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Abstract

We propose a method for performing backward analysis on higher—order functional program-
ming languages based on computing inverse images of functions over abstract domains. This
method can be viewed as abstract interpretation done backward. Given an abstract semantics
which supports forward analysis, we can transform it into an abstract semantics which performs
backward analysis. We show that if the original abstract semantics is correct and computable,
then the transformed version of the abstract semantics is also correct and computable.

More specifically, given a forward abstract semantics of a higher—order functional language
which is expressed in terms of Scott—closed powerdomains, we derive an backward abstraction
semantics which is expressed in terms of Scott—open powerdomains. The derivation is shown to
be correct and the relationships between forward analysis and backward analysis is established.

We apply this method to the classic strictness analysis in functional languages and obtain
promising results. We show that the time complexity of inverse image based backward analysis
is not much worse than the forward analysis from which it is derived. We then compare this
work with previous works of Wadler and Hughes [17], Hughes [11], and Burn [5], showing that
some special restrictions and constructions in previous works have natural interpretation in the
Scott—closed /Scott—open powerdomain framework. A brief outline of applying the inverse image
method to other backward semantics analysis is also given.
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1 Introduction

Burn, Hankin, and Abramsky [6] use the Scott—closed powerdomain® construction to give an abstract

semantics for a non-strict higher—order functional language which denotes the language’s strictness
property. Their construction can be regarded as an approximation to the concrete Scott—closed
powerdomain semantics of the functional language. Their approximation yields an abstract semantics
that is computable and safe. That is, their strictness analysis will always terminate for well-typed
programs and will not give incorrect answers (although the answers may be approximations). Their
method is a forward analysis since definedness of the result of a function call is inferred from the
definedness of the arguments.

Backward methods for strictness analysis have been investigated by Wadler and Hughes [17],
Hughes [11], Davis and Wadler [8] and Burn [5], which emphasize strictness analysis on functional
languages with non-flat data types. Their methods are based on the context (or projection, a
restricted notation of context) concept. A computation result is in a particular context (or, subject
to a particular projection) if we know that the result will be used in a particular way. For example,
if a computation result is to be discarded immediately after it is computed, then the result is said
to be in the ABSENT context. Also, if we know that a computation result is in the ABSENT
context, then we know that we need not carry out the computation at all. Context—based backward
analyses infer the contexts of the arguments in a function call from the context of the function call.
However, the formulation of a context—based backward analysis is quite complicated, especially in
cases involving higher—order functions. Hughes [11] observes that context—based backward analysis
for higher—order functions is complicated because a context—based forward analysis is also needed
to obtain satisfactory answers.

Dybjer [9] uses the Scott—open powerdomain to formulate an inverse image analysis for non—
strict first—order functions regarding their strictness property. Whether this method can be applied
to higher—order functions remains an open question. Furthermore, it is not clear that his method
can be automated.

We propose here a general method for inverse image analysis for higher—order functions. This
method is also based on the Scott—open powerdomain construction. In fact, our method is inspired
by the work of Burn, Hankin, and Abramsky [6] and Dybjer [9]. That is, for each function f,
we will derive the Scott-open powerdomain semantics of “f=" Po(f~!), from f’s Scott—closed
powerdomain semantics, Pc(f). If P'c(f) is an approximation of Pe(f) which is computable
and safe, then our derivation, P'o(f~!), is also computable and safe. Since Burn, Hankin, and
Abramsky’s method is applicable to higher—order functions, our approach provides a method for
backward analysis which is also applicable to higher—order functions. By incorporating the strictness
analysis for non—flat data types by Wadler [16] and Burn [5], our method can also be applied to
functional programs with non-flat data types.

After representing the idea and giving some examples in strictness analysis, we show the time
complexity of doing inverse image based backward analysis and compare our work with previous
works. We show that the formulation of a backward analysis is straightforward if a forward analysis
is given. We also argue that answering a query in the backward analysis costs not much more than
obtaining the forward analysis. A brief outline of applying inverse image analysis to other semantic
analysis is also given.

2 The Main Theorem

We use bounded—complete w—algebraic cpos as the semantic domains in our discussion of inverse
image analysis. The definition and properties of bounded—complete w—algebraic cpos can be found
in Appendix A.

Scott—closed and Scott-open sets are defined as follows:

Definition 2.1 Let D be a domain. A subset X C D is Scott-closed if

1The Hoare powerdomain construction, to be precise, is used in their development.



1. IfeeXandy Cp =z, then y € X;
2. Y C X and Y is directed, then | |[Y € X.
O

We will call the condition in clause 1 of Definition 2.1 the downward closure property. A subset is
downward closed if it has the downward closure property. If X is a Scott—closed subset of a domain
D, then we say X is closed in D for short.

Definition 2.2 Let D be a domain. Define poset Pc(D) by

1. Pe(D)={S| S C D,S is Scott—closed};
2.8 Epopy THESCT.

O
We can also define the poset Po(D) to be the set of all the Scott—open subsets of domain D.
Definition 2.3 Let D be a domain. A subset X C D is Scott-open if
1. fe€ X and x Cp y, then y € X;
2. IfY C D, Y is directed, and | [Y € X, then Y N X # 0.
O

Again, we will call the condition in clause 1 of Definition 2.3 the upward closure property. A
subset is upward closed if it has the upward closure property. If X is a Scott—open subset of a domain
D, then we say X is open in D for short.

Definition 2.4 Let D be a domain. Define poset Po(D) by

1. Po(D)={S| S C D,S is Scott—open};

2. S Epopy THESDT.
O

In Appendix A, we show that both Pc(D) and Po(D) are domains if D is a domain. In fact,
Pc(D) and Po(D) are complete lattices and they are isomorphic to each other. Also note that the
set union operator U is the binary least upper bound operator in P¢ (D), while the set intersection
operator N is the binary least upper bound operator in Po (D).

An element d in a domain D has a certain property if d belongs to a particular subset of D. We
will only use Scott—closed subsets and Scott—open subsets of a domain to describe the properties
of the elements in the domain. This restriction may sound artificial, but is quite reasonable. A
Scott—closed subset of a domain D can be viewed as a way to describe how undefined an element
(or a set of elements) in D is; while a Scott—open subset of D describes how defined an element (or
a set of elements) is.

We give an intuitive example here. Let D be a domain, and let f € D — D be a continuous
function from D to D. In strictness analysis, we want to know whether the function application
f Lp will result in Lp or not. If we use Scott—closed sets, then we can describe strictness in the
following way: If the argument z is in the Scott—closed set {Lp}, then the result of f z is in the
Scott—closed set {Lp}. The connection between strictness and Scott—closed powerdomains is well
described in Burn, Hankin, and Abramsky [6].

Scott—open powerdomains can be used to perform strictness analysis in the backward direction.
That is, strictness can be restated as follows: If the result of the function application f x must be
in the Scott-open set D — {Lp}, then z must be in the Scott—open set D — {Lp}.

If the argument must be defined, then a call-by-need to call-by-value transformation can be
performed on function application. This backward reasoning can be viewed as partial evaluation
with respect to the result, not, as it is usually done, with respect to the argument.

We will describe in this paper how a backward strictness analysis can be realized by an inverse
image analysis, with the aid of an existing forward strictness analysis. The connection between



backward strictness analysis and inverse image analysis is first described by Dybjer [9], although
it is only done on first-order functions. Our contribution in this paper is to extend it into higher—
order functions and, in our opinion, to do it in a cleaner way. We also relate forward analyses and
backward analyses under the framework of Scott—closed/Scott—open powerdomains.

Recall that, given a domain D, we have defined its Scott—closed powerdomain, P¢ (D), and Scott—
open powerdomain, Po(D). The next step is to define functions between these powerdomains, based
on continuous functions over the original domains.

Fact 2.5 Let D, and Dg be domains and f € D, — Ds. Then,

1. {& | 2 € Do, fx € B} is closed in D, if B is closed in Dg;
2. {z |z € D,, fz € B} is open in D, if B is open in Dg.

Corollary 2.6 Let D, and Dg be domains. Let f € D, — Dg. Then,

L. {z |z €Dy, fx Cp, y}is closed in D, for each y € Dy,
2. {z |2 €Da,fzLp, y}isopenin D, for each y € Dg.

Definition 2.7 Let D, and Dg be domains. Let f € D, — Dg.
Define Pc(f) € Pc(Da) — Pce(Dg) and Po(f~1) € Po(Dg) — Po(Da) by
L. (Pe(f)) X={fz|2€Dy,x€ X} where X € Pc(D,);
2. (Po(f~') Y ={z|2€D,, fxeY}, where Y € Po(Dg).
O

For a subset W of a domain D, W*° is the least Scott—closed subset of D which contains W
(see Definition A.41). We can say that Pc(f) defines an image function of f, based on Scott—
closed powerdomains; while Po(f~1!) defines an inverse image function of f, based on Scott—open
powerdomains. By definition, it can be shown that Pc(f) is L-reflexive. That is, (Pc(f)) A =0 if
and only if A = 0.

Lemma 2.8 Let D, and Dg be domains. Then both Pc(f) and Po(f~!) are well-defined and
continuous for every continuous function f € D, — Dg. a

ProoF. See Appendix B. o

Furthermore, it can be shown that P(f) is additive if f is continuous. That is, (Pc(f)) (XUY) =
((Pe(f)) X)U((Pc () Y) for all X|Y € Pe(Dy). Note that additivity is a stronger condition than

continuity.

Lemma 2.9 Let D, and Dg be domains, f € Dy — Dy, and B € Pc(Dg). Then

{z |z € D,, fr € B} = |_|{X | X € Pc(Da), (Pc(f)) X Cpon,) B}

O
Proor. See Appendix B. <o
We now prove the following main theorem.
Theorem 2.10 Let D, and Dg be domains. Let B € Po(Dg) and f € Dy — Dg. Then
(Po(f71) B=| {X | X € Pc(Da), (Pc(f)) X Cpow,) B}
O



ProoF.

(Po(f~1)) B
= {z|z€D, fzeB} (Definition 2.7)
= {z|ze D, freB} (Fact A.36)

LH{X | X € Pc(Da), (Pc(f)) X Craops) B} (Lemma 2.9)
o

The significant part of Theorem 2.10 is that it completely characterizes Po(f~!) in terms of
Pc(f), instead of in terms of function f. But from an abstract interpretation’s point of view, this
characterization is not very useful because P (f) in general cannot be computed in finite time and
the domain Pc(D,) need not be finite. This makes (Po(f~!)) B in general not computable in finite
time.

The next step will be to give an approximation of Po(f~!) by using an existing approximation
of Pe(f).

The following corollary shows the relationship between the forward semantics Pe(f) and the
backward semantics Po(f~1).

Corollary 2.11 Let D, and Dg be domains, f € Do, — Dg, A € Pc(D,), and B € Po(Dg). Then

(Po(fY)) PcUVA_ Do) A
(Pe(f))  Polf"0)B Cpew, B
O

ProOF OUTLINE. Substitute the B in Theorem 2.10 by (Pc(f))A to show that the first part is
true. Also by Theorem 2.10,

(Po(f~1) B=| [{X | X € Pe(Da), (Pe(f)) X Cre,) Bl

Applying Pc(f) at both sides to show that the second part is true too. <o

A direct consequence of the above corollary is the following.

Corollary 2.12 Let D, and Dg be domains, f € D, — Dg, A € Pc(D,), and B € Pc(Dg). Then
L. if (Po(f~')) B Jpo(p.) A, then (Pc(f)) A Cpon,) B;
2.if (Po(f)) A Epeps) B then (Po(f71)) B Jpo(na) A

3 An Abstract Semantics and its Inverse

In Burn, Hankin, and Abramsky [6], they develop an approximation based on the Scott—closed pow-
erdomain construction. They use this approximation to define an abstract semantics for determining
the strictness of higher—order functions. In this section, after a brief introduction to their approach
and results, we show how to take their approximation and transform it to give an approximation
based on the Scott—open powerdomain construction. We then use this newly defined approximation
as an abstract semantics for determining strictness, only that it now works backward.

The following formulation is a little different from Burn, Hankin, and Abramsky [6] to fit the
current discussion. Suppose that we are given an approximation domain P’ (D) for P¢ (D), where
D is a domain, such that P’¢(D) is a finite complete sub—lattice of Pc (D). Note that both ¢ and D
are in P'¢(D). That is, {#, D} C P'c(D) C Pc(D), P'¢(D) has only a finite number of elements,
and for all subsets X C P’ (D), the least upper bound of X in P’¢(D) is the same as the least upper
bound of X in P¢(D). This property also holds for the greatest lower bound. For a continuous
function f € D, — Dg, where D, and Dg are domains, we then give an approximation function
P'c(f) for Pe(f) such that P/ (f) is computable in finite time and (P'¢(f)) A D (Pc(f)) A for
each A € P'c(Dy).



Definition 3.13 Let D be a domain and P’'¢(D) be a finite complete sub-lattice of P¢(D).
The abstraction function Absc € Pc(D) — P'c(D) and the concretization function Conce €
P'c(D) — Pc(D) are defined by

Absc X = [HY |Y €Pc(D), X Cpo(p) Y}, where X € Pc(D);
Concc Y = Y, where Y € P'¢(D).

O

An interesting consequence of the above definition is that both Absc and Conce are L -reflexive
and additive.

Fact 3.14 Let D be a domain. Let P'¢(D) be a finite complete sub-lattice of Pc(D); and let
X € Pe(D) and X' € P'c(D). Then,

(Concc o Absc) X D X;

(Absc o Concc) X' = X'
O
Definition 3.15 Let D, and Dg be domains. Let f € D, — Dg. Define
P'c(f) = Absc o Pc(f) o Conec.
O

P'c(f) is L-reflexive and additive because Absc, Pe(f), and Conce are L-reflexive and additive.
Fact 3.16 Let D, and Dg be domain. Let f € Dy — Dg and A € Pc(Dy). Then
(Pc(f)) A C (ConccoP'c(f)o Absc) A.
O

In short, P'¢(D) is an abstract domain for Pe(D) and P’¢(f) is an abstract interpretation of
Pc(f). Fact 3.16 asserts that such an abstract interpretation is safe.

Suppose that P’c is an approximation based on the Scott—closed powerdomain construction as
defined above. We show in the following how to turn P’¢ into Py, an approximation based on the
Scott—open powerdomain construction.

Definition 3.17 Let D be a domain. Define P'o(D) = {X | X € P'¢(D)}. O

Definition 3.18 Let D be a domain. Define the abstraction function Absg € Po(D) — P'o(D)
and the concretization function Conco € P'o(D) — Po(D) by

Abso X = | {Y |Y €P'o(D),Y Cp,w) X}, where X € Po(D);
Conco Y = Y, where Y € P'o(D).
O
Fact 3.19 Let D be a domain, X € Po(D), and X' € P'o(D). Then
(Concpo Absgp) X DO X and
(Absg o Conco) X' = X'
O

For each function f, we can define P'o(f~!) in terms of P’'¢(f), as we did in Theorem 2.10.



Definition 3.20 Let D, and Dy are domains and let f € Dy — Dg. Define

(Plo(f™)) Y = {X | X €P'c(Da),(P'c(f) X Criowa Y1
where Y € P'o(Dg). O

Note that, in the above definition, if P’¢(f) is computable in finite time, then P'o(f71) is
computable in finite time since P’ (D, ) is a finite set. The following theorem states that the above
definition is safe.

Theorem 3.21 Let D, and D be domain. Let f € D, — Dg and B € Dg. Then

(PO(f_l)) B C (Conco Oplo(f_l) o Absp) B.

Proor. We want to show that, for every B € Po(Dg),

L{X | X € Pe(Da), (Pe(f))X Cpo(p,) B}
C Conco | HX | X € P'c(Da), (P'c(f)) X Cpio(ps Abso B}.

That is, -
LHX | X € Pc(Da), (Pe(f)X Epcw,) B}
D | HX | X ePle(Da), Pc(f) X Epic(Ds) Abso B}.

Note that B D Abso B for every B € Po(Dg). Therefore, for each
A e {X|Xe /Plc(Da), (Plc(f)) X Epria(Ds) Abso B}

there exists a

A€ {X | X e PC(DQ)’(/})C(f))X EPC(Dﬂ) F}

such that A D A’.
We complete the proof by observing that P’'c(D,) is a finite complete sub—lattice of Pe(Dy).<

The following corollary shows the relationship between the forward abstract semantics P'o(f~1)
and the backward abstract semantics P’¢(f).

Corollary 3.22 Let D, and Dg be domains. Let f € Do, — Dg, A € P'c(Dy), and B € P'o(Dg).
Then

(Po(f) PeUNA  Trow. A
(Pe(f)  Po(f7 B Crew, B.

The following is a direct consequence of the above corollary.

Corollary 3.23 Let D, and Dg be domains, f € Dy — D, A € P'c(Dy), and B € P'c(Dg).
Then

L if (P'o(f71)) B Jpion.y A, then (P'c(f)) A Criony) B;

2. if (P'c(f)) A Tpig(p,) B, then (P'o(f~1) B Jpign.) A
o

The reader may like to compare the above corollary with the result in Burn [5, Theorem 3.1].
The following lemma describes some degenerate cases.

Lemma 3.24 Let D, and Ds be domains. Let f € D, — Ds. Then,



L Pc(f) =0,

(f) Do Epic(ps) Dp,
(fF~Ho=0
(f=1) Dp = Da.

/

7

2. Ple
3. Po
4. P'o
O

Proor. The proofs follow immediately from Theorem 2.10, Definition 3.15, and Definition 3.20. &

We now relate Burn, Hankin, and Abramsky’s forward strictness analysis to a backward strictness
analysis.

Fact 3.25 (Burn, Hankin, and Abramsky) Let P’¢ be the Scott—closed powerdomain approx-
imation of Burn, Hankin, and Abramsky. Let D, and Dg be domain, and let f € D, — Dg.
Then

L (P'c(f)) {lp.} Zricws) {Llns )

2. if (P'c(f)) {Lp.} ={Llp,} then f Lp, = Lp,. (That is, f is strict.)
O

Theorem 3.26 Let P’ be the Scott—closed powerdomain approximation of Burn, Hankin, and
Abramsky. Let P’o be defined as in Definition 3.20. Let D, and Dg be domains, and let f €
D, — Dg. If

(P'o(f=) {Lp,} Tpow.) {Lp.},

then f is strict. a

Proor OUuTLINE. By Corollary 3.23 and Fact 3.25. o

4 Examples

In this section we demonstrate how to use our inverse image analysis on higher—order functions.
More specifically, we show how a backward strictness analysis can be done within the framework
of inverse image analysis. Given a function and an expected property of its result, we infer the
property of the function’s arguments which will yield the expected result. For instance, if we expect
a function application resulting a defined value, then we would like to use our inverse image analysis
to determine whether the argument shall be defined or not. If the argument is shown to be defined,
then the argument can be evaluated by call-by—value instead of call-by—need.

We start with a modified representation of Burn, Hankin, and Abramsky’s strictness analysis.
After showing the forward approximation scheme, P’¢, we then reverse it into a backward approxi-
mation scheme, P’o, which can be used in backward strictness analysis.

Let (A, B) denote an element of the smashed product P'c(Ds) ® P'c(Dg), where A € P'c(Da),
B € P'c(Dg), and P'c(D) denoting a complete sub-lattices of the Scott—closed powerdomain
Pc(D). Then, by the definition of smashed product, we have (4, §) = (@, B) = @ for every A €
P'c(Dy) and B € P'c(Dg). Note that, by notation, (A, B) represents a pair of Scott—closed
subsets. However, what we have in mind is to use it to represent the Scott—closed subset of the
domain D, x Dg such that

(A, B) = {(a, b) | (@, b) € Dy x Dg,a € A,b€ B}.

We will overload (A4, B) to the above denotation.

Likewise, we overload P'c(Da) @ P'c(Dg) to denote the subset of the Scott—closed powerdomain
Pc(Da x Dg) such that it now includes exactly those Scott—closed subsets denoted by (A4, B) (where
Ac Plc(Da) and B € Plc(Dg)).



We run into the same notation problem in the | -reflexive additive function space P’¢(Dy )e— P’c(Dpg).
We will use
[A1 — By, As+— Ba, ..., Ay — By,

where A1, As,..., Ay € P'c(Dy) and By, Ba,...,B, € P'c(Dg), not only as a notation for a
L -reflexive additive map from P’c(D,) to P'c(Dg), but also as a notation for the Scott—closed
subset

{fIf€Dy—Dg,fa€ B forallac A;,fa€Byforalla€ Ay,..., and fa € B, foralla € A,}

of the domain D, — Djg.

If n is finite, it can be shown that, by the new denotation, [A; +— By, Ay +— Bs, ..., A, — B,] €
Pc(Do — Dg). For the special case of n = 0, it is written as (), which is also an element in
Pc(Da — Dp).

Likewise, P'c(Dqo)e— P'c(Dg) is overloaded to denote the subset of the Scott—closed powerdo-
main Pc(Ds — Dg) such that it now includes exactly those Scott—closed subsets denoted by the
L -reflexive additive maps from P’ (Dy) to P'c(Dg).

Definition 4.27 Let D be a domain. P’'¢(D) is defined by
e if D is a primitive domain B, then
P'c(D) ={B, {1s}, 0}.
o if D =D, x Dg, then
Po(D)={{JX | X CPc(Da) ®P'c(Dp)}.

e if D= D, — Dg, then

P'o(D) = {JX | ¥ CP'c(Da)e— P'c(Dp)}.
O

The definition for P/¢(Ds x Dg) and P’'c(Ds — Dg) deserves some attention. The definition is
to make them each a complete sub-lattice of Pc(Dy x Dg) and Pe(Ds — Dg) respectively. If we
simply define P'¢(Dq x Dg) as P'c(Do) @ P'c(Dg) and P'c(Doa — Dg) as P'c(Da)e— P'c(Dg),
they will not be complete sub—lattices. Before going into the examples, recall that P’/(D) is defined
as {X | X € P'c(D)}or every domain D.

Example 4.28 Let N be the flat domain of all natural numbers. Then, we have
L e Pe(N)={N{Ln} 0},

e P'e(NxN)= { (N,N), (N ALnE) U ({LIn} V), (N LN ],
{Lnh, V), {Lnh {Lw}), 0 h
e P’¢(N—=N)= { [N—N, {Lny}+— N, 0 — 0],

[V = {in}, {In}—={Lln}, 0=10]
0 }.

We will write, for example, [N — N, {1y} +— N, 0 — 0] as A X . N without explicitly
mentioning that X € P'¢(N) and this function is L-reflexive.

Note that A X . N denotes the set of all the continuous functions from N to N; A X . X
denotes the set of all the strict continuous functions from N to N; and A X . { L 5} denotes
the set containing only the everywhere undefined function from N to N.

2. e Po(N)={N,{In},0} ={0,N - {Ln},N},



e P'o(N x N)

{ (N > ( {J-N}> <{J-N}a N)a SN: {J-N}>a
({in}, N <{J—N} {Ln}), 0 }
= {0, (N, {Inh) 0 {Ln}, N}, (N {LN}),
( (N

{Ln} N), ({lN}, {Lal),
e P'o(N—=N)={AX.N, XX . X, AX.{Ln}, 0}.
Note that A X . N denotes the empty set; A X . X denotes the set of continuous functions
from N to N which are non-strict (that is, in the N — N case, the non-L x constant
functions); AX . {1y} denotes the set of continuous functions from N to N which are

somewhere defined; and () denotes, of course, the set of all the continuous functions from
N to N.

\/

O

Lemma 4.29 Let D be a domain constructed from a finite set of primitive domains by applying a
finite number of product and function space construction. (We will call D finite constructible.) Let
P’c be the approximation scheme in Definition 4.27. Then,

1. P'¢(D) is a finite complete sub-lattice of Pc(D); and P’'o(D) is a finite complete sub-lattice
of Po(D). In particular, Lp/ py=0and Tp/ (p)y = D. Also, Lp/ (py= D and Tp:,p) = 0.

2. if CCP'¢(D) and O CP'o(D), then | |C =JC and | JO = NO.
O

Proor OUTLINE. A structural induction on the construction of D. O

We omit the construction of P'c(f), where f € Dy, — Dg, D, and Dy finite constructible, to
save space. The construction of P’¢(f) is done by a structural buildup, according to the program
text defining f, from approximations of primitive functions. In cases where f is recursive defined by
a functional F' (i.e., f = fiz F'), then fiz (P'c(F)) is used as a safe approximation for P’ (fiz F').2
The details can be found in Burn, Hankin, and Abramsky [6]. In all cases, the approximation P’ ¢ (f)
will be a computable continuous function if f is a continuous function.

We observe that, if Dy, is not a primitive domain, an approximation P’c(f) € P'c(Da)e— P'c(Dg)
can be characterized by a simpler approximation without losing any accuracy. This is because P’ ¢ (f)
is additive. As an example, let D, = N x N and Dg = N. Then we can characterize

Plc(f) € /Plc(N X N)H /Plc(N)

by a
Y plc(fl) € 77/(;(]\7) ® Pc(N)H Plc(N)

which is only defined on P/¢(N) ® Pc(N), instead of P/¢(N x N), but have the same functionality
of P'¢(f). This causes no problem because every X € P'¢(N X N) can be expressed as X = |_|X,
where X C P'¢(N)® P'¢(N), and we have (P'c(f)) X = LI(P'c(f)) {X}).

We now give some examples.
Example 4.30 Function apply € (N — N) X N — N is defined as
apply (f, ) = f «.
By Burn, Hankin, and Abramsky’s abstract interpretation, we obtain a function
P'c(apply) €P'c((N — N) x N)o—P'c(N),

which is characterized as

(P'c(apply)) (F, X) =F X

2Strictly speaking, we do not use the least fixed point of P’ (F) as an safe approximationfor P’ (fiz F'). Otherwise
we will always end up with @ as approximations since all functions between Scott—closed powerdomains is L-reflexive
(i-e., §-reflexive). We will use the least fixed point above § of P’ (F') as an safe approximation for P’ (fiz F).
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where

(F, X) e P'¢(N = N)®@P'c(N)

and

FX={fz|feFzeX}

Note that (P’¢(apply)) ® = 0 by Lemma 3.24.
We can characterize P'¢(apply) by the following table:

X
F | (P'c(apply)) (F, X) {Ln} | N
AX. {J_N} {J—N} {J_N}
AX X TIn} [N
AX.N N ~

Now, suppose that we expect the result of apply (f, ©) to be defined, i.e. it cannot be L. We
use our inverse image analysis as follows:

(P'o(apply™)) (N = {1n})
L, X) [ (F, X) €P'c(N = N)@P'c(N),(P'clapply)) (F, X) Cpiovy N —{Ln}}
U(F, X) [ (F, X) € P'c(N — N)@P'c(N),(P'c(apply)) (F, X) C{Ln}}.

Therefore, using the definition of P’ (apply),

(P'o(apply™")) (N — {1n})
U, 0 X 1In]L V), AX X, {Ia1))
N{OX 1In], V), XX, {La D]

Summarized in plain English,

e f cannot be the everywhere undefined function,
e if f is a strict function, then z cannot be Ly, and

o if zis Ly, then f must be a (non—Ly) constant function,

which is no worse than our intuition. ad
Example 4.31 Function compose € (N — N) x (N — N) — (N — N) is defined as
compose (f, g) =Aa.f (g 2).
By Burn, Hankin, and Abramsky’s abstract interpretation, we obtain a function
P'c(compose) € P'c((N — N) x (N — N))o—P'c(N — N),
which is characterized by
(P'c(compose)) (F,G) =X X .F (G X),

where (F, G) € P'c(N — N)®@P'c(N — N).
The table characterizing P’ (compose) is the following:

G
T e teompose) (F Gy || MY Thwd [ A XX AX.N
X {Lln) XX (LN AKX LN [AX 1Ln)
XX X {In} [ AX. X XX .N
XX . N XX .N XX .N XX.N
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Suppose that the result of the function application compose (f, g) is not the everywhere undefined
function (i.e. compose (f, g) € A X . Ln). Then, what can we say regarding f and g7 Furthermore,
suppose that the result is a (non-Ly) constant function (i.e. compose (f, g) ¢ AX .X). Then,
what should f and g be?

We simply compute (P’o(composet)) A X .{Ln} and (P'o(compose™!)) XX . X to get the
answers.

(P'o(compose ™)) AX . {Lnyt= {OAX . {Ln},AX.N), DX .X,AX {LnD}

and

(P'o(compose™ N AX . X = N{(AX.{Ly}, AX.N), A X.X,AX.X)}.
That is, if the result of compose (f, g) is not the everywhere undefined function, then

e f cannot be the everywhere undefined function,
e if f is strict, then g cannot be the everywhere undefined function, and

e if g is the everywhere undefined function, then f must be a (non—_Ly) constant function.
Also, if the result of compose (f, g) is a (non—L ) constant function, then

e f cannot be the everywhere undefined function,
e if f is strict, then g must be a (non—Ly) constant function, and

e if g is strict, then f must be a (non—Ly) constant function.
O

It is interesting to note that Hughes [11] cites the above two examples to show why backward
analysis is difficult. The difficulty is to capture the interdependency of the two parts in an input
argument (f and z in apply (f, z); and f and g in compose (f, g)). By using our inverse image
analysis, we are able to give a satisfactory account of the interdependency.

We proceed in analyzing some examples involving non-flat domains. The following examples are
taken from Dybjer [9].

Example 4.32 Function length € L(N) — N is defined as

= 0, and

length | ,
1+ length I,

]
length  (z ::1)

where L(N) is the non-flat domain of lazy lists of natural numbers.

We define P'¢(L(N)) as {0, Ling(N),L(N)}, where Lj,p(N) is the Scott—closed subset of L(NV)
which contains all the lists with undefined tails. In particular, L(N) includes the lists in N¥ to make
L(N) Scott—closed. Also, L) € Lins(N). As usual, P'o(L(N)) = {X | X € P'c(L(N))}.

Using Wadler’s technique [16], we obtain

P’ c(length) € P'c(L(N))e— P'c(N)

which is defined by
(P'c(length)) Lipp(N) = {Lln}, and
(P'c(length)) L(N) = N.

Note that (P’c(length)) 0 = @ by Lemma 3.24.
Suppose that the result of length [ is not L, then

(P’o(length_l)) 1y}
L{L | L €P'c(L(N)), (P'clength)) L Cpiovy {Ln}}
L(N)), (P

= UL LePo( (P'c(length)) L C {Ln}}
= U0 Lins(N)}
= Linf(N).
That is, for the result of length [ to be defined, [ cannot have an undefined tail. a
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Example 4.33 Function last € L(N) — N is defined as

last (z:=[]) = =z, and
last (z 1) = lastl.

Plc(last) € P'¢(L(N))e— P'c(N), is defined by

P’c(last) me(N) = {J—N}, and
P’C(last) L(N) = N.

In the case that the result of last [ is not L, (P’o(last_l)) {Lln} = Lins(N). That is, { cannot
have an undefined tail.

Note that this answer is safe but not totally accurate. A list [ with an undefined tail will make
last | undefined, but not all finite-length lists (i.e. the lists without undefined tails) will make last {
defined. In particular, if { =[], then last [] = Ly. Can we do better than what we have done?

Let us define a new powerdomain P”¢(L(N)) = {0, { Lrwv)}, {Luiwvy, [ 1} Ling(NV), L(N)}. Also,
P'o(L(N)) ={X | X € P"¢(L(N))}. P"c(last) is characterized by

| X | (P"c(last)) X |
0 0
{Lloan} {Lin}
{Loany, [1) [ 1N}
Lins (V) {in}
L(N) N

It 1s not difficult to see that

(P"o(last™")) {Ln}
= UX [ X eP"c(L(N)), (P"c(last)) X € {Ln}}
U0, {Lovy}, {Lovy, [1} Ling(N)}
Linf(N) U ﬁ
= Liy(N) 0 {[T}
That is, if last [ is defined, then [ cannot be the list with an undefined tail and [ cannot be the
null list. a

It is clear from the above example that the accuracy of our inverse image analysis will depend on
the accuracy of the forward analysis from which the inverse image analysis is derived. How precise
a forward analysis will suffice? The answer depends on the problem being studied and the programs
being analyzed. So far, we have only discussed tail strictness, without mentioning head strictness.
In the last program, we would like to know that in order for last [ to be defined, the last element
of [ cannot be undefined. In order to do this, we would have to define a powerdomain more refined
than P (L(N)).

In order to capture head strictness, we can define a Scott—closed subset L3y (V) to include
all the lists which either containing 1 or in N¥. We then have L;pf(N) C L3 (V). Also, all
elements in the Scott—open set Laj , (V) are of finite length and containing no L.

Two more examples from Dybjer [9].

Example 4.34 Function from € N — L(N) is defined as

from « = x:(from (z+1)).
P’'c(from) € P'c(N)e— P'(L(N)), is defined by
(X [(Pc(from)) X |
0 0
{Ln} || Ling (V)
N Linf(N)
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Suppose we expect the result of from z to be a finite-length list. We calculate

(P'o(from™")) Lins(N)
= UX [ X ePc(N), (Pc(from)) X C Linp(N)}
= %J{@a {J-N}: N}

This means that there is no € N which will make from z a finite-length list. a

Example 4.35 Function append € L(N) x L(N) — L(N) is defined as

append ([],9) = g,
append (x 1, 9) = x: (append | g).

P’c(append) € P'¢(L(N) x L(N))e— P'(L(N)), is characterized by

G
F | P'c(append) (F, G) Ling(N) | L(N)
Linf(N) Ling(N) | Ling(N)
L(N) Lins (V) | L(N)

Suppose we expect the result of append (f, g) to be a finite-length list.
We calculate

(P'o(append™ )) me(N)

UL(E, G) | (F, G) € P'c(L(N)) @ P'c(L(N)), (P'c(append)) (F, G) C Lins(N)}
U{(Ling (NV), L(NV)), (L(N), Ling(N))}

= (Lins(N), L(N)) N(L(N), Lins(N)).

That is, for the result of append (f, g) to be a finite-length list, f cannot have an undefined tail
and ¢ cannot have an undefined tail. a

5 Some Remarks

How expensive is it to carry out the inverse image analysis described here? Also, how expressive is
this analysis? In this section, We would like to make some remarks regarding these two questions.
We will also state the relationships between this work and previous works, and outline other possible
applications of this work.

5.1 The Time Complexity of Inverse Image Analysis

At first glance it seems that backward analysis by inverse images is very expensive. It is not so. The
cost of approximating an inverse image of a specific function f is only as expensive as computing
P'c(f) from the program text defining f.

To verify this claim, let us first estimate how expensive it is to get P'c(f). Suppose f is a
function from domain Dy to Dg. Then P'c(f) is a continuous function from P’¢(Dq) to P'c(Dg).
In the cases that the program defining f is recursive, we will need to find an element in the ab-
stract domain P’¢ (Do) — P'c(Dg) which serves as the least fixed point of a particular function
in the abstract domain (P'c(Da) — P'c(Dg)) — (P'c¢(Da) — P'c(Dg)). The worst cases time
complexity for this least—fixed—point—finding procedure is proportional to the height of the domain
P'c(Dqa) — P'c(Dg). It can be shown that the worst cases will need O(|P’¢(Da)|-height(P'c(Dg)))
time, where |P’¢(Dq)| is the size of P/ (D, ) and height(P'c(Dg)) is the height of P'c(Dg).

By Definition 3.20, the formulation of an abstract inverse image function of f is essential free if
P'c(f) is given. A naive computation of an inverse image will involve the enumeration of all the
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elements in the abstract domain P’'¢(Dg), which will take time O(|P'¢(«)|). But this is only as
expensive as (or, less expensive than) the O(|P/c(Dy)| - height(P'c(Dg))) time to compute P’'c(f).

Let us draw a table to compare the time complexity of an abstract interpretation and its inverse
image analysis. The “preprocessing” time in the following table refers to the time complexity to
compute P'c(f), or P'o(f~1), given the program text which defines f. The “query” time is the
time complexity to compute (P'c(f)) A, or (P'o(f™')) B, given A € P'c(D,) and B € P'o(Dg).

| || abstract interpretation | inverse image analysis |
preprocessing time || O(|P'c(Da)| - height(P'c(Dg))) | O(P'c(Da)| - height(P'¢(Dg)))
query time O(1) O(IP'c(Da)l)

Note that if an abstract interpretation is performed before an inverse image analysis, then the
preprocessing time for the inverse image analysis is reduced to O(1). Also note that we have greatly
simplified the computation model to make comparison in the above table. For example, the query
time for an abstract interpretation is not necessary O(1) because it depends on the structure of
P'c(f). However, since both the queries in abstract interpretation and in inverse image analysis
use the same approximation P’/c(f), it is reasonable to take the O(1) assumption to make the
comparison clear. We also implicitly assume that the ordering predicate, C, takes only O(1) time
for a fixed finite abstract domain.

5.2 The Expressive Power of Inverse Image Analysis

How expressive is the inverse image analysis described here? Before answering this question, let us
first make a brief review of backward analysis as in literature so far.

A contezt of a domain D as described in Hughes [11] can be viewed as a continuous function from
D to D. Given a program P which defines a continuous function f from domain D, to domain Dg,
and given a context cg of Dg, a backward analysis based on context will try to infer from program
P, as precise as possible, a context ¢, of D, such that

cgof=cpgofocy.

The projection notation as described in Wadler and Hughes [17] is similar to the context notation,
except that projections are required to be idempotent and less defined than the identity context.
Burn [5] further restricts projection to smash projection, which either maps an element in a domain D
to the element itself or maps the element to Lp, to conclude some interesting relationships between
abstract interpretation and projection analysis. It is clear that context notation is more expressive
than projection notation, and projection more expressive than smash projection.

One important characterization of previous works is that they often operate on lifted domains and
often require the functions between these lifted domain to be strict in the newly added least defined
element. Also note that for a context-based (or projection-based, or smash—projection—based)
backward analysis to work effectively, we must restrict the collection of contexts (or projections, or
smash projections) to a finite set. We must also order these contexts properly and approximate any
give context to an restricted context in the safe direction.

It turns out that Scott—closed/Scott—open subsets have the exactly expressive power of strict
smash projections.? Let domain lifted(D) be the lifted domain of a domain D. Then the poset of all
the strict smash projections from lifted(D) to lifted(D) can be shown to be isomorphic to Pe(D).
That is, each strict smash projection maps, beside Ljifeq(p), the elements in a lifted Scott—closed
subset of D to Lyfeq(p), and maps each element of the lifted complement Scott-open subset to
itself. Likewise, each Scott—closed subset of D defines a strict smash projection from lifted(D) to
lifted( D) which maps, beside Liittea(p), those elements in the lifted Scott—closed subset to Lyiteq(p),
and maps each element in the lifted complement Scott—open subsets to itself.

2 We would like to thank an anonymous functional programming researcher for pointing out this connection. Burn
probably knows this, although it is not stated in [5]. This is a direct consequence of P (D) 2 D — 2 (Barendregt [3,
page 20, exercise 1.3.11 (ii)]), where 2 is the two element domain.
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Although the Scott—closed/Scott—open powerdomain possess the same expressive power of strict
smash projections, it does have its advantage. One of the advantages is it leads to a natural extension
to higher—order cases. Previous works have not be able to give a successfully account of higher—order
backward analysis based on context (or projection, or smashed projection).

By using Scott—closed/Scott—open powerdomains, we are also able to explain some special con-
structions/restrictions in previous works. For examples, previous works lift a domain to include a
new least defined element which symbolizes the computation which leading to an “abort”. And the
functions between these lifted domains must be strict (or L-reflexive in some cases) on this newly
added least defined element. By using Scott—closed powerdomains, it becomes clear that the empty
set element () in domain P¢(D) and P’ (D) states exactly the “abort” situation; which simply says
that no element in D is appropriate. Also, for a continuous function f from domain D, to Dg,
it is shown that Pc(f) and P’¢(f) are (—reflexive (Lemma 3.24). It is a natural consequence in
the theory of Scott—closed/Scott—open powerdomain, not as a restriction in the settings of previous
works.

The relationship between forward analysis and backward analysis is clearer too. For example,
both Burn [5, page 154, Theorem 3.1] and we (Corollary 2.12 and 3.23) state the relationships
between forward analysis and backward analysis. We think our representation is simpler. The
restriction of 1-reflexive abstraction maps and strict functions are gone too in our development.
They are natural consequences of the theory of Scott—closed/Scott—open powerdomain.

Let us draw some tables to illustrate some simple contexts and their counter—parts in Scott—
closed/Scott—open powerdomains. The following table lists four contexts and their effects on the
elements in a lifted domain.

] Z c FAIL ABSENT | STRICT | IDENTICAL
lifted d,d £ Lp || Luvea(n, | lifted Lp | ifted d_ | lifted d

lifted Lp Liittea(p) | lifted Lp | Liisearp) | lifted Lp
Liifted(D) Liitted(n) | Liittea(n) | Liifted(n) | Liifted(D)

The following table shows how the four contexts are described by the approximating Scott—closed
powerdomain P’¢(D) = {D,{Lp},0} and its complement Scott—open powerdomain.

| || Scott—closed | Scott—open |

FAIL D [
ABSENT - -
STRICT {10} D—{Llp}
IDENTICAL |[ 0 D

Note that ABSENT is not a smash projection and it cannot be described by Scott—closed/Scott—open
subsets either.

5.3 Beyond Strictness Analysis

The inverse image analysis, as described so far in this paper, always assume that the abstract
interpretation is done on Scott—closed powerdomains; hence, the backward analysis is done on Scott—
open powerdomains. However, it is not difficult to develop an abstract interpretation based on
Scott—open powerdomains, and to have the backward analysis done on Scott—closed powerdomains.
This should not come as a surprise since a Scott—closed powerdomain P (D) is isomorphic to
the complement Scott-open powerdomain Po(D). We should emphasize that a Scott—open based
abstract interpretation is also a useful development. For example, it is quite useful in the constant—
propagation problem.

They are many possible applications of inverse image analysis, besides backward strictness anal-
ysis, since it is a generic scheme for doing backward analysis. Given any correct and computable
abstract semantic of a non-strict higher—order functional programming language, we are able to
transform it into a backward version that is also correct and computable. It is not difficult to image
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many non—standard semantics which correspond to some specific optimization opportunities. If there
is a correct (Scott—closed/Scott-open powerdomain based) abstraction of an specific non-standard
semantics, then, by using inverse image analysis, a correct backward version of the abstraction comes
for free.

6 Conclusion

We have proposed a method for performing backward analysis based on inverse images of abstract
higher—order functions. Our method differs from previous works on backward analysis [8] [11] [17] in
two major ways. First, our method deals with a program’s eztensional representation, rather than
its intensional (textual) representation. That is, for a program P, we analyze the inverse image of
the function fp, which is the semantic denotation of P, as well as approximation versions of fp.
This approach leads to a very clean concept for backward analysis. It frees us from the necessity of
analyzing the text of a program. However, a forward analysis of a program P, based on its text, is
needed before we perform backward analysis.

Secondly, we are able to do backward analysis on higher—order functions in a very natural way.
Also, we are able to capture the interdependency of arguments of a program regarding their effects on
the result of the program. We view this an improvement over previous works, which blend abstract
interpretation and backward analysis at the same time to get these results. Again, our approach
(performing forward analysis to get an extensional representation of a program, then performing a
backward analysis on the extensional representation) seems to be cleaner.
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A Bounded—-Complete w—Algebraic CPOs and
Scott—Closed/Scott—Open Powerdomains

A cpo (complete partial order) D is bounded—complete if, for all a,b € D, if there exists a ¢ € D such
that a Cp cand b Cp c¢, then a U b exists in D. If D is bounded—complete, it follows that every
countable non—empty subset of a directed subset of D has the least upper bound in D.

A cpo D is w-algebraic if the set of compact elements in D, written as K (D), is countable, and if
for every element d € D, theset {e |e € K(D),e Cp d}isdirected andd =| [{e | e € K(D),e Cp d}.

An element e in a cpo D is compact if for every directed subset X C D such that e Cp | |X,
we have e Cp x for some x € X.

We list here some technical definitions and basic properties of bound—complete w—algebraic cpos,
as well as the properties of Scott—-open and Scott—closed powerdomains. Some of their proofs can
be found in Barendregt [3], Gierz, Hofmann, Keimel, Lawson, Mislove, and Scott [10], Schmidt [14],
and Stoy [15].

Fact A.36 Let D be a domain. Then,

1. if A€ Pc(D), then A € Po(D);
2. if A€ Po(D), then A € Pc(D).

Fact A.37 Let D be a domain. Then,

1. Pe(D) is a lattice with X MY =X NY and X UY = X UY for every X,Y € Pc(D);
2. Po(D) is a lattice with X MY = X UY and X UY = X NY for every X, Y € Po(D).
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Furthermore, by the following standard result in lattice theories,

Fact A.38 Let D be a poset. If for every subset X C D, there exists [ X € D, then D is a complete
lattice with | |[X =T Ha | a€ D,z CTp afor all z € X}. ]

we are able to show the following.

Corollary A.39 Let D be a domain. Then,
1. Po(D) is a complete lattice with [W¥ = & and | J¥ = ({Y | Y € Pc(D),Y D A} for
every subset X' C P (D);

2. Po(D) is a complete lattice with [l¥ = [J&X and | JX¥ = |J{Y | Y € Po(D),Y C X} for
every subset X' C Po(D).
O

Remark A.40 Let D be a domain. Then, it is not necessary true that | |V = [J & for every subset
X C Pc(D); since [JX may not be in P (D). It is not necessary true either that | |[¥ = (X for
every subset X' C Po(D); since [| X' may not be in Po(D).

Also, we have Lp_(py =0 and Tp,py= D. It follows that Lp,py =D and Tp,py=0. O

Definition A.41 Let D be a domain. Let d € D and X C D. Define

1. |ld={z|z€e D,z Cp d};
2. 1d={« |2 € D,d Cp z};
3.1 X={y|lyele,eeX}
4. 1X={y|lyele,ze X}
5. Xe={Y | Y € Pe(D),Y D X}
O

| d is usually called the lower set of d; | d is called the upper set of d. Note that | d is Scott—closed
in D for each d € D. However, |d is Scott—open in D iff d is a compact element in D. Also, by
definition, X° is the least Scott—closed subset of D which contains X.

Some properties of lower/upper sets are stated in the following facts.

Fact A.42 If O is open in D, then O = |J O for some subset O C {Te | e € K(D)}. O

Fact A.43 Let D be a domain. Let z € D and X,Y C D. Let X be a directed subset of P¢(D).
Then,

1. if . € X° but z € | X, then z cannot be compact;
2. X CY, then X° Cp_(p) Y
3. Y = (UA)5
4. if X C YA and X is directed, then | |[X € | |X.
O
We now show that both Pe(D) and Po(D) are domains if D is a domain.
Lemma A.44 Let D be a domain. Then
1. Pe(D) is a domain with K(Pe(D)) = {JX | X is a finite subset of {| e | e € K(D)}};
2. Po(D) is a domain with K(Po(D)) = {E | E € K(Pc(D))}.
O
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ProOOF. We need to show that both P (D) and Po(D) are bounded—complete and w—-albebraic.
Since both P¢(D) and Po(D) are complete lattices, they are bounded—complete. It remains to show
that both P (D) and Po(D) are w—algebraic.

Let £={JX | X is a finite subset of {|e | e € K(D)}}.

1. We will show that & C K(P¢ (D)), € is countable, and for every X € Pe(D), X = | {F | F €
&, E Cpopy X} Then, it follows that Pc(D) is w—algebraic with K(Pc(D)) = €£.
Suppose £ € K(Pc(D)). Then there exists a E € £ such that E is not a compact element of
Pc(D). Therefore, there exists a directed subset &' C Pc(D) such that £ Cp_(py [|& but
E ZPC(D) X for every X € X. That is, there exists a compact e € D such that e € | |X but
e ¢ |JX. But, by Fact A.43, this cannot be true. Therefore, & C K(Pc(D)). It is easy to
show that & is countable, given that K (D) is countable.

It remains to show that for every X € Pc(D), theset {£ | E € £, Cp (p) X} is directed
and X = | {E | E€&,E Cpopy X} Let & ={E|E€& E Cp,(py X}. Itis clear that
& is directed. It suffices to show that X Cp_(p) [[€ to complete the proof. Suppose that
X Lp.(p) | |€0. Then, there exists a non—compact € X but & ¢ | |€. Since D is algebraic,
we have z = | |E, where E = {e¢ | ¢ € K(D),e Cp «} is directed. But £ C |J&y. Hence,
z=||F €| |&, a contradiction.

We conclude that Pe (D) is w—algebraic.

2. Let X = {X; | 1 <i < n} be a directed subset of Po(D). Let X' denote the directed subset
{X; | 1 <i< n}of Pc(D). We first show that [ |[X = [ |X.

Ljx
= WY [YePo(D)Y CNA}
MY | Y € Po(D),Y CNX}
MY’ | Y € Pe(D), Y’ C X}
MY | Y € Pe(D), Y CUX}
= Y'Y €Pc(D),Y DX}
_ u/fg

It remains to show that K(Po(D)) = {E | E € K(Pc(D))} = &. It suffices to show that
& C K(Po(D)) and for every X € Po(D), we have X = | [{E | E€ &, E Tp,py X}

Suppose that £ ¢ K(Po(D)). Then

there exists a £ € € such that E ¢ K(Po(D))

= there exists a E € € and a directed subset X' C Po(D) such that
E Epopy LA, bEt EUp,py X for every X € X

= there exists a I € £ and a directed subset X' C Po(D) such that
E Cpo(n) LJX, but & Zp. (D) X for every X € X

= there exists a F € £ and a directed subset X’ C P (D) such that
E Epgy LA, but £ Zp_py X' for every X' € A"

But this cannot be true because each element in £ is a compact element of Pe (D).

It remains to show that for every X € Po(D), we have X = | [{E | F € EE Crop) X}

Let & = {E | E € g, E Cp,p)y X} It suffices to show that X Cp,p) || to complete
the proof.
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Since X € P¢(D) and Pc(D) is w—algebraic with K(Pc(D)) = &, we have

Crem) LHE | E €& E Epony X}
Crem) L{E | E€EE Ty X}
E’PC(D) l_l{va | E e S,E E'po([)) X}
Crop) Lo
Cre) Lo
Cron) L&o-

JU U 44U
R

The following two facts deal with continuous functions between domains.

Fact A.45 Let D, and Dg be domains. Then f is a continuous function from D, to Dg iff

f x:l_l{f e|e€K(Dy),e Ep, z},
where z € D,,. 0O

Fact A.46 D, — Dg, the continuous function space from D, to Dg, is a domain if both D, and
Dp are domain. a

B Image Functions and Inverse Image Functions

Lemma B.47 let D, and Dg be domains. Then both Pc(f) and Po(f~!) are well-defined and
continuous for every continuous function f € D, — Dg. a

PrROOF. By Definition A.41, Pc(f) is well-defined. By Fact 2.5, Po(f~1) is well-defined.
It remains to show both P¢(f) and Po(f~1) are continuous.

1. In order to prove that Pc(f) is continuous, it suffices to show that

(Pe()) | € Srews || Pelh{ED,

where £ = {E' | E € K(Pc(Da)), F Cpop,) X}
Since | (f{UE}) CU(Pc(f)) {€}), by Fact A.43, we have

rH{J ) Crewy (JPe(s ) {EN) =| | Pc()){E}.
Also, we have (Pc(f)) LIE = (F{LIE})°. Therefore, it suffices to show that

FALED Srewa FULEN

to complete the proof.
Suppose that it is not true. Then, there exists a b € (f{J€})° but b & (F{UE}D)".
Since Dg is w—algebraic, we let b = | |B, where
B = {e|eeK(Dg f{|_|€} ,ei Cp, b}
= {e; | es € K(Dg),e; € f{l_lg} e; Cp, b} (by Fact A.43).

For each e; € B, we know that ¢; = f a; for some a; € | |€. Again, since D, is w—algebraic,
we let a; = | |A;, where

A = Heijleij € K(Do)eij €| |€, e Co. ai}
= {em' | €; € K(Da),eiyj S Uf,em Cho, ai} (by Fact A43)
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Hence, f{A;} C f{lJ&} for each A;. Therefore, we get | | f{A4:} € (f{UUE})".

Since f is continuous, we have e; = f | |A; = || f{A:} € (F{UE})". Hence, B C (F{UED".
And we have b= | |[B € (f{U&})", a contradiction.

Dy =] ®Po(r— ¥},

2. We want to show that

for every directed subset Y C Po(Dﬁ).
By Fact A.42, each Y € Y can be written as (J{Te | e € K(Dg),e € Y}. We then have

LY

WY | Y € Po(Dg), Y CNV}

HY [ Y €Po(Dg),Y C UH{Te|e€ K(Dg),e € NV}}
U{Te | e€ K(Dg),e e NV}

On the other hand, we have

U (Po(f=")){Y}
= WY Y ePo(Dp)Y

SN (Po(f~{V}}
ULY | Y € Po(Dp), Y C £

{NY1-

Hence, it suffices to show that

(Po(f™) (el ee K(Dg),ee (V=Y | Y € Po(Dp), Y C f7H[V}}

to complete the proof.

Let e, be a compact element in D, . Then,

€ (Po(F1) Ul | e € K(Dy),e € 1Y)
there exists ey, € K(Dg) such that e, Cp, f e and e, € (Y
there exists e, € K(Dg) such that f ey € Tey and Te, € f7 {ley} C FH{NV}
e € Y | Y €Po(Dp), Y C FH{NV}

teo

Since both of the above two sets are Scott—open, by Fact A.42, we conclude that they are the
same.

%

Lemma B.48 Let D, and Dg be domain, f € D, — Dgs, and B be closed in Dg. Then

{¢ | @ € Do, fz € By =| [{X | X € Pe(Da), (Pe(f))X Epen,) B}

O

Proor. Let X = {X | X € Pc(Da), (Pc(f))X Cpo(ps) B} Wewill show that {z | € Do, fx €
B} C||X and | |J¥ C {x | z € D,, fz € B}.

We first note that X is closed in Pe(Dy ) by Corollary 2.6. We will show that X is also a directed
subset of Pc(Dy,). Therefore, | | € &'. By the definition of &', we then have (Pc(f))(L|X) Cro(ps) B.
That is, (Pc(f))(L|X) C B.

To show that & is a directed subset of Pc(Dy,), we observe that for every Xg, X; € X,

o XoUX; = XgUX; is closed in Pe(Dy) and
e (Pc(f))(Xol X1) = (Pc(f)XoU(Pc(f))X1 Cron, B

21



That is, Xo U X1 € X; hence, X is directed.

Suppose that a € | |[X. Then fa € {fax |2 € Do,z € | JX¥}. But {f & | 2 € Dy, © € | |X}
(Pc(MN(]X) € B. We then have f a € B; hence, a € {& |« € Do, f « € B}. That is, | |¥
{z | x € Dy, fx € B}.

<
<

Suppose that a € {z | « € D,, fx € B}. Then (Pc(f)) la Cp.(p,) B. By the definition of X,

we have |a € X'. Therefore, |a Cp.(p,) [|X; hence, a € | |X. That is, {z | x € Do, f € B}
LY.

This completes the proof.
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