch[t + 1] (t + 1 ≤ epochagree − 1). By Lemma 29, txf has a path to any fence transaction

with epoch[epochagree]. And, by the de�nition of epochagree, all sessions have at least one fence

transactions with epoch[≥ epochagree] in h. Thus, there is always a path from txi—through txf and

the last fence transactions of a session in h—to transactions in r . �

Frozen transaction. With epochs, cobra can de�ne frozen transactions, which are transactions

with old epoch numbers such that no future transactions can be scheduled prior to these transac-

tions in any valid serial schedule. Intuitively, if a transaction is frozen, this transaction can never

be involved in any cycles containing future transactions.

De�nition 31 (Frozen transaction). For a history h that is not easily rejectable, a frozen trans-

action is a transaction that has epoch[≤ epoch
agree
− 2] and all its predecessors in E(h) also have

epoch[≤ epoch
agree
− 2].
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B.2.4 Safely removable transactions

To tell what transactions can be safely deleted, we need to introduce two more notions: frontier

and poly-strongly connected component. Frontier is used to capture the most recent writes to each

key in a history, and poly-strongly connected component is for capturing cycles that are possibly

generated by constraint choices. In addition, we will prove that pruning (§4.3.3), as an optimiza-

tion, doesn’t a�ect the acyclicity of a polygraph; hence it is safe for the veri�er to do pruning in

each round.

Frontier.As stated in Section 4.4, the veri�er needs to retain “most recent writes” to keys because

future transactions may read from them. For a history h, we call the transactions with such writes

as the frontier of h, de�ned below.

De�nition 32 (Frontier). For a history h that is not easily rejectable, the frontier of h is the set of

transactions that (a) have epoch[≤ epoch
agree
− 2] and (b) contain at least one write to some key x,

such that no successor of this transaction in E(h) with epoch[≤ epoch
agree
− 2] writes x.

Poly-strongly connected component. As described in Section 4.4.3, the veri�er needs to cap-

ture the possible cycles that are generated from constraints. To achieve this, we de�ne poly-

strongly connected components (short as P-SCC) which are sets of transactions that may have

cycles because of constraint decisions. Intuitively, if two transactions appears in one P-SCC, it is

possible (but not certain) for them to form a cycle; but if these two transactions do not belong to

the same P-SCC, it is impossible to have a cycle including both transactions.

De�nition 33 (Poly-strongly connected component). Given a history h and its cobra polygraph

Q(E(h)), the poly-strongly connected components are the strongly connected components of a di-

rected graph that is the known graph of Q(E(h)) with all edges in the constraints added to it.

Lemma 34. In a history h that is not easily rejectable, for any two transactions txi and txj writing

the same key x, if txi 6 txj and txj 6 txi in E(h), then txi, txj and the transactions reading x from

them (if any) are in the same P-SCC.
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Proof. By Claim 8, each of txi and txj appears and only appears in one chain (say chaini and chainj

respectively). Because txi 6 txj and txj 6 txi, chaini , chainj . cobra’s algorithm generates a

constraint for every pair of chains on the same key (Figure 4.3, line 41), so there is a constraint

〈A,B〉 for chaini and chainj , which includes txi and txj .

Consider this constraint 〈A,B〉. One of the two edge sets (A and B) contains edges that establish

a path from the tail of chaini to the head of chainj—either a direct edge (Figure 4.3, line 69), or

through a read transaction that reads from the tail of chaini (Figure 4.3, line 74). Similarly, the

other edge set establishes a path from the tail of chainj to the head of chaini. In addition, by

Lemma 11, in each chain, there is a path from its head to its tail through the reading-from edges

in the known graph (Figure 4.3, line 17). Thus, there is a cycle involving all transactions of these

two chains. By De�nition 33, all the transactions in these two chains—including txi, txj , and the

transaction reading x from them—are in one P-SCC. �

Note that though P-SCCs are de�ned over Q(E(h)), the “membership” of P-SCCs doesn’t have

to be discussed in the context of a cobra polygraph. Given a history h, it is a property of h

whether two transactions belong to the same P-SCC (one could imagine running an algorithm of

constructing P-SCCs in the background).

Pruning. Cobra’s veri�er does pruning in every round (Prune; Figure B.1, line 37). Pruning

changes the extended history E(h) by adding edges that can be inferred from node reachability

(§4.3.3). In the following, we prove that pruning has no e�ect on the acyclicity of a polygraph,

and extend the notion easily rejectable history with pruning.

Fact 35. Pruning doesn’t a�ect the acyclicity of a polygraph (or a cobra polygraph). For a constraint

to be pruned, because the constraint is a binary choice and cobra knows the fact that choosing one

option will generate cycles (Figure 4.3, line 82, 85), cobra can safely discard this option and choose

the other option. This has no e�ect on searching for acyclic compatible graphs of the polygraph (or

the cobra polygraph).

(Extended) easily rejectable history. In order to involve the changes imposed by pruning and

rule out more local malformations that are not strong session serializable, we extend the de�nition
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of an easily rejectable history (De�nition 6) as follows.

De�nition 36 (An (extended) easily rejectable history). An (extended) easily rejectable history

h is a history that either (1) contains a transaction that has multiple successive writes on one key, or

(2) has a cyclic extended history E(h) after pruning.

Corollary 37. cobra rejects (extended) easily rejectable histories.

Proof. By Lemma 7, cobra rejects a history when (1) it contains a transaction that has multiple

successive writes one one key; (2) If the extended history E(h) has a cycle, cobra detects and

rejects this history when checking acyclicity in the constraint solver. �

Removable transactions. Removable transactions are the transactions that can be safely garbage

collected by cobra’s veri�er. In cobra’s algorithm, they are deleted from the extended history

at the end of each round (Figure B.1, line 106). Before de�ning removable transactions, we need

a helper notion candidates to remove.

De�nition 38 (Candidates to remove). In a history that is not easily rejectable, a candidate to

remove is a transaction that (a) is a frozen transaction and (b) doesn’t belong to the frontier of h.

With candidates to remove, we now de�ne removable transactions:

De�nition 39 (Removable transaction). For a history that is not easily rejectable, a transaction is

removable if it is a candidate to remove and all the transactions in the same P-SCC are also candidates

to remove.

If one transaction is a candidate to remove, we can conclude that no future transactions read

from it.

Claim 40. For a history h and any its continuation r such that h ◦ r is not easily rejectable, no

transaction in r can read from a candidate to remove.

Proof. Assume to the contrary that there exists a transaction txk ∈ r reading a key x from

txi which is a candidate to remove. By De�nition 38, txi is not in the frontier of h; and by

130



De�nition 32, for all keys written by txi (x included) there must exist some successors with

epoch[≤ epochagree − 2] that writes these keys. Call the successor that writes x, txj .

Now, consider transactions (txi, txj , txk). In a polygraph, they form a constraint: txi and txj

both writes to key x; and txk reads x from txi. The constraint is 〈txk → txj , txj → txi〉. Because txj

is a successor of txi, after pruning, the edge txk → txj should be added to E(h ◦ r ). Meanwhile,

txj has epoch[≤ epochagree − 2]; by Claim 30, txj has a path to any transaction in r , txk included.

Therefore, there is a cycle txk → txj  txk in E(h ◦ r ), a contradiction to a not easily rejectable

history h ◦ r . �

B.2.5 Solved constraints and unsolved constraints

In the original polygraph construction (§4.2.3), constraints are generated for every reading-from

pair (a read reading from a write) and another write to the same key. However, some of them are

“useless”—with or without them doesn’t a�ect the acyclicity of a polygraph. In this section, we

classify constraints into two types, solved constraints and unsolved constraints, which simpli�es

proofs of the main argument in the next section.

As mentioned in Section 4.2.3, a constraint in a polygraph involves three transactions: two

write transactions (txw1, txw2) writing to the same key and one read transaction (txr) reading this

key from txw1. And, this constraint (〈txr → txw2, txw2 → txw1〉) has two ordering options, either

(1) txw2 appears before both txw1 and txr, or (2) txw2 appears after them. We call a constraint as a

solved constraint when the known graph has already captured one of the options, de�ned below.

De�nition 41 (Solved constraint). For a history h that is not easily rejectable, a constraint 〈txr →

txw2, txw2 → txw1〉 is a solved constraint, when the known graph of E(h) has either txw2 txw1 or

txr txw2.

Fact 42. Eliminating solved constraints from a polygraph doesn’t a�ect its acyclicity, because the

ordering of the three transactions in a solved constraint has been already captured in the known

graph.

For those constraints that are not solved constraints, we call them unsolved constraints. No-

tice that both solved constraints and unsolved constraints are de�ned on polygraph (not cobra
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polygraph).

With solved constraints and unsolved constraints, we conclude the following Lemmas.

Lemma 43. In a not easily rejectable history h, for any unsolved constraint 〈txr → txw2, txw2 →

txw1〉 that includes a removable transaction, all three transactions (txw1, txw2, and txr) are in the

same P-SCC.

Proof. Consider the relative position of txw1 and txw2 in E(h). First, we know that txw2 6 txw1

because otherwise, by De�nition 41, the constraint is a solved constraint. Second, we prove

txw1 6 txw2. Assume txw1  txw2; then, after pruning, E(h) has an edge txr → txw2 which

contradicts that the constraint is an unsolved constraint. Therefore, E(h) has no path between

txw1 and txw2. By Lemma 34, txw1, txw2, and txr are in the same P-SCC. �

Lemma 44. Given a history h and any its continuation r such that h◦r is not easily rejectable, there

is no unsolved constraint that includes both a removable transaction in h and a transaction in r .

Proof. Call a constraint 〈txr → txw2, txw2 → txw1〉 (txw1 and txw2 write to the same key x; txr

reads x from txw1) where one of the three transactions is removable and another is a transaction

in r .

In the following, by enumerating all combinations of possibilities, we prove such a constraint

is always a solved constraint.

• The removable transaction is txr.

Because txr is removable, it is a frozen transaction. By De�nition 31, as a predecessor of txr

(txr reads from txw1), txw1 has epoch[≤ epochagree − 2]. Hence, the remaining transaction txw2

must be the transaction in r . By Claim 30, txr have a path to any transactions in r including

txw2. Thus, this constraint is a solved constraint.

• The removable transaction is txw1.

Because txr reads x from txw1, by Claim 40, txr cannot be a transaction in r . Hence, the trans-

action in r must be txw2.

Because txw1 is not part of the frontier of h, by De�nition 32, there exists some successor txs

with epoch[≤ epochagree − 2] which also writes x. Because txw1 and txs writes x and txr reads
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from txw1, they forms a constraint. Consider this constraint 〈txs → txw1, txr → txs〉: because

txs is a successor of txw1, after pruning, E(h) has an edge txr → txs.

Finally, because txs has epoch[≤ epochagree − 2] and txw2 ∈ r , by Claim 30, txs  txw2; hence

txr → txs  txw2. By De�nition 41, the constraint 〈txr → txw2, txw2 → txw1〉 is a solved

constraint.

• The removable transaction is txw2.

Because there must be one transaction in r , both txr ∈ h and txw1 ∈ h are impossible. Also,

because h is a complete history, it is impossible to have txr ∈ h but the transaction it reads

txw1 ∈ r . Hence, there are two possibilities:

• txw1 ∈ r ∧ txr ∈ r .

By Claim 30, txw2 has paths to transactions in r including txw1 and txr. Hence, the constraint

is a solved constraint.

• txw1 ∈ h ∧ txr ∈ r .

Now, consider the relative position of txw1 and txw2. Because a transaction txr ∈ r reads

from txw1, txw1 is not a candidate to remove (De�nition 38). Further, by De�nition 39, txw2

belongs to a P-SCC in which all transactions are candidates to remove, so txw1 and txw2 are

not in the same P-SCC. Hence, by Lemma 34, either txw1  txw2 or txw2  txw1.

Next, we prove txw1  txw2 is impossible. Assume txw1  txw2. For the constraint 〈txr →

txw2, txw2 → txw1〉, after pruning, E(h ◦ r ) has the edge txr → txw2. Meanwhile, txw2 has

epoch[≤ epochagree − 2], by Claim 30, txw2  txr. Thus, E(h ◦ r ) is cyclic, a contradiction to

that h ◦ r is not easily rejectable.

Above all, txw2  txw1; hence, the constraint 〈txr → txw2, txw2 → txw1〉 is a solved con-

straint.

�

B.2.6 The main argument

In this section, Theorem 50 proves the correctness of cobra’s garbage collection algorithm.

Claim 45. For a history h and any its continuation r such that h ◦ r is not easily rejectable, for a
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removable transaction txi, there are no edges between txi and any transaction in r in E(h ◦ r ).

Proof. According to cobra’s algorithm (Figure B.1), it adds four types of edges (speci�ed below,

denoted by 1©– 4©) during processing transactions in r , and none of them includes txi.

Because E(h◦ r ) is acyclic, by Claim 40, no transactions in r read from txi, so no reading-from

edges ( 1©, Figure B.1, line 20) or anti-dependency edges ( 2©, Figure 4.3, line 60) with txi are added

to g. Also, because txi has epoch[epochagree − 2], there must be a fence transaction that comes

after txi from the same session, hence there is no session order edge from txi to transactions in r

( 3©, Figure B.1, line 31). Finally, by Lemma 44, no unsolved constraints include both txi and any

transactions in r . Thus pruning, which adds edges because of resolving constraints ( 4©, Figure 4.3,

line 82, 85), doesn’t add edges with txi to g. �

Lemma 46. Given a history h and any continuation r such that h◦ r is not easily rejectable, for any

removable transaction txi, E(E(h) 	 txi, r ) = E(h ◦ r ) 	 txi

Proof. First, we prove E(E(h) 	 txi, r ) = E(E(h), r ) 	 txi, which means that the �nal extended

history remains the same whether cobra’s algorithm deletes txi before or after processing r . To

do so, we prove that the data added to all three components in an extended history—readfrom,

wwpairs, and the known graph g—are the same when processing r , with or without txi.

• For readfrom, because txi is removable, by Claim 40, no transactions in r can read from it.

Therefore, with or without txi, pairs of transactions added to readfrom remain the same.

• For wwpairs, again by Claim 40, there are no read-modify-write transactions in r that read

from txi, hence consecutive writes added to wwpairs are the same< with or without txi.

• For the known graph g, the vertices added (transactions in r) are the same with and without

txi; by Claim 45, the edges added are also the same.

Above all, E(E(h) 	 txi, r ) and E(E(h), r ) 	 txi are the same, and by Fact 24, we prove the lemma:

E(E(h) 	 txi, r ) = E(E(h), r ) 	 txi = E(h ◦ r ) 	 txi. �

Claim 47. Given a not easily rejectable history h, its continuation r , and a removable transaction

txi, if cobra deletes txi from E(h) and h ◦ r is easily rejectable, cobra rejects.
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Proof. By De�nition 36, h ◦ r either (1) contains a write transaction having multiple successive

writes, or (2) has cycles in E(h ◦ r ).

For (1), if txi contains neither the write that has multiple successive writes (call it wmsw writing

to key x) nor its successive writes, these writes are in E(h ◦ r ) 	 txi, and by Corollary 37 cobra

rejects.

If txi contains wmsw , given that h is not easily rejectable, there is at least one successive write

(say in txj) in r . For the removable transaction txi and txj in r , we can reuse the proof of Claim 40,

and there exists a transaction txk that is a successor of txi and has a cycle with txj . Hence, E(h ◦

r ) 	 txi is cyclic and cobra rejects.

If txi contains one of the successive writes, the transaction containing wmsw (call it txa) is txi’s

predecessor in E(h). Again, txa has at least one successive write (say in txj) in r . Because txi is

removable hence frozen, by De�nition 31, txa is also a frozen transaction, and txa does not have

the most recent write to x. Again, by reusing the proof of Claim 40, there is a cycle between txa

and txj in E(h ◦ r ) 	 txi. Thus, cobra rejects.

For (2), we prove that if E(h ◦ r ) is cyclic, then E(E(h) 	 txi, r ) is also cyclic, hence cobra

rejects. By Lemma 46, it is identical to prove a cyclic E(h ◦ r ) 	 txi. Assume to the contrary that

E(h ◦ r ) 	 txi is acyclic. Then, because E(h ◦ r ) is cyclic while E(h) and E(h ◦ r ) 	 txi are acyclic,

the cycle must include txi and a transaction txj ∈ r .

Consider the path txj  txi. The path cannot be an edge (txj → txi) because, by reusing the

proof of Claim 45, we can prove none of the four types of edge in E(h ◦ r ) is possible. So the path

must be txj  txs → txi where txs ∈ h. Because txi is removable, txs has epoch[≤ epochagree − 2],

and by Claim 30, txs  txj . Thus, E(h◦ r ) 	 txi has a cycle between txs and txj , and cobra rejects.

�

Theorem 48. Given a history h that is strong session serializable and a continuation r , for any

removable transaction txi, there is:

P (E(h ◦ r ) 	 txi) is acyclic⇔ P (E(h ◦ r )) is acyclic.

Proof. If h◦r is easily rejectable, by Corollary 37 and Claim 47, cobra rejects; both P (E(h◦r )	txi)

and P (E(h ◦ r )) are cyclic.
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Now, we consider the case where h ◦ r is not easily rejectable. In P (E(h ◦ r )), by Lemma 43,

all transactions in unsolved constraints that involves txi are in the same P-SCC (call this P-SCC

pscci), and by De�nition 39 they are all removable. Thus, we can partition h ◦ r into pscci and

others (call them pscci), and there are no unsolved constraints including both transactions from

pscci and from pscci.

“⇒”. Next, we prove that P (E(h ◦ r )) is acyclic by constructing a compatible graph ĝ that is

acyclic. By Fact 42, we can safely ignore solved constraints. Consider the transactions in pscci, the

unsolved constraints are the same in both P (E(h◦r )) and P (E(h◦r )	txi); given that P (E(h◦r )	txi)

is acyclic, there exists a combination of options for unsolved constraints that makes ĝ acyclic in

these transactions.

Now, consider transactions in pscci. Because all transactions in pscci are removable, they are

in h. Plus, h is strong session serializable, so there exists a combination of options for the un-

solved constraints in pscci such that ĝ has no cycle in pscci. Finally, because there is no unsolved

constraint between pscci and pscci and E(h ◦ r ) is acyclic (because h ◦ r is not easily rejectable), ĝ

is acyclic.

“⇐”. Because P (E(h ◦ r )) is acyclic, there exists an acyclic compatible graph ĝ. We can construct

a compatible graph ĝ
′ for P (E(h ◦ r ) 	 txi) by choosing all constraints according to ĝ—choose the

edges in constraints that appear in ĝ. Given that the known graph in P (E(h◦r )	 txi) is a subgraph

of P (E(h ◦ r ))’s, ĝ′ is a subgraph of ĝ. Hence, ĝ′ is acyclic, and P (E(h ◦ r ) 	 txi) is acyclic. �

In the following, we use hi to represent the transactions fetched in ith round. The �rst round’s

history h1 is a complete history itself; for the ith round (i ≥ 2), hi is a continuation of the prior

history h1 ◦ · · · ◦ hi−1. We also use di to denote the transactions deleted in the ith round.

Lemma 49. Given that history h1◦· · ·◦hi◦hi+1 is not easily rejectable, if a transaction is removable

in h1 ◦ · · · ◦ hi, then it remains removable in h1 ◦ · · · ◦ hi ◦ hi+1.

Proof. Call this removable transaction txa and the P-SCC it is in during round i as psccb.

Because cobra’s algorithm does not delete fence transactions (Figure B.1, line 106), the epoch

numbers for normal transactions in round i remain the same in round i+ 1. Hence, the epochagree
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in round i + 1 is greater than or equal to the one in round i. Thus, txa remains to be a frozen

transaction. In addition, txa was not in the frontier of h1 ◦ · · · ◦ hi, and it will not be with a new

continuation hi+1. Thus, by De�nition 38, txa is a candidate to remove in round i + 1.

Because history h1 ◦ · · · ◦ hi ◦ hi+1 is not easily rejectable, there are no cycles in the known

graph of E(h1 ◦ · · · ◦ hi ◦ hi+1). Also, by Lemma 43, transactions in psccb do not have unsolved

constraints with any transaction in hi+1. Thus, in round i + 1, the new P-SCC that txa is in only

includes transactions from old psccb, which are candidates to remove (both for round i and i + 1).

Above all, by De�nition 39, txi is removable in round i + 1. �

Theorem 50. cobra’s algorithm runs for n rounds and doesn’t reject ⇐⇒ history h1 ◦ h2 · · · ◦ hn

is strong session serializable.

Proof. We prove by induction.

For the �rst round, cobra’s algorithm only gets the history h1. By Theorem 17 and Theorem 12

in Appendix B.1, cobra doesn’t reject if and only if h1 is strong session serializable.

For round i, assume that cobra’s algorithm doesn’t reject for the last i− 1 rounds and history

h1◦h2 · · · ◦hi−1 is strong session serializable. In round i, cobra’ algorithm �rst fetches hi, gets the

extended history from the last round which is E(h1◦· · ·◦hi−1)	 (d0∪· · ·∪di−1). By Fact 35, pruning

doesn’t a�ect the acyclicity of polygraphs and cobra polygraphs, so we can ignore pruning in

the following proof. In the following, we prove that cobra’s algorithm doesn’t reject (the cobra

polygraph is acyclic) if and only if h1 ◦ · · · ◦ hi is strong session serializable.
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Q(E(E(h1 ◦ · · · ◦ hi−1) 	 (d0 ∪ · · · ∪ di−1), hi)) is acyclic

⇐⇒ Q(E(h1 ◦ · · · ◦ hi) 	 (d0 ∪ · · · ∪ di−1)) is acyclic

[Lemma 46, 49]

⇐⇒ P (E(h1 ◦ · · · ◦ hi) 	 (d0 ∪ · · · ∪ di−1)) is acyclic

[Lemma 26]

⇐⇒ P (E(h1 ◦ · · · ◦ hi)) is acyclic

[Theorem 48, Lemma 49]

⇐⇒ h1 ◦ · · · ◦ hi is strong session serializable

[Lemma 26]

�
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