
Constrained Surface Parameterization Methods with

Guarantees

by

Hanxiao Shen

A dissertation submitted in partial fulfillment

of the reqirements for the degree of

Doctor of Philosophy

Department of Computer Science

New York University

September, 2022

Professor Denis Zorin

Professor Daniele Panozzo

© Hanxiao Shen

all rights reserved, 2022

Acknowledgements

It would be impossible for me to finish this dissertation without the help and encouragement from

all my friends, colleagues, and advisors. First, I would like to express my deepest gratitude to my

two great advisors, Prof. Daniele Panozzo and Prof. Denis Zorin, for leading me through the

journey and providing guidance with superior expertise and patience. And to my dissertation

committee members, Prof. Marcel Campen, Prof. Ken Perlin, and Prof Claudio Silva, for their

time and patience. I would also like to express my sincere gratitude to my friends Zhe Wang,

Xiaoyang Lu, Xiaoyang Fang, and Yuchang Chen. Without their company, my life would be too

dull to endure. And I am thankful to my great collaborators Zhongshi Jiang, Leyi Zhu, Ryan

Capouellez, and Xifeng Gao for valuable discussions and warmth encouragement. Also, I would

like to thank all the members of the Geometric Computing Lab at NYU. It is my honor to be a part

of this fantastic family. Last but not least, I want to thank my family, especially my parents, who

are always there for me. I am in their debt forever for all they have sacrificed for me to pursue

my dream.

iii

Abstract

Surface parameterization for piecewise-linear surfaces is a fundamental problem in computer

graphics and geometry processing. The generation of surface parameterization is a key step

in numerous applications like texture mapping, remeshing, quadrangulation, inter-surface map-

ping, and shape-analysis. Due to its popularity, the robustness of mapping generation methods

plays a major role in its applicability. In addition, depending on the specific requirements of the

application at hand, various formulations of constraints are used to control or guide the param-

eterization. Typical examples of the constraints are point constraints, curvature constraints, and

topological constraints. In many practical cases, to ensure that the input assumptions of down-

stream algorithms are satisfied, the constraints, such as need to be imposed exactly (as opposed,

e.g., to approximation via penalties). In this work, we investigate different constraint formula-

tions suitable for various applications and present algorithms with guarantees to generate pa-

rameterization fully satisfying these constraints. In the first part of this thesis, we develop an

algorithm that solves the classical problem of mapping a disk domain with boundary constraints;

in the special case of domains with convex boundary, it improves, in terms of robustness, on the

classical Tutte’s algorithm. Utilizing it as a building block, we design a parameterization method

that supports arbitrary positional constraints. In the second part, building on recent develop-

ments in the theory of discrete uniformization, we develop a highly robust algorithm for discrete

conformal maps that satisfy prescribed curvature constraints. In the third part, we provide a con-

structive proof for the existence of globally seamless parameterization that matches admissible

iv

user-prescribed cone position and curvature constraints. Lastly, we generalize this to constraints

on holonomy angles on a homology basis of loops, which fully capture the topology of seam-

less parameterizations. This method yields parameterizations that are very close to field-aligned

parameterizations obtained using commonly used methods but, in contrast to these methods,

guarantees the existence of solution satisfying all constraints.

v

Contents

Acknowledgments iii

Abstract iv

List of Figures xi

List of Tables xxiv

1 Introduction 1

1.1 Outline . 1

2 Related work 7

2.1 Bijective Maps . 7

2.1.1 Planar Embedding of Graphs and Meshes 7

2.1.2 Progressive Meshes . 8

2.1.3 Distortion-Minimizing Mappings . 9

2.2 Conformal equivalent metrics . 11

2.3 Seamless Parameterization . 13

3 Progressive Embedding 17

3.1 Introduction . 17

3.2 Progressive Embedding . 20

vi

3.2.1 Analysis of Tutte Embedding in Floating Points 20

3.2.2 Progressive Embedding . 22

3.3 Matchmaker++ . 26

3.4 Results and Discussion . 29

3.4.1 Progressive Embedding . 29

3.4.2 Matchmaker++ . 31

3.5 Limitations . 32

3.6 Proofs . 32

3.6.1 Existence of the Collapse Sequence . 33

3.6.2 Vertex split . 37

4 Efficient and Robust Discrete Conformal Equivalence with Boundary 45

4.1 Introduction . 45

4.2 Background . 47

4.2.1 Conformal Equivalence . 48

4.2.2 Dynamic Triangulation . 49

4.2.3 Evolution Step . 52

4.2.4 Hyperbolic Metric Approach . 54

4.3 Algorithm . 55

4.4 Boundaries . 59

4.4.1 Double Cover . 59

4.4.2 Symmetric Meshes . 61

4.4.3 Symmetric Flips . 64

4.4.4 Symmetric Metric . 67

4.4.5 Restriction to Single Cover . 68

4.5 Continuous maps from discrete metrics . 68

vii

4.5.1 Cusped Hyperbolic Metric on Meshes . 69

4.6 Evaluation . 73

4.6.1 Validation . 74

4.6.2 Comparison . 77

4.6.3 Accuracy . 78

4.6.4 Failure Modes . 79

4.7 Proofs and additional Lemmas . 80

4.8 Double Cover: Formal Definition . 82

4.9 Conclusions and Future Work . 82

5 Seamless Parametrization with Arbitrary Cones for Arbitrary Genus 91

5.1 Introduction . 91

5.2 Seamless Parametrization Construction . 95

5.2.1 Cutting to Disk(s) . 97

5.2.2 Cone Metric with Rectilinear Boundary 99

5.2.3 Metric to Rotationally Seamless Parametrization 100

5.2.4 Seamless Parametrization by Padding . 102

5.2.5 Length Equalization . 105

5.3 Equalizable Cut Graphs . 107

5.3.1 Hole Chain . 107

5.3.2 General Case (Genus 3+) . 109

5.3.3 Special Cases (Genus 0, 1, 2) . 110

5.4 Implementation . 112

5.4.1 Cut Graph . 113

5.4.2 Conformal Map . 115

5.4.3 Equalization . 117

viii

5.4.4 Flattening . 118

5.4.5 Padding . 118

5.4.6 Distortion Optimization . 119

5.5 Examples . 120

5.6 Conclusion and Future Work . 120

5.7 Illustrative Example . 121

5.8 Proofs of Equalizability . 124

5.8.1 Genus 3+ . 124

5.8.2 Genus 1 . 130

5.8.3 Genus 2 . 130

5.9 Proof of Cone Metric Existence . 131

5.10 Map Padding . 133

6 Global Parameterization from Prescribed Holonomy Signatures 143

6.1 Introduction . 143

6.2 Existence of Seamless Parametrizations . 146

6.3 Holonomy Signature . 148

6.3.1 Relation to Cross-Fields . 151

6.4 Approach Overview . 152

6.4.1 Algorithmic Outline . 154

6.5 Holonomy-Constrained Cut Graph . 154

6.5.1 Field-Guided Hole-Chain . 155

6.5.2 Homology Basis Extraction . 156

6.5.3 Segment Rerouting . 157

6.6 Seamless Parametrization . 160

6.6.1 Cut Graph aligned Metric . 160

ix

6.6.2 Padding . 161

6.6.3 Optimization . 162

6.7 Evaluation . 162

6.7.1 Comparison . 163

6.8 Conclusion and Future Work . 164

6.9 Proof of Proposition 1 . 165

6.10 Proof of Proposition 2 . 166

7 Conclusion 173

Bibliography 175

x

List of Figures

1.1 Map introduces flipped triangle, i.e. the orientation of the red triangle is not pos-

itive, or causes overlapping while maintain locally injective. 3

1.2 Positional constraints enables users to control the location of a set of vertices

(control points, blue) on the plane. 3

1.3 A sphere mesh is cut open along the red edges then parameterize. Notice there

are discontinuity across the edges, e.g. the parametric lines do not match. 4

1.4 Parameterization example where the parametric lines are aligned with green fea-

ture curve. 6

1.5 Conformalmapping generatedwith randomly prescribed geodesic curvature along

the boundary, color visualized with per-vertex scale factor which induces confor-

mal metric. 6

3.1 The Tutte embedding of this Hele-Shaw polygon (left) contains 46 flipped trian-

gles, due to numerical rounding errors. Our progressive embedding (right) pro-

duces a valid embedding, without any inverted element andwith lower distortion.

The colors represent the distortion of the triangles, measured using the symmetric

Dirichlet energy. 18

xi

3.2 A selection of failed Tutte’s embedding (left) and our bijective progressive em-

beddings (right). Note that the progressive embeddings have a much lower area

distortion (colors). 21

3.3 A progressive embedding (right) of the retinal model (left) is generated starting

from a randomized initial parametrization (middle). The red color indicates the

amount of isometric distortion, and yellow indicates inverted elements. Note that

the model is cut open to have disk topology. 22

3.4 Collapsing 𝑣𝑚 to 𝑣0 and the corresponding fans of triangles. 23

3.5 The two admissible insertion positions from Lemma 3.11. The dark region on the

left shows the valid positions for 𝑣𝑚 while fixing 𝑣0. The right case is the opposite.

Our algorithm opts for the left case for stability, since the calculation of the valid

sector in the right case involves intersection of the prolonged edge (dashed lines)

and the 1-ring neighbors. We pick the valid sector as the one that has an inner

angle sum smaller than 𝜋 . 39

3.6 Max of Symmetric Dirichlet energy per triangle at the insertion stage of the arch

model. Every vertex insertion can decrease the local quality of the mesh, which

is then restored using smoothing. Every peak in the energy graph corresponds to

a vertex insertion. 39

3.7 Starting from a triangulation generated from only boundary segments and in-

ternal constraint points (left). Instead of treating triangles as sub-domains as in

[Kraevoy et al. 2003], we merge triangles to convex polygons (middle). Then we

find paths (bold, right) connecting constraint points to the boundary without new

cycles, and prioritize their tracing. 39

3.8 Three UV maps generated by OptCuts [Li et al. 2018] using an initial embedding

created by our algorithm. OptCuts fails to process bothmodels if Tutte embedding

is used instead. 40

xii

3.9 Two seamless maps with hard positional constraints and fixed boundaries are

generated by our algorithm. 41

3.10 A selection of locally injective parametrizations computed by our algorithm by

fixing 3 random points to 3 random points in UV space. 42

3.11 Our parametrizations (bottom) have no flipped elements and have a higher quality

than those generated by [Kovalsky et al. 2015] (top) using the same positional

constraints. 43

3.12 To stress test the robustness of MatchMaker++, we parametrize complex surface

meshes inside a space filling curve, with 3 additional random positional con-

straints in its interior. 43

3.13 A failure case of our implementation in double precision floating point: a triangle

without possible points inside. 𝐴, 𝐵, and 𝐶 has coordinates (0, 1 + ℎ), (−𝑏/2, 1),
and (𝑏/2, 1) resp., where ℎ = 2−53(The illustration is not to scale.) 44

3.14 Neighbors of 𝑣0 as described as in Lemma 3.2 . 44

3.15 Neighbors of 𝑣0 as described as in the proof Lemma 3.3, notice that 𝑣 𝑗+1 is enclosed

in Δ𝑣0𝑣 𝑗𝑣𝑛 , so a connection to a previous vertex (red dotted line) is forbidden. . . . 44

4.1 Left: flip-on-degeneration. Right: flip-on-Delaunay-violation. Alongside a con-

ceptual illustration of the valid regionΩ (light blue) andDelaunay regionΔ (white)

is shown (cf. section 4.2.2), containing the current point 𝒖 (cross mark) and chang-

ing due to the flip. 49

4.2 Ptolemy flip of an edge 𝑒𝑖 𝑗 shared by two triangles forming an inscribed quadri-

lateral, i.e., a Delaunay-critical edge. 52

xiii

4.3 Energy (blue; mean (20202.12) subtracted) and projected gradient (red) along a

descent direction 𝒅. Notice that the numerical noise in the energy computation

dominates the actual change in energy, making it less suitable to be a measure of

progress in the line search. By contrast, the sign of the projected gradient (red)

can be determined much more precisely. 56

4.4 Edge flips across the symmetry line can lead to triangulations that are no longer

combinatorially symmetric. 61

4.5 Symmetric edge flips involving faces from 𝐹 𝑠 (light blue), crossing the symmetry

line (dashed). Faces from 𝐹 1 and 𝐹 2 are colored dark blue. The configurations are

shown with co-circular vertices, though combinatorially flips can be performed

in any state. Note that the light blue quads’ vertices, however, are necessarily

co-circular by symmetry, regardless of metric. 65

4.6 Left: Poincaré model. Center: Beltrami-Klein model, both with an ideal triangle.

Note that in the Beltrami-Klein model it forms a Euclidean triangle. Right: Two-

triangle chart. 69

4.7 Mapping a point through a single flip via a two-triangle chart. 72

4.8 Visualization of conformal maps, implied by conformal cone metrics, on some

of the closed models with angle prescriptions from the dataset of [Myles et al.

2014]. The numbers indicate the scale range (difference of maximal and minimal

conformal (natural) logarithmic scale factor 𝒖) for each model. Cones are marked

by red and green dots; texture jumps due to cones are marked red. The textured

map and scale visualization follow the description from 4.6. 73

4.9 Decay of maximum angle error ∥�̂�−𝚯∥∞ over the iterations of the Newton algo-

rithm. Each graph represents one of the closed-surface instances from the dataset

of [Myles et al. 2014]. 74

xiv

4.10 Like 4.9, but each graph represents one of 1000 random test instances (again with-

out boundary) . 75

4.11 Final residual angle error for the extreme case of concentrating all curvature in

a single cone on an 𝑔-torus surface (genus 𝑔). For the genus 12 case, where the

residual error is still benign, the conformal scale factor spans 232 orders of magni-

tude. For the problematic genus 13 case it surpasses 262. By increasing numerical

precision (4.6.3), this can be remedied; for instance, with 200-bit precision, the

𝑔 = 150 case converges to below 10−29, with 400-bit precision, the 𝑔 = 400 case

to below 10−65 (with the scale factors spanning 611 orders of magnitude). (To

reduce numerical issues in this extreme experiment, the initial step size _ was

halved until the range of the coefficients of _𝒅 was less than 10.) 76

4.12 Visualization of conformal maps, analogous to 4.8, on some of the models with

boundary from the dataset of [Myles et al. 2014]. The boundary geodesic curva-

ture is prescribed to be zero, therefore the angle between texture grid lines and

the boundary is constant per boundary loop. 76

4.13 Top: Input triangulation. Second row: Resulting intrinsic retriangulation, when

concentrating all curvature on a single vertex (Θ = 22𝜋); it is Delaunay under the

computed conformal metric (with curvature −20𝜋 at the central vertex). Third

row: overlay triangulation [Fisher et al. 2007], allowing for a simple represen-

tation of the implied conformal map, linear or projective per triangle. Bottom:

Visualization of implied conformal map using a hierarchical grid texture (span-

ning 25 levels in this extreme case). 85

4.14 Decay of maximum angle error ∥�̂�−𝚯∥∞ over the iterations of the Newton algo-

rithm. Each graph represents one of the instanceswith boundary from the dataset

of [Myles et al. 2014]. 85

xv

4.15 Scatter plot showing the numbers of different types of symmetric flips during the

algorithm relative to the range of prescribed random boundary curvatures. Each

dot represents one type of flips for one of 1000 test instances. 86

4.16 Visualization of conformal maps with cones, analogous to 4.8, on models cut to

disk topology using a cut graph (black). Due to the prescribed geodesic curvature

along the cut boundary, the cut is axis-aligned under the map. Notice that such

enforced alignment can easily imply a broad range of scales, which is challenging

numerically. 86

4.17 Decay of maximum angle error ∥�̂� − 𝚯∥∞ over the iterations of the Newton al-

gorithm. Each graph represents one of the closed instances from the dataset of

[Myles et al. 2014], with prescribed curvature along a cut graph. Left: double pre-

cision. Right: extended precision (100 bits mantissa). 87

4.18 Scatter plot showing the number of flips and the run time (to reach Ytol = 10−10),

for the described Delaunay-flip method (blue) and the degeneration flip method

(red). Each dot represents one of 1000 test instances. Dashed lines mark the av-

erage run time, 0.4s and 29.6s, respectively. 87

4.19 Final residual angle error ∥�̂� − 𝚯∥∞ for extreme cases (one very small or very

large target angle, on a sphere with 1K vertices), comparing the Delaunay-based

algorithm (blue) and the degeneration flip algorithm. [Campen and Zorin 2017b]

(red). 88

4.20 Scatter plot showing residual angle error ∥�̂� − 𝚯∥∞ (after at most 50 Newton

steps) relative to the range of logarithmic conformal scale factors 𝑢. Each dot

represents one test instance, run using floating point numbers with a mantissa of

53 bits (double), 75 bits, 100 bits, 125 bits, 150 bits (MPFR). 89

xvi

4.21 Heatmap showing the final error ∥�̂� −𝚯∥∞ for spheres of varying resolution (x-

axis) with some ratio (y-axis) of the vertices set to target angle 3 and the rest to a

constant target angle <2𝜋 such that the Gauss-Bonnet theorem is satisfied. Left:

double precision results when the two angle values are distributed in two clusters.

Center: double precision results when the two angle values are distributed ran-

domly over the sphere. Right: extended precision (150 bits mantissa) results with

the same distribution as left. (For this experiment, the threshold for the gradient

norm decrease was set to 0 and, to reduce the run time in this particular case, _

was chosen adaptively, initially halved until the range of coefficients of _𝒅 was

less than 10.) . 90

4.22 Projected gradient 𝒅⊺𝒈(𝒖 + _𝒅) along the normalized Newton descent direction

with step length _ = 0.0217745227 + Δ. 90

5.1 Method overview: a) Cut graph on a surface, consisting of handle loops, connec-

tors, and one additional path. b) Conformal parametrization which maps the cut

graph’s branches to axis-aligned straight segments in the parametric domain and

respects prescribed cone singularities (red and blue dots). This map is only rota-

tionally seamless, i.e., rotational components of transitions across cuts are 𝑘𝜋/2-
rotations, 𝑘 ∈ Z, but scaling is arbitrary. c) This map modified by map padding;

while locally highly distorted, it is actually seamless, there no longer is a scale

jump. d) Result after optimization for low isometric distortion. 92

5.2 Zoom-ins of Figure 5.1. Left: cut-aligned conformal map. Middle: padded map,

with high distortion, but seamless and locally injective. Right: map optimized for

low isometric distortion. 93

5.3 Visualization of a parametrization on a surface near a cut branch (red). Left: ro-

tationally seamless. Right: seamless. 96

xvii

5.4 Two different type of nodes, degree 4 (left) and degree 3 (right), are shown. 98

5.5 Degree 4 cut graph on a surface of genus 𝑔 = 3. This cut graph has 10 branches

and 5 degree 4 nodes, thus 20 corners (marked black). The cut graph consists of

loops (red) and connectors (shades of blue) (cf. Sec. 5.3.1) 99

5.6 a) Generic local view of the boundary of map 𝐹 (𝑀𝑐), with straight segments and

right-angle corners. b) A rectangular strip along a segment is marked. c) The

strip is stretched outwards, effectively increasing the length of the two adjacent

segments left and right of the central segment. d) This padding operation can be

applied in sequence to further segments. 100

5.7 a) Global visualization (without cuts to cones) of the rectilinearmap, where straight

segments appear as curved arcs (as explained in Sec. 5.2.3). b) Padding (analogous

to Fig. 5.6) of segment 1, increasing the lengths of segments 0 and 2. c) Padding

of segment 2, increasing the lengths of segments 1 and 3. This can be continued

to adjust all segments’ lengths. 102

5.8 Illustration of strip definition and stretch map applied to perform padding of a

segment 𝑠 𝑗 by padding width𝑤 𝑗 , cf. Sec. 5.2.4. 103

5.9 The length of segment 𝑖 is affected by the padding of the two adjacent segments:

the original length ℓ𝑖 changes to ℓ𝑖 +𝑤prev(𝑖) +𝑤next(𝑖) 136

5.10 Schematic depiction of a chain of holes for a genus 𝑔 = 4 surface: circles are

holes (obtained by cutting the surface along 𝑔 loops), straight line segments are

the sides of cut paths (connectors) between these holes. Together, the hole chain

cuts the surface to a topological disk (blue), i.e., a sphere with one hole (white,

bounded by the black curve). An example of a hole partner correspondence is

indicated by dashed arcs; depending on the chosen ordering of holes in the chain,

these partner arcs will look different. 136

xviii

5.11 Examples of extra paths (bottom) that could be added to the hole chain cut graph.

The red path is not an admissible extra path because it splits the surface into two

components with𝑚0 = 4 and𝑚1 = 8𝑔 −𝑚0 = 28 corners (cf. Sec. 5.3.2). 136

5.12 Cut Graph pattern for genus 1 surfaces, shown abstracly (left) and on an example

surface (right). The surface is partitioned into a 2-corner region (enclosed by blue

and red paths) and a 6-corner region. 137

5.13 One of the cut graph patterns for genus 2 surfaces. Segments 𝑖 and 𝑖′ are mates,

i.e., correspond to a common cut graph branch. The surface is partitioned into a

5-corner region (center) and a 11-corner region (surround). 137

5.14 Example of the holonomy-aware extra path computation. Left: a tree of cones

with computed 𝜌-values is shown as black dashed lines. Path 𝛾 from boundary

to boundary, crossing two tree branches, has a holonomy value
∑

𝛾 𝜌 = 𝜋/2. This
path is closed along the boundary by 𝛽 (with

∑
𝛽 𝜌 = 0), forming𝑚 = 3 corners.

As
∑

𝛾+𝛽 𝜌 = 𝜋/2 and 𝑚 = 3 conforms with Gauss-Bonnet (5.1), the path 𝛾 is

admissible. Right: to illustrate that the tree of cones can be chosen arbitrarily,

here the same situation is depicted with a different tree. We have
∑

𝛾 𝜌 = 0 and∑
𝛽 𝜌 = 𝜋/2, thus again ∑

𝛾+𝛽 𝜌 = 𝜋/2. 137

5.15 a) Mesh near a segment (top) to be padded. b) The strip to be stretched (green)

is formed by inserting a straight line into the triangulation (by splitting edges

at the intersections), so close to the segment that no vertex is contained. c) The

strip is stretched outwards by displacing the vertices that lie on the segment by

the desired padding width. d) The vertices on the segment are translated laterally

according to 𝜙 for pointwise seamlessness. 138

xix

5.16 Left: example map generated on a topologically complex surface. Right: Example

map generated with geometrically non-meaningful cone prescription (here: 50

randomly distributed cones of curvatures 𝜋 and −𝜋) to illustrate the method’s

robustness. 138

5.17 Visualization of a variety of locally injective seamless parametrizations obtained

using our method. Note that the cut is visible in the checkerboard texture because

the seamless parametrization is not a quantized seamless parametrization. 139

5.18 A locally injective seamless map generated on an 80-torus. 139

5.19 Top left: genus 1 surface with cut graph consisting of 4 branches (yellow, green,

red, blue). The cut graph cuts the surface into two components with 2 and 6

corners, respectively, i.e., with a total of 8 boundary segments (two corresponding

to each branch). Top right: schematic depiction of the two components under

a cone metric with rectilinear boundary consisting of straight segments (here

shown as curved arcs) meeting at right angles. Middle left/right: planar flattening

of the two components implied by the metric (after cutting to cones – dashed).

The numbering of segments is used to set up the system for padding widths 𝑤𝑖 .

Bottom left/right: the padded flattening (padding, indicated by arrows, in white). . 140

5.20 Illustration of a hole segment 𝑞 between two segments of an odd-couple𝑑–𝑒 (here

with 5 hole segments between them). At 𝑐4 an exemplary extra path connection

to the hole chain is depicted. 141

5.21 Left: boundary 𝜕𝐹 (𝑀𝑐) (black) laid out in the plane after cutting to cones (blue).

Red indicates a cone with 𝑘𝑖 = 8, i.e., curvature Θ̂𝑖 = −2𝜋 (parametric angle 4𝜋)

for which a cut is superfluous. Right: The segment gap ∆ vanishes if all cones are

fourfold, thus 𝜕𝐹 (𝑀𝑐) is a rectilinear polygon. 141

xx

5.22 Special cut graph patterns to be used to guarantee equalizability for genus 2 sur-

faces, depending on whether a subset of cones compatible with a region (shaded)

with 2, 3, 5, 6, or 7 corners is present. 142

6.1 Illustration for Prop. 13 concerning quasi-additivity of holonomy numbers on loops. 146

6.2 Rerouting (ccw, twice in a row) of a loop around a cone of index 1
4 147

6.3 The holonomy angle ^𝐹𝛾 (def.2) of a dual loop (cyclic triangle strip) under a metric

𝐹 is the sum of signed inner angles (yellow and orange). Up to multiples of 2𝜋

(if the loop makes multiple turns) this corresponds to the angle between first and

last edge when laying out the strip in the plane. 149

6.4 Algorithm overview: (a) Example input signature loops (yellow and green) and

cones (red and blue). (b) Loops of an equivalent signature obtained by strategi-

cally modifying this input; notice that the yellow loop takes a different path be-

tween the cones. (c) Conformal parametrization respecting the prescribed cones

and aligned with the cut graph that is formed by the loops; due to this alignment,

it has a specific holonomy pattern along the loops. (d) The map is modified by

parametric padding to make it seamless while preserving its holonomy proper-

ties. (e) Finally, the map can be continuously optimized for low distortion and

possibly cross field alignment, naturally within its topological class. 150

6.5 Example of two equivalent holonomy signatures. Red and blue cones have index

−1
4 and +1

4 , respectively; the holonomy numbers of the green and yellow loops are

indicated. Note that from left to right, the loops are essentially deformed across

a cone (the leftmost red cone), and this affects the loops’ associated holonomy

numbers accordingly. 168

xxi

6.6 A hole-chain cut graph 𝐺 , as used in [Campen et al. 2019]. As an example, the

contained loop that is highlighted in red, because it makes two left turns (in ccw

sense), will have holonomy number 2
4 in the parametrization constructed by that

method. 168

6.7 Two equivalent holonomy signatures, based on different signature loops; the dif-

ferent associated holonomy numbers are not shown in the figure. Both are the

result of rerouting so as to achieve the required holonomy pattern, therefore the

resulting optimized seamless parametrizations based on the cut graphs formed by

these loop systems are identical (up to seamless transformation, due to a differ-

ently located cut graph). 169

6.8 Illustration of padding operation (in parameter domain). A thin strip along the top

straight cut segment (with no interior vertices) is stretched in vertical direction

by its required padding width. Then, vertices are shifted horizontally to match

their mates across the cut. 169

6.9 Comparison of seamless parametrizations on surfaces of non-trivial topology,

computed by the bare SP method [Campen et al. 2019] (row b, e) and by our

method (row d, f). The used cut graphs are shown in red, the initial hole-chain

used for SP (row a, e) and the rerouted version used by our method (row c, f).

Notice their topologically differing structure (i.e. they wind around some handles

or cones differently), as well as the higher distortion of the results by the bare

SPmethod due to being unable to properly align to the underlying smooth cross-

field for topological reasons. Notice that this distortion cannot be reduced further

by continuous optimization; there are topological obstacles. 171

6.10 Quasi-additivity of holonomy numbers, on the same example as in fig. 6.1. The

inset on the right is a blow-up of the spot circled on the left. 172

xxii

6.11 Example of iteratively rerouting one loop around two singularities. Left: initial

state with given loop 𝛾𝑖 and two paths 𝛼 𝑗 , 𝛼′𝑗 connecting to the singularity 𝑣 𝑗 .

Center: reroute around singularity 𝑣 𝑗 and find paths 𝛼𝑘 𝛼′𝑘 for the next singularity

𝑣𝑘 . Right: result after rerouting around 𝑣 𝑗 and 𝑣𝑘 172

xxiii

List of Tables

3.1 Statistics of the input and output meshes in the planar embedding test (Section

3.4.1). From left to right: Name of the dataset, number of vertices, number of

faces, number of invalid elements (positive area, but with energy above 1e20) after

Tutte embedding, number of flipped elements after Tutte embedding, progressive

embedding (Section 3.2) running time in seconds. 29

3.2 Statistics of the input and outputmeshes of theMatchMaker++ test (Section 3.4.2).

From left to right: Name of the dataset, number of vertices, number of faces, num-

ber of invalid elements (positive area, but with energy above 1e20) after Tutte

embedding, number of flipped elements after Tutte embedding, progressive em-

bedding (Section 3.2) running time in seconds, and MatchMaker++ (Section 3.3)

running time in seconds. 30

xxiv

4.1 Combinatorial updates required to perform symmetric flips of all relevant con-

sistent types. The change to N is given by listing the orbits (halfedge cycles

forming faces) of N created by the flip. The employed indexing is depicted in

the figures left and right. Similarly, we define changes to 𝑅 viewing it as a per-

mutation with orbits of length 1 or 2, and listing the sets of orbits being replaced.

Finally, rather than deleting and adding new halfedges on demand, for implemen-

tational efficiency we can associate a superfluous pair of halfedges, eliminated by

a quad-creating flip, with the quad (listed behind the bar). 88

6.1 Statistics about the number of cut segment reroutings performed. It is further

split into the numbers of field-guided and fallback reroutings. 170

6.2 Residual energy (normalized by surface area) for the models from fig. 6.9. The

columns “without rerouting” correspond to the direct application of SP, without

regard for global holonomy. From the last column the advantage in terms of field

alignment and distortion becomes clear. 172

xxv

1 | Introduction

Surface parameterization technique is a fundamental tool in computer graphics, wheremost com-

monly, the goal is to generate piecewise-linear surface-to-plane maps. In this thesis, we are con-

cerning triangle meshes, where the topology is encoded as simplicial complexes with degree zero,

one, and two, which correspond to vertices, edges, and faces, respectively. The geometric prop-

erties of triangular meshes are determined by the location of vertices of the mesh, represented as

3D coordinates. This map has broad applicability in geometry processing, e.g., texture mapping,

remeshing, inter-surface mapping, morphing, and quadrangulation. The efficiency and reliability

of these methods highly hinge on the robustness and quality of the map. To reliably generate sur-

face parameterization serving the need of different types of applications has been of significant

interest for the past decades. However, there are still weak spots in existing methods where user

controls are limited or no hard constraints are provided. This thesis aims to investigate different

formulations of user controls and how to enforce themwhile maintaining common properties for

parameterization like orientation preservation and quality optimization.

1.1 Outline

In this thesis, our primary focus is on how to reliably construct a surface parameterization that

satisfies user-prescribed hard constraints in different forms, i.e., fixed boundary, positional con-

straints, curvature constraints, and topological constraints. We first provide an overview of major

1

aspects in the realm of surface parameterization that are our key focus.

Bijectivity and positional constraints. One of the essential properties of surface param-

eterization is bijectivity. In this case, it is required that the Jacobian of the linear map have a

positive determinant for each element. In addition, if the boundary of the image under the map

does not intersect with itself, a global bijective is achieved[Jiang et al. 2017]. This property is vital

for applications like texture mapping fig. 1.2, because the map is sampled over the domain to get

color values for texturing the surface. Ambiguity is created if triangles overlay each other. It is

well known for 3-connected disc topology meshes, [Tutte 1963a] can map it to the interior of a

convex polygon on the 2D plane with theoretical guarantees. Tutte’s embedding is very popular

for its simplicity and theoretical guarantees for bijectivity. One natural question is to ask how

well it works in practice using standard floating points. In the first part of the thesis, we inves-

tigate this problem over a large dataset [Zhou and Jacobson 2016] and discovered its numerical

bottleneck. Positional constraints are one of the most straightforward type of user control for

additional guidance for the parameterization, where the location in the parametric domain for a

subset of vertices are predetermined. These constraints are great supports in texture mapping.

For example, feature points for matching certain parts (e.g., the eyes of the head model and the

eye of the tiger, fig. 1.2). Location control could also be used to improve the packing efficiency

of texture alas inside squared images. In addition to a sparse set of control points, they can also

be grouped together as poly-lines to support feature curves, as shown in fig. 1.4, or be further

extended to restrict the whole boundary of the input mesh as a generally shaped polygon. In-

stead of constraining the boundary as a convex polygon, utilizing our framework and adapting

the [Kraevoy et al. 2003], we are able to generate the map for more general shaped polygons

(self-overlapping [Weber and Zorin 2014]) while providing positional constraints for users.

Curvature Constraints. In a surface parameterization problem, the variables are typically

set to be the 2D locations of the vertices. For example, in [Tutte 1963a] the problem is reduced to

2

Figure 1.1: Map introduces flipped triangle, i.e. the orientation of the red triangle is not positive, or
causes overlapping while maintain locally injective.

Figure 1.2: Positional constraints enables users to control the location of a set of vertices (control points,
blue) on the plane.

solve a system of linear equations where the coordinates for each vertex are directly the solution.

This formulation is both clean and straightforward. However this framework is limited to disk

topology. Meshes with arbitrary topology are usually handled by first cut along an appropriate

set of seam edges, namely a cut-graph, to convert it to one or several patches and then parame-

terize individually, fig. 1.3. The discontinuity across the cut edges are especially hard to handle.

Researchers have been looking for alternatives for this problem for the past few decades. The

notion of cone singularities was then proved to be a perfect candidate for this task [Kharevych

et al. 2005; Springborn et al. 2008]. The core idea is that instead of solving for 2D locations of

vertices, the variables per-vertex scale factors that are used for scaling of original edge lengths,

which then defines a metric over the mesh. The primary goal is to find a flat cone metric where all

the Gaussian curvature are concentrated at a few locations called cones under this metric. After

that a cut can be generated to unfold the metric onto the plane and produce a parameterization.

Notice this time the cuts are introduced after the flat cone metric is produced, thus the edge

lengths across the cuts are guaranteed to be the same. In the second part of the thesis, we provide

3

Figure 1.3: A sphere mesh is cut open along the red edges then parameterize. Notice there are disconti-
nuity across the edges, e.g. the parametric lines do not match.

a robust framework for computing such a metric efficiently and reliably, with the guarantee for

respecting user-prescribed curvature constraints.

Holonomy Constraints. When a cut-graph is applied to a surface, the parameterization re-

sults unavoidably have discontinuity across the cut edges. The term seamless parameterization

is introduced for a special class of such maps where the edges on two sides of the cuts in the

parametric domain are related by a rigid transform, and furthermore, the rotation in the trans-

form is multiples of 90 degrees. For seamless parameterization, the topological control over so

called holonomy is crucial. This quantity measures the angle between the initial pose and final

pose of a given vector if parallel transported around a closed curve. As pointed out by [Myles

and Zorin 2012], the topology of a given seamless parameterization is fully captured by holon-

omy defined along closed loops on the surfaces. To be more specific, homology basis loops and

loops around singularities (where the total angle sum around vertices in the parametric domain

is not 2𝜋) of the parameterization. These singularities will match with the extraordinary vertices

in a quadrangulation, which is a typical downstream application for seamless parameterizations

with additional quantization steps ([Ebke et al. 2013]). The location, as well as the curvature of

these singularities, largely determines the structure of the quadrangulation. In the third part of

the thesis, we provide a constructive proof to show the existence of seamless parameterization

4

given a set of admissible cones that respects the Gauss-Bonnet Theorem. This set of constraints

is local because they only involve small loops around the singularity, s.t., there is only one sin-

gle singularity surrounded by these loops. When taking the holonomy around global homology

basis loops into account, the topology of the seamless parameterization is then fully determined.

In the final part of the thesis, we show a method for constructing a seamless locally injective

parameterization that fully matches user prescribed holonomy signature both in the local and

global sense, where holonomy over homology basis loops are taken into account.

Material presented in this dissertation have previously appeared in the following resources:

• Hanxiao Shen, Zhongshi Jiang, Denis Zorin, and Daniele Panozzo. 2019. Progressive em-

bedding. ACM Trans. Graph. 38, 4, Article 32 (August 2019), 13 pages.

https://doi.org/10.1145/3306346.3323012

• Marcel Campen, Ryan Capouellez, Hanxiao Shen, Leyi Zhu, Daniele Panozzo, and Denis

Zorin. 2021. Efficient and robust discrete conformal equivalence with boundary. ACM

Trans. Graph. 40, 6, Article 261 (December 2021), 16 pages.

https://doi.org/10.1145/3478513.3480557

• Marcel Campen, Hanxiao Shen, Jiaran Zhou, and Denis Zorin. 2019. Seamless Parametriza-

tion with Arbitrary Cones for Arbitrary Genus. ACM Trans. Graph. 39, 1, Article 2 (Febru-

ary 2020), 19 pages.

https://doi.org/10.1145/3360511

• Hanxiao Shen, Leyi Zhu, Ryan Capouellez, Marcel Campen, Daniele Panozzo, and Denis

Zorin. 2022. Which Cross Fields can be Quadrangulated? Global Parameterization from

Prescribed Holonomy Signatures.

https://doi.org/10.1145/3528223.3530187.

5

https://doi.org/10.1145/3306346.3323012
https://doi.org/10.1145/3478513.3480557
https://doi.org/10.1145/3360511
https://doi.org/10.1145/3528223.3530187.

Figure 1.4: Parameterization example where the parametric lines are aligned with green feature curve.

Figure 1.5: Conformalmapping generatedwith randomly prescribed geodesic curvature along the bound-
ary, color visualized with per-vertex scale factor which induces conformal metric.

6

2 | Related work

2.1 Bijective Maps

2.1.1 Planar Embedding of Graphs and Meshes

Fary’s theorem [Fáry 1948] states that any planar graph can be embedded in the plane with

straight edges. Tutte [Tutte 1963a] extends this result to the case of fixed convex boundary with

a spring analogue, and [Floater 1997a] established its connection to the parameterizationmethods

in the geometry processing community, and extend Tutte’s uniform weight to arbitrary positive

ones. In both cases, the problem is reduced to solving a linear system of equations and the result-

ing embeddings’ minimum area might even be negative exponential with respect to the number

of vertices. There has been active effort in the graph drawing community to address these is-

sues, by bounding the total area when drawing on integer grids, or equivalently, controlling the

minimum resolution [Chambers et al. 2011] under fixed diameter. Most notably, [Schnyder 1990]

shows an algorithm to embed a planar graph onto integer grids inside a triangle region, and

[Chambers et al. 2011] proves an upper polynomial bound on the area while keeping a specified

convex boundary shape: the proof is constructive and may (potentially) be used as a basis for a

practical algorithm. In all cases, rounding problems will affect these algorithms as the size of the

graph grows (Section 3.2.1).

7

Orbifold Tutte Embedding. Multiple extensions of Tutte’s theorem to map surfaces to differ-

ent co-domains have been proposed. In particular, the theorem has been extended tomap surfaces

to a Euclidean orbifold [Aigerman and Lipman 2015a], to a hyperbolic orbifold [Aigerman and

Lipman 2016a], and to a spherical orbifold [Aigerman et al. 2017]. All three methods support

hard positional constraints and ensure the generation of a bijective map between the surface and

the orbifold in infinite precision arithmetic. These methods also suffer from similar numerical

issue as Tutte’s, and extending our algorithm to orbifold embeddings is an interesting direction

for future work.

2.1.2 Progressive Meshes

The well-known progressive meshes algorithm [Hoppe 1996; Sander et al. 2001] shows how a

triangle mesh can be simplified by collapsing one edge at a time, and reconstructed applying

the inverse topological operations in the inverse order. This scheme has been introduced as an

efficient way to store, transmit, and render large meshes, where the per-vertex properties of

the removed vertex are stored together with the information required to insert them back. This

work has been later applied to compute inter-surface mappings [Schreiner et al. 2004], by jointly

simplifying two meshes into a common base mesh, then starting from optimizing their isometric

distortion while reinserting the vertices in the base mesh.

We use the same idea to eliminate problematic regions of an existing embedding (either

flipped, or with a high distortion), and then reinserting one vertex at a time, while preserving

the quality of the triangulation. Differently from progressive meshes, in our case we do not have

geometrical information available that could help us decide where the vertex should be inserted

to obtain a valid embedding.

8

2.1.3 Distortion-Minimizing Mappings

In this section, we focus on the recent works closely related to generating distortion-minimizing

discrete locally injective and globally bijective discrete maps, and we refer to [Floater and Hor-

mann 2005b; Sheffer et al. 2006; Hormann et al. 2007] for a comprehensive treatment of earlier

parametrization methods without these properties.

A discrete locally injective map requires that triangles maintain their orientation (i.e. they do

not flip) and if the sum of (unsigned) triangle angles around each internal vertex is precisely 2𝜋

[Weber and Zorin 2014]. Three main families of methods have been proposed to deal with this

challenging constraint: barrier, convexification, and hybrid algorithms.

Barrier Algorithms. Barrier algorithms require a valid initial solution, and then optimize its

quality without leaving the feasible space. The key idea is to adopt quality metrics diverging

to infinity when triangles become degenerate, thus inhibiting flips. Popular choices strive to

preserve angles [Hormann and Greiner 2012; Degener et al. 2003] or lengths [Sander et al. 2001;

Sorkine et al. 2002; Aigerman et al. 2014; Poranne and Lipman 2014; Smith and Schaefer 2015].

Alternatively, a barrier functions can be added to existing energies to enforce local injectivity

[Schüller et al. 2013]. These non-linear energies are difficult to minimize, stemming a series

of methods specifically targeting this problem. They include coordinate descent [Hormann and

Greiner 2012; Labsik et al. 2000], parallel gradient descent [Fu et al. 2015a], AndersonAcceleration

[Peng et al. 2018], as well as other quasi-newton approaches [Smith and Schaefer 2015; Kovalsky

et al. 2016a; Rabinovich et al. 2017a; Shtengel et al. 2017a; Claici et al. 2017; Zhu et al. 2018a; Liu

et al. 2018].

All these methods support hard-constraints if they are already satisfied in the initial map,

which is the key idea used in MatchMaker [Kraevoy et al. 2003]. Our progressive embedding can

be used to robustly generate the initial map, that can then be improved by any of the previous

techniques (Section 3.4).

9

Projection Algorithms. An essential component of these methods is a convexified form of

the injectivity constraints [Lipman 2012; Kovalsky et al. 2015]. While these methods naturally

support hard injectivity constraints, they might fail to find a feasible solution, with no output

generated. The only known way to guarantee that a feasible solution exists is to formulate the

convexified constraints using a reference frame derived from a valid (although potentially very

high distortion) solution.

Hybrid Algorithms. Hybrid algorithms are an interesting mix between these two approaches

[Fu and Liu 2016; Poranne et al. 2017]. The initial guess is produced by separating all triangles

and isometrically rotating them into the UV space. A barrier method is then used to prevent them

from flipping, while trying to seal the seams. This approach might fail to seal all the seams, not

producing a valid map.

Globally Bijective Maps. For simply connected domains, bijective maps are locally injective

maps whose boundary does not intersect. All embeddings described in Section 2.1.1 satisfy this

property. These methods have been extended to non-convex, self-overlapping polygons [Weber

and Zorin 2014] and polyhedrons [Campen et al. 2016], but they still require a fixed boundary.

Few methods can produce bijective maps while letting the boundary free, relying on either colli-

sion detection [Smith and Schaefer 2015] or scaffolding elements [Gotsman and Surazhsky 2001;

Zhang et al. 2005; Müller et al. 2015; Jiang et al. 2017]. All free boundary methods require a start-

ing point: our algorithm can be used to generate it, enabling these algorithms to create bijective

maps with hard constraints (Section 3.3).

Hard Positional Constraints and Refinement. Matchmaker [Kraevoy et al. 2003] intro-

duced hard positional constraints for texture mapping applications. The algorithm uses a two-

step approach, first generating a valid map, and then optimizing its geometrical quality. The

method is one of the few using refinement to guarantee the existence of feasible solutions. The

10

method has been extended by adding an intermediate warping stage to align the constraints in

[Lee et al. 2008]. We show in section 3.3 how our embedding can be used withtin Matchmaker to

increase its robustness, and we also show how to extend Matchmaker to support self-overlapping

polygonal target domains.

Cross-Parametrization. Cross-parametrization, i.e. the computation of a map between two

surfaces, is another problem that often relies on planar embeddings. [Schreiner et al. 2004] and

[Kraevoy and Sheffer 2004] proposed the first provably guaranteed solutions to compute maps

between surfaces, by reducing the problem to mapping both surfaces to a common subdomain

by either using Tutte’s embedding or a simplification approach. A similar construction that cuts

open the surface into a single topological disc has been proposed in [Aigerman et al. 2014], and

extended to allow even the optimization of the seams positions in [Aigerman and Lipman 2015b].

Floating point rounding errors have not been considered in any of these works, which are more

prone to fail as the resolution of the mesh increase or whenever the user-provided constraints

introduce a high distortion (Section 3.4).

Global Parametrization. Field-aligned parametrizationmethods [Bommes et al. 2009a] strive

to compute a locally injective map [Bommes et al. 2013a] whose gradient is aligned with a user-

provided directional field. We refer an interested reader to [Bommes et al. 2012] for a com-

prehensive overview of these techniques. Our embedding algorithm can be used to compute

parametrizations to a target self-overlapping polygon, enabling to robustly generate these maps

if a valid boundary polygon is provided (Section 3.4).

2.2 Conformal eqivalent metrics

The problem of computing conformally equivalent metrics or, by implication, conformal maps of

discrete surfaces, has been considered in a variety of works before. As there is no useful natural

11

notion of conformality in the discrete (non-smooth) setting, a range of discrete counterparts of

the continuous concept of conformality have been proposed and used.

Static Triangulation. Prominent examples of works addressing the computation of confor-

mal metrics or conformal maps on discrete surfaces, based on various definitions of discrete

conformality, while considering the triangulation fixed are based on least-squares formulations

[Lévy et al. 2002a; Desbrun et al. 2002], vertex scaling formulations [Springborn et al. 2008; Ben-

Chen et al. 2008; Sawhney and Crane 2017; Jin et al. 2007; Soliman et al. 2018a], circle patterns

[Kharevych et al. 2006a], or formulations based on holomorphic one-forms [Gu and Yau 2003].

Dynamic Triangulation. A fixed triangulation restricts the metric space that can be achieved.

By adjusting the triangulation depending on the prescribed target curvature, this limitation can

be remedied. Two systematic approaches have been proposed to that end, both conceptually

considering a continuous metric evolution from initial state to target state. [Luo 2004] proposes

to adjust the triangulation by an intrinsic edge flip whenever an edge becomes triangle inequality

critical (4.1 left). Implementation variants are described in [Campen and Zorin 2017b,0; Campen

et al. 2019]. Differently, [Gu et al. 2018b,0; Springborn 2019] effectively consider the case of

flipping an edge when it becomes Delaunay-critical, i.e., when four vertices become co-circular

(4.1 right). Surfaces with boundary in this context are addressed in [Sun et al. 2015] using a

double cover approach, reducing this case to the case without boundary. A correspondence map

between the original triangulation and the modified triangulation can be kept track of by means

of an overlay data structure [Fisher et al. 2007].

In concurrent work, [Gillespie et al. 2021] make use of the same theoretical results we use

here and describe an algorithm that conceptually is very close to our core algorithm in 4.3. Main

differences of our work are (i) a number of important details in the optimization procedure as

described in 4.3, (ii) special combinatorial handling of symmetry in the double surface used to

12

support meshes with boundary, and (iii) extensive evaluation in particular of numerical limits and

numerical precision effects. In comparison, [Gillespie et al. 2021] propose a more lightweight data

structure (than [Fisher et al. 2007] that we use) to keep track of the mesh overlay, and additionally

consider the case of spherical parametrization.

2.3 Seamless Parameterization

Seamless surface parametrization and the related subject of quadrangulation and quad layout gen-

eration is a well-explored topic. A relatively recent survey [Bommes et al. 2013c] has references

to many works in this area. We focus here on the most closely related ones.

In a wide variety of applications, surface parametrizations are required to be (locally) injec-

tive (i.e., without fold-overs) as well as to exhibit low parametric distortion [Floater and Hormann

2005a]. Due to the challenging nature of this requirement, a common strategy is to proceed in

a two-step fashion: first construct an initial injective parametrization (without specific atten-

tion to distortion), then optimize it with respect to application specific distortion criteria (while

preserving injectivity). Our work follows this strategy.

Constructing injective maps. Whenever a robust overall algorithm is desired, injective maps

are almost always initialized using the same classical result on convex harmonic maps [Tutte

1963b; Floater 1997b] (essentially a discrete version of the Radó-Kneser-Choquet theorem). In its

original form, it handles surfaces with disk topology and does not support cones. Some recent

results [Gortler et al. 2006; Aigerman and Lipman 2015b,0; Bright et al. 2017] elegantly generalize

the idea to other settings, but either not to arbitrary sets of cones, not to arbitrary topology, not

using the piecewise linear Euclidean setting, or without similar guarantees on map existence.

Injectivity-preserving optimization. A variety of techniques have been presented for dis-

tortion optimization, e.g. [Schüller et al. 2013; Hormann andGreiner 2012; Rabinovich et al. 2017b;

13

Kovalsky et al. 2016b; Zhu et al. 2018b; Shtengel et al. 2017b]. Through line search techniques,

barrier functions, and similar techniques they are able to guarantee preservation of injectivity –

if initialized with an injective starting point. State-of-the-art techniques can handle large meshes

efficiently and tolerate significant imperfections in the initial solution.

Seamless parametrization. A number of methods have been described for the construction

of seamless parametrizations with prescribed cones [Kälberer et al. 2007; Bommes et al. 2009b,0;

Myles and Zorin 2012,0; Ebke et al. 2016; Bright et al. 2017; Fu et al. 2015b; Chien et al. 2016;

Hefetz et al. 2019]. Interestingly, but not surprisingly, they do not follow the above two step

principle – as no general method for the first step (valid initialization) is known for the arbitrary-

topology arbitrary-cones setting. Instead, they are typically based on optimization subject to non-

convex constraints and, despite long development and practical importance, no concise sufficient

conditions for success are known. The key issue is that there is no available way to construct an

initial solution, and one cannot guarantee that the solver will itself find a way into the feasible

region.

Only for certain special cases there are known solutions in this regard, e.g., for specific genus

or specific cones [Aigerman and Lipman 2015b; Gu and Yau 2003], using more general non-

piecewise-linear parametrization [Aigerman and Lipman 2016b], or requiring additional input

[Tong et al. 2006]. Particular challenges are caused by the fact that the given surface discretiza-

tion may not even admit a (elementwise linear) solution, i.e., systematic remeshing capabilities

are needed in any reliable approach.

Cross-Field Guidance. Most often such parametrizations are generated and optimized guided

by a cross-field or frame field on the surface [Vaxman et al. 2016]. Seminal works on cross-field

guided parametrization are [Knupp 1995; Kälberer et al. 2007]. Important ideas for cross-field

generation are presented by [Ray et al. 2008; Crane et al. 2010; Li et al. 2006; Bommes et al. 2009b;

Ray et al. 2009]; many of these offer control over the fields’ turning numbers.

14

Quadrangulation. The problem of surface quadrangulation with conforming elements and

prescribed extraordinary vertices is closely related – state-of-the-art methods actually construct

quadrangulations via seamless parametrization [Bommes et al. 2013c]. [Jucovič and Trenkler

1973] investigate the question of existence of such quadrangulations. The result is purely combi-

natorial and does not yield a surface parametrization. On an abstract level, we adapt some of the

general ideas in this work as foundation of our approach to modify non-seamless into seamless

parametrizations through map padding.

In the context of quadrangulation, our strategy of transitioning from an initial non-seamless

parametrization to a seamless one is, in a sense, similar to modifying a non-conforming quadran-

gulation into a conforming one. This has been tackled by simple subdivision or more involved

T-mesh simplification techniques [Myles et al. 2014] – however, at the expense of not always pre-

serving the prescribed extraordinary vertices. Our modification technique, by contrast, always

preserves exactly the prescribed cones.

Cone Choice. The choice of cones (and more generally guiding cross-fields, holonomy signa-

tures) is an application dependent matter. Various approaches have been proposed for the se-

lection of a cone configuration, for instance curvature-based (e.g. via cross-fields [Vaxman et al.

2016]), distortion-based [Kharevych et al. 2006b; Soliman et al. 2018b; Ben-Chen et al. 2008], or

interactive [Ebke et al. 2016; Campen and Kobbelt 2014]. The problem of positioning cones such

that conformal maps with these cones become seamless is addressed by [Chen et al. 2019,0].

General holonomy prescription. [Campen and Zorin 2017b] address a related problem, sho-

wing that for any admissible holonomy signature one can construct (also via conformal maps) a

seamless similarity map adequate for constructing T-splines. A holonomy signature, in addition

to prescribed cone angles, includes turning angles around homology loops. In contrast, we use

a stronger notion of seamlessness, not allowing scale jumps across cuts, while not controlling

global turning angles around homology loops (cf. Sec. 5.6) – however, they are of the form 𝑘𝜋/2

15

(for some 𝑘) by our construction.

Guarantees. In special cases (restricted genus, restricted cone configurations) convex formu-

lations can be used to reliably yield locally injective seamless parametrizations [Gu and Yau 2003;

Gortler et al. 2006; Aigerman and Lipman 2015b]. Alternatively, additional user input like a

surface partition may be exploited to ensure validity [Tong et al. 2006], or more general, non-

piecewise-linear forms of parametrization may be employed [Aigerman and Lipman 2016b].

Recently, first methods have emerged that provide validity guarantees while supporting arbi-

trary genus and general cone configurations [Campen et al. 2019; Zhou et al. 2020]. In this sense,

they offer control over local holonomy aspects. No global control over holonomy is provided,

though. Therefore, when for instance aiming to generate a cross-field guided parametrization,

while locally cones are reproduced, there may be global topological mismatches between the

given cross-field and the constructed parametrization, for instance precluding proper alignment.

Some of the above methods for parametrization construction (such as [Bommes et al. 2009b;

Bright et al. 2017]) offer full control over the resulting parametrizations’ holonomy, but do not

guarantee local injectivity. Those that guarantee local injectivity in a general setting (e.g. [Zhou

et al. 2020; Campen et al. 2019; Myles et al. 2014]), in turn, do not offer full control over holonomy.

Themethod of [Campen and Zorin 2017b] offers full holonomy control, albeit only for the broader

class of seamless similarity parametrizations.

16

3 | Progressive Embedding

3.1 Introduction

Piecewise linear surface-to-planemaps, or parametrizations, are ubiquitous in computer graphics,

geometry processing, mechanical engineering, and scientific visualization. Depending on the

applications, themaps are required to exhibit different properties, most commonly, low distortion,

local injectivity, and global bijectivity.

The last two properties are challenging to guarantee for discrete maps. Most algorithms with

guarantees use Tutte embedding as a component. Tutte embedding is a construction that is guar-

anteed to create bijective mappings under minimal assumptions, if both domains are simply con-

nected and the target planar domain is convex. However, the guarantee only holds if the compu-

tation is performed in arbitrary precision rather than floating point arithmetic, as it is commonly

done. Failure due to floating point approximation is not as uncommon as one would assume, as

the algorithm is likely to create an extreme variation of scale and aspect ratios in complex map-

ping cases. To quantitatively evaluate this issue, we computed Tutte embeddings on 2718 models

(all the genus 0 models from Thingi10k [Zhou and Jacobson 2016]) using double precision, and

observed 80 failures. To the best of our knowledge, this problem has not been addressed before

in the literature.

This rate of failure is problematic for batch processing large geometrical collections (for exam-

ple for processing geometric deep learning datasets) or when the embedding has to be computed

17

Figure 3.1: The Tutte embedding of this Hele-Shaw polygon (left) contains 46 flipped triangles, due to
numerical rounding errors. Our progressive embedding (right) produces a valid embedding, without any
inverted element and with lower distortion. The colors represent the distortion of the triangles, measured
using the symmetric Dirichlet energy.

many times (for example in cross-parametrization [Kraevoy et al. 2003; Schreiner et al. 2004]).

In these scenarios, a failure rate of 2.9% may not be tolerable, since it is not realistic to manu-

ally fix hundreds of problematic cases, and if failure happens on large meshes with millions of

triangles it might not even be possible to fix them by hand. A simple solution to this problem

is the use of multi-precision (or rational) arithmetic [Granlund 2018]: if enough bits are used to

represent the mantissa and exponent of the floating point representation, Tutte embedding will

succeed, since the solution of a linear system can be computed exactly. However, the result in

high precision is not directly usable by downstream applications, and requires to be rounded (or

“snapped” [Halperin and Packer 2002]) to floating point coordinates. This is a surprisingly chal-

lenging problem for which, to the best of our knowledge, no solution applicable to our setting

18

exists (Section 3.2.1).

Instead, we propose a progressive algorithm to directly generate an embedding using floating

point coordinates. We start from an initial, possibly invalid, floating point planar parametriza-

tion, and we make it valid by collapsing all flipped and degenerate parts of the (possibly invalid)

embedding produced, e.g., by a floating-point Tutte algorithm. We re-insert one vertex of the

original mesh at a time, preserving the validity of the map at every step. This approach is in-

spired by [Schreiner et al. 2004], which proposes a progressive algorithm for computing cross-

parametrizations based on progressive meshes [Hoppe 1996]. Our algorithm differs since we do

not know a valid position for the inserted vertices, and we thus have to compute it as the vertices

are added back. We provide a formal proof of correctness of our method in arbitrary precision

(obtaining the same formal guarantees as Tutte embedding), and we practically demonstrate its

superior robustness by parametrizing a large collection of 10k models.

Using our new embedding method and the matchmaker algorithm [Kraevoy and Sheffer 2004;

Kraevoy et al. 2003] as a foundation, we develop an algorithm for mapping between multiply-

connected domains with arbitrary constraints, supporting fully general self-overlapping domains

as the target. We experimentally show that our algorithm is very robust, producing valid and

distortion-optimized maps even for challenging cases where the original matchmaker algorithm

fails due to numerical problems. We demonstrate the practical utility of our algorithm for UV

mapping and quadrangulation applications.

To foster replicability of results and tomaximize the practical impact of our algorithm, we also

attach a reference implementation. https://github.com/hankstag/progressive_embedding

19

https://github.com/hankstag/progressive_embedding

3.2 Progressive Embedding

3.2.1 Analysis of Tutte Embedding in Floating Points

We discuss in detail when Tutte embedding implemented in floating point may fail, and also show

that straightforward solutions with off-the-shelves geometry processing tools do not solve these

issues.

Tutte Embedding implemented in Floating Points We use the implementation of Tutte

embedding in libigl [Jacobson et al. 2016], and apply it to all the 2718 genus 0 models of the

Thingi10k dataset [Zhou and Jacobson 2016], after cleaning them up and improving their quality

using TetWild [Hu et al. 2018], to ensure that no degenerate triangles are present. We also ensure

that the meshes are 3-connected by refining them locally. For every model, we randomly pick

and delete a triangle, and map the resulting boundary to an equilateral triangle. We compute the

Tutte embedding, and check for flips using CGAL’s exact floating point predicates [Brönnimann

et al. 2018]. The check fails for 80 models, due to the numerical errors introduced in the mapping.

In retrospect, this is not surprising since it is well-known that Tutte planar drawing may admit

exponential area when drawing on integer grids. Two problematic cases are shown in Figure 3.2,

where the embedding introduces a large variation of scale, and the flip occurs on triangles with

small areas.

Multi-Precision Tutte Embedding with Snap Rounding. A straightforward way to address

this problem is to increase the number of bits used in the floating point representation. We double

the number of bits using the library MPFR [Fousse et al. 2007], which is directly integrated into

Eigen, and can thus be used with the Tutte embedding in libigl with minimal code changes. With

this setup, all the problematic cases are solved. However, the runtime is increased by around

one order of magnitude, and, most importantly, the results generated cannot be rounded back to

20

Figure 3.2: A selection of failed Tutte’s embedding (left) and our bijective progressive embeddings (right).
Note that the progressive embeddings have a much lower area distortion (colors).

floating point since trivial rounding introduces flips. Snap rounding [Packer 2018] could be used

to avoid them, but it will collapse possibly large regions of the mesh: 6.3% of the vertices of the

model shown in the bottom left of Figure 3.8 are collapsed when using a snap rounding resolution

of 10−16 times the diagonal of the bounding box of the embedding.

Multi-Precision Tutte Embedding withQuality Optimization. The problem with round-

ing to floats is induced by the small triangles (and correspondingly small edges) which leads to

flips after snapping. A possible way to address this issue is to use a mesh optimization algorithm,

using multi-precision representation, before rounding to floats. We tested two approaches: (1)

SLIM [Rabinovich et al. 2017a] adapted to run in multiprecision, and (2) minimizing the sym-

metric Dirichlet energy by moving one vertex at a time using coordinate descent [Hormann and

Greiner 2012]. The first approach is prohibitively slow, due to the linear solve in high precision

and the very small steps due to the elements with almost zero area. The second one succeeds on

57 models, but still fails on 23, even after 24 hours of running time.

21

Figure 3.3: A progressive embedding (right) of the retinal model (left) is generated starting from a ran-
domized initial parametrization (middle). The red color indicates the amount of isometric distortion, and
yellow indicates inverted elements. Note that the model is cut open to have disk topology.

3.2.2 Progressive Embedding

Our approach draws on the ideas of progressivemeshes [Hoppe 1996] and inter-surfacemappings

[Schreiner et al. 2004], which are, in turn, closely related to theoretical ideas from PL topology

(e.g., [Hudson and Shaneson 1969]).

Our algorithm does not require Tutte embedding and can be used to construct an embedding

from scratch or from a random initial mapping (Figure 3.3). It can be accelerated by using an

existing, possibly invalid, embedding as a starting point. A triangle is invalid if its signed area is

negative, or if its quality measure is below a threshold (we use the symmetric Dirichlet energy

[Smith and Schaefer 2015] with respect to a canonical equilateral triangle whose area is the area

of the target boundary polygon divided by the number of triangles and mark invalid if it is above

𝜏 = 1e20). Using a quality measure in addition to signed area is important, since triangles with

small, positive areas might cause numerical problems during the vertex insertion (Phase 2 below).

Starting from an invalid embedding, our algorithm (1) performs edge collapses until the sim-

plified mesh has no invalid triangles (Algorithm 1), and (2) progressively inserts back each vertex

in the same order (Algorithm 2), with feasibility of insertion ensured at each step.

Stage 1: Simplification. At this stage, we iteratively find an interior edge that can be collapsed

until all invalid elements are removed from the initial embedding, or a single interior vertex is left

22

Algorithm 1: Collapse Invalid Triangles
Input : Planar mesh M
Output: Valid meshM, and a recorded collapse sequence R

1 invalid_set = set of invalid triangles in M;
2 while invalid_set is not empty do
3 if only one internal vertex left then
4 Set to the barycenter of 𝜕 M and return
5 for T ∈ invalid_set do
6 for e ∈ T, internal(e) and link(e) do

// Try only internal edges with link condition satisfied
7 collapse(M, e) and record to R;
8 Remove T from invalid_set;
9 break ; // Try next triangle

10 if nothing got collapsed then
// Expand the set with neighborhoods

11 for T ∈ invalid_set do
12 Add neighbors of T to invalid_set;

Collapse

Insertion

Figure 3.4: Collapsing 𝑣𝑚 to 𝑣0 and the corresponding fans of triangles.

(Algorithm 1). A theorem in [Mijatović 2003] and our Theorem 3.8 guarantees that a sequence

of collapses reducing the mesh to a mesh with a single interior vertex can always be found; as

the boundary embedding is convex, we can also always find a position for this vertex to create

a valid embedding for the fully simplified mesh. The simplification algorithm starts by tagging

all invalid triangles, and attempts to collapse all their edges. If this procedure is successful in

eliminating all invalid triangles, the algorithm terminates, otherwise all the triangles adjacent to

tagged triangles are tagged, and their edges collapsed. Note that we only allow edge collapses on

internal edges to avoid changes to the boundary. This algorithm is guaranteed to terminate, since

23

Algorithm 2: Single Vertex Insertion
Input : Mesh𝑀 , 𝑣𝑚 is to be split from 𝑣0, with position 𝑝0

F = neighboring faces of 𝑣0 or 𝑣𝑚
V = adjacent vertices of 𝑣0 in the valid sector
E = midpoints of edges in the link of 𝑣0 in the valid sector
P = a map from the mesh vertices to 2D positions

Output: P with relaxed positions, along with newly assigned P(𝑣𝑚)
1 Loop
2 foreach 𝑣 ∈ V+E do

// Backtracking line search, from 𝑝0 towards P(𝑣), until F all valid
3 P(𝑣𝑚) = linesearch (𝑝0, P(𝑣));
4 candidate_score = max𝑓 ∈F Energy (𝑓);
5 Record P(𝑣𝑚) if candidate_score < ∞
6 if Record is not empty then // Insertion succeeds
7 Select P(𝑣𝑚) with the minimum candidate_score.;
8 Relax vertex positions with 10 iterations of local smoothing;
9 break;

10 else // Insertion fails, improve quality and try again
11 Relax vertex positions with 50 iterations of local smoothing;

in the worst case it will tag the entire mesh and Theorem 3.8 ensures that at least one edge will

be collapsible. If only one internal vertex is left, we move it to the barycenter of the boundary

vertices (which is inside the convex boundary by construction, but might fail in degenerate cases,

as discussed in Section 3.5). Once the algorithm terminates, the resulting simplified mesh has no

inverted triangles and by Proposition 3.9, also has sums of triangle angles at each vertex equal to

2𝜋 .

Stage 2: Insertion. Starting from the valid embedding computed after Stage 1, we perform

a sequence of splits reverting the collapses, while maintaining embedding validity at every step

(Algorithm 2). Lemma 3.11 ensures that this is always possible (in infinite precision), as the area

of each triangle after insertion is always positive, whenever the newly inserted points lie in the

valid sector (Figure 3.5). The algorithm first computes candidate directions in the valid sector,

then performs a flip-avoiding line search [Smith and Schaefer 2015] to find candidate positions

P(𝑣𝑚) for the newly inserted vertex 𝑣𝑚 , such that the 1-ring neighborhoods are valid. In our

24

experiments, we use step length 𝛼 = 0.8, and cap the number of line search iterations to 75. If

at least one candidate is found, the split is performed using the candidate resulting in a mesh

minimizing the error measured as the maximum of the 1-ring energy. Since a candidate position

always exist in infinite precision (Lemma 3.11), the only possible cause for not finding it is a lack

of representation power in the floating point representation. We thus improve the quality of the

mesh until a candidate is found.

This algorithm may still fail to find a candidate in degenerate configurations. However, we

experimentally found that the constrained mesh smoothing is very effective at ameliorating this

issue, keeping the mesh quality sufficiently high during the insertion to allow split operations to

succeed (Figure 3.6). In all our experiments we only found one failure case, where the prescribed

target boundary is a numerically degenerate triangle (Section 3.5). All our other experiments,

even on a large data set and with complex boundary conditions (Section 3.4) were successful.

Local Smoothing. To improve the quality of the map in the insertion step (Algorithm 2, line 8

and 11), we minimize the symmetric Dirichlet energy [Smith and Schaefer 2015], optimizing

one vertex position at a time using Newton iterations, similarly to [Hormann and Greiner 2012;

Labsik et al. 2000; Fu et al. 2015a]. We favor this local approach since it is more robust to low

quality elements, which would otherwise badly affect both the numerical stability and the step

size of global optimization methods. Since our goal is to improve the minimal quality of the mesh,

we minimize the symmetric Dirichlet energy only for the invalid triangles (using reference shape

as an equilateral triangle with area equal to the average of triangles in the 2D domain), and use

the scaffold energy [Jiang et al. 2017] (i.e. we use the element itself as the reference triangle for

the symmetric Dirichlet energy) for the valid ones, which allows them to move more freely. In

our experiments, the local smoothing is performed for 10 iterations after every insertion step.

If a valid insertion candidate cannot be found, we keep improving the quality with batches of

50 smoothing iterations until a candidate is found (Algorithm 2 Furthermore, at each smoothing

25

phase, we perform a greedy coloring of the edge graph [Kucera 1991], and the vertices inside

each color are optimized in parallel.

3.3 Matchmaker++

The computation of locally injective maps is important in geometry processing (Section 2.1),

with the majority of the methods focusing on efficient and scalable quality optimization. How-

ever, fewmethod guarantees positional constraints: the notable MatchMaker algorithm [Kraevoy

et al. 2003] reduces the problem to a number of convex planar embeddings, which are computed

with Tutte’s algorithm. However, as we observe in some cases (Section 3.4.2), such embeddings

can be numerically challenging. Replacing Tutte embedding with progressive embedding enables

matchmaker to robustly compute maps with very challenging configurations of constraints. In

this Section, we describe an extension of [Kraevoy et al. 2003] that (1) makes use of progres-

sive embedding to increase robustness, and (2) supports weakly self-overlapping polygons as

co-domains [Weber and Zorin 2014].

Overview. Combining our progressive embedding algorithm and the matchmaker algorithm,

we describe an algorithm for solving the following problem: Given a simply-connected 3d mesh,

equipped with with a set of user-defined hard positional constraints at vertices, compute a valid

piecewise-linear parametrization, such that (1) the map is valid in the following sense: there are no

flipped triangles, and for each vertex, the map restricted to the one ring of triangle of that vertex is

bijective, unless it is a singular boundary vertex, as defined below and (2) the parametrization bitwise

exactly satisfies the user-defined positional constraints. We tackle this in three steps: we decompose

the target domain into convex polygonal subdomains, match these domains to the subdomains

of the source domain, compute an initial bijective map by stitching progressive embeddings for

each subdomain, and final globally optimize the mapping distortion.

26

User input. We distinguish between two cases, chosen by the user (1) the required map is a

global embedding, (2) the map is an immersion. For the first case, the constraint specification

is more flexible: the user only has to provide a set of point or line constraints. For the second

case, the target domain is not a subset of the plane, but rather, an everywhere flat surface with

overlaps. We require the user to prescribe constraints for the whole boundary of the polygon to

define the target domain unambiguously (some parts may be marked as movable, but an initial

position is needed) and to provide a path connecting each point or line constraint to the boundary,

which allows to define its location on the target surface implied by the boundary specification.

In this case, target boundary polygon has to be weakly self-overlapping [Weber and Zorin 2014],

otherwise, the map does not exist.

Phase 1: Subdivision of the TargetDomain. In the global embedding case, the target domain

is generated by triangulating the bounding box of the input with Triangle [Shewchuk 1996]. In

the second case, the self-overlapping domain is triangulated using a modification of the Shor-Van

Wyck algorithm [Shor and Van Wyk 1992], described in [Weber and Zorin 2014]. In both cases

we ensure that the hard positional constraints are vertices of the triangulation. We then merge

triangles into convex polygons in a greedymanner, by dropping edges if the resulting subdomains

are convex. While this merging step is optional (the algorithm works also without it) it reduces

the number of subdomains and vertices, making the next steps more efficient. In the case when

an immersion is computed, by construction, it will be an embedding on subdomains computed

starting from the Shor-Van Wyck triangulation.

Phase 2: Path Tracing on the Original Mesh. After the target domain is subdivided into

convex polygons, we match this decomposition to the input mesh. The goal is to find non-

intersecting paths connecting each of these pairs in 3D mesh, subdividing the whole mesh into

same number of patches.

At the tracing stage, we perform a reordering of the paths to make sure that no previously

27

traced path will block the future ones (Figure 3.7). In the case of embedding, the algorithm finds

paths that connect all positional constraints to the boundary without creating additional loops

(than the existing boundary). In practice, these paths are found by dropping one segment on the

boundary, and then grow the minimum spanning tree (over the edges of the polygonal mesh)

from the incomplete boundary loop. We first trace the paths on the minimum spanning tree and

then the remaining ones, connecting the boundary to the constraints. The correctness of this

procedure can be found in [Praun et al. 2001].

For the tracing of each path on the surface, we follow [Kraevoy et al. 2003] to find the shortest

path connecting two endpoints, and add Steiner points on the edges if no path, not intersecting

other paths, can be found.

Phase 3: Bijective Mapping. After establishing a correspondence between each patch of the

3D mesh and a convex polygon in the target domain, we can first subdivide the 2D paths in the

target domain to match the number of vertices on the corresponding 3D path to obtain the one-

to-one correspondence between them. We observe that up to this point, the algorithm is largely

combinatorial (while some vertices are inserted on edges, their geometric position is trivially

determined and is very unlikely to result in numerical problems; none were observed in our

experiments). At this point, the map is defined for boundaries of the subdomains corresponding

to the convex subdomains in the target. Next, we extend the map to the interior of each region

using our progressive embedding algorithm (Section 3.2.2). Notice that when the mesh patch is

not 3-connected, we need to split the edges with two endpoints on the boundary.

Phase 4: Quality Optimization. The map obtained in the previous steps is valid, according

to the definition of the weakly self-overlapping map [Weber and Zorin 2014]. Therefore, its

quality can be optimized using any locally injective map improvement algorithm (Section 2.1).

We opt for [Rabinovich et al. 2017a], since it is efficient for largemodels and the implementation is

readily available [Jacobson et al. 2016]. The implementation is modified to support hard positional

28

Table 3.1: Statistics of the input and output meshes in the planar embedding test (Section 3.4.1). From
left to right: Name of the dataset, number of vertices, number of faces, number of invalid elements (pos-
itive area, but with energy above 1e20) after Tutte embedding, number of flipped elements after Tutte
embedding, progressive embedding (Section 3.2) running time in seconds.

Name #V #F #invalid #flipped PE(s)
Octopus 5034 10063 2351 524 245.1
Swirl 11754 23503 9317 638 2273.1
Deer 8720 17434 15728 7831 3916.8
Rabbit 7253 14500 8743 4233 1198.6
HeleShaw 3505 5355 437 46 62.1
Retinal 3791 7282 3533 3533 95.0
Arch 973 1941 790 270 21.9
Propeller 787 1569 484 70 11.6

constraints, by eliminating the corresponding variables.

3.4 Results and Discussion

We implemented our algorithm in C++, using Eigen [Guennebaud et al. 2010] for linear algebra,

and libigl [Jacobson et al. 2016] for geometry processing and visualization. The reference source

code, the data used, and the scripts to reproduce the results are attached in the additional material.

The timings and statistics for the datasets shown in the paper are summarized in Table 3.1 and

Table 3.2.

We first present results computed using only our progressive embedding (Section 3.4.1), and

then demonstrate the generation of low distortion, locally bijective maps created with our exten-

sion of MatchMaker (Section 3.4.2).

3.4.1 Progressive Embedding

Planar Embedding for the Thingi10k Dataset [Zhou and Jacobson 2016]. By computing

Tutte’s embedding for the genus-zeromodels in 2718 surfacemeshmodels on a triangle boundary,

we observed there are 80 cases where the generated parametrization has flipped elements due to

floating point rounding errors. Using our progressive strategy, we are able to fix all failed cases.

29

Table 3.2: Statistics of the input and outputmeshes of theMatchMaker++ test (Section 3.4.2). From left to
right: Name of the dataset, number of vertices, number of faces, number of invalid elements (positive area,
but with energy above 1e20) after Tutte embedding, number of flipped elements after Tutte embedding,
progressive embedding (Section 3.2) running time in seconds, and MatchMaker++ (Section 3.3) running
time in seconds.

Name #V #F #invalid #flipped PE(s) MM++(s)
Fertility 16508 33028 0 0 NA 582.4
3 holes 7440 14886 0 0 NA 107.4
Robot Cat 4117 7512 0 0 NA 0.8
Aircraft 2523 4656 0 0 NA 0.5
Twirl 5562 10402 0 0 NA 1.1
Filigree 49872 100000 32 0 72.4 30.8
Botijo 43786 83788 0 0 NA 3.9
Beetle 20619 39276 0 0 NA 1.1
Casting 21236 39438 67 40 27.4 1.3
Oil pump 54135 103778 5 0 2.3 4.8

A selection of the parametrization results are shown in Figure 3.2.

Integration with OptCuts [Li et al. 2018]. OptCuts is a joint optimization method to create

UV seam from a 3D model, balancing seam length and parameterization quality. It relies on a

valid initialization, which for genus 0 model, is compute through randomly cutting two adjacent

edges as seams, then flatten it on the plane with Tutte embedding. In Figure 3.8, we show two

examples where this initialization fail. Both models can be processed if progressive embedding

is used instead of Tutte embedding, allowing OptCuts to proceed and optimize the UV map.

Mapping an Hele-Shaw Polygon to a Sqare. Hele-Shaw flow is a two-dimensional Stokes

flow of mixing liquids between two parallel flat surfaces separated by a small gap. In Figure 3.1,

we show an example mesh generated using the Hele-Shaw simulation proposed in [Segall et al.

2016]. Oneway to compute a bijectivemap of the interior of the polygon between different frames

is a cross-parameterization using a square as the common domain, with no internal constraints.

Tutte embedding fails in this case, introducing 46 flipped faces (Figure 3.1, left), while progressive

embedding produces a valid map with lower distortion (Figure 3.1, right).

30

3.4.2 Matchmaker++

Self-Overlapping Locally-Injective Maps. By introducing Shor Van Wyck algorithm into

the matchmaker pipeline, we are able to mapping a surface mesh with disk topology to self-

overlaping boundaries as in [Weber and Zorin 2014]. Similarly to [Weber and Zorin 2014] our

algorithm can generate locally-injective, self-overlapping parametrizations (Figure 3.9), which

are commonly used by quadrangulation algorithms [Bommes et al. 2012].

Comparisonwith [Kovalsky et al. 2015]. Weparametrized the global parametrization bench-

mark introduced in [Myles et al. 2014], using the seams in the obj files, and fixing in random

positions 3 random points of each mesh. This is a challenging task, since the random constraints

introduce a large distortion. Our method succeeded on all 102 models: a selection of the most

challenging ones is shown in Figure 3.10. We also run the same experiment using the most re-

cent projection method [Kovalsky et al. 2015] (which is one of the few methods that supports

similar constraints without requiring a fully specified target domain), using LSCM [Lévy et al.

2002b] as an initial guess. The method failed on 28 models over 102 (27%). We show three failed

cases using their method with flipped elements in the output, and the quality is considerably

lower than our approach, as shown in Figure 3.11. Note that this is a comparison that favours

our method, since we are allowed to remesh the map, while [Kovalsky et al. 2015] preserves the

original connectivity.

Stress Test. To further evaluate the robustness and applicability of our algorithm, we per-

formed an additional stress test, by parametrizing the 102 models of [Myles et al. 2014] into a

planar space filling curve, and adding 3 random positional constraints. These experiments push

the algorithm to the limit: MatchMaker fails on 5 if Tutte embedding is used, while it succeeds in

all cases, producing bijective maps exactly satisfying the hard positional constraints, with pro-

gressive embedding (Figure 3.12).

31

3.5 Limitations

We introduced a robust algorithm to compute planar embeddings, and demonstrated its practi-

cal utility in common geometry processing tasks. Our algorithm is provably correct in infinite

precision and is designed to work robustly with floating point coordinates: unfortunately we

cannot guarantee that an output is produced in the latter case since a solution of the local point

placement problem might not exist. Consider the example in Figure 3.13: the bounding box of

the triangle has short sides (the difference between the floating point coordinate representation

is only in the least significant bit of the mantissa). Assume that our algorithm needs to split off a

vertex from the vertex with numerically flat angle 𝐴, placing the resulting point in the interior.

In this situation, our algorithm fails, since the average of the coordinates (in floating point) of the

boundary triangle does not lie inside the triangle due to numerical rounding.

Except for this extreme case, we have not observed any other failure cases for our algorithm,

which produced robustly thousands of embeddings, and, when paired with matchmaker, enables

the robust generation of constrained locally injective maps.

3.6 Proofs

The proof of the existence of the collapse sequence for two-dimensional manifold meshes can

be found, e.g., in [Mijatović 2003], where it is derived from the shellability of two-dimensional

manifold meshes homeomorphic to a disk (i.e., the possibility of removing triangles one-by-one,

keeping the topology of the remaining part of the mesh unchanged), and make use of a specific

composition of Pachner moves equivalent to edge collapse. We present a different proof, based on

proving the existence of a collapsible edge, which is aligned with the structure of our algorithm

and helps us to show the existence of the inverse vertex split sequence.

32

3.6.1 Existence of the Collapse Seqence

We assume that the input mesh connectivity (𝑉0, 𝐹0) is manifold, i.e., each edge is shared by no

more than two triangles, and the triangles incident at a vertex can be arranged in a sequence so

that two sequential triangles share an edge. For interior vertices, the sequence is circular, i.e. the

first and last triangles also share an edge. With the topology of a 2D disc, the graphs of edges

of such meshes are planar i.e., can be embedded in the plane, with positions 𝑃0 = {𝑝𝑖 ∈ R2}
assigned to vertices 𝑣𝑖 . By the Fáry’s theorem, [Fáry 1948] there is a straight-edge embedding

of this graph in the plane with non-intersecting edges (Fáry embedding). In subsequent lemmas,

we use geometric images of vertices and edges under this embedding. Only the existence of

this embedding, but not the specific construction, is used to prove the existence of the collapse

sequence.

The following sequence of lemmas focuses on the one-ring neighborhood of an interior vertex,

and shows that at least one of the adjacent edges satisfies the link condition. This observation

further leads to Theorem 3.8: a valid sequence of edge collapses can be used to reduce the mesh

to a mesh with a single interior vertex. A vertex of the mesh is interior if it does not lie on the

boundary, and an edge is interior if its two endpoints are interior vertices.

Definition 3.1. An interior edge 𝑣𝑖𝑣 𝑗 satisfies the link condition if |𝑁𝑖 ∩ 𝑁 𝑗 | = 2, where 𝑁𝑖 is the

set of the adjacent vertices of 𝑣𝑖 .

Lemma 3.2. Let 𝑣0 be an interior vertex of degree 𝑑 (Figure 3.14). We enumerate its neighbors

counterclockwise around the vertex (using Fáry embedding), denoting them 𝑣1, 𝑣2, . . . , 𝑣𝑑 . Assume

𝑣0𝑣1 violates the link condition, i.e., 𝑁0∩𝑁1 contains a vertex 𝑣𝑘 , 𝑘 = min(𝑁0∩𝑁1 \ {2, 𝑑}). (1) If the
triangle Δ𝑣0𝑣1𝑣𝑘 is oriented counterclockwise, then the set 𝑁𝑖 , consisting of adjacent vertices of 𝑣𝑖 ,lies

within Δ𝑣0𝑣1𝑣𝑘 , for any 1 < 𝑖 < 𝑘 . (2) If Δ𝑣0𝑣1𝑣𝑘 is oriented clockwise, then 𝑁𝑖 is within Δ𝑣0𝑣1𝑣𝑘 for

𝑘 < 𝑖 < 𝑑 .

33

Proof. Without the loss of generality, consider Δ𝑣0𝑣1𝑣𝑘 orients counterclockwise. Consider the

segment 𝑣0𝑣𝑖 , for 1 < 𝑖 < 𝑘 . The half-line starting at 𝑣0 and containing this segment is between

half-lines containing 𝑣1 and 𝑣𝑘 , because the vertices were numbered counterclockwise. Therefore

the half-line contains a point in the interior of Δ𝑣0𝑣1𝑣𝑘 , by continuity. If 𝑣𝑖 is outside or on the

boundary of Δ𝑣0𝑣1𝑣𝑘 then the half-line connects an interior and non-interior point different from

𝑣0, and intersects 𝑣1𝑣𝑘 . which contradicts the assumption on the embedding. Thus, 𝑣𝑖 is in the

interior of Δ𝑣0𝑣1𝑣𝑘 . Similarly, all points in𝑁𝑖 are either in the interior of Δ𝑣0𝑣1𝑣𝑘 , or on its vertices,

as the edges of the embedding do not intersect except at vertices. □

Without loss of generality, we assume that the first case of the lemma and take a closer look

at Δ𝑣0𝑣1𝑣𝑘 . Intuitively, one can think of an edge that violates the link condition as having two

endpoints which are connected to (at least) three common vertices. Therefore, on one of the sides

of the edge, there would be at least two vertices connected to it. The next lemma establishes the

fact that if a sequence of edges violates the link condition, then the “lower”(smaller indices) side

of the edge always has only one vertex connected to its endpoints.

Lemma 3.3. Suppose an edge 𝑣0𝑣1 violates the link condition, and 𝑘 is defined as in Lemma 3.2.

Suppose, W.L.O.G., Δ𝑣0𝑣1𝑣𝑘 is oriented counterclockwise, and let 1 < 𝑖 < 𝑘 . If additionally for all

1 < 𝑡 < 𝑖 , 𝑣0𝑣𝑡 violates the link condition, then 𝑣𝑖−1 is the only vertex with index in the range

1 ≤ 𝑡 ≤ 𝑖 − 1 connected to 𝑣𝑖 .

Proof. We prove the Lemma by induction. The base case, 𝑖 = 2 the proposition clearly holds.

Suppose for all 𝑖 ≤ 𝑗 holds. Since 𝑣0𝑣 𝑗 violates the link condition, 𝑁0∩𝑁 𝑗 contains 𝑣 𝑗+1 and 𝑣𝑛 for

some 𝑗 +1 < 𝑛 ≤ 𝑘 (see Figure 3.15), by the inductive assumption. 𝑣 𝑗+1 is in the interior of Δ𝑣0𝑣 𝑗𝑣𝑛

by Lemma 3.2. For𝑚 ≤ 𝑗 − 1, 𝑣𝑚 is outside Δ𝑣0𝑣 𝑗𝑣𝑛 , because the half-line 𝑣0𝑣 𝑗 is between 𝑣0𝑣𝑚

and 𝑣0𝑣 𝑗 by the choice of numbering. It follows that in order to connect 𝑣 𝑗+1 to a previous vertex

𝑣𝑚 𝑣 𝑗+1𝑣𝑚 would have to intersect the boundary of Δ𝑣0𝑣 𝑗𝑣𝑛 , which contradicts that fact that we

are using an intersection-free Fáry embedding. This proves the induction step. □

34

We conclude that under the assumptions of Lemma 3.2, first case, 𝑣𝑖, 1 < 𝑖 < 𝑘 are interior

vertices in the triangle Δ𝑣0𝑣1𝑣𝑘 , thus interior vertices of the mesh. Then 𝑣0𝑣2 . . . 𝑣0𝑣𝑘−1 are interior

edges. The next lemma shows that at least one of them satisfies the link condition

Lemma 3.4. Following the first case in Lemma 3.2. If for all n < k-1, 𝑣0𝑣𝑛 violates the link condition,

the interior edge 𝑣0𝑣𝑘−1, satisfies the link condition.

Proof. By definition, 𝑁0 ∩𝑁𝑘−1 is not empty. By Lemma 3.3, the only vertex with index less than

𝑘 − 1 contained in 𝑁𝑘−1 is 𝑣𝑘−2. On the other hand, the only remaining vertex of 𝑁0 with index

greater than 𝑘 − 1 inside Δ𝑣0𝑣1𝑣𝑘 is 𝑣𝑘 . So we have exactly two vertices in 𝑁0 ∩ 𝑁𝑘−1, i.e., 𝑣0𝑣𝑘−1

satisfies the link condition. □

Definition 3.5. A fan of triangles F (𝑣0; 𝑣1 . . . 𝑣𝑑+1), centered at 𝑣0, with 𝑣𝑖 enumerated counter-

clockwise around 𝑣0, is a sequence of non-repeating triangles {Δ𝑣0𝑣𝑖𝑣𝑖+1) |𝑖 = 1 . . . 𝑑}. A fan is

closed, if 𝑣𝑑+1 = 𝑣1, otherwise it is open.

Definition 3.6. Given a triangulation of a polygonal planar domain, with two interior vertices

𝑣0, 𝑣𝑚 , whose neighbors are 𝑁0 and 𝑁𝑚 , a collapse operation from 𝑣𝑚 to 𝑣0 connects all vertices

𝑣 ∈ 𝑁𝑚 \ 𝑁0 to 𝑣0, and removes 𝑣𝑚 with incident edges. A collapse operation is valid if 𝑣0𝑣𝑚

satisfies the link condition, and neither of the end points is a boundary vertex.

To define a collapse operation in a reversible way, in addition to specifying the pair of vertices,

we define a fan F (𝑣0; 𝑣1 . . . 𝑣𝑘) in the mesh obtained after the collapse. The vertices 𝑣1 . . . 𝑣𝑘 are

the vertices that were connected to 𝑣𝑚 before the collapse. In other words, we record a collapse

operation, transforming the mesh (𝑉𝑖, 𝐹𝑖) to (𝑉𝑖+1, 𝐹𝑖+1), as the pair 𝐶𝑖 = (𝑣𝑚, F (𝑣0; 𝑣1 . . . 𝑣𝑘)),
where 𝑣𝑚 is the removed vertex in 𝑉𝑖 , and F is a fan of triangles in 𝐹𝑖+1.

Lemma 3.7. A 3-connected and planar mesh, is still 3-connected and planar after any interior edge

collapse 𝐶 = (𝑣𝑚, F (𝑣0; 𝑣1 . . . 𝑣𝑘)).

35

Proof. The link condition ensures that the mesh remains manifold after an edge collapse [Dey

et al. 1999]. 3-connectedness of a triangle mesh is equivalent to the requirement that no two

boundary vertices are connected by an interior edge. As no collapses involving boundary vertices

are allowed, if there are no such edges before the collapse, no such edge may appear after the

collapse: the only new edges connect vertices of the fan of 𝑣𝑚 to 𝑣0, which is interior. □

Theorem 3.8. If the edge graph of a mesh (𝑉 , 𝐹) is planar and 3-connected, there is always an edge
that can be collapsed to obtain a planar and 3-connected mesh with one less vertex, unless there is

only one interior vertex left.

Proof. Suppose no edge in (𝑉 , 𝐹) can be collapsed. This means that either there are no edges

with two interior endpoints, or all such edges violate the link condition. But by Lemma 3.4, the

second option is not possible. If there are no edges connecting two interior vertices, then all

edges incident at interior vertices have the other endpoint on the boundary. Then all edges in the

link of an interior vertex have two endpoints on the boundary. By 3-connectedness, these edges

should be boundary edges. Therefore, the link of each interior vertex forms a complete boundary

loop. As we assume the mesh to be simply connected, then there is only one boundary loop. So

the whole boundary has to coincide with the link of any interior vertex, from which it follows

that there is only one. □

We remark that when there is only one interior vertex left, if the boundary vertices 𝑣𝑖 , 𝑖 ≥ 1,

are assigned positions 𝑝𝑖 , so that they form a star-shaped simple polygon, there is a position

(within the interior of the kernel of the boundary) 𝑝0 for the remaining interior vertex 𝑣0 that

results in a valid straight-edge embedding.

As a result of sequentially collapsing edges, we obtain a sequence (𝑉𝑖, 𝐹𝑖, C𝑖), 𝑖 = 1, 2, . . . , 𝑘

with the following properties: |𝑉𝑖 | = |𝑉𝑖−1 | − 1, (𝑉𝑘 , 𝐹𝑘) is a valid triangulation, boundary vertices
are the same for all 𝑉𝑖 , and C𝑖 is a valid collapse.

Proposition 3.9. Suppose the vertices 𝑣𝑖 of the disk-topology manifold mesh (𝑉 , 𝐹) are assigned

36

parametric positions 𝑝𝑖 in the plane, and the map is bijective on the boundary so that the triangles

all have positive orientation. Then the sum of the angles of triangles incident at an interior vertex is

2𝜋 .

Proof. Assign, e.g., unit length to all edges of the mesh; this associates a a surface 𝑀 with the

mesh, with each combinatorial triangle corresponding to an equilateral triangle. Then the posi-

tions 𝑝𝑖 define a PL map from 𝑀 to the plane. By Theorem 1 from [Lipman 2014], this map is

globally bijective; the statement of the proposition immediately follows. □

3.6.2 Vertex split

Definition 3.10. Let (𝑉 , 𝐹) be a mesh with a valid straight-edge embedding in the plane given

by vertex positions 𝑃 . Consider a closed fan of triangles F (𝑣0; 𝑣1 . . . 𝑣𝑑+1) centered at an interior

vertex 𝑣0, with 𝑣𝑑+1 = 𝑣1, and an open sub-fan F (𝑣0; 𝑣1 . . . 𝑣𝑘). Vertex split introduces a new vertex

𝑣𝑚 with a position 𝑝𝑚 , F (𝑣0; 𝑣1 . . . 𝑣𝑘), replaces it with a fan F (𝑣𝑚; 𝑣1 . . . 𝑣𝑘), and adds triangles

Δ𝑣0𝑣1𝑣𝑚 and Δ𝑣0𝑣𝑚𝑣𝑘 . We denote such a split 𝑆 by (𝑣𝑚, 𝑝𝑚, F (𝑣0; 𝑣1 . . . 𝑣𝑘)).

A split 𝑆 = (𝑣𝑚, 𝑝𝑚, F (𝑣0; 𝑣1 . . . 𝑣𝑘)), in terms of connectivity modification, is the inverse of a

collapse 𝐶 = (𝑣𝑚, F (𝑣0; 𝑣1 . . . 𝑣𝑘)): the connectivity of the mesh obtained by applying the split is

identical to the mesh that the collapse was applied to.

The following lemma establishes that we can perform a split reversing any collapse while

maintaining the validity of the embedding, if the initial embedding is valid.

Lemma 3.11. Consider a fan of triangles F (𝑣0; 𝑣1 . . . 𝑣𝑘) (Figure 3.5), with positive signed areas

{𝐴(Δ𝑣0𝑣𝑖−1𝑣𝑖)}1<𝑖≤𝑘 and with angles of triangles incident at 𝑣0 summing up to 2𝜋 . The kernel of the

fan has a non-empty interior. Then a new vertex position 𝑝𝑚 corresponding to a new vertex 𝑣𝑚 located

in the interior of the fan, can be split off 𝑝0, so that min1<𝑖≤𝑘 𝐴(Δ𝑣𝑚𝑣𝑖−1𝑣𝑖) > 0, 𝐴(Δ𝑣0𝑣1𝑣𝑚) > 0,

𝐴(Δ𝑣0𝑣𝑚𝑣𝑘) > 0, and angles of triangles in both resulting fans at 𝑣0 and 𝑣1 sum up to 2𝜋 .

37

Proof. Define a function 𝑓 (𝑝𝑥) = min𝑖 𝐴(Δ𝑣𝑥𝑣𝑖−1𝑣𝑖). This is a continuous function of the coor-

dinates 𝑝𝑥 of the point 𝑣𝑥 . Because 𝑓 (𝑝0) > 0, there is a disk 𝐵(𝑝0, Y), of radius Y > 0, such that

𝑓 (𝑝𝑥) > 0 for any 𝑝𝑥 ∈ 𝐵(𝑝0, Y), i.e. for all 𝑖 , 𝐴(Δ𝑣𝑚𝑣𝑖−1𝑣𝑖) > 0, if we pick 𝑝𝑚 inside 𝐵(𝑣0, Y).
Suppose we initially place 𝑝𝑚 at 𝑝0, with new triangles added as a result of the split having zero

angles at 𝑣1 and 𝑣𝑘 . We note that the for each of 𝑣0 and 𝑣1 in this degenerate configuration the

angles of incident triangles sum up to 2𝜋 . The angles of triangles also change continuously as

functions of vertex position 𝑝𝑥 , so does their sum. On the other hand, if each triangle remains

positively oriented (𝐴(Δ𝑣𝑚𝑣𝑖−1𝑣𝑖) > 0), then the sum of the angles can only change discretely,

and has to be of the form 2𝜋𝑛, 𝑛 ∈ Z (𝑛-fold cover). We conclude that 𝑛 has to remain one, as it

is one for the initial position.

Consider the intersection𝐶 of the half-planes bounded by lines containing 𝑝0𝑝1 and 𝑝0𝑝𝑘 (for

each segment, we choose the half-line on the side of the interior of the fan). If 𝑝𝑚 ∈ 𝐶 ∩ 𝐵(𝑝0, Y),
then 𝐴(Δ𝑣0𝑣1𝑣𝑚) > 0, 𝐴(Δ𝑣0𝑣𝑚𝑣𝑘) > 0 also hold. □

The following theorem is a straightforward application of Lemma 3.11.

Theorem 3.12. Suppose we have a sequence of valid collapses (𝑉𝑖, 𝐹𝑖,𝐶𝑖), 𝑖 = 0 . . . 𝑁 − 2, where

𝑁 = |𝑉0 |, the number of interior vertices in the initial mesh, all (𝑉𝑖, 𝐹𝑖) 𝑖 = 0 . . . 𝑁 − 1 are 3-

connected planar, and the last mesh (𝑉𝑁−1, 𝐹𝑁−1) with a single interior vertex has a valid straight-

edge embedding in the plane with vertex positions 𝑃𝑁−1. Suppose 𝐶𝑖 = (𝑣𝑖𝑚, F (𝑣𝑖+10 , 𝑣𝑖+11 . . . 𝑣𝑖+1
𝑘
)).

Then the sequence of vertex splits 𝑆𝑖 that are inverses of 𝐶𝑖 , results in a valid straight-edge em-

bedding of (𝑉0, 𝐹0), given by vertex positions 𝑃0.

Proof. 𝑉𝑁−1, 𝐹𝑁−1 with positions 𝑃𝑁−1 is valid by assumption. Each step of vertex split with 𝑆𝑖

results in a straight-edge embedding of (𝑉𝑖, 𝐹𝑖) by Lemma 3.11. By induction, the embedding of

(𝑉0, 𝐹0) obtained by the sequence of splits reverting the sequence of collapses is a straight-edge

embedding. □

38

Figure 3.5: The two admissible insertion positions from Lemma 3.11. The dark region on the left shows
the valid positions for 𝑣𝑚 while fixing 𝑣0. The right case is the opposite. Our algorithm opts for the left
case for stability, since the calculation of the valid sector in the right case involves intersection of the
prolonged edge (dashed lines) and the 1-ring neighbors. We pick the valid sector as the one that has an
inner angle sum smaller than 𝜋 .

Time

E
ne

rg
y

Figure 3.6: Max of Symmetric Dirichlet energy per triangle at the insertion stage of the archmodel. Every
vertex insertion can decrease the local quality of the mesh, which is then restored using smoothing. Every
peak in the energy graph corresponds to a vertex insertion.

Figure 3.7: Starting from a triangulation generated from only boundary segments and internal constraint
points (left). Instead of treating triangles as sub-domains as in [Kraevoy et al. 2003], we merge triangles to
convex polygons (middle). Then we find paths (bold, right) connecting constraint points to the boundary
without new cycles, and prioritize their tracing.

39

Figure 3.8: Three UV maps generated by OptCuts [Li et al. 2018] using an initial embedding created by
our algorithm. OptCuts fails to process both models if Tutte embedding is used instead.

40

Figure 3.9: Two seamless maps with hard positional constraints and fixed boundaries are generated by
our algorithm.

41

Figure 3.10: A selection of locally injective parametrizations computed by our algorithm by fixing 3
random points to 3 random points in UV space.

42

Figure 3.11: Our parametrizations (bottom) have no flipped elements and have a higher quality than
those generated by [Kovalsky et al. 2015] (top) using the same positional constraints.

Figure 3.12: To stress test the robustness of MatchMaker++, we parametrize complex surface meshes
inside a space filling curve, with 3 additional random positional constraints in its interior.

43

h

b

Figure 3.13: A failure case of our implementation in double precision floating point: a triangle without
possible points inside. 𝐴, 𝐵, and 𝐶 has coordinates (0, 1 + ℎ), (−𝑏/2, 1), and (𝑏/2, 1) resp., where ℎ =

2−53(The illustration is not to scale.)

 Orientation

Figure 3.14: Neighbors of 𝑣0 as described as in Lemma 3.2

Figure 3.15: Neighbors of 𝑣0 as described as in the proof Lemma 3.3, notice that 𝑣 𝑗+1 is enclosed inΔ𝑣0𝑣 𝑗𝑣𝑛 ,
so a connection to a previous vertex (red dotted line) is forbidden.

44

4 | Efficient and Robust Discrete

Conformal Eqivalence with

Boundary

4.1 Introduction

Computing discrete metrics with prescribed angles on meshes is a problem closely related to

surface parametrization and quadrangulation, which is of interest in many geometric settings.

Despite many years of efforts, only a few techniques for mesh parametrization provide theoretical

guarantees, commonly derived from the same source: discrete harmonic mappings with convex

boundary, based on Tutte’s embedding theorem [Floater 1997b].

Recent exciting advances concerning the theory of discrete metric uniformization [Gu et al.

2018b; Springborn 2019] provide a solid foundation for a much needed addition to this spectrum

of methods. They enable the computation of discrete metrics with arbitrary prescribed discrete

curvature at vertices, as long as the discrete Gauss-Bonnet theorem is respected. In particular, this

allows to compute, with guarantees, flat metrics or almost-everywhere flat cone metrics with pre-

scribed curvatures at cones—an essential component of global parametrization and quadrangu-

lation algorithms. Guarantees follow from a reduction to an unconstrained convex optimization

problem. However, compared to Tutte’s method, the numerics involved are far more complex, in

45

particular due to nonlinearity and large scale distortions inherent in conformal maps.

We present an efficient numerical algorithm based on these new theoretical ideas, extend it to

support surfaces with boundary, and explore its practical performance, focusing on robustness.

Problem Summary. To define the problem more precisely, consider a manifold triangle mesh

𝑀 , possibly with boundary. For a given discrete metric on𝑀 , i.e., an assignment of lengths to its

edges that satisfy the triangle inequality, we can compute inner angles of triangles.

Let Θ𝑖 be the total angle (the sum of incident inner angles) at vertex 𝑣𝑖 , and ^𝑖 its angle deficit,

defined as 2𝜋 − Θ𝑖 for interior vertices and 𝜋 − Θ𝑖 for boundary vertices. This quantity ^𝑖 can

be viewed as the discrete Gaussian curvature if 𝑣𝑖 is an interior vertex and the geodesic curva-

ture of the boundary if 𝑣𝑖 is on the boundary. Given target curvatures ˆ̂𝑖 (respecting the discrete

Gauss-Bonnet theorem) our goal is to compute edge lengths that exhibit exactly these curvatures.

Flattenings, i.e., mesh parametrizations over the plane, are a special case corresponding to pre-

scribing ^𝑖 = 0 in the interior [Ben-Chen et al. 2008]. Seamless maps for quadrilateral remeshing

are obtained by prescribing ˆ̂𝑖 = 𝑘𝑖
𝜋
2 with 𝑘𝑖 ∈ Z [Campen et al. 2019; Myles and Zorin 2012].

Approach. As shown in [Gu et al. 2018b; Springborn 2019], a discrete metric realizing target

curvatures ˆ̂𝑖 always exists, if retriangulation of the surface is allowed. When restricting to metrics

discretely conformally equivalent to a given original metric, this metric is unique (up to scale) and

can be computed by minimizing a convex function.

While the latter property has been exploited before for practical parametrization purposes

[Springborn et al. 2008], the assumption of a fixed triangulation restricts the space of target cur-

vatures that can be realized by a conformally equivalentmetric. For example, a vertex 𝑣𝑖 of valence

𝑘 cannot, under any (Euclidean) metric, exhibit a discrete curvature ^𝑖 ≤ (2−𝑘)𝜋 , because inner
angles are bounded by 𝜋 . As a consequence, the resulting discrete metric’s edge lengths violate

the triangle inequality in some places. This limitation can be remedied by allowing changes to

the triangulation of the input surface.

46

More concretely, the main requirement for triangulation changes needed to enable this is that

at all times the triangulation remains an intrinsic Delaunay triangulation. This leads to a natural

algorithm [Sun et al. 2015] in the spirit of kinetic data structures [Basch et al. 1999], which,

however, requires the determination of the exact sequence of all individual Delaunay-critical

events during the metric computation process.

Contributions. In this paper we describe an efficient and practical algorithm, performing tri-

angulation changes with greater flexibility, enabled by the theoretical connection to hyperbolic

metrics established by [Gu et al. 2018b; Springborn 2019]. While this theory is developed for

closed surfaces, in practice many, if not most, relevant applications involve surfaces with bound-

aries. These cases can be reduced to the closed surface case by creating a surface double, but a

number of algorithmic issues need to be addressed to reliably maintain symmetric intrinsic De-

launay triangulations in such cases. We introduce a number of additional improvements to the

basic algorithm, to speed up convergence and increase accuracy and robustness. We furthermore

perform extensive evaluations, with a focus on numerical aspects such as the effect of varying

arithmetic accuracy. Numerical behavior of the algorithm is of critical relevance as conformal

metrics and maps can unavoidably exhibit very large ranges of scales.

We discuss the relevant background in 4.2. An implementation of the main ideas, with partic-

ular attention to practical aspects is described in 4.3. Generalization to surfaces with boundary

is presented in 4.4, followed by the construction of a surface mapping from the discrete metric in

4.5, and concluded by the evaluation of the algorithm in 4.6.

4.2 Background

We begin by considering the case of surfaces without boundary, i.e., we are given a closed mani-

fold triangle mesh𝑀 = (𝑉 , 𝐸, 𝐹). The case of surfaces with boundary can be reduced to the closed

47

surface case with an additional symmetry structure, which we address in detail in 4.4.

The mesh𝑀 is equipped with an input metric defined by edge lengths ℓ : 𝐸 → R>0, satisfying

the triangle inequality.

4.2.1 Conformal Eqivalence

A conformally equivalent discrete metric, for a fixed triangulation 𝑀 , is defined by means of

logarithmic scale factors 𝒖 : 𝑉 → R associated with vertices 𝑉 = (𝑣1, . . . , 𝑣𝑛), by defining new

edge lengths as

ℓ𝑖 𝑗 (𝒖) = ℓ𝑖 𝑗 𝑒
𝑢𝑖+𝑢𝑗

2 (4.1)

per edge 𝑒𝑖 𝑗 [Luo 2004]. Given per-vertex target angles Θ̂𝑖 a conformally equivalent metric with

these angles is characterized by, for all 𝑖:

𝑔𝑖 (𝒖) := Θ̂𝑖 − Θ𝑖 (𝒖) = Θ̂𝑖 −
∑︁
𝑇𝑖 𝑗𝑘

𝛼𝑖𝑗𝑘 (𝒖) = 0, (4.2)

where the inner angle 𝛼𝑖
𝑗𝑘
(𝒖) is computed under the metric defined by 𝒖 via 4.1, i.e., from edge

lengths ℓ̃ = ℓ (𝒖). We use shorthands �̃� = 𝜶 (𝒖) and ℓ̃ = ℓ (𝒖) for these scale factor dependent
quantities in the following.

It is known that 𝒈(𝒖) = (𝑔1(𝒖), . . . , 𝑔𝑛 (𝒖)) is the gradient of a twice-differentiable convex

function [Springborn et al. 2008]. Hence, one may obtain factors 𝒖 satisfying 4.2 using (second-

order) convex optimization methods, starting from arbitrary initializations (e.g. 𝒖 ≡ 0). This is

true, however, only as long as there is a solution for which 𝒖 stays in the feasible region Ω𝑀 ⊂ R𝑛

where ℓ (𝒖) respects the triangle inequality for each triangle 𝑇𝑖 𝑗𝑘 ; otherwise it does not define a

Euclidean surface metric on𝑀 .

48

Ω

Ω

Δ

𝒖

Figure 4.1: Left: flip-on-degeneration. Right: flip-on-Delaunay-violation. Alongside a conceptual illustra-
tion of the valid region Ω (light blue) and Delaunay region Δ (white) is shown (cf. section 4.2.2), containing
the current point 𝒖 (cross mark) and changing due to the flip.

4.2.2 Dynamic Triangulation

The feasible region Ω𝑀 can be altered by adjusting the triangulation dynamically during the

evolution of 𝒖 from 0 towards 𝒖∗.

Note that a change of triangulation is possible without intrinsically changing the surface. 𝑀

together with given edge lengths defines a surface 𝑆𝑉 with a metric which is flat everywhere

except at 𝑉 . There are many triangulations (besides 𝑀) with vertices 𝑉 and their own associ-

ated edge lengths, defining the same surface 𝑆𝑉 (cf. [Sharp et al. 2019]); hence the differentiation

between 𝑀 and 𝑆𝑉 . In particular, an edge flip replacing a pair of triangles (𝑇𝑖 𝑗𝑘 ,𝑇𝑗𝑖𝑚) sharing

49

an edge 𝑒𝑖 𝑗 , with triangles (𝑇𝑘𝑖𝑚,𝑇𝑚𝑗𝑘) sharing edge 𝑒𝑘𝑚 can be performed without intrinsically

changing the surface 𝑆𝑉 , by setting the length of the new edge 𝑒𝑘𝑚 to the length of the diagonal

of the planar quadrilateral obtained by unfolding 𝑇𝑖 𝑗𝑘 ,𝑇𝑗𝑖𝑚 [Fisher et al. 2007]. This is referred to

as intrinsic flip.

Delaunay Flips [Gu et al. 2018b; Springborn 2019] prove a remarkable fact: the convex energy

can be extended to all of the space R𝑛 of scale factors 𝒖 defined at vertices, if a particular change

of triangulation is allowed. Specifically, the triangulation is modified so that it stays (intrinsically)

Delaunay at all times as 𝒖 evolves. More specifically, whenever the Delaunay condition is violated

as a result of a change in 𝒖, a flip is performed tomaintain the Delaunay property. As the resulting

energy is a globally convex function, it can be minimized by an unconstrained Newton method,

and the resulting choice of 𝒖 satisfies (4.2) with respect to the resulting triangulation.

Definition 4.1 (Intrinsic Delaunay). A triangulation is intrinsically Delaunay if the angles of two

triangles 𝑇𝑖 𝑗𝑘 and 𝑇𝑗𝑖𝑚 opposite a common edge 𝑒𝑖 𝑗 satisfy the Delaunay condition:

𝛼𝑘𝑖 𝑗 + 𝛼𝑚𝑖 𝑗 ≤ 𝜋 (4.3)

or equivalently cos𝛼𝑘𝑖 𝑗 + cos𝛼𝑚𝑖 𝑗 ≥ 0. Expressed directly in terms of edge lengths this condition is

equivalent to
ℓ̃2
𝑗𝑘
+ ℓ̃2

𝑘𝑖
− ℓ̃2

𝑖 𝑗

ℓ̃𝑗𝑘 ℓ̃𝑘𝑖
+
ℓ̃2
𝑗𝑚 + ℓ̃2

𝑚𝑖 − ℓ̃2
𝑖 𝑗

ℓ̃𝑗𝑚 ℓ̃𝑚𝑖

≥ 0. (4.4)

This latter version of the Delaunay condition is particularly important for our construction.

Generically (iff these weak inequalities hold strictly), the intrinsic Delaunay triangulation is

unique, but for special configurations (four or more intrinsically co-circular vertices resulting in

equality in 4.4) it is not.

For a given triangulation 𝑀 , the Penner cell Δ𝑀 ⊂ R𝑛 denotes the set of scale factors 𝒖 for

which𝑀 , along with the modified metric defined by 𝒖, is intrinsic Delaunay. Clearly, Δ𝑀 ⊂ Ω𝑀 ,

50

and when 𝒖 ∈ 𝜕Δ𝑀 the Delaunay triangulation is not unique. Whenever 𝒖 reaches the boundary

of Δ𝑀 , we can switch to another Delaunay triangulation𝑀′ by means of an intrinsic flip, thereby

changing the region (from Δ𝑀 to Δ𝑀 ′), enabling 𝒖 to evolve further, see 4.1. The cells Δ𝑀 form a

partition of R𝑛 [Gu et al. 2018b].

Such changes of scale factors together with intrinsic Delaunay flips lead to the following

generalized notion of discrete conformal equivalence of two metrics [Gu et al. 2018b]:

Definition 4.2 (Discrete Conformal Equivalence). Two metrics (𝑀1, ℓ1) and (𝑀𝑚, ℓ𝑚) are dis-

cretely conformally equivalent, if there is a sequence of meshes with the same vertex set, (𝑀𝑠, ℓ𝑠),

𝑠 = 1, . . . ,𝑚, such that, for each 𝑠 , 𝑀𝑠 is an intrinsic Delaunay triangulation for the metric ℓ𝑠 and

either

• (𝑀𝑠, ℓ𝑠) and (𝑀𝑠+1, ℓ𝑠+1) are different metrics with the same triangulation (i.e., 𝑀𝑠 = 𝑀𝑠+1)

and the edge lengths are related by 4.1 for a choice of 𝒖𝑠 : 𝑉 → R.

• (𝑀𝑠, ℓ𝑠) and (𝑀𝑠+1, ℓ𝑠+1) are different Delaunay triangulations for the same metric.

Degeneration Flips The alternative of performing a triangulation change onlywhen 𝒖 reaches

the boundary 𝜕Ω of the currently feasible region was considered by [Luo 2004]. This occurs when

a triangle becomes a degenerate cap. An intrinsic flip of this triangle’s longest edge yields a non-

degenerate triangulation, effectively changing the valid region Ω such that 𝒖 lies strictly in its

interior. 4.1 left illustrates this. An implementation of this approach is described and applied in

[Campen and Zorin 2017b]. Open theoretical questions remain regarding the finiteness of the flip

sequence and the sound handling of simultaneous adjacent degeneracies.

At first sight, the approach based on maintaining an intrinsic Delaunay triangulation may

seem less efficient in comparison. Due to Δ ⊂ Ω, at least as many, but often many more cells Δ

need to be traversed. Practically, this suggests a large number of small steps between flips in the

51

ℓ𝑖 𝑗
ℓ𝑘𝑚

ℓ𝑗𝑘
ℓ𝑘𝑖

ℓ𝑖𝑚
ℓ𝑚𝑖

ℓ𝑗𝑘
ℓ𝑘𝑖

ℓ𝑖𝑚
ℓ𝑚𝑖

𝑣𝑖

𝑣 𝑗

𝑣𝑘

𝑣𝑚

𝑣𝑖

𝑣 𝑗

𝑣𝑘

𝑣𝑚
Figure 4.2: Ptolemy flip of an edge 𝑒𝑖 𝑗 shared by two triangles forming an inscribed quadrilateral, i.e., a
Delaunay-critical edge.

process of optimizing 𝒖, compared to, e.g., the use of (less frequent) degeneration flips, and much

smaller steps compared to typical unconstrained optimization.

Remarkably, however, this Delaunay approach permits an implementation that is in general

more efficient and more robust (see 4.6.2 for a comparison). As we will see, exploiting a relation

to hyperbolic Delaunay triangulation, arbitrarily large steps can be made, beyond Δ and even

beyond Ω (unconstrained by Euclidean triangle inequalities). Flips can be performed collectively

after the fact and in arbitrary order. This is detailed in 4.2.4.

4.2.3 Evolution Step

Assume we are given a triangulation 𝑀 that is intrinsic Delaunay under the metric defined by

some 𝒖⊢. Consider an evolution of 𝒖 from 𝒖⊢ to 𝒖⊣, e.g., linear:

𝒖 (𝑡) = (1 − 𝑡)𝒖⊢ + 𝑡𝒖⊣, 𝑡 ∈ [0, 1] .

As we move along the interval [0, 1], whenever four vertices forming triangles 𝑇𝑖 𝑗𝑘 and 𝑇𝑗𝑖𝑚 be-

come co-circular under the metric defined by ℓ (𝒖 (𝑡)), an intrinsic flip of edge 𝑒𝑖 𝑗 is performed.

Due to the special configuration (the two triangles forming an inscribed quadrilateral, see 4.2) the

52

length that the new edge 𝑒𝑘𝑚 needs to take can be computed following Ptolemy’s theorem as

ℓ̃𝑘𝑚 =
1
ℓ̃𝑖 𝑗
(ℓ̃𝑗𝑘 ℓ̃𝑖𝑚 + ℓ̃𝑘𝑖 ℓ̃𝑚𝑗), (4.5)

where we use ℓ̃ as a shorthand for ℓ (𝒖 (𝑡)). For ℓ̃𝑘𝑚 = ℓ𝑘𝑚 (𝑢 (𝑡)) = ℓ𝑘𝑚 𝑒
𝑢𝑘+𝑢𝑚

2 to take this value for

the current 𝒖 (𝑡), we need to set:

ℓ𝑘𝑚 := 1
ℓ𝑖 𝑗
(ℓ𝑗𝑘ℓ𝑖𝑚 + ℓ𝑘𝑖ℓ𝑚𝑗). (4.6)

Notice that this is Ptolemy’s formula, 4.5, applied to the original metric, as all scale factors cancel.

In otherwords: applying the formula in the current (𝒖 (𝑡)-scaled)metric ℓ̃ is equivalent to applying

it in the original metric ℓ , followed by scaling. Remarkably, this holds even though the vertices

are not co-circular under the original metric in general. Moreover, the edge lengths ℓ set in this

way may not even satisfy the triangle inequality. This is no issue, though, as certainly the relevant

scaled lengths ℓ̃ = ℓ (𝒖 (𝑡)) do, by construction.

It was shown that the number of flip events along the path is finite [Wu 2014], which means

that after a finite number of flips we will obtain the triangulation and edge length assignment

needed for the target 𝒖 (1) = 𝒖⊣.

One practical downside of this procedure, in which the necessary flips along the evolution

path are detected and performed one-by-one sequentially [Sun et al. 2015], is that it requires

solving precisely for the sequence of flips. An alternative approach, whose correctness can be

shown based on an interpretation of the involved edge lengths as defining hyperbolic metrics

instead of Euclidean metrics, improves on this.

53

4.2.4 Hyperbolic Metric Approach

Instead of moving 𝑡 along the interval [0, 1], determining the sequence of flip events and execut-

ing them in order, let us directly consider 𝑡 = 1. The initial triangulation𝑀 may not be Delaunay

under 𝒖 (1), and the edge lengths ℓ (𝒖 (1)) may not even respect the triangle inequality. Neverthe-

less, we can test each edge for violation of the Delaunay criterion using 4.4 applied to ℓ (𝒖 (1)),
and incrementally flip (using 4.6) all violating edges in arbitrary order following the classical flip

algorithm until a Delaunay triangulation is reached [Bobenko and Springborn 2007]. While in

case of triangle inequality violations this criterion lacks the geometric justification via 4.3 (the

involved quantities are no longer (cotangents of) Euclidean angles), this algorithm nevertheless

succeeds.

Hyperbolic Delaunay. The reasons for applicability of 4.4 and use of 4.6 are direct conse-

quences of an elegant correspondence between hyperbolic and conformal metric structures used

in the proofs of [Gu et al. 2018b; Springborn 2019] and introduced in [Rivin 1994], given by map-

ping edge lengths to Penner coordinates of a hyperbolic metric, and Euclidean triangulations to

ideal triangulations. Detailed explanations can be found in these papers and an overview given

in [Crane 2020, §5, §6]. We go into more detail in 4.5, as this relation is important when the

conformal metric is used to establish a conformal map, for purposes of evaluation of the map

at arbitrary points. Here we just present a proposition summarizing the aspect of this theory

relevant to our algorithm.

Proposition 4.3. Suppose lengths ℓ̃ (possibly not satisfying triangle inequality) are assigned to

edges in a triangle mesh 𝑀 , conformally equivalent to a set of Euclidean metric lengths ℓ . If the

flip algorithm is applied to ℓ̃ , with the Delaunay criterion in algebraic form (4.4) used to determine

which edges need to be flipped, and the Ptolemy formula (4.6) used for length updates, the algorithm

produces a triangulation𝑀′ with lengths ℓ̃′ that satisfy the triangle inequality. This triangulation is

54

intrinsic Delaunay. Moreover, the discrete metric defined by (𝑀′, ℓ̃′) is discrete conformally equiva-

lent to (𝑀, ℓ).

In summary, instead of performing flips following an expensive-to-compute sequence re-

quired to maintain a valid Euclidean metric on triangles at all times, the algorithm performs

the flips in arbitrary order, yielding edge lengths ℓ̃ satisfying the triangle inequality only in the

end. This version of the flip algorithm is referred to asWeeks algorithm [Weeks 1993].

These observations ensure that whenever we modify scale factors 𝒖 while computing the

conformal metric, the flip algorithm can be used to recover a Delaunay triangulation, which can

then be used to evaluate the value of the convex function we need to minimize, its gradient, and

its Hessian.

4.3 Algorithm

Using this background, we can now formulate an efficient algorithm for the computation of a

conformally equivalent metric, respecting prescribed target angles �̂�. The algorithm, spelled out

in 3, is based on a standard Newton’s method with line search, but incorporates several important

details and modifications.

Delaunay. Initially, if𝑀 is not already intrinsically Delaunay, it is turned into a Delaunaymesh

using standard intrinsic edge flips. Then, whenever 𝒖 is updated (during the line search), before

the gradient and Hessian are evaluated the triangulation is turned into an intrinsic Delaunay

triangulation with respect to the metric defined by 𝒖 using Weeks flip algorithm—now using the

Ptolemy length computation rule from 4.6.

55

0 2

−2

0

2
·10−10

𝐸
(𝒖
+_

𝒅
)

−2

0

2
·10−11

_

𝒅
⊺ 𝒈
(𝒖
+_

𝒅
)

Figure 4.3: Energy (blue; mean (20202.12) subtracted) and projected gradient (red) along a descent direc-
tion 𝒅. Notice that the numerical noise in the energy computation dominates the actual change in energy,
making it less suitable to be a measure of progress in the line search. By contrast, the sign of the projected
gradient (red) can be determined much more precisely.

Energy-free Line Search. The function 𝐸 (𝒖) that needs to be minimized is known explicitly

[Springborn et al. 2008]:

𝐸 (𝒖) =
∑︁
𝑇𝑖 𝑗𝑘

(
2𝑓 (_̃𝑖 𝑗 , _̃ 𝑗𝑘 , _̃𝑘𝑖) − 𝜋 (𝑢𝑖 + 𝑢 𝑗 + 𝑢𝑘)

)
+ �̂�⊺𝒖,

where _̃𝑖 𝑗 = 2 log ℓ𝑖 𝑗 + 𝑢𝑖 + 𝑢 𝑗 and 𝑓 is a per-triangle function involving Milnor’s Lobachevsky

function [Springborn et al. 2008, Eq. (8)]. The gradient of 𝐸 (𝒖) is 𝒈(𝒖) = �̂� − 𝚯(𝒖) (4.2) and its

Hessian 𝐻 (𝒖) simply is the well-known positive semi-definite cotan-Laplacian in terms of the

scaled angles 𝜶 (𝒖).
The obvious approach is to use the standard Newton’s method with backtracking line search,

using 𝐸 (𝒖), 𝒈(𝒖), 𝐻 (𝒖) (cf. [Gillespie et al. 2021]). However, computing the energy 𝐸 (𝒖), in par-

ticular evaluating the Lobachevsky function, presents numerical challenges, and efficient Cheby-

shevpolynomial approximations, like the one used in the implementation of [Springborn et al.

2008], may not yield sufficient accuracy, while incurring additional computational overhead. We

observe that the energy can be very flat along the search direction, so using the decrease of en-

ergy evaluated this way as a criterion in the line search may lead to the algorithm stalling due to

numerical noise (see 4.3). This is particularly problematic in cases requiring high conformal dis-

tortion or if we want to compute the conformal metric with high precision, as needed for instance

56

to derive an implied conformal map (cf. 4.6).

The evaluation of the gradient and Hessian, both of which are simple functions of angles (not

involving the Lobachevsky function), by contrast, is more efficient and numerically robust than

the energy itself (see 4.3). Fortunately, we are able to formulate our algorithm such that it relies

on 𝒈(𝒖) and 𝐻 (𝒖) only. This is possible for the following reason: As 𝐸 (𝒖) is convex, it is also
convex along the search direction 𝒅, i.e., 𝐸 (𝒖 + _𝒅) for fixed 𝒖 and 𝒅 is convex in the step size _.

Therefore its derivative
𝜕

𝜕_
𝐸 (𝒖 + _𝒅) = 𝒅⊺𝒈(𝒖 + _𝒅), (4.7)

i.e., the gradient’s projection onto the search direction, has at most one zero. Hence, if we require

that the step size _ is selected in the line search such that 𝒅⊺𝒈(𝒖 + _𝒅) ≤ 0, this guarantees that

𝐸 (𝒖) decreases, without the need for checking the function value itself.

Note that avoiding energy evaluation precludes the use of standard sufficient decrease con-

ditions (most commonly, Armijo condition) in the line search. However, a simple backtracking

search, starting with _ = 1, for a point along the search direction with negative projected gra-

dient, ensures that the Newton step, when it is less than one, is always in the range [_𝑚/2, _𝑚],
where _𝑚 is the function’s (unknown) minimum point along the search line. One can show that

this is sufficient for convergence by following the standard analysis of Newton’s method with

inexact line search. However, this is, in general, not sufficient to guarantee that the algorithm

converges quadratically. An additional Armijo-like condition (the first termination condition in

the line search in 3; we use 𝛼 = 0.1, with a meaning similar to the Armijo condition constant)

yields a more consistent quadratic behavior. The practical effect of this additional termination

condition is small in most cases (most commonly, the reduction in the number of iterations on

our test datasets is around 1-2). A detailed analysis of convergence of the proposed energy-free

method can be found in [Zorin 2021].

57

Termination. The accuracy with which the target angles �̂� can be matched of course depends

(in a non-trivial manner) on the precision of the real number representation. If tolerance Ytol is

chosen too low relative to this, 3 may never terminate. For practical purposes therefore additional

stopping criteria can be taken into account: an upper bound on the number of Newton steps

and the number of line search halvings, a lower bound on the Newton decrement 𝒅⊺𝒈(𝑀, ℓ, 𝒖).
Information about the practically achievable accuracy can be found in 4.6.3.

Additional Performance Heuristic. In particularly challenging cases, the gradient direction

and in particular its magnitude can be rapidly varying. The line search loop may then have to be

executed many times before a valid step size is found, causing many redundant edge flips. One

additional line search heuristic that proved beneficial in this regard is a gradient norm decrease

condition. Specifically, as a stopping condition for the line search we require that, in addition

to 𝒅⊺𝒈 < 0, the norm of the gradient ∥𝒈∥ decreases. Only if this additional condition forces the

step size below a given threshold (we use 10−10), the condition is lifted for one step, allowing the

gradient to grow, so as to not hamper convergence.

Overlay Mesh. An embedding of the (by edge flips) modified mesh in the original mesh can

be maintained by using a mesh overlay data structure. Towards the algorithm it behaves like a

mesh, but internally it keeps track of the overlay of both meshes, updating it whenever an edge

is flipped. [Fisher et al. 2007] propose to represent it explicitly by means of a polygon mesh data

structure, [Gillespie et al. 2021] propose a more lightweight implicit representation by normal

coordinates. We found the overhead of even the explicit structure to be benign (e.g., on average

11% added time cost on the example cases from 4.9).

58

4.4 Boundaries

So far, we assumed that 𝑀 is a closed surface. For a surface with boundary, the problem can be

reduced to the case of closed surfaces by gluing amirrored copy to the surface along the boundary,

turning it into a closed surface with an obvious (reflectional) symmetry. A strategy of this kind

is also used in [Sun et al. 2015] and [Gillespie et al. 2021].

However, the initial symmetry of the setting may be disturbed when applying 3. Due to

numerical inaccuracies, the values 𝒖 may diverge on the two copies; application of a standard

Delaunay flip algorithm is further complicated by the presence of stably cocircular configurations,

as we discuss below. Therefore we describe a version of this surface double cover approach that

explicitly imposes and maintains symmetry, on the numerical as well as the combinatorial level,

by construction.

4.4.1 Double Cover

Let the input surface be 𝑁 . Its double cover is constructed as follows:

1. we attach a mirrored copy 𝑁 ′ of the input mesh 𝑁 along the boundary (merging boundary

vertices and edges), as illustrated below, yielding a closed mesh𝑀 ,

2. we transfer the edge lengths ℓ and the target curvatures ^𝑖 of interior vertices 𝑣𝑖 from 𝑁 to

𝑁 ′,

3. we prescribe Θ̂𝑖 = 2𝜋 − 2 ˆ̂𝑖 at each (former) boundary vertex 𝑣𝑖 , where ˆ̂𝑖 is the target

discrete geodesic boundary curvature at vertex 𝑣𝑖 .

The double cover mesh𝑀 built this way exhibits an obvious reflectional symmetry, i.e., there

is a map 𝑅 with 𝑅2 = 𝐼 that takes vertices to vertices, edges to edges, and faces to faces. It maps

an element in the interior of 𝑁 to its copy in 𝑁 ′ and vice versa; on the merged (former) boundary

vertices and edges, 𝑅 is the identity.

59

Conformal Metric Symmetry. Due to symmetry (i.e., invariance with respect to 𝑅) of the

mesh 𝑀 , the metric ℓ , and the target angles �̂�, the symmetrically initialized factors 𝒖 will (in

theory, up to numerical round-off error) remain symmetric after each iteration of the optimization

process. This can be seen by observing that the function 𝐸 (𝒖) is the sum of per-triangle terms

𝐸𝑇 (𝒖𝑇), where 𝒖𝑇 is the restriction of 𝒖 to vertices of the triangle 𝑇 . Given the above symmetry,

its gradient 𝒈(𝒖) = ∇𝒖𝐸 therefore is invariant with respect to 𝑅. Consequently, if we cut the

mesh along the symmetry line in the end, so as to discard one copy, a boundary vertex 𝑣𝑖 will

have exactly half the prescribed angle, 1
2Θ̂𝑖 = 𝜋 − ˆ̂𝑖 , and therefore exhibit a discrete geodesic

boundary curvature of ˆ̂𝑖 , just as intended.

Tufted Double Cover. The fact that 𝒖 (and thus all vertex-associated attributes) are supposed

to evolve symmetrically implies that we can use a tufted double cover as in [Sharp and Crane

2020], with the unknown scale factors 𝒖 shared between the two symmetric halves of 𝑀 , to

reduce the number of variables (and to impose perfect symmetry on the numerical level). This

does not mean, however, that computations could trivially be restricted entirely to one half of

the double cover only: edge flips may, and commonly will, create edges and faces spanning both

halves of the double cover, crossing the symmetry line.

Combinatorial Symmetry. Edge flips across the symmetry line can lead to triangulations that

are no longer combinatorially symmetric, as depicted in fig. 4.4. Unless special care is taken, this

can increase the chance of numerical inaccuracies causing divergence from geometric symmetry.

Furthermore, such cases contain co-circular vertex configurations that are stable, i.e., for the given

triangulation, due to the symmetry of 𝒖, these remain co-circular independent of the evolution of

𝒖. An example is the diagonal edge on the right in the inset. As in this case, numerical evaluation

of the Delaunay condition results in an essentially random choice of the result, in order to avoid

potentially infinite flip sequences of Delaunay-critical edges, we instead perform special flips

at the symmetry line, maintaining perfect combinatorial symmetry by construction, as detailed

60

Figure 4.4: Edge flips across the symmetry line can lead to triangulations that are no longer combinato-
rially symmetric.

in the next section. Our method explicitly identifies these stably cocircular configurations and

ensures that Delaunay flips are never applied to these, even if they appear to be slightly non-

Delaunay due to numerical inaccuracies. In addition, having a symmetric Delaunay mesh for

the final configuration can simplify the extraction of the resulting metric or map for the original

surface with boundary.

4.4.2 Symmetric Meshes

Our goal is to rigorously determine which edge flip cases can occur in a symmetric mesh, in par-

ticular at the symmetry line, so as to ensure all special cases are correctly handled in our method.

To that end, we begin by making precise the general notion of combinatorially symmetric polygon

mesh. In this, rather than using edges, we use halfedges, each associated with a unique face (or a

boundary loop, which can be treated exactly like a face). Specifically, each edge corresponds to

two halfedges.

Definition 4.4 (Combinatorial Mesh). A combinatorial polygon mesh is a triple (𝐻,N ,O) of a
set of halfedges 𝐻 , a bijective function N : 𝐻 → 𝑁 (next-halfedge function), and a bijective

61

function O (opposite-halfedge function) with the property

O2(ℎ) = ℎ; O(ℎ) ≠ ℎ (4.8)

i.e., all orbits of O have size 2.

This definition is quite general which is important for maintaining intrinsic Delaunay trian-

gulations: e.g., it allows for vertices of valence 1, polygons glued to themselves, etc., all of which

are possible configurations in these triangulations.

Definition 4.5 (Mesh Elements). Define the bijective circulator function C : 𝐻 → 𝐻 as

N−1(O(ℎ)). Then the mesh has the following implied elements:

• Faces are the orbits of the next-halfedge function N .

• Vertices are the orbits of the circulator function C.

• Edges are the orbits of the opposite-halfedge function O.

Collectively we refer to them as (mesh) elements. A halfedge belongs to an element if it is part of

the respective orbit.

A mesh with boundary is a mesh with a subset of its faces marked as boundary loops. The

halfedges of these loops form the set 𝐻𝑏𝑛𝑑 of boundary halfedges.

Definition 4.6 (Reflection Map). A reflection map 𝑅 : 𝐻 → 𝐻 for a mesh (𝐻,N ,O) is an invo-

lution (𝑅2 = 𝐼) defined on the set of halfedges: each halfedge is mapped either to itself, or forms

a reflection pair with a distinct halfedge. It is required to satisfy the following conditions:

1. preservation of O relation: O(𝑅(ℎ)) = 𝑅(O(ℎ)),

2. inversion of N relation: N(𝑅(ℎ)) = 𝑅(N−1(ℎ)),

62

3. preservation of boundary: ℎ ∈ 𝐻𝑏𝑛𝑑 ⇔ 𝑅(ℎ) ∈ 𝐻𝑏𝑛𝑑 .

Note that conditions (1) and (2) correspond to the properties of continuity and orientation-

reversal of continuous reflection maps [Panozzo et al. 2012]. They imply that 𝑅 maps orbits of

N , of O, and, as a consequence, of C, to orbits of these functions, i.e., it is well-defined for faces,

edges, and vertices (via 𝑅(𝑥) = 𝑥′ ⇔ 𝑅(ℎ) ∈ 𝑥′ for any ℎ ∈ 𝑥). Furthermore, because 𝑅2 = 𝐼 , all

orbits of 𝑅 have length 1 or 2, whether it acts on halfedges, faces, edges, or vertices. This implies

the following partitioning.

Proposition 1 (Halfedge Sets). 𝐻 can be partitioned into disjoint sets 𝐻 1
, 𝐻 2

, 𝐻 𝑠
so that the fol-

lowing conditions are satisfied:

• ℎ ∈ 𝐻 𝑠 ⇔ 𝑅(ℎ) = ℎ;

• ℎ ∈ 𝐻 1 ⇔ 𝑅(ℎ) ∈ 𝐻 2
;

• for any face or edge 𝑥 , either all belonging halfedges are in 𝐻 1
, or all in 𝐻 2

, or 𝑥 is fixed by 𝑅

(i.e. 𝑅(𝑥) = 𝑥).

This leads to the following partitioning of the sets of edges and faces, where 𝑒 = (ℎ,ℎ′),
𝑓 = (ℎ0, . . . ℎ𝑚−1) denote the orbits of belonging halfedges:

• 𝑒 ∈ 𝐸𝑖⇔ ℎ,ℎ′ ∈ 𝐻 𝑖 , 𝑖 = 1, 2

•𝑒 ∈ 𝐸⊥⇔ ℎ,ℎ′ ∈ 𝐻 𝑠

• 𝑒 ∈ 𝐸 ∥⇔ ℎ = 𝑅(ℎ′)

• 𝑓 ∈ 𝐹𝑖⇔ ℎ0 ∈ 𝐻 𝑖 , 𝑖 = 1, 2

• 𝑓 ∈ 𝐹 𝑠⇔ 𝑅(ℎ0) ∈ 𝑓

63

The set 𝐸⊥ is the set of edges (perpendicularly) crossing the symmetry line between two halves of

a symmetric mesh mapped to each other (see 4.5 right); the set 𝐸 ∥ is the set of edges on the sym-

metry line; 𝐹 𝑠 is the set of faces that cross the symmetry line, and are mapped by the symmetry

map to themselves. For additional details, see 4.7.

Using this terminology, our double cover construction from 4.4.1 can be described formally in

terms of combinatorial structure of the mesh (see 4.8). Initially we have 𝐸⊥ = ∅ and 𝐹 𝑠 = ∅, i.e.,
no element crosses the symmetry line (the former boundary). 𝐸 ∥ contains the edges lying on the

symmetry line, i.e., those for whose halfedges the O relation was adjusted to glue the two copies.

This initially simple situation can change, however, when edge flips are performed on the double

cover mesh.

4.4.3 Symmetric Flips

When an edge 𝑒 in a symmetric mesh𝑀 = (𝐻,N ,O, 𝑅) shall be flipped, the edge 𝑅(𝑒) needs to be
flipped as well (unless 𝑅(𝑒) = 𝑒), so as to be able to maintain a symmetric mesh. The simultaneous

flip of 𝑒 and 𝑅(𝑒) (as well as the single flip of 𝑒 if 𝑅(𝑒) = 𝑒) is referred to as symmetric flip. As

discussed in 4.4.1, in the algorithm from 4.3 the metric evolves symmetrically. This implies that

whenever the algorithm intends to flip an edge 𝑒 , it simultaneously intends to flip 𝑅(𝑒) as well.
The algorithm is therefore compatible with the restriction to symmetric flips.

While for an edge 𝑒 ∈ 𝐸𝑖 with incident faces 𝑓 , 𝑔 ∈ 𝐹𝑖 the process is obvious, special care needs
to be taken when elements from 𝐸 ∥ , 𝐸⊥, or 𝐹 𝑠 are involved. We will exhaustively distinguish

different types of symmetric flips based on the membership of the involved edges and faces in

these sets.

Flip Types For a triple (𝑓𝑎, 𝑒, 𝑓𝑏) of an edge 𝑒 with incident faces 𝑓𝑎 , 𝑓𝑏 , the triple of labels de-

noting their set memberships, e.g., (1, ∥, 2), is called flip type of the edge 𝑒 .

64

(1, ∥, 2)
↔
(𝑡,⊥, 𝑡)

(1, 1, 𝑡) + (2, 2, 𝑡)
↔
(𝑡,⊥, 𝑞)

(1, 1, 𝑞) + (2, 2, 𝑞)
↔

(𝑞,⊥, 𝑞)

Figure 4.5: Symmetric edge flips involving faces from 𝐹 𝑠 (light blue), crossing the symmetry line (dashed).
Faces from 𝐹 1 and 𝐹 2 are colored dark blue. The configurations are shownwith co-circular vertices, though
combinatorially flips can be performed in any state. Note that the light blue quads’ vertices, however, are
necessarily co-circular by symmetry, regardless of metric.

Consistent Flip Types We say that an edge has a consistent flip type, if this particular triple

may occur in a symmetric mesh. For instance, (1,⊥, 1) is not a consistent type, as edges from 𝐸⊥

necessarily have incident faces from 𝐹 𝑠 by definition.

Proposition 2 (4.7) helps to reduce the possible set to the following six possibilities, up to a

1↔ 2 exchange. It is easy to construct examples proving that all of them are consistent, i.e., may

occur in a symmetric mesh:

• Edge in 𝐸1: Set 1a: (1, 1, 1), (1, 1, 𝑠) Set 1b: (𝑠, 1, 𝑠)

• Edge in 𝐸 ∥ : Set 2a: (1, ∥, 2) Set 2b: (𝑠, ∥, 𝑠)

• Edge in 𝐸⊥: Set 3: (𝑠,⊥, 𝑠)

65

Relevant Flip Types Among these types, only four are also relevant; Following Proposition 3

(4.7), types of the form (𝑠, ∥, 𝑠) and (𝑠, 1, 𝑠) in the sets 1b and 2b are necessarily associated with

edges that satisfy the Delaunay condition 4.4 irrespective of the choice of lengths of edges in-

volved. These are not relevant for the purpose of the algorithm from 4.3, which exclusively flips

non-Delaunay edges. This leaves only sets 1a, 2a, and 3 for further consideration.

Triangles and Quadrilaterals A flip of type (1, 1, 𝑠) leads to a pair of triangles in 𝐹 𝑠 that

together form a quadrilateral which is inscribed, i.e., the four vertices are intrinsically co-circular

(4.5 center). Remarkably, this statement holds regardless of metric, as long as it is symmetric, i.e.,

invariant with respect to 𝑅. Instead of randomly choosing a diagonal splitting this quadrilateral

into two triangles, we explicitly represent it as a quadrilateral face. This avoids violating the

symmetry by the diagonal, which, e.g., would complicate recovering the surface with boundary

after the conformal metric is computed, and avoids potential issues such as sequences of flips

caused by numerically nearly co-circular points.

Faces in 𝐹 𝑠 can therefore be triangular or quadrilateral. We accordingly partition 𝐹 𝑠 = 𝐹 𝑡 ∪𝐹𝑞 ,
and based on this distinguish 𝑡-versions and 𝑞-versions of flip types involving the label 𝑠 . This

yields a total of seven types that are consistent and relevant.

Six of these seven flip types form three pairs of mutually inverse flips, while one is self-inverse.

We can thus succinctly summarize :

1. (1, 1, 1) + (2, 2, 2) ↔ (1, 1, 1) + (2, 2, 2);

2. (1, ∥, 2) ↔ (𝑡,⊥, 𝑡);

3. (1, 1, 𝑡) + (2, 2, 𝑡) ↔ (𝑡,⊥, 𝑞);

4. (1, 1, 𝑞) + (2, 2, 𝑞) ↔ (𝑞,⊥, 𝑞).

Case (1) is the standard case of flipping a configuration not involving the symmetry line. (2), (3),

and (4) are the special cases crossing the symmetry line; they are illustrated in 4.5. 4.1 details the

66

combinatorial changes to be performed on the symmetric mesh so as to execute these symmetric

flips. In terms of implementation, it thus simply comes down to initially labeling the edges and

faces of the double cover, updating the labels when flipping edges, and using one of these special

case rules whenever a label other than 1 or 2 is involved in a flip.

4.4.4 Symmetric Metric

To be able to apply 3 to such symmetric meshes to compute a symmetric conformal metric, what

is left to clarify is how to deal with quadrilateral faces.

Delaunay Criterion For edges with two incident triangles, the Delaunay check needed for the

algorithm is standard, via 4.4. If one of the incident faces is a quad, due to symmetry it, regardless

of the metric, is an inscribed trapezoid. As a consequence, whichever way we (virtually) split it

into triangles we get the same angles opposite any of its edges. Hence, we may perform the

Delaunay check assuming arbitrary virtual diagonals in the quads.

Gradient and Hessian For the same reason, the computation of gradient 𝑔(𝒖) and Hessian

𝐻 (𝒖) can be performed based on arbitrary diagonals; the choice does not affect the result [Spring-

born 2019].

Ptolemy Formula Note that each of the edges created by symmetric flips involving quads (4.5)

can also be obtained by a sequence of edge flips involving triangles (and split quads) only. In

this way the length of such edges can be computed using (multiple instances of) the standard

Ptolemy formula 4.6. As there are only four types of flips involving quads, one can conveniently

derive closed form expressions for these cases in advance, rather than actually performing these

sequences for each flip. Note that each quad needs to store its diagonal length to enable these

computations.

67

4.4.5 Restriction to Single Cover

Once 3 has terminated and the desired conformal metric has been computed, we finally need to

discard half of the double cover: we need to cut the symmetric surface along the line of symmetry.

While initially the entire symmetry line is formed by a sequence ofmesh edges, thismay no longer

be the case due to flips (unless an overlay is used), namely whenever 𝐹 𝑠 and 𝐸⊥ are not empty in

the end. One simply needs to split all edges from 𝐸⊥ at their midpoint, and split the triangles and

quads from 𝐹 𝑠 by connecting these inserted split vertices.

4.5 Continuous maps from discrete metrics

The algorithms described in previous sections deal exclusively with discrete metric definitions,

i.e., assignments of edge lengths to edges of a mesh. If mesh connectivity does not change, an

affine map from the initial mesh triangles 𝑇 to the final mesh triangles 𝑇 can be easily inferred

from the lengths. However, as pointed out in [Springborn et al. 2008], a natural map is actu-

ally a projective map between triangles, which, in addition to mapping the original lengths to

conformally deformed ones, also maps the circumcircle of 𝑇 to the circumcircle of 𝑇 . While for

fixed connectivity this yields only a moderate improvement in, e.g., texture quality, for changing

connectivity the map definition is more relevant.

While for the discrete algorithm itself we only needed a simple-to-formulate (although sur-

prising) fact that Weeks flip algorithm can be used to obtain an intrinsically Delaunay mesh even

if the triangle inequality is violated at intermediate steps, defining maps between the original

mesh points and the final (e.g. flat) mesh points requires a more in-depth exposition of the un-

derlying theory.

Our goal in this section is to define a map 𝑓 : |𝑀 | → |𝑀′|, from the original to the final (e.g.

conformally flattened) mesh, more specifically, mapping formulas of the form (𝑤 ′
𝑙
,𝑤 ′𝑚,𝑤 ′𝑚;𝑇 ′) =

68

ℓ𝑘 𝑗

ℓ𝑖 𝑗

ℓ𝑗𝑘

𝑗

𝑖

𝑘

𝑖 𝑗

−𝑝 𝑝𝑟

𝑝𝑟

−𝑝𝑟

𝑇 𝑟
1

𝑇 𝑟
2

𝑙

𝑘

Figure 4.6: Left: Poincaré model. Center: Beltrami-Klein model, both with an ideal triangle. Note that in
the Beltrami-Klein model it forms a Euclidean triangle. Right: Two-triangle chart.

𝑓 (𝑤𝑖,𝑤 𝑗 ,𝑤𝑘 ;𝑇), where (𝑤𝑖,𝑤 𝑗 ,𝑤𝑘) are barycentric coordinates of a point on the input triangle

𝑇𝑖 𝑗𝑘 in𝑀 and (𝑤 ′
𝑙
,𝑤 ′𝑚,𝑤 ′𝑛) is the corresponding point on a triangle 𝑇 ′

𝑙𝑚𝑛
in mesh𝑀′.

4.5.1 Cusped Hyperbolic Metric on Meshes

The central idea of the theory in [Gu et al. 2018b] and several other papers dealing with related

problems is a construction of a hyperbolic metric corresponding to a Euclidean metric ℓ which

is invariant to conformal scale factors 𝒖; in this context the lengths ℓ are referred to as Penner

coordinates of the hyperbolic metric.

Conformal deformations of ℓ do not change this hyperbolic metric, and flips define just dif-

ferent triangulations of a fixed surface. The update of Penner coordinates for an edge flip using

the Ptolemy formula 4.6 happens to produce a mesh that is isometric in the hyperbolic metric to

the mesh before the flip. Next, we discuss the hyperbolic metric definition and isometric retrian-

gulation in this metric in more detail.

Beltrami-Klein Model. We use the Beltrami-Klein hyperbolic plane model. The model repre-

sents the hyperbolic plane 𝐻 2 as the interior of a unit disk, with points of the boundary of the

disk being points at infinity in the hyperbolic metric. These points (which are not a part of the

hyperbolic plane, but play an important role in the model) are called ideal points. The model has

the following properties.

69

• Lines are segments connecting points on the boundary.

• Given two distinct points 𝑝 and 𝑞 in the disk, the unique Euclidean straight line connecting

them intersects the disk’s boundary at two ideal points, 𝑎 and 𝑏; label them so that the

points are, in order, 𝑎, 𝑝 , 𝑞, 𝑏 along the line. The hyperbolic distance between 𝑝 and 𝑞 then

is:

𝑑𝐻 (𝑝, 𝑞) = 1
2 log |𝑎𝑞 | |𝑝𝑏 ||𝑎𝑝 | |𝑞𝑏 |

• Isometries of the hyperbolic plane correspond to projective transformations preserving the unit

disk.

• An isometry is defined uniquely by specifying images of three points on the boundary of

the disk (ideal points). There is an isometry mapping any three ideal points to any other

three ideal points. We denote such projective maps 𝑃 [𝑇 → 𝑇 ′] where 𝑇 and 𝑇 ′ are triples

of points on the unit disk (4.6 center).

• While angles are not preserved, if a line is a diameter, perpendicular lines are also perpen-

dicular to it in the model.

Defining the Hyperbolic Metric. For a mesh𝑀 with vertices excluded, the hyperbolic met-

ric is defined by mapping each mesh triangle, with edge lengths given by ℓ , to a similar Euclidean

triangle inscribed in a unit disk, and using the Beltrami-Klein model to define the hyperbolic dis-

tances inside the triangle. Under this hyperbolic metric the triangles are ideal, with vertices at

infinity (referred to as cusped, for reasons more obvious in the Poincaré model, see 4.6 left). Fur-

thermore they are all congruent, because there is a hyperbolic isometry, a projective circumcircle-

preserving map, mapping one triangle to the other.

Note however, that unlike the case of finite triangles, the identification of sides of ideal tri-

angles that are adjacent in 𝑀 is not unique: because the sides are infinitely long, one can slide

70

them along each other isometrically. The natural gluing defined by identifying points that cor-

respond in the disk model picks one such isometric identification. One can show that if Penner

coordinates ℓ and ℓ̃ are related by a set of conformal scale factors 𝒖, the resulting gluing between

adjacent ideal triangles is the same, i.e., they define the same metric.

This allows a convenient definition of two-triangle isometric charts (4.6, right) for this metric,

which provide most of what we need for defining our maps 𝑓 across edge flips.

Two-Triangle Charts. Consider two adjacent triangles𝑇𝑖 𝑗𝑘 and𝑇𝑗𝑖𝑙 sharing edge 𝑒𝑖 𝑗 , and five

Penner coordinates ℓ𝑖 𝑗 , ℓ𝑗𝑘 , ℓ𝑘𝑖 , ℓ𝑖𝑙 , ℓ𝑙 𝑗 . For a single triangle, Penner coordinates can be changed

arbitrarily using conformal deformations. Note however, that there are only four conformal scale

factors 𝑢𝑖, 𝑢 𝑗 , 𝑢𝑘 , 𝑢𝑙 involved when mapping two adjacent triangles, so the five lengths cannot

be chosen completely arbitrarily. The invariant that is preserved under these remappings is the

cross-ratio 𝑐𝑖 𝑗 = (ℓ𝑗𝑘ℓ𝑖𝑙)/(ℓ𝑗𝑙 ℓ𝑘𝑖). Cross-ratio assignments to edges (shear coordinates) actually are

in one-to-one correspondence with choices of cusped hyperbolic metrics on a fixed mesh.

We are thus free to choose the conformal scale factors𝑢𝑖, 𝑢 𝑗 , 𝑢𝑘 , 𝑢𝑙 so that the following condi-

tions are satisfied: (1) edge 𝑒𝑖 𝑗 is mapped to the diameter (−𝑝, 𝑝), with 𝑝 = (1, 0), on the horizontal
coordinate axis; (2) vertices 𝑘 and 𝑙 are mapped to antipodal points 𝑝𝑟 = (𝑟,

√
1 − 𝑟 2) and −𝑝𝑟 on

the circle. It is easy to check that the four scale factors are uniquely defined by these conditions,

with 𝑟 equal to (1 − 𝑐𝑖 𝑗)/(1 + 𝑐𝑖 𝑗). Notice that 𝑐𝑖 𝑗 > 0, thus 𝑟 ∈ (−1, 1), regardless of any triangle

inequality condition. We denote these two chart triangles 𝑇 𝑟
1 and 𝑇 𝑟

2 .

Thus, an isometric atlas can be constructed for the whole mesh, by mapping each triangle

pair to a chart as described above. This gives us the necessary tools to define the map 𝑓 .

Mapping Across a Flip. Let 𝑀𝑘 be a mesh obtained after applying a sequence of 𝑘 flips to 𝑀 ,

and 𝑀𝑘+1 a mesh obtained by flipping a single further edge 𝑒𝑖 𝑗 shared by triangles 𝑇1 = 𝑇𝑖 𝑗𝑘 and

𝑇2 = 𝑇𝑗𝑖𝑙 as above. Each mesh has length assignments ℓ𝑘 , but as these are guaranteed to satisfy

triangle inequalities only at certain steps 𝑘 where the Delaunay condition is satisfied, these are

71

𝑃 [𝑇 ref→ 𝑇 𝑟] flip 𝑃 [𝑇 𝑟 ′→ 𝑇 ref]

𝑗

𝑖

𝑘

𝑇 ref 𝑘

𝑙

𝑖

𝑇 ref

𝑇 𝑟
1

𝑇 𝑟
2

𝑇 𝑟 ′
1

𝑇 𝑟 ′
2

𝑙𝑙

𝑘𝑘

Figure 4.7: Mapping a point through a single flip via a two-triangle chart.

best viewed as Penner coordinates for a hyperbolic metric.

As barycentric coordinates are not invariant with respect to projective maps, we need to

choose a reference triangle for barycentric representation (𝑤𝑖,𝑤 𝑗 ,𝑤𝑘). We use an equilateral

reference triangle𝑇 ref, with vertices 𝑞0, 𝑞1, 𝑞2, with 𝑞𝑠 = (cos 2𝑠𝜋/3, sin 2𝑠𝜋/3) for any triangle𝑇1

of𝑀𝑘 , see 4.7 left.

In the two-triangle chart, 𝑇1 and 𝑇2 are mapped to 𝑇 𝑟
1 and 𝑇 𝑟

2 . After the flip in the chart, the

new chart triangles, corresponding to triangles 𝑇 ′1 = 𝑇𝑗𝑘𝑙 and 𝑇 ′2 = 𝑇𝑖𝑙𝑘 are 𝑇 𝑟′
1 = (𝑝, 𝑝𝑟 ,−𝑝𝑟)

and 𝑇 𝑟′
2 = (−𝑝,−𝑝𝑟 , 𝑝𝑟), see 4.7 center. If the image of the point (𝑤𝑖,𝑤 𝑗 ,𝑤𝑘) in the chart be-

longs to triangle 𝑇 ′1 then the map (𝑤𝑖,𝑤 𝑗 ,𝑤𝑘) → (𝑤 ′𝑖 ,𝑤 ′𝑗 ,𝑤 ′𝑘) is obtained as the composition of

circumcircle-preserving projective maps:

(𝑤 ′𝑗 ,𝑤 ′𝑘 ,𝑤 ′𝑙) = 𝑓 (𝑤𝑖,𝑤 𝑗 ,𝑤𝑘) =(
𝑃 [𝑇 𝑟′

1 → 𝑇 ref] ◦ 𝐵 ◦ 𝑃 [𝑇 ref → 𝑇 𝑟
1]
)
(𝑤𝑖,𝑤 𝑗 ,𝑤𝑘)

(4.9)

where 𝐵 is the matrix converting barycentric coordinates on𝑇 𝑟
1 to barycentric coordinates on𝑇 𝑟′

2 .

The expression is similar in the case when the image of the point in the chart lands in 𝑇 𝑟′
2 . The

circumcircle-preserving projective maps 𝑃 can be computed in barycentric coordinates using the

following formula:

𝑃 (𝑤𝑖,𝑤 𝑗 ,𝑤𝑘) = (𝑤𝑖𝑆𝑖,𝑤 𝑗𝑆 𝑗 ,𝑤𝑘𝑆𝑘)/(𝑤𝑖𝑆𝑖 +𝑤 𝑗𝑆 𝑗 +𝑤𝑘𝑆𝑘)

72

6 8 6 4 11 6

Figure 4.8: Visualization of conformal maps, implied by conformal cone metrics, on some of the closed
models with angle prescriptions from the dataset of [Myles et al. 2014]. The numbers indicate the scale
range (difference of maximal and minimal conformal (natural) logarithmic scale factor 𝒖) for each model.
Cones are marked by red and green dots; texture jumps due to cones are marked red. The textured map
and scale visualization follow the description from 4.6.

with 𝑆𝑖 =
ℓ𝑖 𝑗 ℓ𝑘𝑖 ℓ̃𝑗𝑘
ℓ̃𝑖 𝑗 ℓ̃𝑘𝑖 ℓ𝑗𝑘

, where ℓ are lengths of the source, and ℓ̃ are lengths of the target triangle.

4.6 Evaluation

We have implemented 3 (with support for boundaries following 4.4) in C++. Our goal is to assess

how well this theoretically sound method performs practically. While by default we use standard

double precision floating point numbers, the optional use of extended precision arithmetics in

our implementation allows us to assess to what extent potential convergence issues are related

to finite precision or other problems, as detailed in 4.6.3, 4.6.4. We find that, as conformal maps

can easily involve a very large range of scales across a mesh, for certain challenging settings the

use of extended precision arithmetics can be essential to yield results of adequate quality.

In cases where a (mostly) flat metric is computed, the result can be visualized by turning

the metric into a map (using a layout of the flat mesh in the plane [Springborn et al. 2008])

and mapping a texture (e.g. a grid or checkerboard) to the surface using this map. For a clear

visualization in cases with high scale distortion, we use a procedurally generated hierarchical grid

texture, as illustrated here. Its density is chosen adaptively based on the pointwise magnitude of

the scale distortion on the surface mesh, halving the spacing between texture lines when the scale

73

0 5 10 15 20 25 30

100

10−2

10−4

10−6

10−8

10−10

10−12

10−14

Newton steps

er
ro
r

Figure 4.9: Decay of maximum angle error ∥�̂� −𝚯∥∞ over the iterations of the Newton algorithm. Each
graph represents one of the closed-surface instances from the dataset of [Myles et al. 2014].

factor of the conformal map is halved.

4.6.1 Validation

Closed Surfaces. A dataset of mesh models together with angle prescriptions �̂� > 0 (based on

cones of cross fields) has been releasedwith [Myles et al. 2014]. We applied our implementation to

the closed models from this dataset. The angle error decay in the course of the algorithm on these

cases is visualized in 4.9. Some of the models with the resulting conformal map are visualized in

4.8. We observe that the models reach angle accuracy of 10−10 in less than 15 Newton iterations.

The final achievable accuracy varies and is correlated with the range of scale factors in the final

mesh (cf. 4.20), as a large variation of scale factors leads to a moderate loss of precision in the

gradient computation.

As further test instances, we use 1000 different random target angle prescriptions �̂� (with

Θ̂𝑖 ∈ (𝜋, 3𝜋) for all vertices 𝑣𝑖) on a sphere mesh (1K vertices). The error decay is visualized in

4.10. Note that the overall behavior is very similar, whether the prescribed angles are random or

74

Figure 4.10: Like 4.9, but each graph represents one of 1000 random test instances (again without bound-
ary)

geometrically meaningful (as in 4.9).

We consider the extreme scenario of concentrating the target metric’s entire curvature in one

point (i.e., prescribing a single cone of angle 2𝜋 (2𝑔 − 1) in an otherwise flat metric). Errors for

surfaces of increasing genus 𝑔 (procedurally generated 𝑔-tori) are shown in 4.11. A blow-up of

the configuration around the single prescribed cone vertex on a genus 6 example is shown in 4.13.

Surfaces with Boundary. The above mentioned dataset from [Myles et al. 2014] also contains

meshes with one or more boundary loops, together with angle prescriptions �̂� > 0 for interior

and boundary vertices. The error decay on these cases is shown in 4.14. Some of the models are

visualized in 4.12. The behavior is overall similar to the closed surface case.

As a synthetic test, we generate 1000 different random target angle prescriptions �̂� for a

surface with boundary (a disk with 5K vertices). In the interior we prescribe a flat metric, at the

boundary we prescribe a geodesic curvature, maximally in the range ±𝜋 , i.e., Θ̂𝑖 ∈ (0, 2𝜋) for
all boundary vertices 𝑣𝑖 . 4.15 shows the number of the different types of symmetric flips that are

performed in the course of the algorithm on these cases. As expected, the number of flips is larger

75

2 4 6 8 10 12

100

10−4

10−8

10−12

genus

er
ro
r

Figure 4.11: Final residual angle error for the extreme case of concentrating all curvature in a single
cone on an 𝑔-torus surface (genus 𝑔). For the genus 12 case, where the residual error is still benign, the
conformal scale factor spans 232 orders of magnitude. For the problematic genus 13 case it surpasses 262.
By increasing numerical precision (4.6.3), this can be remedied; for instance, with 200-bit precision, the
𝑔 = 150 case converges to below 10−29, with 400-bit precision, the 𝑔 = 400 case to below 10−65 (with the
scale factors spanning 611 orders of magnitude). (To reduce numerical issues in this extreme experiment,
the initial step size _ was halved until the range of the coefficients of _𝒅 was less than 10.)

4 5 5 6 5

Figure 4.12: Visualization of conformalmaps, analogous to 4.8, on some of themodelswith boundary from
the dataset of [Myles et al. 2014]. The boundary geodesic curvature is prescribed to be zero, therefore the
angle between texture grid lines and the boundary is constant per boundary loop.

for cases with a prescribed curvature spanning a larger range.

Another relevant scenario is that of prescribed geodesic curvature along a cut graph. We take

the closed models of the dataset from [Myles et al. 2014] and mimic the setting employed by

[Campen et al. 2019]: we compute a cut graph on each of these surfaces, and prescribe Θ̂𝑖 = 𝜋

along this cut graph’s segments’ from both sides (effectively asking them to be straight under

the conformal metric). The cut graph is composed of 𝑔 short handle loops computed as in [Diaz-

Gutierrez et al. 2009], connected by additional shortest paths. The resulting cut forms a graph

on the surface with nodes of valence 3; at each node, an angle of 𝜋 is prescribed for the largest

sector, and angles 𝜋/2 for the remaining two. Some of the models are visualized in 4.16, with the

76

cut graph marked in black. Depending on the shape of the cut graph, this scenario turns out to be

the most challenging numerically: As can be seen in 4.17 left, in a few cases the final maximum

error is over 10−10, i.e., higher than in the previously discussed scenarios. This is related to the

scale distortion of the implied conformal metric spanning a range of up to 73 orders of magnitude

in these cases. With higher-precision arithmetic, these residuals can be reduced, as discussed in

4.6.3.

4.6.2 Comparison

We demonstrate the advantages of the Delaunay flip approach over the degeneration flip ap-

proach (4.2.2) in terms of efficiency as well as numerical robustness. To this end, we apply an

implementation of the described method and an implementation of the algorithm described by

[Campen and Zorin 2017b] (both using standard double precision floating point numbers) to the

same set of inputs.

Efficiency. The main differences between the two methods lie in the number of linear system

solves (to compute the descent direction 𝒅) and the number of intrinsic flips. In the proposed

method, the number of flips is often significantly higher (see the discussion in 4.2.2), while the

number of system solves is lower. As a flip is a cheap local operation, while a system solve is an

expensive global operation, a run time benefit can be conjectured.

The scatter plot in 4.18 shows that this is the case on average. As test instances we use 1000

different random target angle prescriptions �̂� (with Θ̂𝑖 ∈ (𝜋, 3𝜋) for all vertices 𝑣𝑖) on a sphere

mesh (10K vertices). Only for relatively simple cases, where the target curvature can be matched

without degeneration flips, the number of system solves may be similar. On average, run time is

73× lower with the Delaunay-based method on these examples.

77

Robustness. Differences in robustness can best be observed by considering extreme cases. In

4.19 we show the residual error of the twomethods when prescribing one very small or very large

target angle (while distributing the remaining curvature). For small angles it becomes apparent

that the degeneration flip algorithm is numerically more fragile.

4.6.3 Accuracy

While the method is theoretically guaranteed to yield the desired result, in practice numerical

inaccuracies limit how closely the target curvature will be matched. As the method involves

exponential and trigonometric functions (4.1, 4.2), it cannot be implemented in a numerically ex-

act manner using adaptive precision rational or integer number types. Using extended precision

floating point number types (such as MPFR), the method’s accuracy can, however, be increased

arbitrarily. We evaluate the effect of this choice on result accuracy in 4.20. As test instances we

use 1000 different random target angle prescriptions �̂� (with Θ̂𝑖 ∈ (𝜋, 3𝜋) for all vertices 𝑣𝑖) on a

sphere mesh (1K vertices).

As can be observed, the remaining error decreases consistently as the number of bits used for

the floating point computations is increased. Due to dependence on many factors (input mesh

and edge lengths, target angles, choice of linear system solver for the Newton direction) a simple

bound on the error cannot be given, but 4.20 gives an empirical idea of the behavior. Note that

some correlation can be observed to the conformal scale distortion (the range [𝑒min 𝒖, 𝑒max 𝒖]) that
is required to match the target curvature.

In 4.17 right the effect of increased precision on test cases from 4.6.1 can be observed. In par-

ticular, for the models that have maximum error over 10−10 when using standard double precision

arithmetic, the error is reduced to below 10−16 when using a 100 bits mantissa instead.

78

4.6.4 Failure Modes

We can distinguish two types of potential issues (detailed below): high residual error or a high

number of optimization steps. The former can be caused by limited arithmetic precision (and

can therefore be remedied by using extended precision, as demonstrated above). The latter can

be caused by an unfavorable energy landscape, and is therefore more fundamental, regardless of

numerics.

Precision-related failures. Depending on the target curvature, a high amount of metric

distortion may be required, with negative numerical effects on result accuracy. It can be ob-

served that this is correlated with local concentrations of positive or negative target (Gaussian

or geodesic) curvature. Figure 4.21 left shows an experiment in which an increasingly large clus-

ter of vertices have a target angle below 2𝜋 and the rest above 2𝜋 . When using standard double

precision, a large fraction of these synthetic test cases essentially fails to reach a reasonably accu-

rate state. Performing these computations with higher precision (Figure 4.21 right) resolves these

problems. Analogously, we notice that cut graphs with more complex shape than the ones used

in 4.17 (e.g., the more constrained “hole-chain” in [Campen et al. 2019]) cause a similar behavior.

Near-degeneracy failures. This second issue is more fundamental. While the method may,

in principle, converge eventually, the step size can decrease to the point that the number of itera-

tions needed becomes impractical. When using the above mentioned hole-chain choice of cuts on

the dataset of [Myles et al. 2014], we can identify four high-genus models with complex singular-

ities which fail to converge in a reasonable number of steps even with high-precision arithmetic.

The underlying reason is illustrated in Figure 4.22, showing the plot of the projected gradient

𝒅⊺𝒈(𝒖 + _𝒅) for a line search direction. One can see that while theoretically the gradient is 𝐶1,

it may experience very significant jumps, when a large number of triangle flips happen nearly

simultaneously as _ changes (in this particular case 58). We observe that this occurs in particular

79

in the presence of highly distorted near-degenerate triangles.

4.7 Proofs and additional Lemmas

Proof of Proposition 2

Proof. If 𝑥 is not fixed, by the well-definedness of 𝑅 on mesh elements, for each ℎ ∈ 𝑥 we have

𝑅(ℎ) ∉ 𝑥 . Therefore for a non-fixed individual face or edge 𝑥 all its halfedges can be assigned to

𝐻 1 (or to 𝐻 2) without contradicting the conditions. It needs to be shown that this can be done

for all such elements consistently.

Let 𝐻𝑒 the set of halfedges whose edges are not fixed and 𝐻 𝑓 the set of halfedges whose

faces are not fixed. Let Q the relation that is the union of O|𝐻𝑒 and N|𝐻 𝑓 on 𝐻 \ 𝐻 𝑠 . Consider

the connected components 𝐻𝑖 of Q (intuitively: the mesh’s connected components separated by

fixed edges and fixed faces). Due to the properties of 𝑅 (preserving/inverting O andN) it is well-

defined on these connected components via 𝑅(𝐻𝑖) = 𝐻 𝑗 ⇔ 𝑅(ℎ) ∈ 𝐻 𝑗 for any ℎ ∈ 𝐻𝑖 . Using

arguments analogous to [Panozzo et al. 2012, Prop. 2] one verifies that the set of fixed elements

necessarily forms a cycle; therefore there are at least two such connected components.

As 𝑅 on𝐻 \𝐻 𝑠 has orbits of length 2 only, it allows a bipartition of the connected components,

i.e., they can be assigned to two sets 𝐻 1 and 𝐻 2 in accordance with the above conditions. □

Label Compatibility

Proposition 2.

(a) 𝑒 ∈ 𝐸⊥ ⇒ 𝑓𝑎, 𝑓𝑏 ∈ 𝐹 𝑠 .

(b) 𝑒 ∈ 𝐸 ∥ ⇒ 𝑓𝑎 ∈ 𝐹 1, 𝑓𝑏 ∈ 𝐹 2
or 𝑓𝑎 = 𝑓𝑏 ∈ 𝐹 𝑠 .

(c) 𝑒 ∈ 𝐸1 ⇒ 𝑓 ∉ 𝐹 2
, 𝑒 ∈ 𝐸2 ⇒ 𝑓 ∉ 𝐹 1

.

80

(d) 𝑒 ∈ 𝐸𝑖 , 𝑓𝑎, 𝑓𝑏 ∈ 𝐹 𝑠 ⇒ 𝑅(𝑒) ∈ 𝑓𝑎, 𝑓𝑏 .

Proof. Part (a) follows immediately from the definition of 𝐹 𝑖 , as faces from 𝐹 𝑖 cannot have edges

from 𝐸⊥.

Suppose a face 𝑓𝑎 is incident at an edge 𝑒 from 𝐸 ∥ . For these edges 𝑅(𝑒) = 𝑒 . Suppose 𝑓𝑎 ∈ 𝐹 1,

then 𝑅(𝑓𝑎) is incident to 𝑅(𝑒) = 𝑒 , therefore 𝑓𝑏 = 𝑅(𝑓𝑎). As 𝑅(𝑓𝑎) ∈ 𝐹 2 by definition of 𝐹 2, this

proves the first part of (b). Suppose 𝑓𝑎 ∈ 𝐹 𝑠 , and let ℎ a halfedge ℎ ∈ 𝑒 , ℎ ∈ 𝑓𝑎 . Then 𝑅(ℎ) ∈ 𝑓𝑎

by the definition of 𝐹 𝑠 ; but, by definition of 𝐸 ∥ , 𝑅(ℎ) ∈ 𝑒 , so 𝑓𝑎 = 𝑓𝑏 , i.e., a face is adjacent to itself

along 𝑒 .

Part (c) directly follows from the definitions of 𝐸𝑖 and 𝐹 𝑖 .

In part (d), suppose 𝑓𝑎 and 𝑓𝑏 are incident at 𝑒 ∈ 𝐸1, 𝑓𝑎, 𝑓𝑏 ∈ 𝐹 𝑠 , and 𝑒 = (ℎ𝑎, ℎ𝑏). Then

𝑅(ℎ𝑎) ∈ 𝑅(𝑓𝑎) = 𝑓𝑎 , 𝑅(ℎ𝑏) ∈ 𝑓𝑏 , and O(𝑅(ℎ𝑎)) = 𝑅(ℎ𝑏) by the properties of 𝑅, i.e., (𝑅(ℎ𝑎), 𝑅(ℎ𝑏))
is an edge. By definition of 𝐸𝑖 , it has to be in 𝐸2, i.e., faces 𝑓𝑎 and 𝑓𝑏 share a second edge, and this

edge is from 𝐸2. □

Irrelevance of Flip Types (𝑠, ∥, 𝑠) and (𝑠, 1, 𝑠)

Proposition 3. Types (𝑡, ∥, 𝑡), (𝑞, ∥, 𝑞), (𝑡, 1, 𝑡), (𝑡, 1, 𝑞), and (𝑞, 1, 𝑞) are associated with edges that

are Delaunay regardless of metric.

Proof Consider (𝑡, ∥, 𝑡). By 2(b), it corresponds to a configuration with a single face: (𝑓 𝑡 , 𝑒 ∥, 𝑓 𝑡).
As the triangle 𝑓 𝑡 is isosceles, and both side edges of the triangle coincide with 𝑒 ∥ , angles opposite

𝑒 ∥ are 𝜋/2−𝛼/2 if the apex angle is 𝛼 , i.e., their sum is guaranteed to be less than 𝜋 and the edge

is Delaunay. For (𝑞, ∥, 𝑞), to evaluate the Delaunay criterion, we split 𝑓 𝑞 into triangles. As 𝑓 𝑞

is inscribed the choice of diagonal does not affect the angles; we can choose the diagonal that

connects a vertex of 𝑒 ∥ with a vertex with trapezoid angles ≤ 𝜋/2, from which we can see that

both angles opposite 𝑒 ∥ are less than 𝜋/2. For cases (𝑡, 1, 𝑡), (𝑡, 1, 𝑞), and (𝑞, 1, 𝑞) the same logic

applies to each face incident at the shared edge 𝑒1. □

81

4.8 Double Cover: Formal Definition

Given a mesh𝑁 = (𝐻 0,N0,O0), with boundary and interior halfedges𝐻𝑏𝑛𝑑∪𝐻 𝑖𝑛𝑡 = 𝐻 0, we discard

𝐻𝑏𝑛𝑑 and set 𝐻 = 𝐻 1 ∪𝐻 2 where 𝐻 1 = 𝐻 𝑖𝑛𝑡 and 𝐻 2 = 𝐻 𝑖𝑛𝑡 , where ·̄ denotes a copy. The reflection
map 𝑅 is defined via 𝑅(ℎ) := ℎ′ if ℎ′ ∈ 𝐻 2 is the copy of ℎ ∈ 𝐻 1. O0 is adopted on both copies to

define O, except that O(ℎ) := 𝑅(ℎ) if O0(ℎ) ∈ 𝐻𝑏𝑛𝑑 ; this latter adjustment constitutes the gluing

of the two copies along their boundaries. Finally

N(ℎ) :=

N0(ℎ) if ℎ ∈ 𝐻 1,

𝑅((N0)−1(𝑅(ℎ))) if ℎ ∈ 𝐻 2.

This forms the symmetric double cover mesh 𝑀 = (𝐻,N ,O, 𝑅) with triangle faces and map

𝑅. Note that 𝑅 is a reflection map: it satisfies the conditions of theorem 4.6 (where condition (3)

is void as𝑀 has no boundary). It is easy to see that this construction implies 𝐸⊥ = ∅ and 𝐹 𝑠 = ∅,
i.e., no element crosses the symmetry line (the former boundary). 𝐸 ∥ contains the edges lying on

the symmetry line, i.e., those for whose halfedges the O relation was adjusted to glue the two

copies.

4.9 Conclusions and Future Work

We presented a practical realization of the method for computing discrete conformal maps based

on the ideas of [Gu et al. 2018b; Springborn 2019], elaborating how it can be applied safely to

meshes with boundary, the most practically relevant scenario for conformal mapping. Our im-

provements include a straightforward to implement algorithm for maintaining symmetric Delau-

nay triangulations and several improvements increasing the robustness of Newton’s optimization

method in the context of our application. We explored its behavior on a standard dataset, and for

82

a number of challenging synthetic examples, demonstrating its robustness for a broad range of

cases involving high distortion. We also observe that common failure cases can be addressed by

using extended precision arithmetic, albeit at a significant cost in run time.

However, in our extensive tests we did identify a small number of cases for which the method

does not produce a conformal map in reasonable time, which indicates potential for further algo-

rithmic improvements. It would also be desirable to find ways to minimize the use of extended

precision arithmetic to the minimum necessary in a filtered approach, so as to increase accuracy

while maintaining performance. Finally, extension of the method from Euclidean to spherical and

hyperbolic discrete metrics would be not only of theoretical interest [Schmidt et al. 2020].

83

Algorithm 3: FindConformalMetric
Input : triangle mesh𝑀 = (𝑉 , 𝐸, 𝐹), closed, manifold, edge lengths ℓ > 0 satisfying triangle

inequality, target angles �̂� > 0 respecting Gauss-Bonnet
Output: triangle mesh𝑀 ′ = (𝑉 , 𝐸 ′, 𝐹 ′), edge lengths ℓ̃ > 0 satisfying triangle inequality, such

that ∥𝚯(𝑀′,ℓ̃) − �̂�∥∞ ≤ Ytol

1 Function FindConformalMetric(𝑀, ℓ, �̂�):
2 𝒖 ← 0, (𝑀, ℓ) ←MakeDelaunay(𝑀, ℓ, 𝒖)
3 while not converged(𝑀, ℓ, 𝒖) do
4 𝒈 ← 𝑔(𝑀, ℓ, 𝒖); 𝐻 ← 𝐻 (𝑀, ℓ, 𝒖) // gradient and Hessian
5 𝒅 ← 𝑠𝑜𝑙𝑣𝑒 (𝐻𝒅 = −𝒈) // Newton direction
6 (𝑀, ℓ, 𝒖) ← LineSearch(𝑀, ℓ, 𝒖, 𝒅) // Newton step
7 ℓ̃ ←ScaleConformally(𝑀, ℓ, 𝒖)
8 return (𝑀, ℓ̃)
9 Function LineSearch(𝑀, ℓ, 𝒖, 𝒅):
10 (𝑀1, ℓ1) ←MakeDelaunayPtolemy(𝑀, ℓ, 𝒖 + 𝒅)
11 (𝑀1/2, ℓ1/2) ←MakeDelaunayPtolemy(𝑀, ℓ, 𝒖 + 1

2𝒅)
12 if 1

2
(
𝒅⊺𝑔(𝑀1, ℓ1, 𝒖+𝒅) + 𝒅⊺𝑔(𝑀1/2, ℓ1/2, 𝒖+ 1

2𝒅)
) ≤ 𝛼𝒅⊺𝑔(𝑀, ℓ, 𝒖) then

13 return (𝑀1, ℓ1, 𝒖 + 𝒅) // full step
14 while true do // line search
15 (𝑀, ℓ) ←MakeDelaunayPtolemy(𝑀, ℓ, 𝒖 + 𝒅)
16 if 𝒅⊺𝑔(𝑀, ℓ, 𝒖 + 𝒅) ≤ 0 then // 4.7
17 return (𝑀, ℓ, 𝒖 + 𝒅)
18 𝒅 ← 1

2𝒅 // backtracking

19 Function 𝑔 (𝑀, ℓ, 𝒖):
20 return �̂� − Θ(𝑀, ℓ̃) // 4.2

21 Function 𝐻 (𝑀, ℓ, 𝒖):
22 return CotanLaplacian(𝑀, ℓ̃)
23 Function Θ(𝑀, ℓ, 𝒖): // angle computation
24 for 𝑣𝑖 ∈ 𝑉 do // 4.2

25 Θ𝑖 ←
∑

𝑇𝑖 𝑗𝑘 ∈𝑀′ arccos
(
(ℓ̃2
𝑖 𝑗 + ℓ̃2

𝑘𝑖
− ℓ̃2

𝑗𝑘
)/(2ℓ̃𝑖 𝑗 ℓ̃𝑘𝑖)

)
26 return (Θ0, . . . ,Θ𝑛)
27 Function MakeDelaunayPtolemy(𝑀, ℓ, 𝒖):
28 while NonDelaunay(𝑀, ℓ, 𝒖, 𝑒𝑖 𝑗) for any edge 𝑒𝑖 𝑗 do
29 (𝑀, ℓ) ← PtolemyFlip(𝑀, ℓ, 𝑒𝑖 𝑗)
30 return (𝑀, ℓ)
31 Function NonDelaunay(𝑀, ℓ, 𝒖, 𝑒𝑖 𝑗):
32 return (ℓ̃2

𝑗𝑘
+ ℓ̃2

𝑘𝑖
− ℓ̃2

𝑖 𝑗)/(ℓ̃𝑗𝑘 ℓ̃𝑘𝑖) + (ℓ̃2
𝑗𝑚 + ℓ̃2

𝑚𝑖 − ℓ̃2
𝑖 𝑗)/(ℓ̃𝑗𝑚 ℓ̃𝑚𝑖) < 0 // 4.4

33 Function PtolemyFlip(𝑀, ℓ, 𝑒𝑖 𝑗):
34 𝑀 ← Flip(𝑀, 𝑒𝑖 𝑗)
35 ℓ𝑘𝑚 ← (ℓ𝑗𝑘ℓ𝑖𝑚 + ℓ𝑘𝑖ℓ𝑚𝑗)/ℓ𝑖 𝑗 // 4.6
36 return (𝑀, ℓ)

84

Figure 4.13: Top: Input triangulation. Second row: Resulting intrinsic retriangulation, when concentrat-
ing all curvature on a single vertex (Θ = 22𝜋); it is Delaunay under the computed conformal metric (with
curvature −20𝜋 at the central vertex). Third row: overlay triangulation [Fisher et al. 2007], allowing for a
simple representation of the implied conformal map, linear or projective per triangle. Bottom: Visualiza-
tion of implied conformal map using a hierarchical grid texture (spanning 25 levels in this extreme case).

0 5 10 15 20 25 30

100

10−2

10−4

10−6

10−8

10−10

10−12

10−14

Newton steps

er
ro
r

Figure 4.14: Decay of maximum angle error ∥�̂�−𝚯∥∞ over the iterations of the Newton algorithm. Each
graph represents one of the instances with boundary from the dataset of [Myles et al. 2014].

85

0 ±π
2

±π
100

101

102

103

boundary curvature range

fl
ip

s

(1, 1, 1) + (2, 2, 2) ↔ (1, 1, 1) + (2, 2, 2)

(1, ‖, 2) ↔ (t,⊥, t)

(1, 1, s) + (2, 2, s) ↔ (s,⊥, s)

Figure 4.15: Scatter plot showing the numbers of different types of symmetric flips during the algorithm
relative to the range of prescribed random boundary curvatures. Each dot represents one type of flips for
one of 1000 test instances.

55 19 28

Figure 4.16: Visualization of conformal maps with cones, analogous to 4.8, onmodels cut to disk topology
using a cut graph (black). Due to the prescribed geodesic curvature along the cut boundary, the cut is
axis-aligned under the map. Notice that such enforced alignment can easily imply a broad range of scales,
which is challenging numerically.

86

0 50 100

100

10−4

10−8

10−12

10−16

10−20

10−24

Newton steps

er
ro
r

0 50 100

Newton steps

Figure 4.17: Decay of maximum angle error ∥�̂� − 𝚯∥∞ over the iterations of the Newton algorithm.
Each graph represents one of the closed instances from the dataset of [Myles et al. 2014], with prescribed
curvature along a cut graph. Left: double precision. Right: extended precision (100 bits mantissa).

1 10 100

100

101

102

103

104

105

106

Ours

[Campen and Zorin 2017]

0.40s 29.6s

time (s)

n
u

m
b

er
of

fl
ip

s

Figure 4.18: Scatter plot showing the number of flips and the run time (to reach Ytol = 10−10), for the
described Delaunay-flip method (blue) and the degeneration flip method (red). Each dot represents one
of 1000 test instances. Dashed lines mark the average run time, 0.4s and 29.6s, respectively.

87

10−12 10−8 10−4 100

100

10−2

10−4

10−6

10−8

10−10

10−1210−12

10−14

smallest target angle

er
ro
r

10 100 200 300

100

10−2

10−4

10−6

10−8

10−10

10−1210−12

10−14

largest target angle

Figure 4.19: Final residual angle error ∥�̂� − 𝚯∥∞ for extreme cases (one very small or very large target
angle, on a sphere with 1K vertices), comparing the Delaunay-based algorithm (blue) and the degeneration
flip algorithm. [Campen and Zorin 2017b] (red).

Table 4.1: Combinatorial updates required to perform symmetric flips of all relevant consistent types.
The change toN is given by listing the orbits (halfedge cycles forming faces) ofN created by the flip. The
employed indexing is depicted in the figures left and right. Similarly, we define changes to 𝑅 viewing it
as a permutation with orbits of length 1 or 2, and listing the sets of orbits being replaced. Finally, rather
than deleting and adding new halfedges on demand, for implementational efficiency we can associate a
superfluous pair of halfedges, eliminated by a quad-creating flip, with the quad (listed behind the bar).

(1, 1, 1) + (2, 2, 2) ↔ (1, 1, 1) + (2, 2, 2)
N : (ℎ𝑖0, ℎ𝑖1, ℎ𝑖2), (ℎ𝑖3, ℎ𝑖4, ℎ𝑖5), 𝑖 = 1, 2 N : (ℎ𝑖0, ℎ𝑖2, ℎ𝑖4), (ℎ𝑖1, ℎ𝑖3, ℎ𝑖5), 𝑖 = 1, 2
𝑅 : unchanged 𝑅 : unchanged

(1, ∥, 2) ↔ (𝑡,⊥, 𝑡)
N : (ℎ0, ℎ1, ℎ2), (ℎ3, ℎ4, ℎ5) N : (ℎ0, ℎ2, ℎ4), (ℎ1, ℎ3, ℎ5)
𝑅 : (ℎ0, ℎ3) 𝑅 : (ℎ0), (ℎ3)

(1, 1, 𝑡) + (2, 2, 𝑡) ↔ (𝑡,⊥, 𝑞)
N : (ℎ0, ℎ1, ℎ2), (ℎ3, ℎ4, ℎ5), (ℎ6, ℎ7, ℎ8) N : (ℎ0, ℎ2, ℎ4), (ℎ1, ℎ3, ℎ5, ℎ6) | ℎ7, ℎ8

𝑅 : (ℎ0, ℎ3), (ℎ7, ℎ8) 𝑅 : (ℎ0), (ℎ3)

(1, 1, 𝑞) + (2, 2, 𝑞) ↔ (𝑞,⊥, 𝑞)
N : (ℎ0, ℎ1, ℎ2), (ℎ3, ℎ4, ℎ5), (ℎ6, ℎ9, ℎ7, ℎ8) N : (ℎ0, ℎ2, ℎ7, ℎ4), (ℎ1, ℎ3, ℎ5, ℎ6) | ℎ8, ℎ9

𝑅 : (ℎ0, ℎ3), (ℎ8, ℎ9) 𝑅 : (ℎ0), (ℎ3)

88

0 2 4 6 8 10 12 14 16 18 20 22 24

10−12

10−14

10−16

10−18

10−20

10−22

10−24

10−26

10−28

10−30

10−32

10−34

10−36

10−38

10−40

10−42

10−44

53 bit

75 bit

100 bit

125 bit

150 bit

maxu−minu

er
ro
r

Figure 4.20: Scatter plot showing residual angle error ∥�̂� −𝚯∥∞ (after at most 50 Newton steps) relative
to the range of logarithmic conformal scale factors 𝑢. Each dot represents one test instance, run using
floating point numbers with a mantissa of 53 bits (double), 75 bits, 100 bits, 125 bits, 150 bits (MPFR).

89

total number of vertices

ra
tio

10−0

10−5

10−10

10−15

10−20

Figure 4.21: Heatmap showing the final error ∥�̂� − 𝚯∥∞ for spheres of varying resolution (x-axis) with
some ratio (y-axis) of the vertices set to target angle 3 and the rest to a constant target angle < 2𝜋 such
that the Gauss-Bonnet theorem is satisfied. Left: double precision results when the two angle values
are distributed in two clusters. Center: double precision results when the two angle values are distributed
randomly over the sphere. Right: extended precision (150 bits mantissa) results with the same distribution
as left. (For this experiment, the threshold for the gradient norm decrease was set to 0 and, to reduce the
run time in this particular case, _ was chosen adaptively, initially halved until the range of coefficients of
_𝒅 was less than 10.)

0 1 2 3
·10−10

−0.06
−0.05
−0.04
−0.03

Δ

Figure 4.22: Projected gradient 𝒅⊺𝒈(𝒖 + _𝒅) along the normalized Newton descent direction with step
length _ = 0.0217745227 + Δ.

90

5 | Seamless Parametrization with

Arbitrary Cones for Arbitrary

Genus

5.1 Introduction

Computing global parametrizations of surfaces is a key operation in geometry processing. While

in general only disk-like surfaces can be parametrized continuously in a (locally or globally)

injectivemanner, surfaces of arbitrary topology can be dealt with by cutting them to disks. Across

the cuts the parametrization will be discontinuous, but this is inevitable in general.

One can, however, require the parametric transitions across cuts to be from certain classes, in

order to support specific applications like smooth surface approximation and quadrangulation.

For instance, restricting to similarity transformations (rotation, translation, isotropic scaling)

with a rotation by some multiple of 𝜋/2 yields global parametrizations ideal for T-spline construc-

tions [Campen and Zorin 2017b]. Restricting further to rigid transformations with such discrete

rotation angles yields parametrizations which (after quantization [Bommes et al. 2013b; Campen

et al. 2015; Lyon et al. 2019]) are well suited for tasks like conforming quadrangulation, spline

and subdivision fitting, seamless texturing, or constructing grids for solving PDEs on surfaces.

We call such parametrizations seamless [Myles and Zorin 2012; Purnomo et al. 2004].

91

a) b) c) d)
Figure 5.1: Method overview: a) Cut graph on a surface, consisting of handle loops, connectors, and
one additional path. b) Conformal parametrization which maps the cut graph’s branches to axis-aligned
straight segments in the parametric domain and respects prescribed cone singularities (red and blue dots).
This map is only rotationally seamless, i.e., rotational components of transitions across cuts are 𝑘𝜋/2-
rotations, 𝑘 ∈ Z, but scaling is arbitrary. c) This map modified by map padding; while locally highly
distorted, it is actually seamless, there no longer is a scale jump. d) Result after optimization for low
isometric distortion.

Seamless parametrizations can have singularities, points around which the total parametric

angle is not 2𝜋 but some other integer multiple of 𝜋/2, i.e., the parametrization coordinate isolines

do not locally form a regular grid. Equivalently, the metric induced by the parametrization has

cones, points where the metric is not flat, its curvature not zero but some other integer multiple of

𝜋/2. Intuitively, in a quadrangulation induced by the parametrization, these singularities or cones

correspond to extraordinary vertices, with valence different from 4.

As implied by the Gauss-Bonnet theorem, the total curvature of these cones is a topological

invariant – i.e., such cones, which have a significant influence on the parametrization’s quality

and structure, cannot generally be avoided. Depending on the use case, they can be considered

an impairment or features of special interest. In either case, having the ability to control (i.e., pre-

scribe) them – where they are, how many there are, what curvature they have – is of obvious

benefit. This motivates the problem we consider in this paper:

Compute a global seamless locally injective parametrization with prescribed cone positions and cur-

vatures (respecting Gauss-Bonnet).

Known general approaches to this problem (cf. Sec. 2.3), e.g. those used as the initial, and

most difficult, step in quadrangulation algorithms, rely on optimization formulations which are

92

Figure 5.2: Zoom-ins of Figure 5.1. Left: cut-aligned conformal map. Middle: padded map, with high
distortion, but seamless and locally injective. Right: map optimized for low isometric distortion.

non-convex and require feasible starting points to guarantee success; alternatively, convexified

formulations may not yield a solution even if one exists. Thus, formally establishing existence of

a solution and constructing a feasible starting point is an essential step in the general case. For

the special case of genus 0, this task can be handled using existing conformal metric computation

techniques [Springborn et al. 2008], [Luo 2004], [Gu et al. 2018a], [Campen and Zorin 2017b],

cf. Sec. 5.3.3. Close to a general reliable solution to this problem is an approach by [Myles et al.

2014]: a valid global seamless injective parametrization is guaranteed, cone preservation is aimed

for but not guaranteed – in a small fraction of cases unnecessary additional cones arise.

That these are truly unnecessary in almost all cases follows from the fact that the above task

is actually feasible: the existence of such parametrizations follows from a theorem on meshes

with prescribed extraordinary vertices [Jucovič and Trenkler 1973]. The proof is relatively com-

plex and purely combinatorial. As a consequence, it does not easily translate into a practical

parametrization construction.

We present a constructive proof for the existence of seamless surface parametrizations in this

paper, that is conceptually simpler and translates to a parametrization algorithm. Precisely, we

show:

Theorem 5.1. Given a closed smooth surface𝑀 of genus 𝑔 and an admissible set𝐶 of cones 𝑐𝑖 , each

given by a point 𝑝𝑖 ∈ 𝑀 with a prescribed curvature value Θ̂𝑖 = (4 − 𝑘𝑖) 𝜋2 , 𝑘𝑖 ∈N>1
, there exists a

93

global parametrization of𝑀 with cones𝐶 that has seamless transitions. We assume 𝑘𝑖 > 1, as cones

with curvature 3𝜋
2 , corresponding to valence 1 vertices in a quadrangulation, are of low relevance in

common applications; with some additional special case handling, our method could be extended to

𝑘𝑖 = 1.

The terms used in the theorem are defined precisely in Sec. 5.2.

A set of cones 𝐶 = {(𝑝𝑖, 𝑘𝑖)} is called admissible if it satisfies
∑

𝑖 (1 − 1
4𝑘𝑖) = 2 − 2𝑔 (Gauss-

Bonnet) and if 𝒌 ≠ (3, 5) (which is the single one notorious infeasible case [Jucovič and Trenkler

1973]).

Basic Idea

Instead of directly aiming for a seamless cone metric on a surface𝑀 ,

1. we cut𝑀 open using a cut graph𝐺 , obtaining the cut surface𝑀′ consisting of one or more

topological disks;

2. compute a conemetric on𝑀′ –without any seamlessness requirements, but with prescribed

boundary curvature; specifically, we prescribe a rectilinear boundary, consisting of geodesi-

cally straight segments meeting at right angles;

3. modify this metric into a seamless one on𝑀 , yielding a seamless parametrization with the

prescribed cones; exploiting the rectilinear boundary property, this modification is per-

formed by padding the straight segments in the parametric domain with rectangles of suit-

ably chosen size.

The metric in (2) is known to exist; e.g. a conformal metric with prescribed cones and boundary

curvature (satisfying Gauss-Bonnet) on a disk always exists – in the smooth setting (cf. Sec. 5.2.2);

the situation is more complicated in the discrete setting (cf. Sec. 5.2): questions concerning the

exact conditions for existence of discrete conformal metrics with prescribed boundary curvature

94

as well as concerning the convergence of the existing algorithm that we leverage for this step,

thus the injectivity of the derived map, remain open. We note that conformality is not essential

here: any metric with prescribed boundary curvature could be used in that step.

Figures 5.1 and 5.2 show the outcome of these main steps. We refer to Appendix 5.7 for a

comprehensive example illustrating these steps in a concrete, simple case.

Key Contributions

Our key technical contributions pertain to step (3) in the outline above:

• We propose a technique (map padding) to modify a non-seamless map into a seamless one.

• We prove that, for certain choices of cut graph combinatorics, this technique always suc-

ceeds.

• We describe an implementation of this construction for the discrete, piecewise linear case.

In other words, our approach is a problem reduction:

If one is able to compute a metric with prescribed cones and prescribed boundary curvature

for disk-topology surfaces, this solves (by means of our technique) the more general problem of

computing a global seamless parameterization with prescribed cones for arbitrary-topology sur-

faces.

Our algorithm can be used to obtain non-degenerate, locally injective, seamless parametriza-

tions of arbitrary closed discrete surfaces (triangle meshes) with arbitrary cones, assuming the

initial metric with prescribed boundary curvature can be obtained.

5.2 Seamless Parametrization Construction

First, we define the notion of a seamless parametrization as well as a weaker notion of a rotation-

ally seamless parametrization we need as an intermediate step.

95

Suppose a smooth surface 𝑀 is cut to a set of topological disks 𝑀𝑐
𝑖 by a cut graph 𝐺 , i.e.,

a collection of smooth curves (branches) 𝛾 𝑗 embeddeded in 𝑀 meeting only at their endpoints

(nodes). We call the resulting cut surface𝑀𝑐 ; the boundary of𝑀𝑐 consists of curves 𝛾𝑐𝑗 (boundary

curves). There is a canonical map 𝜋 : 𝑀𝑐 → 𝑀 , which is identity in the interior of 𝑀𝑐 and maps

exactly two boundary curves 𝛾𝑐𝑗 to each branch 𝛾 𝑗 on 𝑀 . Pairs of boundary curves mapping to

the same branch 𝛾 𝑗 are called mates, and boundary points where curves 𝛾𝑐𝑗 meet are called joints.

The image of any joint under 𝜋 is a node. Pairs of non-joint points 𝑝, 𝑞 ∈ 𝜕𝑀𝑐 with 𝜋 (𝑝) = 𝜋 (𝑞)
are calledmated points. For a boundary point 𝑝 , let 𝑡𝑝 ∈ 𝑇𝑝𝑀𝑐 denote a unit vector that is tangent

to the boundary 𝜕𝑀𝑐 at 𝑝 .

Definition 5.2 (Rotationally Seamless Parametrization). A continuous, locally injective map 𝐹 :

𝑀𝑐 → R2 is called rotationally seamless parametrization of𝑀 , if for any pair 𝑝 , 𝑞 of mated points,

the images 𝑑𝐹𝑝 (𝑡𝑝) and 𝑑𝐹𝑞 (𝑡𝑞) of boundary tangents are related by a similarity transformation

𝑇𝑝𝑞 , i.e., 𝑇𝑝𝑞 ◦𝑑𝐹𝑝 (𝑡𝑝) = 𝑑𝐹𝑞 (𝑡𝑞), with a rotation angle that is a multiple of 𝜋/2 and constant per

branch.

Such a rotationally seamless parametrization does, in general, have a (pointwise) scale jump

across the cut (cf. Fig. 5.3 left) – unless the similarity 𝑇𝑝𝑞 is actually just a rotation everywhere:

Definition 5.3 (Seamless Parametrization). Amap 𝐹 : 𝑀𝑐 → R2 is called a seamless parametriza-

tion of𝑀 , if it is rotationally seamless and for each pair of mated points 𝑝 , 𝑞 the transition 𝑇𝑝𝑞 is

Figure 5.3: Visualization of a parametrization on a surface near a cut branch (red). Left: rotationally
seamless. Right: seamless.

96

rigid, i.e., it is a rotation with a rotation angle that is a multiple of 𝜋/2.

Notice that seamlessness implies that the images 𝐹 (𝛾𝑐𝑗) and 𝐹 (𝛾𝑐𝑘) of mates 𝛾𝑐𝑗 and 𝛾𝑐𝑘 are con-

gruent.

A seamless parametrization induces a metric on the surface 𝑀 which is flat except at the

nodes, where it may be singular; it may have a cone. We say that a seamless parametrization has

a cone with angle 𝛼 at a node 𝑝 , if the sum of parametric angles at all joints 𝑞 in𝑀𝑐 with 𝜋 (𝑞) = 𝑝

is equal to 𝛼 . This cone has curvature Θ = 2𝜋 − 𝛼 .
By contrast, the notion of a rotationally seamless parametrization is weaker: due to the scale

jump, it does not induce a metric on𝑀 .

Overall Approach We first construct a parametrization 𝐹 that is rotationally seamless, using

a specific type of (conformal) maps: maps with rectilinear boundary, i.e., with the image of the

boundary of the cut surface consisting of straight segments meeting at right angles. Then this

parametrization is modified near the boundary to make the scale jump vanish so as to make it

into a seamless parametrization 𝐹 𝑠 . This is done using a process we callmap padding. The key to

our construction is cutting the surface into two (in special cases three or four) topological disks,

using cut graphs with a particular structure. This is important for our method of converting

rotationally seamless parametrizations into seamless parametrizations.

5.2.1 Cutting to Disk(s)

We construct the required cut graph 𝐺 in two steps, first cutting the surface 𝑀 into a set of

topological disks 𝑀′𝑖 . Their disjoint union is denoted 𝑀′. Typically we use two disks, with some

exceptions for special genus 2 cases. 𝑀′ contains all cones in its interior. The final cut surface

𝑀𝑐 is obtained by adding branches passing through all cones to this cut graph, such that no 𝑀′𝑖

is split into multiple components. This second step is explained in Sec. 5.2.3.

97

For the first step, we consider a particular type of cut graphs that only have nodes of degree 4

and 3. Pairs of cyclically sequential branches around nodes form sectors: four at degree 4 nodes,

three at degree 3 nodes. At degree 4 nodes, all four sectors are marked as corners (cf. Fig. 5.5). At

flat

Figure 5.4: Two different type of nodes, degree 4 (left) and degree 3 (right), are shown.

degree 3 nodes, two sectors are marked as corners, the third one is referred to as flat. We refer to

degree 3 nodes as T-nodes.

We denote the boundary curves of 𝑀′ by 𝛾 ′𝑗 . Any pair of sequential boundary curves of 𝑀′

corresponds to a corner or a flat joint. As we will require boundary curves to be straight and

corners to have angles 𝜋/2 under a certain metric in the following, the number𝑚𝑖 of corners on the

boundary of each connected component 𝑀′𝑖 needs to match the total prescribed cone curvature

in the interior of𝑀′𝑖 as per Gauss-Bonnet, i.e.,

𝑚𝑖
𝜋

2 +
∑︁

(𝑝 𝑗 ,Θ̂𝑗)∈𝐶 ′𝑖

Θ̂ 𝑗 = 2𝜋, (5.1)

where 𝐶′𝑖 ⊆ 𝐶 is the subset of cones prescribed within 𝑀′𝑖 . Note that this is equivalent to𝑚𝑖 =

4 +∑(𝑝 𝑗 ,Θ̂𝑗)∈𝐶 ′𝑖 (𝑘 𝑗 − 4).

98

Figure 5.5: Degree 4 cut graph on a surface of genus 𝑔 = 3. This cut graph has 10 branches and 5 degree
4 nodes, thus 20 corners (marked black). The cut graph consists of loops (red) and connectors (shades of
blue) (cf. Sec. 5.3.1)

Definition 5.4 (Admissible Cut Graph). A cut graph with marked corners is admissible, if

• all branches are embedded smooth curves meeting transversally at nodes of degree 3 or 4,

and not passing through cones;

• the cut graph partitions the surface into disk-topology components;

• the number of corners of each component satisfies Eq. (5.1);

• if a boundary curve is involved in a flat sector, its mate is not.

5.2.2 Cone Metric with Rectilinear Boundary

Corners partition the boundary 𝜕𝑀′ into segments. Note that a segment may contain flat joints,

and, as a consequence, consist of several boundary curves 𝛾 ′𝑗 (complex segment). (All cut graphs

wewill be working with contain at most two T-nodes, thus two flat joints, i.e., almost all segments

are simple segments.)

99

We now require a cone metric on 𝑀′ which has a rectilinear boundary: under such a met-

ric, segments are geodesically straight (i.e., zero geodesic boundary curvature along 𝜕𝑀′ in the

interior of segments), and sequential segments form right inner angles of 𝜋/2.

Proposition 4. On a cut surface 𝑀′, obtained from a smooth surface 𝑀 by cutting it along an

admissible cut graph 𝐺 , there is a cone metric with rectilinear boundary and prescribed admissible

cones 𝐶 = {(𝑝𝑖, Θ̂𝑖)}.

A proof is given in Appendix 5.9. In particular, a conformal cone metric with these properties

exists; conformality, however, is not essential in the following. This cone metric on𝑀′ does not,

in general, define a metric on 𝑀 , as the lengths defined by the metric along the two sides of the

cut graph’s branches may disagree, cf. Fig. 5.2 left.

Note that the metric angle on𝑀 around points on𝐺 is 2𝜋 everywhere: points in the interior

of branches are surrounded by two sectors with angles 𝜋 + 𝜋 , node points by three sectors with

angles 𝜋 + 2𝜋
2 or four sectors with angles 4𝜋

2 . As we preserve these angles in the following, this

implies that no spurious cones emerge.

5.2.3 Metric to Rotationally Seamless Parametrization

The cone metric with rectilinear boundary is flat away from the cones on 𝑀′. We now extend

the cut graph 𝐺 by a set of trees 𝑇𝑖 , yielding the extended cut graph 𝐺𝑇 = 𝐺 ∪ 𝑇 , where 𝑇 is

a) b) c) d) e)
Figure 5.6: a) Generic local view of the boundary of map 𝐹 (𝑀𝑐), with straight segments and right-angle
corners. b) A rectangular strip along a segment is marked. c) The strip is stretched outwards, effectively
increasing the length of the two adjacent segments left and right of the central segment. d) This padding
operation can be applied in sequence to further segments.

100

the union of trees 𝑇𝑖 . The tree 𝑇𝑖 is rooted on 𝜕𝑀′𝑖 at a single non-joint point, and its branches

connect all cones prescribed within 𝑀′𝑖 . Let 𝑀𝑐
𝑖 be the surface obtained by cutting 𝑀′𝑖 along 𝑇𝑖 .

The segment of 𝜕𝑀′𝑖 split by the root point of𝑇𝑖 is still considered one logical segment. Note that

this cutting of 𝑀′ to 𝑀𝑐 by 𝑇 introduces additional boundary curves; we do not refer to these as

segments, and they are, in general, not straight under the cone metric. The boundary curves of

𝑀𝑐 are denoted 𝛾 ′𝑗 if they map to branches of 𝐺 , or 𝛾𝑇𝑗 if they map to branches of 𝑇 . The above

constructed cone metric is flat in the interior of 𝑀𝑐
𝑖 (as the cones lie on 𝜕𝑀𝑐), and defines (via

integration) a map 𝐹𝑖 : 𝑀𝑐
𝑖 → R2. It is unique up to a rigid transformation. We choose this

transformation so that all segment images are axis-aligned in R2. This is possible because they

(due to rectilinearity) are all straight and meet at right angles. Note that images of boundary

curves 𝛾𝑇𝑗 are, in contrast to segments (consisting of boundary curves 𝛾 ′𝑗), neither axis-aligned

nor straight in general, cf. Fig. 5.19 in Appendix 5.7. Together, these maps 𝐹𝑖 define a global

parametrization 𝐹 of𝑀 .

Proposition 5. The map 𝐹 is a rotationally seamless parametrization of 𝑀 (but not, in general,

seamless – except on 𝑇).

Proof. Due to all segment images being axis-aligned, the angle between the images of any two

mated boundary curves 𝛾 ′𝑗 , 𝛾 ′𝑘 is some multiple of 𝜋/2, constant per branch. The images of any

two mated boundary curves 𝛾𝑇𝑗 , 𝛾𝑇𝑘 are congruent (in particular, similar) as the metric is flat on

𝑇 by construction. The rotation between them is a multiple of 𝜋/2 because the prescribed angles

at cones are multiples of 𝜋/2 (cf., e.g., [Springborn et al. 2008]). Hence, 𝐹 is seamless on 𝑇 but, in

general, only rotationally seamless on 𝐺 . □

Visualization For purposes of illustration, we would like to visualize the image 𝐹 (𝑀𝑐). Due
to global overlaps implied by negative curvature cones, this is not an easy task. However, locally,

near the cut graph 𝐺 , 𝐹 (𝑀𝑐) always looks like in Fig. 5.6a – because the boundary consists

exclusively of straight segments meeting at right-angle corners. (The only exception being the

101

a) b) c)

0

1 2

3

4

5

6

7

Figure 5.7: a) Global visualization (without cuts to cones) of the rectilinear map, where straight segments
appear as curved arcs (as explained in Sec. 5.2.3). b) Padding (analogous to Fig. 5.6) of segment 1, increasing
the lengths of segments 0 and 2. c) Padding of segment 2, increasing the lengths of segments 1 and 3.
This can be continued to adjust all segments’ lengths.

one boundary curve per 𝑀𝑖 where the tree 𝑇𝑖 is rooted.) We use this type of illustration when

a local view is sufficient. An alternative is to flatten the surface globally, without cutting to the

cones, instead (for visualization purposes) pushing the curvature of the cones evenly onto the

boundary 𝜕𝑀′. This leads to a flattening of 𝑀′𝑖 as shown in Fig. 5.7a, where straight boundary

segments appear as curved arcs (and cones are not visible). This makes it possible to visualize

the complete rectilinear boundary without cuts or overlaps.

5.2.4 Seamless Parametrization by Padding

The rotationally seamless map 𝐹 differs from a seamless map in two respects: the images of

mated segments may have different lengths, which implies a scale jump; but even if they are of

equal length, this only implies that the scale is equal on average, rather than pointwise along the

corresponding branch.

We thus modify 𝐹 by composing it with two types of local segment-wise maps:

• a stretch map 𝑔 𝑗 which effects a change of the lengths of segment images,

102

• a shift map 𝑟 𝑗 which subsequently equidistributes scale along a segment.

We iteratively apply these operations segment by segment. Note that these are applied only

to segments; across the additional cuts 𝑇 the map 𝐹 is already seamless, cf. Prop. 5.

Stretch For a boundary segment 𝑠 𝑗 , we consider a thin strip 𝑆 𝑗 on 𝑀𝑐 which runs along the

entire segment and maps to a rectangular region 𝑅 𝑗 via 𝐹 . This is illustrated in Fig. 5.6b and

Fig. 5.8.

More formally, the strips are defined as follows. The restriction of 𝐹 to the segment 𝑠 𝑗 (which

maps 𝑠 𝑗 to a straight segment in the plane) is bijective, and so is the restriction 𝐹 𝑗 to a sufficiently

small neighborhood Ω 𝑗 ⊂ 𝑀𝑐 of 𝑠 𝑗 . We choose the rectangle 𝑅 𝑗 within 𝐹 (Ω 𝑗) such that it includes
𝐹 (𝑠 𝑗) but no cone points and no joints except the ones on 𝑠 𝑗 . The thin strip 𝑆 𝑗 on𝑀𝑐 is then defined

as 𝑆 𝑗 = 𝐹−1
𝑗 (𝑅 𝑗), as shown in Fig. 5.8.

Outside of 𝑆 𝑗 we preserve the map, but within 𝑆 𝑗 wemodify it by a one-dimensional scale map

𝑔 𝑗 such that 𝑆 𝑗 is mapped onto a larger rectangle 𝑅′𝑗 ⊇ 𝑅 𝑗 whose width (orthogonal to the segment

𝑠 𝑗) is increased by a padding width 𝑤 𝑗 . This is illustrated in Fig. 5.6c and Fig. 5.8. Effectively, the

domain is locally padded by an additional rectangular region 𝑅′𝑗\𝑅 𝑗 of width 𝑤 𝑗 along the image

of 𝑠 𝑗 , cf. Fig. 5.7.

The situation is slightly different at the one segment 𝑠 𝑗 per component where 𝑇 is rooted

(cf. Sec. 5.2.3): it is separated into two parts by 𝑇 (cf. Fig. 5.21 left). Both parts can, however, be

𝑀𝑐

𝐺

𝑆 𝑗
𝑠 𝑗

Ω 𝑗

𝐹

𝑅 𝑗

𝑔 𝑗

𝑅′𝑗
𝑤 𝑗

Figure 5.8: Illustration of strip definition and stretch map applied to perform padding of a segment 𝑠 𝑗 by
padding width𝑤 𝑗 , cf. Sec. 5.2.4.

103

handled separately using the same technique, as detailed in Appendix 5.10.

We define the padded map 𝐹𝑝 iteratively, iterating over the (arbitrarily ordered) strips 𝑆 𝑗 , 𝑗 =

1, . . . , 𝑛, of each connected component of 𝑀𝑐 . 𝐹𝑝,0 coincides with 𝐹 , and 𝐹𝑝,𝑚+1 differs from 𝐹𝑝,𝑚

only on𝑅𝑚+1, where it is defined as𝑔𝑚+1◦𝐹𝑝,𝑚 |𝑅𝑚+1 , where𝑔𝑚+1 is the above scaling transformation

(detailed in Appendix 5.10). 𝐹𝑝 = 𝐹𝑝,𝑛 .

Shift In the padded map 𝐹𝑝 , we consider for each segment a strip 𝑆
𝑝
𝑗 (now defined based on

𝐹𝑝) and modify the map within this strip by a map 𝑟 𝑗 with the following properties:

• its restriction to a simple segment 𝑠 𝑗 reparametrizes 𝑠 𝑗 to constant speed; for complex seg-

ments: constant speed per contained boundary curve, cf. Appendix 5.10,

• the map is equal to identity on the rest of the strip’s boundary,

• it is continuous and bijective.

We define the shifted map 𝐹 𝑠 iteratively, again iterating over the strips 𝑆𝑝𝑗 of each connected

component of 𝑀𝑐 . 𝐹 𝑠,0 coincides with 𝐹𝑝 , and 𝐹 𝑠,𝑚+1 differs from 𝐹 𝑠,𝑚 only on 𝑅
𝑝
𝑚+1 = 𝐹 𝑠,𝑚 (𝑆𝑝𝑚+1),

where it is defined as 𝑟𝑚+1◦𝐹 𝑠,𝑚 |𝑅𝑝
𝑚+1

, where 𝑟𝑚+1 is the above shift map (detailed in Appendix 5.10).

Finally, 𝐹 𝑠 = 𝐹 𝑠,𝑛 .

Proposition 6. 𝐹 𝑠 is a rotationally seamless parametrization of 𝑀 with the same cones as 𝐹 , and

not only the angle but also the scale jump is constant per branch of the cut.

A proof is given in Appendix 5.10. The choice of padding widths determines the lengths

of segments under 𝐹𝑝 and, as they are preserved by the shift maps, under 𝐹 𝑠 . In the following

Sec. 5.2.5 we detail how equalizing padding widths can be found:

Definition 5.5 (Equalizing PaddingWidths). A set of padding widths leading to all pairs of mates

being of equal length under 𝐹 𝑠 is called equalizing padding widths.

104

Proposition 7. If 𝐹 𝑠 is constructed using equalizing paddingwidths, it is a seamless parametrization

of𝑀 .

Proof. The constant scale jump per branch (Prop. 6), together with the equal lengths of mated

boundary curve images implies a scale jump of zero per branch, i.e., rigid transitions. □

5.2.5 Length Eqalization

When a boundary segment is padded, the lengths of the two adjacent segments’ images change.

To make this precise, let ℓ𝑖 be the length of segment 𝑠𝑖 before any padding is performed, and𝑤𝑖 be

the amount of padding applied to 𝑠𝑖 . The length ℓ′𝑖 of 𝑠𝑖 after each segment was padded according

to values𝒘 = (𝑤0,𝑤1,𝑤2, ...) is

ℓ′𝑖 = 𝑤prev(𝑖) + ℓ𝑖 +𝑤next(𝑖), (5.2)

where prev(𝑖) and next(𝑖) are the two segments adjacent to 𝑠𝑖 , preceding and following it in cyclic

order along 𝜕𝑀′, cf. Fig. 5.9.

Our goal is to find an equalizing assignment of paddingwidth variables𝒘 such that the lengths

ℓ′ = {ℓ′0, ℓ′1, ℓ′2, ...} after padding are equal for each pair (𝑠𝑖, 𝑠 𝑗) of mated segments, i.e., ℓ′𝑖 = ℓ′𝑗 . This

leads to length equalization equations

𝑤prev(𝑖) +𝑤next(𝑖) −𝑤prev(𝑗) −𝑤next(𝑗) = ℓ𝑗 − ℓ𝑖 . (5.3)

However, only if all cut graph nodes are of degree 4, all segments are simple, and mated in

pairs as a consequence. In the presence of T-nodes (which imply complex segments) the situation

is a little different: a complex segment 𝑠𝑖 consists of multiple boundary curves; their mate curves,

however, form simple segments due to the last property of Def. 5.4. Hence, generally, a (simple

or complex) segment 𝑠𝑖 is mated with a sequence 𝐽𝑖 = (𝑠 𝑗 , 𝑠𝑘 , ...) of one or more simple segments.

105

Length equalization equations then take this more general form:

ℓ′𝑖 =
∑︁
𝑗∈𝐽𝑖

ℓ′𝑗 (5.4)

which expands to

𝑤prev(𝑖)+𝑤next(𝑖) −
∑︁
𝑗∈𝐽𝑖

(
𝑤prev(𝑗)+𝑤next(𝑗)

)
=
∑︁
𝑗∈𝐽𝑖

ℓ𝑗 −ℓ𝑖 . (5.5)

These equations form a globally interdependent equation system:

𝐴𝒘 = 𝒃, 𝑤𝑖 ≥ 0∀𝑖 . (5.6)

Note the non-negativity condition; it ensures that the padding operation actually stretches (𝑤 >

0) rather than squeezes (𝑤 < 0) the strips along segments. Allowing squeezing would require an

upper-bound constraint.

This system needs to be solved to achieve length equalization of mated segments, enabling

seamlessness. Unfortunately, it is not generally feasible – it may have no non-negative solution

or even no solution at all. Notice that the system matrix structure is entirely determined by the

cut graph’s combinatorics, leading to the following definition.

Definition 5.6 (Equalizable Cut Graph). An admissible cut graph for which equalization system

(5.6) is feasible for arbitrary 𝒃 , is called equalizable.

Our key result, accompanying the proposed map padding technique, is a proof showing that

there is an equalizable cut graph for any genus and any admissible set of cones, as well as an

efficient algorithm to construct such cut graphs (cf. Sec. 5.3 and Appendix 5.8).

106

5.3 Eqalizable Cut Graphs

We prove the following proposition:

Proposition 8. For any genus 𝑔 and any admissible prescription of cones𝐶 , there is an equalizable

cut graph, i.e., we can always obtain equalizing padding widths that enable a seamless parametriza-

tion.

The foundation of our construction of equalizible cut graphs is a graph we call a hole chain.

Variations thereof, depending on the surface’s genus and the cone configuration, then yield equal-

izable cutgraphs. Cut graphs covering all cases (arbitrary genus, arbitrary admissible cones) are

defined in this section. Their equalizability is shown in Appendix 5.8.

Together with Prop. 4 (rectilinear cone metric), Prop. 5 (rotationally seamless map), and

Prop. 7 (seamless modification given equalizing padding widths), this Proposition (equalizable

cutgraphs) concludes the constructive proof of the main theorem 5.1.

5.3.1 Hole Chain

Given a closed surface𝑀 of genus 𝑔 > 0, we cut it along 𝑔 non-intersecting non-homotopic non-

separating smooth loops 𝛼𝑖 . This yields a topological sphere 𝑀◦ with 2𝑔 holes. Note that each

loop corresponds to two holes, which are called partners. Let the holes be numbered from 0 to

2𝑔 − 1, and denoted ℎ𝑖 , in such a way that ℎ0 and ℎ2𝑔−1 (called terminals) are partners.

Let 𝜋 : 𝑀◦ → 𝑀 be the canonical map from 𝑀◦ to 𝑀 , taking ℎ𝑖 and its partner ℎ 𝑗 to their

corresponding loop 𝛼 : 𝜋 (ℎ𝑖) = 𝜋 (ℎ 𝑗) = 𝛼 .

On each holeℎ𝑖 , pick two distinct points 𝑞𝑖 and 𝑞′𝑖 , such that they are identified across partners

on 𝑀 , i.e., for partners ℎ𝑖 , ℎ 𝑗 we have 𝜋 (𝑞𝑖) = 𝜋 (𝑞 𝑗) and 𝜋 (𝑞′𝑖) = 𝜋 (𝑞′𝑗). For each 0 ≤ 𝑖 <

2𝑔 − 1 we further cut𝑀◦ along a smooth non-intersecting path between holes ℎ𝑖 to ℎ𝑖+1, starting

transversally at point 𝑞′𝑖 and ending transversally at point 𝑞𝑖+1. These paths are called connectors.

107

Note that after each such cut the surface remains a topological sphere with holes (decreasing in

number), thus, it remains path-connected; therefore these connectors always exist. Loops and

connectors together form a cut graph we call hole chain, as depicted abstractly in Fig. 5.10 and

concretely in Fig. 5.5, which yields the surface𝑀′, a sphere with one hole, i.e., a disk. Loops and

connectors are assumed not to intersect any prescribed cone.

Proposition 9. The hole-chain cut graph for any genus 𝑔 > 0 is admissible.

Proof. As the connectors’ endpoints 𝑞𝑖 , 𝑞 𝑗 are identified in pairs on𝑀 across partners ℎ𝑖 , ℎ 𝑗 , each

resulting cut graph node (at point 𝜋 (𝑞𝑖) = 𝜋 (𝑞 𝑗) on𝑀) is of degree 4 (cf. Fig. 5.5). All branches are

smooth curves meeting transversally at their endpoints and not crossing cones by construction.

The surface is cut to a single component with disk topology. As the set of cones 𝐶 is admissible,

we have
∑

𝑗 Θ 𝑗 = 2𝜋 (2 − 2𝑔); the hole chain cut graph has 2𝑔 − 1 nodes with 4 corners each, i.e.,

8𝑔 − 4 corners. Thus Eq. (5.1) is satisfied. □

Odd-Couple Condition We impose one condition (besides terminals being partners) on the

way the numbering of holes is chosen: there needs to be at least one odd couple, i.e., two partner

holes which have an odd number of holes between them in the chain, i.e., there is an 𝑖 and an

integer 𝑘 such that ℎ𝑖 and ℎ𝑖+2𝑘 are partners. This will be expected in the proof of equalizability.

Note that this is impossible if there are just four or less holes, thus instead special case variations

of the hole chain are used for genus 1 (two holes) and genus 2 (four holes) cases, as detailed in

Sec. 5.3.3.

Definition 5.7 (Fourfold Cones). A set of cones 𝐶 = {(𝑐𝑖, 𝑘𝑖)} with 𝑘𝑖 divisible by 4 for each 𝑖 is

called fourfold.

While the above hole chain cut graph is not equalizable in general, it permits equalization for

specific righthand sides 𝒃 :

108

Proposition 10. For any genus, a fourfold cone prescription implies a righthand side 𝒃 for which

problem (5.6) is feasible.

A proof is given in Appendix 5.8. For the general, non-fourfold case, variations of the hole

chain are used. We will describe the necessary changes next.

5.3.2 General Case (Genus 3+)

In case the cone prescription is not fourfold, i.e., there is at least one 𝑘𝑖 mod 4 ≠ 0, we extend the

hole chain cut graph by one extra path (cf. Fig. 5.11) – which makes it equalizable.

Definition 5.8 (Valid Extra Path). A simple path is called a valid extra path for a hole chain cut

graph if

• it does not pass through a cone,

• only its endpoints are contained in the hole chain cut graph,

• at least one endpoint is on a hole of the hole chain,

• no endpoint is coincident with a node of the hole chain.

Notice that this extra path forms two additional nodes, both of degree 3, i.e., T-nodes (or, if

coincident, one of degree 4) at its endpoints. At each we mark as corners the two sectors directly

adjacent to the extra path. Hence the total number of corners increases from 8𝑔 − 4 to 8𝑔. At the

same time, the extended hole chain cut graph cuts the surface into two components,𝑀′0 and𝑀′1,

each with disk-topology, with numbers of corners𝑚0,𝑚1. In particular, we have𝑚0 +𝑚1 = 8𝑔.

In order for the extended hole chain to remain admissible, we need to ensure that Eq. (5.1)

is satisfied, i.e., the number𝑚𝑖 of corners per component 𝑀′𝑖 needs to match the total curvature

of cones 𝐶′𝑖 prescribed within the component. Note that this is satisfied for 𝑀′0 if and only if it

is satisfied for 𝑀′1. Also, if the endpoints lie on two mated segments, we choose them as mated

109

points, to create a degree 4 node rather than two opposite T-nodes. We furthermore require

that the numbers𝑚0,𝑚1 of corners are not divisible by 4. This will be expected in the proof of

equalizability.

Definition 5.9 (Admissible Extra Path). A valid extra path that yields corner numbers 𝑚0, 𝑚1

not divisible by 4 and satisfying Eq. (5.1) is called admissible.

Proposition 11. An admissible extra path exists for any non-fourfold cone prescription and any

genus 𝑔 ≥ 3.

Proof. Pick one prescribed cone 𝑐𝑖 with 𝑘𝑖 mod 4 ≠ 0. Let 𝛽 be a simple path from a non-corner

point 𝑞 on the hole ℎ0 to 𝑐𝑖 , not containing any other cone. Let 𝛾 be a path that starts at 𝑞, runs

(arbitrarily close) along one side of 𝛽 , then around 𝑐𝑖 , then back along the other side of 𝛽 , and

ultimately (arbitrarily close) along the cut𝐺 until it has passed 𝑘𝑖 − 2 corners. It then connects to

a point 𝑞′ on the segment it reached. If 𝛾 is chosen sufficiently close to 𝛽 and 𝐺 , it is an example

of a valid extra path: the region that contains 𝑐𝑖 contains no other cone and it has 𝑘𝑖 corners (the

𝑘𝑖 − 2 corners passed along𝐺 plus the two corners formed by the extra path itself with𝐺 at 𝑞 and

𝑞′). Also, 𝛾 is connected to a hole, namely ℎ0. □

The equalizability of the hole chain cut graph with an odd-couple extended by an admissible

extra path is proven in Appendix. 5.8.

5.3.3 Special Cases (Genus 0, 1, 2)

Genus 0 Case

In the case of a topological sphere, our method formally is applicable, but does not actually con-

tribute anything: the cut graph is empty; there are no cuts across which the cone metric could be

non-seamless, thus no padding is required. The existence of conformal metrics with prescribed

cones on the topological sphere𝑀 is well-known [Troyanov 1991].

110

Genus 1 Case

For genus 1 surfaces, we (similar to the general case) add one extra path, but deviate slightly from

the general hole chain pattern in terms of identification of connector endpoints. The cut graph

pattern is depicted in Fig. 5.12. Notice that the surface is split into two components, with 2 and 6

corners. It is easy to see that for any admissible prescription of cones on a genus 1 surface, one

either has no cones at all (in this case the basic hole chain cut graph is sufficient, cf. Prop. 10) or

one has, among the prescribed cones, one or more cones whose curvature sums up to 𝜋 (due to

the Gauss-Bonnet theorem, there are cones of positive and negative curvature, and the case of

a single positive cone of curvature 𝜋/2 is the one non-admissible case, cf. Sec. 5.1). The surface

bi-partition by this cut graph pattern is thus compatible with any non-empty cone prescription,

i.e., the paths can be chosen in an admissible way on𝑀 .

The equalization equation system of this pattern is easily checked explicitly for non-negative

feasibility (cf. Appendix 5.8.2).

Genus 2 Case

For genus 2 surfaces, we also need to deviate from the general case. In contrast to the genus 1

case, where we could assume that a subset of prescribed cones always have curvatures summing

up to one specific value, five cases need to be distinguished: there is a subset of prescribed cones

with curvatures summing to 𝜋 , 𝜋/2, −𝜋/2, −𝜋 , or −3𝜋/2 (compatible with regions with 2, 3, 5, 6, and

7 corners, respectively). This list is exhaustive because the total sum of cone curvatures is −4𝜋

on a genus 2 surface, and not all cones have curvatures that are multiples of 2𝜋 (as this case was

handled already in Prop. 10); as a consequence, at least one of these five values has to appear as

a subsum.

Depending on which curvature sum subset is available in a given set of prescribed cones, the

cut graph pattern needs to be chosen compatibly. For the case that a cone subset with curvature

111

sum −𝜋/2 is available (as in most practical scenarios), the pattern depicted in Fig. 5.13 can be used;

for the remaining patterns refer to Appendix 5.8.3. Notice that this pattern is a variation of the

basic hole chain: two connectors are required to cross. This partitions the surface into a 5-corner

region (compatible with a curvature −𝜋/2 subset) and a 11-corner region (compatible with the

remaining cones).

The equation systems corresponding to these patterns are easily checked explicitly for non-

negative feasibility.

5.4 Implementation

We now describe how our algorithm can be implemented for discrete surfaces. In this section,𝑀

denotes a closed triangle mesh of arbitrary genus 𝑔. Cones are prescribed at vertices of 𝑀 ; such

vertices are called cone vertices. We first focus on the case 𝑔 ≥ 3, then on the minor deviations

required for cases 𝑔 = 1 and 𝑔 = 2.

General Overview The main steps of the algorithm are:

1. Construct 𝑔 non-contractible loops and cut𝑀 along these loops (Sec. 5.4.1).

2. Connect all holes using shortest paths, selecting the connection pattern based on the given

genus and cones. Where necessary, add one extra path; then cut the mesh (Sec. 5.4.1).

3. Set target angles at cone and corner vertices. Compute the corresponding discrete confor-

mal metric with prescribed curvature (Sec. 5.4.2).

4. Number all cut segments and set up the system matrix 𝐴 and righthand side 𝒃 accordingly

(Sec. 5.4.3).

112

5. Compute a solution to the linear system 𝐴𝒘 = 𝒃 ; add a constant shift to yield a solution

𝒘 ≥ 0 (Sec. 5.4.3).

6. Extend the cut graph to include all cones; lay out the mesh in the plane according to the

metric (Sec. 5.4.4).

7. Perform padding according to padding widths𝒘 (Sec. 5.4.5).

The output of the algorithm is a seamless parametrization with the prescribed cones. While

the parametric distortion initially is high near the cuts, this parametrization provides the feasible

starting point required by techniques for injectivity-preserving parametrization distortion opti-

mization (cf. Sec. 5.4.6) as well as quadrangulation methods based on quantization of seamless

parametrizations.

5.4.1 Cut Graph

On 𝑀 , one option to obtain 𝑔 non-intersecting non-contractible loops is via handle/tunnel loop

algorithms [Dey et al. 2013], modified to avoid cone vertices. A simpler robust approach is to

iteratively cut themesh𝑔 times, each time along an arbitrary non-contractible loop not containing

a cone or a boundary vertex, obtained using the tree-cotree algorithm [Erickson and Whittlesey

2005]. To ultimately yield a cut graph that is not unnecessarily convoluted, it is advisable to pick

a short loop each time.

We construct the connectors between the 2𝑔 holes as shortest paths, not containing cone,

boundary, or other paths’ vertices, using Dijkstra’s algorithm. A natural ordering of the holes can

be determined using a Hamiltonian path algorithm; this order needs to be adjusted slightly before

connector construction, to ensure the paired-terminals and odd-couple conditions are satisfied

(cf. Sec. 5.3.1).

113

Mesh Refinement We work with discrete paths/loops, following the edges of 𝑀 . For the al-

gorithm to be robust regardless of the mesh structure, after each construction of a path, we split

each mesh edge that is not on a path if its two vertices both are either on the boundary, on a path,

or on a cone. This ensures that the mesh, cut by the paths, remains path-connected with respect

to the discrete edge paths, avoiding boundary, path, and cone vertices.

Extra Cut The extra cut path (needed for the general genus 𝑔 ≥ 3 case) is constructed as a

shortest path as well. However, we need to employ a cone-aware variant of Dijkstra’s algorithm

in order to ensure cone/corner compatibility, cf. Eq. (5.1).

To this end, to each directed dual edge 𝑒 of themesh𝑀′we assign a value 𝜌𝑒 (with 𝜌𝑒 = −𝜌𝑒 for
oppositely directed dual edges 𝑒 , 𝑒) such that the sum of these values clockwise around a single

cone vertex 𝑐𝑖 is Θ̂𝑖 , and around non-cone vertices zero. Such an assignment can, for instance, be

obtained using a spanning tree of the cones (Fig. 5.14), rooted at the boundary 𝜕𝑀′: initialize 𝜌 at

all leaves of the tree and propagate the values towards the root, summing values where branches

meet.

Now for an arbitrary simple closed clockwise dual edge path 𝛾 , we have the following impor-

tant property:
∑

𝑒∈𝛾 𝜌𝑒 =
∑

𝑝𝑖∈Γ Θ̂𝑖 , where Γ is the set of all vertices enclosed by 𝛾 [Crane et al.

2010]. We call this sum
∑

𝑒∈𝛾 𝜌𝑒 , with a slight abuse of terminology also for non-closed paths,

(partial) holonomy. For a closed path, the sum
∑

𝑒∈𝛾 𝜌𝑒 along a closed path tells us what total cone

curvature is contained in the region enclosed by the path.

We then employ Dijkstra’s algorithm, starting from a hole segment on 𝜕𝑀′, and keep track

of the partial holonomy values along the way. Whenever the front propagation in Dijkstra’s al-

gorithm reaches 𝜕𝑀′ again, we tentatively close the loop by walking back to the starting point

clockwise along 𝜕𝑀′, counting passed corners on the way, and checking whether the total holon-

omy matches the number of corners, cf. Sec. 5.2.1, Eq. (5.1). If it matches, the path is accepted and

added as extra cut. An example is shown in Fig. 5.14.

114

Amodification is needed to the standard algorithm, though: Dijk-stra’s algorithm keeps track

of, for each vertex, the shortest path back to the starting point – regardless of partial holonomy∑
𝜌 . So while there are shortest paths of different partial holonomy back to the starting point,

Dijkstra’s algorithm discards all but the shortest one. We, instead, keep track of the shortest path

per vertex per holonomy value. Otherwise paths that could end up having a suitable holonomy

in the end, may be discarded early. We therefore perform Dijkstra’s algorithm not on𝑀′, but on

a branched covering of 𝑀′ [Kälberer et al. 2007], with sheets glued according to 𝜌 . In practice,

this means that each triangle stores separate distance information per partial holonomy value,

indexed by
∑
𝜌 of incoming fronts.

We also need to ensure that 𝛾 is simple on 𝑀′. While the holonomy-aware version of Dijk-

stra’s algorithm yields a simple path on the covering, its projection to𝑀′may be self-intersecting.

Before advancing the front to the next vertex, we always check whether this vertex is already

contained in the predecessor path to prevent such self-intersections. While with this latter mod-

ification it is no longer guaranteed that a path is always found, one can always fall back to an

explicit path construction following the existence proof in Sec. 5.3.2; we have never encountered

a case where this was necessary.

Special Cases The connectors of the special cut graph patterns employed for genus 1 and genus

2 surfaces are realized using shortest paths as well. These are constructed incrementally between

endpoints chosen on the holes, and cross points chosen on other connectors where necessary. For

those paths that split the surface into disjoint components, again the above cone-aware shortest

path algorithm is employed to ensure cone/corner compatibility.

5.4.2 Conformal Map

After cutting 𝑀 using the cut graph 𝐺 to obtain 𝑀′, for each component of 𝑀′ (typically one

or two, except for some genus 2 cone configurations) we need to obtain a cone metric with rec-

115

tilinear boundary. This is the one part of the implementation, where achieving robustness in

the discrete case is a challenge, even though in the smooth case (cf. Sec. 5.2.2) things are rather

straightforward.

In contrast to the continuous case, questions of existence of (some notion of) discrete con-

formal metrics with prescribed cones and boundary curvature are not fully settled. For cases

without boundary, recent results have brought theoretical insights [Luo 2004; Gu et al. 2013,0;

Springborn 2017] and provide an algorithmic foundation but the boundary case requires further

work on the theory side.

We use a modification of the conformal mapping algorithm for meshes without boundary de-

scribed in [Campen and Zorin 2017b]; it combines the elegant variational formulation of [Spring-

born et al. 2008] with on-the-fly mesh modifications (edge flips, following [Luo 2004]). For the

genus 0 case, this algorithm can be used directly (cf. Sec. 5.3.3) to produce a seamless parametriza-

tion. With a minor extension, we additionally prescribe geodesic boundary curvature, using the

holonomy angle constraints offered by this method, applied for each boundary vertex’s triangle

fan. The angle values are set to 𝜋/2 at corners and 𝜋 at all other boundary vertices. While this

algorithm is observed to behave well in practice, as mentioned earlier, further work is necessary

to determine whether formal guarantees (regarding general existence and convergence) can be

established.

In this context let us remark that our overall seamless parametrization construction does not

in any way rely on the cone metric actually being conformal – this was merely a convenient nat-

ural choice that allows to easily ensure existence of a locally injective map with a given boundary

curvature in the proof. If different approaches to conformal mapping, to other discrete notions

of conformal mapping, or entirely different non-conformal methods for parametrization with

piecewise straight boundaries are designed, these can be used alternatively.

A recently proposed conformal mapping method [Sawhney and Crane 2017] supporting cone

and boundary curvature prescription is particularly efficient – but, for instance, does not include

116

remeshing capabilities inevitably required for full robustness. One could construct a hybrid so-

lution with the more efficient algorithm tried first, and the robust but slower one serving as

fallback.

Note that, if this is important in a use case, the edge flips which are performed by the confor-

mal metric computation algorithm can ultimately be realized bymeans of edge splits, as described

in [Fisher et al. 2007]. In this way the output mesh is a locally refined version of the input mesh

(rather than a mesh with arbitrarily different combinatorial structure) and its embedding is pre-

served.

5.4.3 Eqalization

We (arbitrarily) number the segments of 𝜕𝑀′ and set up the system matrix 𝐴 (5.6) accordingly,

with one equation (5.3) for each pair of mates (or equation (5.5) where T-nodes are involved,

cf. Sec. 5.3.2). The right-hand side 𝒃 is determined by measuring the lengths of the segments

under the metric computed in Sec. 5.4.2.

Then we solve the linear system 𝐴𝒘 = 𝒃 . As it is underdetermined, we compute the least-

norm solution 𝒘∗ via 𝐴𝑇𝐴𝒘 = 𝐴𝑇𝒃 . If the cut graph contains an extra path (cf. Sec. 5.3.2), we

additionally fix the two padding width variables associated with the two extra path segments to

zero (by eliminating them from 𝐴); Prop. 12 asserts that the system remains feasible.

The resulting solution 𝒘∗ does not generally satisfy the important non-negativity constraint

of problem (5.6). However, we can now add a sufficiently large constant (as described in the proof

of Prop. 12) to all padding widths𝑤∗𝑖 (except those associated with an extra path, already fixed to

zero). This ensures that the equalizing padding widths are non-negative.

117

5.4.4 Flattening

To obtain the map 𝐹 from the conformal cone metric, we first need to extend the cut graph 𝐺

to 𝐺𝑇 (cf. Sec. 5.2.3). In each component of 𝑀′ we pick a non-corner point 𝑝 on a segment, and

compute the shortest paths from 𝑝 to all cones in the component. The union of these paths forms

the tree 𝑇 , extending 𝐺 to 𝐺𝑇 . Note that the piecewise-linear form of padding we use in the

discrete setting (cf. Sec. 5.4.5) does not require the tree to meet the segment at right angles at root

point 𝑝 .

The conformal metric computed in Sec. 5.4.2 is flat on all of 𝑀𝑐 , so its components can be

laid out in the plane [Springborn et al. 2008], isometrically with respect to the metric, to obtain

𝐹 (𝑀𝑐).

5.4.5 Padding

The padding operation described in Sec. 5.2.4 can be performed using piecewise-linear maps, as

illustrated in Fig. 5.15. We start with inserting a straight (in flat/parametrization metric) line

into the mesh 𝑀 along a segment, requiring that no vertex is contained in the strip this line

delineates. This line cuts the edges and creates new vertices; resulting polygons are triangulated.

Then, stretch and lateral shift can be performed bymoving those vertices that are on the segment.

Note that, as no vertices lie in the strip, the mesh within the rectangular strip is a simple triangle

strip and laterally translating the segment vertices does not cause triangle inversions as long as

their order is preserved – which is the case with the reparametrization 𝜙 (cf. Appendix 5.10).

We note that the resulting seamless parametrization is not of immediate practical use: the

scale distortion involved in the conformal map together with the additional padding-induced

stretching often leads to high parametric distortion. This map, however, provides a valid (locally

injective and seamless) starting point required by robust optimization methods that can convert

it to a low-distortion parametrization (to the extend permitted by the cone prescription). We

118

emphasize that for non-convex problems, the ability to obtain a feasible starting point is critical:

first, this is, in general, the only way to guarantee that a solution is found; second, this allows one

to use robust optimization techniques that always stay in the feasible region during optimization.

5.4.6 Distortion Optimization

For the optimization of the seamless padded map, in our implementation, we use the symmetric

Dirichlet energy togetherwith efficient quadratic proxies as described in [Rabinovich et al. 2017b].

This method preserves local injectivity during optimization by design; we additionally include

linear seamlessness constraints to preserve seamlessness of the map:

®𝑒𝑖 = 𝑅𝑘𝑖 𝑗
𝜋
2 ®𝑒 𝑗 for each pair (𝑖, 𝑗) of identified mesh edges,

where ®𝑒𝑖 is the edge vector of edge 𝑖 in the parametric domain, and 𝑅𝑘𝑖 𝑗
𝜋
2 is a rotation by 𝑘𝑖 𝑗

𝜋
2 ,

where the constant integer 𝑘𝑖 𝑗 is determined by the edges’ relative initial orientation in the do-

main.

We use the common symmetric Dirichlet objective in the optimization. In the context of

specific applications, other application-dependent objectives, not focussing on distortion alone,

may be relevant. For instance, for seamless global texturing, the seamless parametrization would

have to be quantized (resulting in particular in an integer grid map with discrete translations in

the transitions across cuts) [Ray et al. 2010]. The same is true for quad mesh generation or for

constructing domains for spline spaces. Techniques to perform such quantization rely on using

seamless parametrizations as a starting point [Campen et al. 2015; Lyon et al. 2019], of the type

our method provides. It can also be useful to include directional terms in the objective, to support

alignment to principal curvature or other directions. Finally, potential inaccuracies in the results’

seamlessness due to numerical precision limits could be eliminated [Mandad and Campen 2019].

119

5.5 Examples

We demonstrate our implementation of the algorithm described in Sec. 5.1–5.6 on a number of

examples.

Figure 5.17 shows a visualization of the seamless parametrizations constructed on models

from the dataset provided by [Myles et al. 2014]. We employed the cone position and angle

prescriptions included in this dataset. Figure 5.16 demonstrates the algorithm handling topolog-

ically complex surfaces as well as randomly prescribed singularities. In all cases locally injective

seamless global parametrizations were obtained. Note that seamless does not mean that cuts are

not visible in these checkerboard visualizations; for this the maps would additionally need to be

quantized [Campen et al. 2015] – a process for which ourmethod provides a suitable initialization.

To explore the numeric limits of our implementation, we applied it to 𝑁 -tori, for increasing

𝑁 . For an 80-torus, as depicted in Figure 5.18, the implementation succeeds; for a 100-torus we

are still able to obtain an initial seamless map – however, with a level of distortion that state-

of-the-art local injectivity preserving optimization methods prove to have trouble with, due to

numerical precision issues. For even larger 𝑁 , the computation of the constrained conformal map

starts to suffer from occasional numerical issues (e.g. step size going down to numerical zero) as

well. Investigation of the numerical aspects of map optimization in high distortion cases is an

important direction for future research.

5.6 Conclusion and Future Work

This paper provides a general path to obtaining seamless parametrizations with a given set of

cones. On a conceptual level, the approach is simple: pad a parametrization that maps cut seg-

ments to straight lines, with padding determined by solving a linear system. Our algorithm

demonstrates that for (almost) any user-specified or automatically computed choice of cones a

120

corresponding global parametrization can be constructed, without introducing additional cones.

A limitation of our approach in its current form is that it does not take into account the

holonomy angles on global homology loops (in addition to cone angles), which, for instance, is

important for parametrizations following a global guiding field. We expect that by using different

forms of cut graph construction, based on given global holonomy angles, many of the ideas will

be applicable to such a setting as well; we plan to address this in a separate paper.

Other directions of future work include generalization to surfaces with boundaries as well as

aligning to tagged feature curves or other prescribed directions on the surface.

In the smooth setting, we have constructively shown the existence of a locally injective, seam-

less parametrization. In practice, numerical optimization routines bring about additional chal-

lenges related to precision limits, which here affects the discrete conformal map computation. A

potential path could be the replacement of this initial map computation with a different technique

– perhaps exploiting the fact that conformality is not actually required.

5.7 Illustrative Example

We consider the simplest example: a torus with two cones, 𝑘0 = 2, 𝑘1 = 6, i.e., cone angles 𝜋 and

3𝜋 , shown in Figure 5.19.

Cut Graph We cut the surface into a 2-corner and a 6-corner component (cf. Fig. 5.19 top). The

cut graph was embedded in the surface in such a way that the total cone curvature contained in

each component is compatible with the number of corners in terms of Gauss-Bonnet: a cone with

𝑘0 = 2 lies in the 2-corner region, a cone with 𝑘1 = 6 in the 6-corner region.

Cone Metric We compute a cone metric on each of the two components (e.g. conformal, given

by a pointwise scale factor) which is flat everywhere except at the cones, where it has the pre-

scribed curvature. In addition, we require the boundary to be geodesically straight at all boundary

121

points except for the corners, where it forms right angles under the metric.

Metric to Parametrization If we add cuts connecting all cones to the boundary (indicated

with dashed curves) this conemetric is flat in the interior and corresponds to a global parametriza-

tion of the torus, with two charts (cf. Fig. 5.19 middle left and right). The image of each of the

two maps is a domain with rectilinear boundary, consisting of straight segments meeting at right

angles (excluding the cuts to the cones). As the angle between any two segments is an integer

multiple of 𝜋/2, this parametrization is rotationally seamless, but it may have a jump in scale across

cuts. In particular, two segments corresponding to the same cut graph branch – here (1,7), (2,5),

(3,6), and (4,8) – may have different lengths in general.

Eqalization by Padding To obtain a seamless parametrization we equalize the lengths of

identified pairs of segments. This is achieved by adding padding, i.e., we extend the parametric

domain by shifting straight segments in orthogonal direction (cf. Fig. 5.19 bottom). For each

segment 𝑖 , numbered sequentially around each component, ℓ𝑖 , 𝑖 = 1 . . . 8, is its parametric length.

For a segment 𝑖 , after padding its length becomes ℓ𝑖 +𝑤prev(𝑖) +𝑤next(𝑖) , where prev(𝑖) and next(𝑖)
are previous and next segment indices around the component, and 𝑤 𝑗 is the padding width for

segment 𝑗 . Equating the post-padding lengths of all four pairs of identified segments yields the

following four equations in this example:

ℓ1 +𝑤2 +𝑤6 = ℓ7 + 2𝑤8; ℓ2 +𝑤1 +𝑤3 = ℓ5 +𝑤4 +𝑤6;

ℓ3 +𝑤2 +𝑤4 = ℓ6 +𝑤1 +𝑤5; ℓ4 +𝑤3 +𝑤5 = ℓ8 + 2𝑤7

122

where ℓ𝑖 are the known segment lengths,𝑤𝑖 are the unknown padding widths. The matrix of this

equation system has the form

𝐴 =

0 1 0 0 0 1 0 −2

1 0 1 −1 0 −1 0 0

−1 1 0 1 −1 0 0 0

0 0 1 0 1 0 −2 0

and the right-hand side is 𝒃 = [ℓ7 − ℓ1, ℓ5 − ℓ2, ℓ6 − ℓ3, ℓ8 − ℓ4]𝑇 , i.e., parametric length mismatches

of identified segments. To equalize segments lengths, we need to find a solution of the system

𝐴𝒘 = 𝒃 , where𝒘 is the vector of padding widths, such that𝒘 ≥ 0. This non-negativity condition

is important to guarantee that the domain does not degenerate through padding. Observe that 𝐴

has full (row) rank, which ensures that the system has a (possibly non-unique) solution. Observe

further that 𝐴1 = 0 in this case, i.e., after computing an arbitrary solution, we can obtain a

non-negative solution by adding a sufficiently large constant. More generally, note that 𝐴 is

determined solely by the choice of the cut graph combinatorics. For instance, without the blue or

without the yellow branch, the cut graph (cutting the surface to a single topological disk in these

cases) would yield a system that does not have a non-negative solution𝒘 for every possible 𝒃 .

Seamless Parametrization Once the padded domain is obtained, we remap the original image

onto this domain. This is done by stretching outwards thin strips running along the segments

to cover the added space in the rectangular regions padded onto the domain, yielding a seamless

global parametrization.

123

5.8 Proofs of Eqalizability

5.8.1 Genus 3+

This proof is constructive, yet it is only intended to prove feasibility. In practice, a simple linear

system solve can be used to obtain a solution instead (cf. Sec. 5.4.3), while our theorem ensures

that this linear system solve always succeeds.

Non-Fourfold Case

The hole chain cut graph 𝐺 , together with the extra path, cuts 𝑀 into two components 𝑀′0 and

𝑀′1, neither of which has its number of segments𝑚𝑘 divisible by 4. The boundary of at least one of

these components contains a segment of a hole, located between the two parts of an odd-couple

(cf. Sec. 5.3.1); let this component be𝑀′1.

Our proof is based on the observation (Lemma 5.10) that for each of the domains 𝑀′
𝑘
, it is

possible to attain arbitrary target segment lengths ℓ̃𝑖 , 𝑖 = 0 . . .𝑚𝑘 − 1, using (possibly negative)

padding. Hence it is, in particular, possible to choose padding widths such that lengths of mated

segments match (Lemma 5.12).

If there were no T-nodes, such (possibly negative) equalizing padding widths could easily be

transformed into non-negative ones: adding a sufficiently large constant 𝑐 to each yields non-

negative padding widths while preserving equalization (each segment length increases by 2𝑐).

Cut graphs with T-nodes result in complex segments on the cut, and these are not mated in pairs.

Equalization is preserved if we add 𝑐 to all padding widths except those of the two extra path

segments – but then these two would remain possibly negative. This requires performing two

intermediate modifications:

First, we make both extra path segments’ padding widths non-negative (Lemma 5.13). This

leads to one equalization equation being violated. We then show that, exploiting the presence of

124

an odd-couple, a further modification of padding widths (Lemma 5.14) can restore equalization

(Prop. 12).

Remark: While it may be possible to construct cut graphs without T-nodes for any configura-

tion of genus and cones, and thereby simplify the proof, this would require the consideration of

(possibly many) further special cases, with more than two components, depending on genus and

cone curvatures. We choose the version leading to a simpler construction algorithm with fewer

special cases.

We first establish two auxiliary results for an individual component𝑀′
𝑘
, omitting the subscript

𝑘 . We number segments cyclically along the component’s boundary, with numbers from 0 to

𝑚 − 1. Let 𝐵𝒘 = 𝒅, with𝑚 ×𝑚 matrix 𝐵, be the length adjustment system formed by equations

𝑤𝑖−1+ℓ𝑖 +𝑤𝑖+1 = ℓ̃𝑖 (with index arithmetic done mod 𝑚), for initial lengths ℓ𝑖 and arbitrary target

lengths ℓ̃𝑖 .

Lemma 5.10. There are padding widths𝑤𝑖 ∈ R satisfying 𝐵𝒘 = 𝒅.

Proof. The system matrix 𝐵 is an𝑚 ×𝑚 circulant matrix, with associated polynomial 𝑓 (𝑥) = 𝑥 +
𝑥𝑚𝑘−1 = 𝑥 (𝑥𝑚𝑘−2+1) [Davis 2012]. It is full rankwhenever 𝑓 (𝑒 𝑗/𝑚𝑘2𝜋 i) ≠ 0, for 𝑗 = 0 . . .𝑚𝑘−1, as its

determinant is given by the product of these values (𝑓 on𝑚th roots of unity). It is straightforward

to check that 𝑓 (𝑒 𝑗/𝑚2𝜋 i) = 0 (for some 𝑗) requires 𝑒 𝑗 (𝑚−2)/𝑚𝑘2𝜋 i = −1. This is equivalent to 2 𝑗 (𝑚−2)/𝑚
being odd, which in turn, requires 4 𝑗/𝑚 to be odd, i.e.,𝑚 must be a multiple of 4, contradicting the

assumption𝑚 mod 4 ≠ 0. □

Lemma 5.11. For an arbitrary choice of index 0 ≤ 𝑗 < 𝑚 and an odd number 𝑝 , there are padding

widths𝑤𝑖 ∈ R with𝑤 𝑗 = 1 such that all equations of 𝐵𝒘 = 0, except the (𝑗 +𝑝 mod𝑚)-th equation,

are satisfied.

Proof. Choose𝑤 𝑗+𝑝+1,𝑤 𝑗+𝑝+3,𝑤 𝑗+𝑝+5, ...,𝑤 𝑗+𝑝−1 alternatingly as 1 and−1 (where index summation

125

is done mod 𝑚). Note that if𝑚 is even, this sequence contains every other padding width, if𝑚

is odd, it contains every padding width, as illustrated below. In both cases, due to𝑚 mod 4 ≠ 0,

this sequence is of odd length. Thus,𝑤 𝑗+𝑝+1 = 𝑤 𝑗+𝑝−1. As 𝑝 is odd,𝑤 𝑗 is part of the sequence; we

choose the alternating sign such that𝑤 𝑗 = 1. As each segment 𝑖 ≠ 𝑗 + 𝑝 has its previous and next

segments either both not padded or padded with alternating signs, its length is not changed, i.e.,

padded length ℓ′𝑖 = ℓ𝑖 , but ℓ′𝑗+𝑝 = ℓ𝑗+𝑝 ± 2. □

Combining the result of Lemma 5.10 for both components yields the following lemma.

Lemma 5.12. The equalization system 𝐴𝒘 = 𝒃 induced by a hole chain cut graph with admissible

extra path has a (possibly negative) solution𝒘 .

Proof. Choose the target length ℓ̃𝑖 = 1 for each simple segment 𝑖 (consisting of one boundary

curve), and ℓ̃𝑖 = 𝑟 for each complex segment consisting of 𝑟 boundary curves (with 𝑟−1 flat joints).

Note that for our hole chain cut graph 𝑟 = 2 or 𝑟 = 3 (when𝑚𝑘 = 2 for some 𝑘). According to

Lemma 5.10, there are paddingwidths𝒘0 for𝑀′0 and𝒘1 for𝑀′1 such that padded lengths ℓ′𝑖 = ℓ̃𝑖 , and

because lengths ℓ̃𝑖 match for mated segments, these padding widths 𝒘 = [𝒘0,𝒘1] are equalizing,
thus 𝐴𝒘 = 𝒃 . □

Wenow show that this initial, possibly negative solution can, inmultiple steps, be transformed

into a non-negative solution.

Lemma 5.13. Consider the equalization system 𝐴𝒘 = 𝒃 induced by a hole chain cut graph with

admissible extra path. Let 𝑎, 𝑏 be the segments of the extra path, 𝑞 an arbitrary hole segment of𝑀′1.

There are padding widths �̄� with �̄�𝑎 = �̄�𝑏 = 0 such that all equalization equations of𝐴�̄� = 𝒃 except

for the one containing ℓ𝑞 are satisfied.

Proof. Lemma 5.12 yields padding widths satisfying 𝐴𝒘 = 𝒃 , but possibly with𝑤𝑎 ≠ 0 or𝑤𝑏 ≠ 0.

Let𝑤 ′𝑖 = 𝑤𝑖 , for all 𝑖 , except for𝑤 ′𝑎 = 0,𝑤 ′
𝑏
= 𝑤𝑏 +𝑤𝑎 (i.e. we move all extra path padding to one

126

side of the path). The equation𝐴𝒘′ = 𝒃 still holds, because the padding widths of segments 𝑎 and

𝑏 do not appear individually, but only as sum in these equations (5.5), and𝑤 ′𝑎 +𝑤 ′𝑏 = 𝑤𝑎 +𝑤𝑏 .

Observe that due to 𝑏 being an extra path and 𝑞 a hole segment index (and the extra path

being connected to a hole, cf. Def. 5.8), at least one of the two (cw or ccw) cyclic index distances

along the boundary of𝑀′1 is odd, thus there is an odd number 𝑝 such that (𝑏+𝑝 mod 𝑚1) = 𝑞. We

now apply Lemma 5.11 to the component𝑀′1 to make the padding width of 𝑏 zero. For the choice

𝑗 = 𝑏 and the odd number 𝑝 , this lemma yields padding widths 𝑤 ′′𝑖 for 𝑀′1 (for each segment 𝑖 of

𝑀′0, we set 𝑤 ′′𝑖 = 0) with 𝑤 ′′
𝑏
= 1 which leave all segment lengths unchanged except for that of

segment 𝑞. We obtain padding widths satisfying the lemma as �̄�𝑖 = 𝑤 ′𝑖 −𝑤 ′𝑏𝑤 ′′𝑖 . □

Now we show that a further modification allows us to find padding width that also satisfies

the equation containing ℓ𝑞 . This is the only step that requires using the assumption that the hole

chain cut graph contains an odd-couple (cf. Sec. 5.3.1).

Lemma 5.14. Suppose the equalization system 𝐴𝒘 = 𝒃 is induced by a hole chain cut graph with

admissible extra path and an odd-couple. Let 𝑞 be an arbitrary hole segment of 𝑀′1 between the

mated segments 𝑑 and 𝑒 of the odd-couple in the hole chain. Then for any 𝛿 ∈ R there are padding

widths 𝒘 with 𝑤𝑎 = 𝑤𝑏 = 0 such that the padded length ℓ′𝑞 = ℓ𝑞 + 𝛿 , while all other lengths remain

unchanged or are changed by the same amount for each group of mated segments, i.e.,𝐴𝒘 = 0 except

for the equation including ℓ𝑞 .

Proof. Let 𝑑0, ..., 𝑑𝑟 be the sequence of connectors of the hole chain between an odd-couple pair of

holes ℎ𝑑 , ℎ𝑒 . Note that 𝑟 is odd. Each connector has two sides; let 𝑐0, ..., 𝑐𝑟 be the sides on that side

of the hole chain where the hole segment 𝑞 is located. Then there are 𝑐𝑖 , 𝑐𝑖+1 such that segment

𝑞 lies between them (Fig. 5.20).

Let 𝑣𝑐 𝑗 = −1𝑖− 𝑗 1
2𝛿 , 𝑗 = 0, ..., 𝑖 , and 𝑣𝑐 𝑗 = −1𝑖− 𝑗+1 1

2𝛿 , 𝑗 = 𝑖 +1, ..., 𝑟 . Each connector side 𝑐 𝑗

corresponds to one segment 𝑠𝑐 𝑗 or, in case the extra path connects to such a side and splits it, two

127

segments 𝑠𝑐 𝑗 and 𝑠𝑐 𝑗 (for example, 𝑐4 in the figure below). Let𝑤𝑠 𝑗 = 𝑣𝑐 𝑗 (and in case of a connector

split by the extra path also 𝑤𝑠 𝑗 = 𝑣𝑐 𝑗) for each 𝑐 𝑗 , and zero for all other segments not involved

in connector sides 𝑐0, ..., 𝑐𝑟 (thus in particular the extra path segments 𝑎, 𝑏). With these padding

widths, we have ℓ′𝑞 = ℓ𝑞+𝛿 , the lengths of mated segments𝑑 and 𝑒 are either both increased or both

decreased by the same amount 1
2𝛿 . All other hole segments between 𝑑 and 𝑒 have their previous

and next connector segment padded with opposite signs, preserving their lengths ℓ′𝑖 = ℓ𝑖 – unless

the extra path is connected to one of these holes: suppose it is connected to the hole between 𝑐 𝑗

and 𝑐 𝑗+1, then there are two hole segments (separated by the extra path) between 𝑐 𝑗 and 𝑐 𝑗+1, and

one’s length is increased by 1
2𝛿 , the other’s decreased by 1

2𝛿 ; as they (due to the T-node at the

extra path) are mated in combination, these values cancel in the equalization equations. □

Finally, we obtain a non-negative solution of the equalization system, as required.

Proposition 12. The equalization system𝐴𝒘 = 𝒃 induced by a hole chain cut graph with admissible

extra path and an odd-couple, has a non-negative solution𝒘 .

Proof. Let 𝑞 be a hole segment of 𝑀′1 that lies between two segments of an odd-couple. For this

𝑞, Lemma 5.13 asserts there are padding widths �̄� with �̄�𝑎 = �̄�𝑏 = 0, satisfying all but one

equalization equation. Let 𝛿 be the error, i.e., the difference between the padded length ℓ′𝑞 and

the padded length of 𝑞’s mate(s). For these 𝑞 and 𝛿 , Lemma 5.14 yields padding widths �̂�𝑖 such

that 𝑤 ′𝑖 = �̄�𝑖 + �̂�𝑖 satisfy all equations 𝐴𝒘′ = 𝒃 , because with this addition, the padded length ℓ′𝑞

of segment 𝑞 is adjusted to cancel the error 𝛿 , while equalization of all other mated segments is

preserved, and 𝑤 ′𝑎 = 𝑤 ′
𝑏
= 0. Now non-negative equalizing padding widths can be derived: Let

1′ be the vector of ones, except for two zeroes at entries 𝑎 and 𝑏. Then 𝐴1′ = 0, because each

equation (5.3)/(5.5), thus each row of 𝐴, contains two (not necessarily distinct) padding width

variables with positive sign and two padding width variables with negative sign – and possibly

further entries −𝑤𝑎 , −𝑤𝑏 , which, however, are zero in 1′. Let _ = min𝑤 ′𝑖 . Then padding widths

𝒘 = 𝒘′ − _1′ are non-negative and, due to 𝐴𝒘 = 𝐴𝒘′ − _𝐴1′ = 𝒃 , equalizing. □

128

Fourfold Case

In this case, the cut graph contains no extra cut path and we have a single component 𝑀′ with

the number of segments𝑚 divisible by 4. As shown in the proof of Lemma 5.10, system matrix 𝐵

does not have full rank in this case. Its upper left (𝑚 − 2) × (𝑚 − 2)-submatrix, however, has full

rank (as it is a tridiagonal Toeplitz matrix), thus 𝐵−, which is 𝐵 with the last two rows removed,

is a (rectangular) matrix with full row rank. This implies we can obtain padding widths 𝒘 with

𝐵−𝒘 = 1 − ℓ−, i.e., they bring all segments but the last two to unit length.

In the case of fourfold cones, the transitions across the cut graph extension 𝑇 (cf. Sec. 5.2.3)

are rotations by a multiple of 2𝜋 (= identity); as a consequence, the cut extension 𝑇 can actually

be omitted. This implies that the boundary of the flattening 𝐹 (𝑀′) is formed exclusively by the

segments and is entirely rectilinear, as illustrated in Fig. 5.21 right. Without the loss of generality,

we assume that all even-index segments are laid out horizontally and all odd-index segments ver-

tically. Counterclockwise around the boundary 𝜕𝐹 (𝑀′), horizontal segments alternate between

positive and negative𝑢-directions, and vertical segments alternate between positive and negative

𝑣-direction. The fact that 𝜕𝐹 (𝑀′) is (and after padding remains) a closed polygon then implies

∑︁
𝑖=0,...,𝑚/2−1

−1𝑖ℓ2𝑖 = 0,
∑︁

𝑖=0,...,𝑚/2−1
−1𝑖ℓ2𝑖+1 = 0.

This, in turn, implies that if all even/odd segments but one have unit length, the remaining one

has unit length as well. Hence, the last two conditions of 𝐵 are, in the fourfold case, satisfied

automatically if all other conditions are satisfied. We conclude that𝐵−𝒘 = 1−ℓ− implies𝐵𝒘 = 1−ℓ .
The vector𝒘 may contain negative values, but we can add an arbitrary constant shift𝒘∗ = 𝒘 +_1

because 𝐵𝒘∗ = `1 − ℓ (with ` = (2_ + 1)), leading to 𝐴𝒘∗ = 𝒃 and 𝒘∗ ≥ 0 for a sufficiently large

_. □

129

5.8.2 Genus 1

The equalization system for the genus 1 cut graph pattern is:

𝑤1 +𝑤5 −𝑤2 −𝑤4 = ℓ3 − ℓ0
𝑤6 +𝑤6 −𝑤3 −𝑤5 = ℓ4 − ℓ7
𝑤0 +𝑤2 −𝑤7 −𝑤7 = ℓ6 − ℓ1
𝑤1 +𝑤3 −𝑤0 −𝑤4 = ℓ5 − ℓ2

One can easily verify that the system matrix has full row rank, and that it has positive vectors

(e.g. 1) in its kernel, thus has a non-negative solution for any righthand side.

5.8.3 Genus 2

The five different cut graph patterns covering all possible cone choices for genus 2 are depicted in

Fig. 5.22. One can easily verify explicitly that their equalization system matrices all have full row

rank, and that they have positive vectors (e.g. 1) in their kernel, thus have non-negative solutions

for any righthand side.

2 corners:

𝑤1 +𝑤7 −𝑤13 −𝑤19 = ℓ12 − ℓ0
𝑤1 +𝑤3 −𝑤17 −𝑤19 = ℓ18 − ℓ2
𝑤5 +𝑤7 −𝑤13 −𝑤15 = ℓ14 − ℓ6
𝑤8 +𝑤10 −𝑤20 −𝑤22 = ℓ23 − ℓ11

𝑤0 +𝑤2 −𝑤0 −𝑤6 = ℓ7 − ℓ1
𝑤2 +𝑤17 −𝑤11 −𝑤16 = ℓ8 − ℓ3
𝑤20 +𝑤22 −𝑤21 −𝑤21 = ℓ9 − ℓ4
𝑤6 +𝑤15 −𝑤11 −𝑤16 = ℓ10 − ℓ5
𝑤12 +𝑤14 −𝑤12 −𝑤18 = ℓ19 − ℓ13

𝑤5 +𝑤14 −𝑤4 −𝑤23 = ℓ20 − ℓ15

𝑤8 +𝑤10 −𝑤9 −𝑤9 = ℓ21 − ℓ16

𝑤3 +𝑤18 −𝑤4 −𝑤23 = ℓ22 − ℓ17

7 corners:

𝑤1 +𝑤23 −𝑤11 −𝑤13 = ℓ12 − ℓ0
𝑤2 +𝑤4 −𝑤8 −𝑤10 = ℓ9 − ℓ3

𝑤14 +𝑤16 −𝑤20 −𝑤22 = ℓ21 − ℓ15

𝑤0 +𝑤7 −𝑤0 −𝑤6 = ℓ23 − ℓ1
𝑤3 +𝑤17 −𝑤18 −𝑤21 = ℓ22 − ℓ2
𝑤3 +𝑤17 −𝑤16 −𝑤21 = ℓ20 − ℓ4
𝑤7 +𝑤11 −𝑤8 −𝑤10 = ℓ19 − ℓ5

𝑤13 +𝑤23 −𝑤14 −𝑤22 = ℓ18 − ℓ6
𝑤1 +𝑤5 −𝑤2 −𝑤4 = ℓ17 − ℓ7

𝑤9 +𝑤19 −𝑤15 −𝑤20 = ℓ16 − ℓ8
𝑤9 +𝑤19 −𝑤15 −𝑤18 = ℓ14 − ℓ10

𝑤5 +𝑤12 −𝑤6 −𝑤12 = ℓ13 − ℓ11

130

3 corners:

𝑤1 +𝑤19 −𝑤9 −𝑤11 = ℓ10 − ℓ0
𝑤5 +𝑤7 −𝑤16 −𝑤18 = ℓ17 − ℓ6
𝑤2 +𝑤4 −𝑤13 −𝑤15 = ℓ14 − ℓ3
𝑤0 +𝑤9 −𝑤0 −𝑤8 = ℓ19 − ℓ1

𝑤3 +𝑤11 −𝑤12 −𝑤17 = ℓ18 − ℓ2
𝑤3 +𝑤13 −𝑤12 −𝑤17 = ℓ16 − ℓ4
𝑤6 +𝑤7 −𝑤8 −𝑤14 = ℓ15 − ℓ5
𝑤5 +𝑤6 −𝑤4 −𝑤14 = ℓ13 − ℓ7

𝑤15 +𝑤19 −𝑤16 −𝑤18 = ℓ12 − ℓ8
𝑤1 +𝑤10 −𝑤2 −𝑤10 = ℓ11 − ℓ9

5 corners:

𝑤1 +𝑤15 −𝑤7 −𝑤9 = ℓ8 − ℓ0
𝑤2 +𝑤4 −𝑤4 −𝑤6 = ℓ5 − ℓ3

𝑤10 +𝑤12 −𝑤12 −𝑤14 = ℓ13 − ℓ11

𝑤0 +𝑤10 −𝑤0 −𝑤9 = ℓ15 − ℓ1
𝑤3 +𝑤6 −𝑤7 −𝑤13 = ℓ14 − ℓ2
𝑤3 +𝑤5 −𝑤11 −𝑤13 = ℓ12 − ℓ4
𝑤2 +𝑤5 −𝑤1 −𝑤11 = ℓ10 − ℓ6
𝑤8 +𝑤14 −𝑤8 −𝑤15 = ℓ9 − ℓ7

6 corners:

𝑤1 +𝑤10 −𝑤17 −𝑤26 = ℓ16 − ℓ0
𝑤2 +𝑤4 −𝑤23 −𝑤25 = ℓ24 − ℓ3
𝑤7 +𝑤9 −𝑤18 −𝑤20 = ℓ19 − ℓ8

𝑤11 +𝑤14 −𝑤27 −𝑤30 = ℓ31 − ℓ15

𝑤0 +𝑤22 −𝑤0 −𝑤21 = ℓ10 − ℓ1
𝑤3 +𝑤29 −𝑤8 −𝑤28 = ℓ9 − ℓ2
𝑤3 +𝑤29 −𝑤15 −𝑤30 = ℓ11 − ℓ4
𝑤22 +𝑤26 −𝑤23 −𝑤25 = ℓ12 − ℓ5
𝑤17 +𝑤21 −𝑤18 −𝑤20 = ℓ13 − ℓ6
𝑤8 +𝑤28 −𝑤15 −𝑤27 = ℓ14 − ℓ7
𝑤6 +𝑤16 −𝑤5 −𝑤16 = ℓ26 − ℓ17

𝑤13 +𝑤19 −𝑤12 −𝑤24 = ℓ25 − ℓ18

𝑤13 +𝑤19 −𝑤14 −𝑤31 = ℓ27 − ℓ20

𝑤6 +𝑤10 −𝑤7 −𝑤9 = ℓ28 − ℓ21

𝑤1 +𝑤5 −𝑤2 −𝑤4 = ℓ29 − ℓ22

𝑤12 +𝑤24 −𝑤11 −𝑤31 = ℓ30 − ℓ23

5.9 Proof of Cone Metric Existence

[Troyanov 1991] presents a general proof of cone metric existence on closed surfaces. It “extends

[. . .] to surfaces with (piecewise geodesic) boundary”, but the extension is not spelled out. [Cher-

rier 1984] focuses on the case with boundary, but does not specifically consider the relevant delta

distributions of curvature. We provide a proof tailored to our setting.

Let 𝑀′ be one of the disk-topology connected components of the cut surface (we will drop

131

the index of the component in the following). Consider the expansion 𝑀′exp of 𝑀′, obtained by

joining a copy of the geodesic disk of size 𝜖𝑝 in 𝑀 centered at 𝜋 (𝑝), to each boundary point of

𝑀′. Multiple 𝑝 ∈ 𝜕𝑀′ corresponding to the same 𝜋 (𝑝) get separate copies of the disk centered at

𝜋 (𝑝) and 𝜖𝑝 is chosen sufficiently small for each 𝑝 so that𝑀′exp still has disk topology.

To simplify the exposition, we assume that on the surface 𝑀 the branches of the cut form

right angles – the proof can be extended to arbitrary angles, as long as the curves are transversal,

but requires a more complex solution 𝜙1 below, with additional cones at the corners, as explained

in more detail in [Bunin 2008].

Consider a conformal map 𝑓 from𝑀′exp to the plane (e.g. to a disk). As𝑀′exp has disk-topology,

such a map exists. As 𝑀′ is in the interior of 𝑀′exp the map is conformal at the points of the

boundary 𝜕𝑀′. The conformal scale factor |𝑓 ′|, where 𝑓 ′ is the complex derivative of the map

expressed in local complex coordinates on the tangent plane, defines the conformal metric on

Int(𝑓 (𝑀′exp)), in particular, on all of 𝑓 (𝑀′) = 𝑀′′ including the boundary. Let 𝛾𝑖 , 𝑖 = 1 . . .𝑚, be

the curves of the boundary of𝑀′′; these curves are smooth, as the boundary of𝑀′ is smooth, and

meet at right angles.

We now construct on 𝑀′′ a metric with the desired properties; then the metric on 𝑀′ is ob-

tained by a pullback through 𝑓 . As𝑀′′ is flat, the equation for the metric in the interior points 𝑥

of𝑀 simplifies to

Δ𝜙 =
∑︁
𝑗

Θ̂ 𝑗𝛿 (𝑓 (𝑝 𝑗) − 𝑥),

where Θ̂ 𝑗 is the target curvature at cone 𝑐 𝑗 = (𝑝 𝑗 , Θ̂ 𝑗). If the geodesic curvature at non-corner
boundary points is given by a smooth function^, then we have the Neumann boundary condition

𝜕𝜙

𝜕𝑛
= −^,

that needs to be satisfied to obtain straight boundary edges in the final metric. Note that ^ may be

132

discontinuous at the corner points but it is still in𝐿2. We can find a particular solution𝑢1 satisfying

the Poisson equation on 𝑀′′ without boundary conditions directly as 𝜙1 =
∑

𝑗 Θ̂ 𝑗 ln(|𝑧 − 𝑓 (𝑝 𝑗) |)
with singularities at 𝑓 (𝑝 𝑗).

Then we solve the Laplace equation Δ𝜙2 = 0, for 𝜙2 with smooth Neumann conditions 𝜕𝜙2/𝜕𝑛 =
^−𝜕𝜙1/𝜕𝑛. For this problem to have a solution, the Neumann boundary condition needs to integrate

to zero over the boundary. Observe that because the domain𝑀′′ is flat, the integral of the geodesic

curvature^ over the boundary, with the sum of corner angles𝑛 𝜋
2 added, must be 2𝜋 , i.e.,

∫
𝜕Ω

^𝑑𝑠 =

2𝜋 − 𝑛 𝜋
2 . In addition,

∫
𝜕Ω

𝜕𝜙2/𝜕𝑛𝑑𝑠 =
∑

𝑗 Θ̂ 𝑗 , by the Gauss theorem. Finally, note that by the cut

graph admissibility assumption on the number of corners, 2𝜋 − 𝑛 𝜋
2 −

∑
𝑗 Θ̂ 𝑗 = 0, i.e., the integral

condition for the Neumann problem is satisfied. Therefore, the problem has a unique, up to a

constant, solution. This solution is in 𝐻 2 (and, by Sobolev Lemma, 𝐶0 up to the boundary) for

domains with piecewise smooth boundary and convex corners between curves (cf. [Grisvard

1985, p. 174]). The sum 𝜙 = 𝜙1 + 𝜙2 satisfies the Poisson equation and boundary conditions.

The metric 𝜙 is nonsingular at the boundary, therefore it is conformal, and the angles between

boundary curves are preserved. We conclude that the pullback of this metric to𝑀′ is the needed

metric.

5.10 Map Padding

As laid out in Sec. 5.2.4, map padding consists of the application of stretch maps to rectangular

regions, and lateral shifts within these. To define these precisely, we, w.l.o.g., consider the case

of a horizontal segment 𝑠 𝑗 (aligned with the 𝑢-axis in (𝑢, 𝑣) coordinates) to be padded by 𝑤 𝑗 in

positive 𝑣 direction, as illustrated in Fig. 5.6 – the other cases (negative 𝑣 , and positive/negative

𝑢) are handled analogously.

In the case of a segment split by 𝑇 , we assume that 𝑇 (which can be chosen freely) meets the

segment at a right angle with a straight cut in the parametric domain. Then both parts can be

133

treated separately using the following operations without special case handling – except for the

same rectangle thickness being used for both parts.

Stretch Let 𝜏 𝑗 be the thickness (here: the height) of rectangle 𝑅 𝑗 , and (𝑢 𝑗 min, 𝑣 𝑗 min) the coor-
dinates of the lower left corner of 𝑅 𝑗 . The map 𝑔𝑖 applied to the strip to perform the stretching is

a simple one-dimensional scaling by factor 𝑜 𝑗 =
𝑤 𝑗+𝜏 𝑗
𝜏 𝑗

:

𝑔 𝑗 : (𝑢, 𝑣) ↦→ (𝑢, 𝑣 𝑗 min + 𝑜 𝑗 (𝑣 − 𝑣 𝑗 min)) . (5.7)

Shift We apply a deformation (lateral shift) within a rectangle 𝑅𝑝
𝑗 that leads to a (piecewise)

constant speed parametrization of the segment 𝑠 𝑗 . We use a simple blend (linear in 𝑣) between the

map 𝜙 𝑗 : [𝑢 𝑗 min, 𝑢 𝑗 max] → [𝑢 𝑗 min, 𝑢 𝑗 max] that reparametrizes segment 𝑠 𝑗 to (piecewise) constant

speed (applied at the top of the strip) and the identity map 𝑢 ↦→ 𝑢 (applied at the bottom):

𝑟 𝑗 : (𝑢, 𝑣) ↦→ (𝑡𝜙 𝑗 (𝑢) + (1 − 𝑡)𝑢, 𝑣), (5.8)

where 𝑡 = (𝑣 − 𝑣 𝑗 min)/𝜏 𝑗 is the normalized relative 𝑣-coordinate within 𝑅
𝑝
𝑗 . 𝜙 𝑗 is a constant

speed reparametrizaton for simple segments. For complex segments it is with piecewise constant

speed, constant per boundary curve the segment consists of, such that the lengths of these bound-

ary curves after reparametrization are in the same ratio as the padded lengths of their mates.

It is easy to verify that 𝑟 𝑗 is injective: the determinant of its Jacobian is

det 𝐽 (𝑢, 𝑣) = (𝜕𝜙 𝑗/𝜕𝑢(𝑢) − 1) 𝑡 + 1,

and due to 0 ≤ 𝑡 ≤ 1 and 𝜕𝜙 𝑗/𝜕𝑢(𝑢) > 0 (as the scaled arc-length reparametrization is non-

degenerate and orientation preserving) it is always positive.

Proof of Proposition 6. 𝐹 is rotationally seamless, in particular locally injective and continuous

134

(on 𝑀𝑐). If 𝐹𝑝,𝑚 is continuous, so is 𝑓 (𝑝,𝑚+1) because 𝑔𝑚+1 is continuous and it is identity on the

interface between 𝑆𝑚+1 and the rest of 𝑀𝑐 . If 𝐹 𝑠,𝑚 is continuous, so is 𝐹 (𝑠,𝑚+1) because 𝑟𝑚+1 is

continuous and it is identity on the interface between 𝑆𝑚+1 and the rest of𝑀𝑐 . It follows that 𝐹 𝑠 is

continuous. Analogously, as𝑔 𝑗 and 𝑟 𝑗 are injective, local injectivity is preserved for 𝐹 𝑠 . Both types

of maps, 𝑔 𝑗 and 𝑟 𝑗 , preserve the straightness and the orientation of all segments and therefore

the pairwise angles between them, thus 𝐹 𝑠 is rotationally seamless like 𝐹 . As angles between

boundary curve images are not affected, cone angles are preserved as well. Each boundary curve

segment which 𝑠 𝑗 consists of is parametrized with constant speed by 𝐹 𝑠, 𝑗 by construction. As 𝑠𝑘

with 𝑘 ≠ 𝑗 is identity on 𝑠 𝑗 (more precisely: that part of 𝑠 𝑗 contained in 𝑅𝑘 and thus potentially

affected by 𝑠𝑘), 𝐹 𝑠 (𝑠 𝑗) = 𝐹 𝑠, 𝑗 (𝑠 𝑗). □

135

𝑤prev(𝑖)

ℓ𝑖

𝑤next(𝑖)

Figure 5.9: The length of segment 𝑖 is affected by the padding of the two adjacent segments: the original
length ℓ𝑖 changes to ℓ𝑖 +𝑤prev(𝑖) +𝑤next(𝑖) .

Figure 5.10: Schematic depiction of a chain of holes for a genus 𝑔 = 4 surface: circles are holes (obtained
by cutting the surface along𝑔 loops), straight line segments are the sides of cut paths (connectors) between
these holes. Together, the hole chain cuts the surface to a topological disk (blue), i.e., a sphere with one
hole (white, bounded by the black curve). An example of a hole partner correspondence is indicated by
dashed arcs; depending on the chosen ordering of holes in the chain, these partner arcs will look different.

Figure 5.11: Examples of extra paths (bottom) that could be added to the hole chain cut graph. The red
path is not an admissible extra path because it splits the surface into two components with𝑚0 = 4 and
𝑚1 = 8𝑔 −𝑚0 = 28 corners (cf. Sec. 5.3.2).

136

Figure 5.12: Cut Graph pattern for genus 1 surfaces, shown abstracly (left) and on an example surface
(right). The surface is partitioned into a 2-corner region (enclosed by blue and red paths) and a 6-corner
region.

Figure 5.13: One of the cut graph patterns for genus 2 surfaces. Segments 𝑖 and 𝑖 ′ are mates, i.e., cor-
respond to a common cut graph branch. The surface is partitioned into a 5-corner region (center) and a
11-corner region (surround).

𝛾

𝛽

𝜋
2 −𝜋

2

𝜋
2

0

𝜋
2

𝜋
2

𝛾

𝛽

𝜋
2

−𝜋
2

𝜋
2

𝜋
2

Figure 5.14: Example of the holonomy-aware extra path computation. Left: a tree of coneswith computed
𝜌-values is shown as black dashed lines. Path 𝛾 from boundary to boundary, crossing two tree branches,
has a holonomy value

∑
𝛾 𝜌 = 𝜋/2. This path is closed along the boundary by 𝛽 (with

∑
𝛽 𝜌 = 0), forming

𝑚 = 3 corners. As
∑

𝛾+𝛽 𝜌 = 𝜋/2 and𝑚 = 3 conforms with Gauss-Bonnet (5.1), the path 𝛾 is admissible.
Right: to illustrate that the tree of cones can be chosen arbitrarily, here the same situation is depicted
with a different tree. We have

∑
𝛾 𝜌 = 0 and

∑
𝛽 𝜌 = 𝜋/2, thus again ∑

𝛾+𝛽 𝜌 = 𝜋/2.

137

a) b) c) d)
Figure 5.15: a) Mesh near a segment (top) to be padded. b) The strip to be stretched (green) is formed
by inserting a straight line into the triangulation (by splitting edges at the intersections), so close to the
segment that no vertex is contained. c) The strip is stretched outwards by displacing the vertices that
lie on the segment by the desired padding width. d) The vertices on the segment are translated laterally
according to 𝜙 for pointwise seamlessness.

Figure 5.16: Left: example map generated on a topologically complex surface. Right: Example map
generated with geometrically non-meaningful cone prescription (here: 50 randomly distributed cones of
curvatures 𝜋 and −𝜋) to illustrate the method’s robustness.

138

Figure 5.17: Visualization of a variety of locally injective seamless parametrizations obtained using our
method. Note that the cut is visible in the checkerboard texture because the seamless parametrization is
not a quantized seamless parametrization.

Figure 5.18: A locally injective seamless map generated on an 80-torus.

139

𝑤4 𝑤4

𝑤2

𝑤1

𝑤6

𝑤5

𝑤3

𝑤7

𝑤8 𝑤8

Figure 5.19: Top left: genus 1 surface with cut graph consisting of 4 branches (yellow, green, red, blue).
The cut graph cuts the surface into two components with 2 and 6 corners, respectively, i.e., with a total
of 8 boundary segments (two corresponding to each branch). Top right: schematic depiction of the two
components under a cone metric with rectilinear boundary consisting of straight segments (here shown
as curved arcs) meeting at right angles. Middle left/right: planar flattening of the two components implied
by the metric (after cutting to cones – dashed). The numbering of segments is used to set up the system
for padding widths𝑤𝑖 . Bottom left/right: the padded flattening (padding, indicated by arrows, in white).

140

1
1

−1

−1

1

11

−1

−1

𝑚 = 9

𝑗

𝑗 + 𝑝

1

−1

1
1

−1
𝑚 = 10

𝑗

𝑗 + 𝑝

𝑑 𝑒𝑞

𝑐0 𝑐1 𝑐2 𝑐3 𝑐4 𝑐5

−𝛿
2

𝛿
2

𝛿
2 −𝛿

2
𝛿
2

𝛿
2 −𝛿

2

Figure 5.20: Illustration of a hole segment 𝑞 between two segments of an odd-couple 𝑑–𝑒 (here with 5
hole segments between them). At 𝑐4 an exemplary extra path connection to the hole chain is depicted.

∆ −2𝜋 −2𝜋

− 1
2𝜋

1
2𝜋

Figure 5.21: Left: boundary 𝜕𝐹 (𝑀𝑐) (black) laid out in the plane after cutting to cones (blue). Red indicates
a cone with 𝑘𝑖 = 8, i.e., curvature Θ̂𝑖 = −2𝜋 (parametric angle 4𝜋) for which a cut is superfluous. Right:
The segment gap ∆ vanishes if all cones are fourfold, thus 𝜕𝐹 (𝑀𝑐) is a rectilinear polygon.

141

Figure 5.22: Special cut graph patterns to be used to guarantee equalizability for genus 2 surfaces, de-
pending on whether a subset of cones compatible with a region (shaded) with 2, 3, 5, 6, or 7 corners is
present.

142

6 | Global Parameterization from

Prescribed Holonomy Signatures

6.1 Introduction

Seamless surface parametrization is one of the most common approaches to constructing seam-

less texture atlases, conforming surface quadrangulations, and high-order (spline or subdivision)

approximations to surface data. A chart-based parametrization is called seamless if it satisfies

certain conditions on its transitions between charts or across cuts.

In particular, a seamless parametrization of a discrete surface defines a metric, i.e., an edge

length assignment on a mesh, that is intrinsically flat almost everywhere, i.e. angles around

vertices sum to 2𝜋 , except at a (often small) set of cone vertices with an angle deficit (or excess)

of some multiple of 𝜋
2 . More generally, the holonomy angle for any closed loop on the surface is a

multiple of 𝜋
2 . The holonomy angle is the angle between the first and last edge when laying out a

closed chain of mesh triangles in the plane according to the metric (fig. 6.3, cf. [Bright et al. 2017;

Crane et al. 2010]). Informally, this holonomy condition on a parametrization’s metric ensures

that parametric lines continue seamlessly across cuts, although, e.g., a 𝑢-parametric line may

become a 𝑣-parametric line.

While the set of closed triangle chains on a discrete surface is infinite, all their holonomy

angles are actually defined by a set of angles on a finite basis, the holonomy signature, which we

143

define more precisely below. In essence, loops around individual vertices capture all local aspects

of holonomy, while (in case of non-trivial topology, genus > 0) a system of non-contractible loops

captures the additional global aspects.

Holonomy Control To clarify the importance of parametrization topology defined by the

holonomy signature, consider quad meshes or quad layouts obtained from (constrained classes

of) seamless parametrizations by tracing a grid of parametric lines on the surface. The cones

become the extraordinary vertices, where 𝑛 ≠ 4 quads meet. The holonomy angles determine

how many quads meet at such extraordinary vertices, and more generally, how many turns the

edges of the quads make along any closed curve on the surface, e.g., a feature line. As a conse-

quence, controlling the parametrization’s topology in the form of its holonomy angles is critical

for obtaining a high-quality parametrization with intended behavior.

In many approaches to seamless parametrization, the target topology is provided as input,

e.g., it is derived from a given cross-field or partially or completely specified by the user. At the

same time, as we discuss in detail in section 2.1, no existing general method guarantees that the

target topology is fully respected, although significant progress was made towards this goal.

Existence Moreover, to the best of our knowledge, the answer to the following question is not

known:

For which holonomy signatures, seamless parametrizations with corresponding topology

exist?

Partially, this question was answered in [Jucovič and Trenkler 1973], and more specifically in

[Campen et al. 2019], where angles at cones, but not complete signatures (including global as-

pects), were considered. In this paper, we resolve the question of existence for a broad class of

signatures, subject to only a mild condition.

Remarkably, it turns out that for surfaces of genus ≠ 1, there is a seamless parametrization

144

for any holonomy signature (e.g. implied by a cross-field) under this condition. For genus 1, we

show that in this class the one known example of holonomy signatures for which there is no

seamless parametrization (signatures with exactly two cones, with angles 3𝜋/2 and 5𝜋/2) is the
only one.

For the condition to be satisfied, it is already sufficient (but not necessary) to have one cone

with angle deficit +𝜋2 or −𝜋
2 in the signature (corresponding to at least one valence 3 or valence 5

extraordinary quad vertex). This is essentially always satisfied for holonomy signatures implied

by cross-fields optimized for smoothness or curvature alignment [Vaxman et al. 2016].

Contribution We describe an algorithm for the construction of seamless parametrizations

with full control over holonomy. It extends the construction of [Campen et al. 2019] (referred

to as Seamless Padding (SP) in the following) which provides control only over local holonomy

aspects (i.e. cone angles). Our contribution includes:

• An existence result for seamless parametrizations with given holonomy signature, indicat-

ing a remarkably small topological gap between cross-fields and parametrizations;

• An algorithm for, given a holonomy signature, constructing an alternative system of loops

on which the equivalent holonomy signature has arbitrary desired angles;

• A variant of the SPmethod that, based on the above, builds a valid seamless parametrization

with prescribed holonomy.

We note that the topology of cross-fields—which are often used to guide the computation of

seamless parametrizations—can be controlled very flexibly and precisely using existing discrete

construction algorithms. In fact, one can easily construct a cross-field with any given turning

number signature (the field analogue of a holonomy signature, cf. section 6.3.1) by solving a

linear system of equations [Crane et al. 2010]. The ability to near-universally match this signa-

ture, provided by our method, means that this possibility of precise topology control extends to

145

𝛾

𝛼

𝛿

Figure 6.1: Illustration for Prop. 13 concerning quasi-additivity of holonomy numbers on loops.

parametrizations.

6.2 Existence of Seamless Parametrizations

Before discussing the algorithmic details, let us settle the question of existence of seamless para-

metrizations for prescribed holonomy signatures. In particular, this will allow us to guarantee

that the above mentioned rerouting can actually be performed as needed.

While any choice of homology basis loops will yield a holonomy signature, our method relies

on bases whose loops’ holonomy numbers are some specific values. As a first step towards achiev-

ing this, the following proposition gives us a simple way to "add" together two loops so that the

holonomy number of the new loop is determined by the holonomy numbers of the constituent

loops.

Proposition 13 (Quasi-Additivity). Suppose 𝛾 and 𝛿 are two non-intersecting simple oriented loops

and 𝛼 is a path from the right side of 𝛾 to the right side of 𝛿 that only intersects these loops at its

endpoints and does not contain any cones (see fig. 6.1). Then (provided the mesh is suitably refined)

there is a simple loop 𝛾0—which can be made arbitrarily close to 𝛿 , 𝛾 , and 𝛼—such that

𝑘𝐹𝛾0 = 𝑘𝐹𝛾 + 𝑘𝐹𝛿 − 1

146

Figure 6.2: Rerouting (ccw, twice in a row) of a loop around a cone of index 1
4 .

If 𝛼 is a path from the left side of 𝛾 to the left side of 𝛿 we have nearly the same result, but the

holonomy number of 𝛾0 is instead given by

𝑘𝐹𝛾0 = 𝑘𝐹𝛾 + 𝑘𝐹𝛿 + 1

A proof and an illustration can be found in section 6.9.

Rerouting around a Cone In particular, for a cone 𝑣𝑖 , provided there is a path from the right

side of 𝛾 to 𝑣∗𝑖 , the above proposition tells us there is a loop 𝛾0 such that 𝑘𝐹𝛾0 = 𝑘𝐹𝛾 − 𝐼 𝐹𝑣𝑖 . We refer to

the construction of the latter loop as rerouting 𝛾 around 𝑣0 (with a counterclockwise orientation).

On the other hand, if there is a path from the left hand side of 𝛾 to 𝑣∗𝑖 (the dual facet of vertex 𝑣𝑖),

the above proposition gives us a loop 𝛾0 such that 𝑘𝐹𝛾0 = 𝑘𝐹𝛾 + 𝐼 𝐹𝑣𝑖 , which we refer to as rerouting

𝛾 around 𝑣𝑖 with a clockwise orientation. Moreover, it is clear from the construction of these

loops that 𝛾0 is homotopic to 𝛾 on 𝑀 , although the homotopy will necessarily cross the cone as

otherwise the holonomy numbers of the two loops would be the same. fig. 6.2 shows an example

of rerouting a loop around a cone of index 1
4 twice, so as to yield a loop whose holonomy number

differs by 1
2 .

These observations lead to the following key proposition.

147

Proposition 14. Let 𝐻 = {𝛾1, ..., 𝛾2𝑔} a basis of loops for𝑀 that cuts𝑀 into a topological disk, and

let 𝑣1, ..., 𝑣𝑚 be vertices of 𝑀 . Also, let 𝑘1, ..., 𝑘2𝑔, 𝐼1, ..., 𝐼𝑚 ∈ 1
4Z and assume gcd (𝐼1, ..., 𝐼𝑚) = 1

4 . Then

there is another basis of loops 𝛿1, ..., 𝛿2𝑔 that cuts 𝑀 into a disk such that 𝑘𝐹
𝛿𝑖
= 𝑘𝐹𝛾𝑖 + 𝑘𝑖 , 𝑖 = 1, ..., 2𝑔,

for any seamless parametrization 𝐹 that has cones with indices 𝐼 𝐹𝑣 𝑗 = 𝐼 𝑗 at the vertices 𝑣1, ..., 𝑣𝑚 .

For a constructive proof see section 6.10. Conceptually, we can reroute the loops 𝛾𝑖 one-by-

one around suitable subsets of the cones in a manner that preserves the topology of 𝐻 , such that

their holonomy numbers change exactly by the desired values 𝑘𝑖 .

For the purpose of our method, this result means that we can start from a cut graph formed

by the union of 2𝑔 loops 𝛾1, ..., 𝛾2𝑔, and modify these loops using an appropriate choice of inte-

gers 𝑘1, ..., 𝑘2𝑔 to yield loops 𝛿1, ..., 𝛿2𝑔 instead, with any holonomy numbers we want, forming

an equivalent signature—under the only condition that gcd (𝐼1, ..., 𝐼𝑚) = 1
4 . This ability is suffi-

cient for the method presented in the following to construct a seamless parametrization with the

desired holonomy, which constructively shows existence, under the above condition.

GCD-Condition This condition is obviously satisfied as soon as there is even just one cone

of index ±1
4 among all prescribed cones. But this (practically very mild assumption) is not even

necessary; even if all indices are of higher magnitude, they may have a greatest common divisor

of 1
4 . If the gcd is indeed larger than

1
4 (a potentially realistic scenario is one with indices restricted

to multiples of 1
2), note that while not all holonomy numbers can be achieved by rerouting, it may

still be possible to achieve those desired.

6.3 Holonomy Signature

We consider a closed orientable manifold mesh𝑀 of genus 𝑔 and a cut graph𝐺 on𝑀 that cuts𝑀

to one or more topological disks. We let𝑀𝑐 denote the resulting cut mesh, which has a canonical

map 𝜋 : 𝑀𝑐 → 𝑀 that is the identity on the interior and maps exactly two boundary edges in𝑀𝑐

148

Figure 6.3: The holonomy angle ^𝐹𝛾 (def.2) of a dual loop (cyclic triangle strip) under a metric 𝐹 is the sum
of signed inner angles (yellow and orange). Up to multiples of 2𝜋 (if the loop makes multiple turns) this
corresponds to the angle between first and last edge when laying out the strip in the plane.

to each edge in 𝐺 ⊂ 𝑀 . We call two edges 𝑒, 𝑒′ in the boundary of 𝑀𝑐
mates if 𝜋 (𝑒) = 𝜋 (𝑒′). We

also define a loop as an oriented closed walk of facets (or dual vertices) of𝑀 and a simple loop as

an oriented cycle of facets (or dual vertices).

Definition 1 (Seamless Parametrization). A discrete seamless parametrization, as in [Myles and

Zorin 2013], is a continuous piecewise linear, locally injective map 𝐹 : 𝑀𝑐 → R2
such that for any

boundary edge 𝑒 with mate 𝑒′, there is a rigid transformation 𝜎𝑒 (𝑥) = 𝑅𝑒𝑥 + 𝑡𝑒 , where 𝑅𝑒 is a rotation
by an integer multiple of

𝜋
2 , that maps 𝐹 (𝑒) to 𝐹 (𝑒′), i.e. 𝜎𝑒 (𝐹 (𝑒)) = 𝐹 (𝑒′).

A seamless parametrization naturally induces a discrete metric 𝐸 → R>0 on𝑀𝑐 by letting the

length of an edge 𝑒 of 𝑀𝑐 be the length of 𝐹 (𝑒) ⊂ R2. Since mated edges 𝑒, 𝑒′ in the boundary

of 𝑀𝑐 are related by a rigid transformation, 𝐹 (𝑒) and 𝐹 (𝑒′) have the same length, so this metric

extends to a well-definedmetric on𝑀 . Moreover, themetric on𝑀 is flat except at isolated vertices

𝐶 = {𝑣1, ..., 𝑣𝑚} in 𝐺 , i.e. in the boundary of𝑀𝑐 , called cones.

Definition 2 (Holonomy Angle). For a loop 𝛾 , the holonomy angle (or discrete geodesic curvature

[Crane et al. 2010]) of 𝛾 under a seamless parametrization 𝐹 is

^𝐹𝛾 =
∑︁
𝑓 ∗∈𝛾

𝛼𝛾 (𝑓 ∗),

149

(a) (b) (c) (d) (e)
Figure 6.4: Algorithm overview: (a) Example input signature loops (yellow and green) and cones (red
and blue). (b) Loops of an equivalent signature obtained by strategically modifying this input; notice that
the yellow loop takes a different path between the cones. (c) Conformal parametrization respecting the
prescribed cones and aligned with the cut graph that is formed by the loops; due to this alignment, it has
a specific holonomy pattern along the loops. (d) The map is modified by parametric padding to make it
seamless while preserving its holonomy properties. (e) Finally, the map can be continuously optimized for
low distortion and possibly cross field alignment, naturally within its topological class.

where 𝑓 ∗ is the vertex dual to facet 𝑓 , 𝛼𝛾 (𝑓 ∗) is the signed angle of 𝐹 (𝑓) at the vertex of 𝑓 incident

to the preceding and succeeding facets in the loop. The sign is positive (negative) for vertices on left

(right) hand side of the loop. See fig. 6.3 for an illustration.

Let 𝑣∗ denote the dual facet of vertex 𝑣 , and 𝜕𝑣∗ the cycle of this dual facet’s dual vertices. In

other words, 𝜕𝑣∗ is the loop around the single vertex 𝑣 .

Definition 3 (Holonomy Number). For a loop 𝛾 , we define the holonomy number as 𝑘𝐹𝛾 = ^𝐹𝛾
/

2𝜋 .

In the case of a vertex-loop, 𝛾 = 𝜕𝑣∗, we additionally define the index of the vertex as 𝐼 𝐹𝑣 = 1 − 𝑘𝐹𝜕𝑣∗ .

Since the images of edges in the boundary of 𝑀𝑐 under 𝐹 are related by rotation angles that

are integer multiples of 𝜋
2 , the holonomy numbers are always integer multiples of 1

4 .

Definition 4 (Holonomy Signature). We call the holonomy numbers for a choice of homology basis

loops 𝛾1, ..., 𝛾2𝑔+𝑚 of𝑀 \𝐶 the holonomy signature of 𝐹 . A natural choice of basis is a homology basis

𝛾1, ..., 𝛾2𝑔 of 𝑀 together with cone vertex loops 𝜕𝑣∗1, ..., 𝜕𝑣
∗
𝑚 . The loops are referred to as signature

loops.

A homology basis of 𝑀 can, for instance, be chosen as a so-called system of loops [Erickson

and Whittlesey 2005].

150

Importantly, such a finite holonomy signature completely captures the holonomy number of

any loop: First, since themetric is flat except at cones, any two loops homotopic in𝑀\𝐶 (i.e., loops

that can be continuously deformed into each other within𝑀 without crossing a cone vertex) have

the same holonomy number (cf. Prop. 1 in [Myles and Zorin 2012]). Second, given an arbitrary

loop 𝛾 and a homology basis of𝑀 \𝐶 , there is (by the nature of a homology basis [Hatcher 2002])

a surface �̄� so that its boundary is composed of 𝛾 and some combination of the basis loops. The

Gauss-Bonnet theorem then gives a formula for the holonomy number of this boundary in terms

of the Euler characteristic of �̄� . Thus, the holonomy number of 𝛾 is determined by the holonomy

numbers of the loops of a homology basis (cf. Prop. 2 in [Myles and Zorin 2012]). fig. 6.4 (a) shows

an example of signature loops: the green and yellow loops form a homology basis of 𝑀 , while

the small cone vertex loops are visualized as red and blue dots at the respective vertices.

Note that the holonomy signature is not unique, neither its loops nor its numbers (fig. 6.5).

For a fixed seamless parametrization 𝐹 , a different choice of signature loops will lead to different

associated holonomy numbers—even though the same parametrization topology is represented.

Such holonomy signatures are called equivalent.

6.3.1 Relation to Cross-Fields

Seamless parametrizations are often employed in conjunction with cross-fields, most importantly

when parametrizations are built and optimized for directional alignment with such a field. In such

cases it is important for field topology and parametrization topology to match. In this context,

there is a close connection between the holonomy of a seamless parametrization and the turning

numbers of a cross-field.

For a smooth surface 𝑆 , a cross-field ®𝑑 is a differentiable mapping of four tangent vectors to

each point 𝑝 ∈ 𝑆 (except at isolated singularities) that are invariant to rotation by 𝜋/2 around the
normal �̂�𝑝 to 𝑆 at 𝑝 . Given such a field and a loop 𝛾 on the surface 𝑆 , the field will make some

number of rotations along this loop, and due to the rotational symmetry of the field these turning

151

numbers 𝑇𝛾 can be integer multiples of 1
4 .

Moreover, as shown in [Ray et al. 2008], there is a discrete analogue of cross-fields and turning

numbers for triangle meshes, and turning numbers along loops satisfy a theorem analogous to the

Poincaré-Hopf theorem for vector fields that states𝑇𝜕𝑆 = −𝜒 (𝑆). This implies that the holonomy

number of the boundary of a flat surface, which does not contain any cone, is the same as the

turning number of a singularity-free cross-field along that boundary. Hence, if turning numbers

of a cross field agree with holonomy numbers on a set of signature loops then they will agree for

any loop on the surface. Consequently, by taking as our desired holonomy numbers the turning

numbers of a given cross-field on a homology basis of𝑀 \𝐶 , where𝐶 is the set of the cross-field’s

singularities, the seamless parametrization is fully constrained to topologically match the input

cross-field—in terms of local (cone indices) as well as global behavior.

6.4 Approach Overview

Given a holonomy signature (or a cross-field implying a holonomy signature, cf. section 6.3.1),

consisting of loops associated with a holonomy number each, on a surface 𝑀 , our goal is to

construct a valid seamless parametrization 𝐹 for𝑀 that respects this signature. In section 6.2 we

discuss the question for which signatures this is actually feasible.

Key Idea We show in section 6.2 that, given a holonomy signature, we can find an equivalent

signature (by exchanging or modifying the signature loops) such that the associated holonomy

numbers assume almost any desired values. Essentially, we are exploiting the above mentioned

non-uniqueness of the signature (cf. fig. 6.5). We make use of this algorithmically in section 6.5

in the following way: The SP method [Campen et al. 2019] enables constructing a seamless

parametrization that has prescribed local holonomy (i.e. cones), but it lacks the ability to pre-

scribe holonomy globally. However, its result has not a random but a fixed holonomy pattern

152

along the cut graph that is used in the construction. We therefore modify the 2𝑔 global signa-

ture loops such that their union forms a cut graph and such that their corresponding holonomy

numbers in an equivalent signature match exactly the fixed pattern that SP will produce. fig. 6.4

illustrates the main steps of our construction process.

Cut Graph The seamless parametrization construction by SP relies on using cut graphs with

certain structural restrictions, so-called hole-chains (or modifications thereof). fig. 6.6 shows an

example, details follow in section 6.5.1. Let 𝐺 be such a cut graph. Let 𝐻 be a system of loops

of 𝑀 , i.e., 𝐻 is a homology basis and cuts 𝑀 into a topological disk. In particular, as 𝐺 cuts 𝑀

into a topological disk, 𝐻 can be chosen such that the (non-disjoint) union of its loops equals 𝐺

(section 6.5.2).

Fixed-Holonomy Parametrization By construction, SP will yield certain predetermined ho-

lonomy numbers along 𝐺 , thus on these loops 𝐻 , regardless of the loops’ geometry. More con-

cretely, each branch point of the hole-chain𝐺 has four incident cut segments, conceptually form-

ing a cross. When following a loop through 𝐺 , at such a branch point it may therefore take a

left-turn, a right-turn, or continue straight. The generated parametrization’s holonomy number

along any loop in 𝐺 is simply the (signed) difference between its number of right-turns and its

number of left-turns (times 1
4). This is due to the SP-parametrization being aligned to all seg-

ments of𝐺 , i.e., they are geodesic under this metric, and the corners between segments at branch

points form right angles under this metric.

Cut Graph Rerouting Given target holonomy numbers on the loops of 𝐻 (e.g., derived from

an input cross-field), by Prop. 14 we can modify the loops of𝐻 , yielding𝐻 ′, such that their target

holonomy numbers equal their left-right-turn balance. Conceptually, this rerouting of loops is

described in section 6.2; in section 6.5.3 we describe algorithms that practically implement it. As

this rerouting does not alter the loops’ intersections, i.e., it preserves the branch points of𝐺 and

153

the loops’ left-right-turns, the union of loops from𝐻 ′ still forms a hole-chain, which we can then

use as prescribed cut graph for the parametrization construction.

Holonomy Soft-Guidance In order to yield parametrizations that are not just topologically

correct but also (already initially, before distortion optimization) of reasonable geometric quality,

we aim to reduce the need for cut graph rerouting as much as possible. To this end we construct

the individual paths that the initial hole-chain 𝐺 is made of in a holonomy-guided (e.g. cross-

field guided) manner (sections 6.5.1.1 and 6.5.1.2). This promotes hole-chains that largely have

the desired holonomy properties right away.

6.4.1 Algorithmic Outline

Our method’s overall algorithmic pipeline can be outlined as follows:

1. Construct Cut Graph

• Initial field-guided hole-chain 𝐺 (section 6.5.1)

• Extract loop basis 𝐻 of 𝐺 (section 6.5.2)

• Reroute 𝐻 → 𝐻 ′, yield 𝐺′ (section 6.5.3)

2. Construct Seamless Parametrization

• Construct 𝐺′-aligned mapping 𝑓 : 𝑀𝑐 → Ω (section 6.6.1)

• Pad 𝑓 to yield seamless map 𝑓 ′ : 𝑀𝑐 → Ω′ (section 6.6.2)

• Optimize 𝑓 ′and Ω′, maintaining seamlessness (section 6.6.3)

6.5 Holonomy-Constrained Cut Graph

The cut graph with particular holonomy pattern is built in three steps. We start by constructing a

hole-chain𝐺 ; in deviation from the algorithm described for this purpose in [Campen et al. 2019]

154

we employ soft-guidance by a given input cross-field already in this step. Afterwards a holonomy

basis of loops𝐻 is extracted from𝐺 , and its associated target holonomy numbers are derived from

the cross-field. Finally, these loops are rerouted where necessary, i.e., where soft-guidance did

not yield exactly those holonomy numbers we require for the subsequent stage.

6.5.1 Field-Guided Hole-Chain

A hole-chain 𝐺 on 𝑀 is built out of 𝑔 loops (non-contractible, non-separating, non-homotopic)

and 2𝑔 − 1 connecting paths. Intuitively, cutting the surface by the 𝑔 loops yields a topological

sphere with 2𝑔 holes, and the 2𝑔 − 1 paths connect these in a chain-like manner, further cutting

the surface to a topological sphere with one hole, i.e. a disk. fig. 6.6 shows an example with 4

loops (circular, inside the tunnels) and 7 connectors. We here describe how to construct these

loops and connectors guided by a given cross-field.

Remark: For certain special cases (genus ≤ 2) a slightly modified hole-chain structure needs to

be chosen. This is done exactly as in the SP method. Likewise, an extra connector path possibly

needs to be added; this occurs after rerouting (section 6.5.3).

6.5.1.1 Field-Guided Loops

We construct 𝑔 non-contractible, non-separating, non-homotopic loops on 𝑀 \ 𝐶 following the

algorithm of [Diaz-Gutierrez et al. 2009]. To promote cross-field alignment (thus turning number

zero along the loop) we employ the field-alignment metric of [Campen et al. 2012] in this process.

This in particular means that the loop construction is performed on𝑀4, a four-sheeted covering

of𝑀 , owing to the four different directions a cross-field specifies per point.

A loop resulting from this, while simple (i.e. intersection-free) on𝑀4 by construction, may in

some cases be self-intersecting when projected down onto 𝑀 . Conceptually, it may pass “over”

itself on a different sheet of𝑀4, which corresponds to an actual crossing on𝑀 . In such a case we

155

fall back to a non-guided construction of a replacement loop directly on𝑀 .

6.5.1.2 Field-Guided Connectors

Connector paths between the loops are selected in a Hamiltonian path manner as in the SP

method. By contrast, however, we do not build these from simple shortest paths but again in

a field-guided manner. As in the loop construction in section 6.5.1.1 we use an anisotropic metric

and perform the path search on 𝑀4. As the above loops have an embedding in 𝑀4 by construc-

tion, we know on which sheet of𝑀4 to start and end the search, respectively: one sheet lower or

higher than the respective loop, as a connector will be orthogonal (rather than parallel) to its two

incident loops under the final parametrization. Again, should a self-intersecting connector path

occur, we fall back to a shortest path computed on𝑀 .

Remark: Loops constructed by the fallback method (if any) have no native embedding on 𝑀4.

We locally (at the intended connector start or end point) assign them to the sheet on which the

field direction best fits the loop’s tangent, so as to have a reasonable setup for the computation of

incident connectors. In any case, however, let us remind that the worst possible outcome of a lo-

cally suboptimal choice is a hole-chain that requires some more rerouting—structural correctness

is not at stake in this soft-guided approach.

The resulting loops and connectors are embedded in edges of𝑀 and together form the discrete

cut graph 𝐺 .

6.5.2 Homology Basis Extraction

We construct a homology basis 𝐻 of 𝑀 in the form of 2𝑔 loops contained in the cut graph 𝐺 .

To this end we compute a spanning tree 𝑇 in 𝐺 . The remainder 𝐺\𝑇 consists of 2𝑔 edges, called

bridges [Erickson and Whittlesey 2005]. For each bridge, its union with the two paths from its

156

incident vertices to the root of 𝑇 is a loop, and these 2𝑔 loops form a homology basis, and more

specifically a system of loops.

Note that these loops may coincide partially. Each of the 2𝑔 bridge edges, however, is part

of exactly one of these loops only. By rerouting the segments of 𝐺 that contain these bridge

edges (called bridge segments) we are therefore able to individually alter the holonomy number

or turning number of each of these 2𝑔 loops with respect to a given field. Effectively, the bridge

segments are the places where the conceptual 𝛼-path from the proof of Prop. 14 can be attached

without intersecting any other basis loops. Ultimately, a modified cut graph 𝐺′ with the desired

holonomy number for each basis loop can be obtained in this way, as detailed in the following.

6.5.3 Segment Rerouting

For each loop of 𝐻 we count its number of left turns𝑚𝑙 and right turns𝑚𝑟 (in ccw sense). The

holonomy number along this loop in the parametrization we will construct will be 1
4 (𝑚𝑙 −𝑚𝑟)

(cf. fig. 6.6). If its target holonomy number is 𝑡 (e.g., the cross-field turning number along this

loop), we need to reroute this loop such that this number changes by 𝑘 = 1
4 (𝑚𝑙 −𝑚𝑟) − 𝑡 .

This is performed by rerouting the loop’s bridge segment, which we tackle in a two-tier man-

ner. We first attempt to find a replacement path for the segment by an efficient field-guided

method, detailed in section 6.5.3.1. As this method is not guaranteed to yield a simple path (which,

however, is needed), where necessary a guaranteed (but less geometry aware) fallback strategy

is employed, as described in section 6.5.3.2. Note that the resulting loops are not unique; many

different equivalent signatures exhibit the desired holonomy numbers. Due to equivalence, how-

ever, the final parametrization’s topology is not affected by this (see fig. 6.7).

Remark: Optionally, we may perform a pre-rerouting step for the field-guided loops from sec-

tion 6.5.1.1 already before moving on to the connector computation. This is possible because

these loops’ target holonomy is known to be zero, regardless of how the connectors will interact

157

with them. This pre-rerouting is not necessary for correctness, but empirically it reduces the total

amount of rerouting required. As the 𝑔 loops do not yet form a complete cut graph that cuts the

surface to a disk, one needs to take one additional precaution, though, so as to ensure that a loop

is rerouted homotopically. Namely, we cut 𝑀 minus the loops to a disk by additional temporary

cuts (using the method of [Erickson and Whittlesey 2005]) and perform rerouting within this

disk.

6.5.3.1 Holonomy-Aware Dijkstra

Given a bridge segment ℓ of 𝐺 , supposed to be rerouted such that the holonomy number of its

unique containing loop 𝛾 from 𝐻 changes by 𝑘 , we employ a holonomy-constrained Dijkstra’s

algorithm, as described in [Campen et al. 2019, §5.1]. This entails the following. We compute a

spanning tree of 𝑀𝑐 (cut by the current 𝐺), rooted on ℓ . Indices of cone vertices are propagated

through this tree towards the root, and tree edges are marked with the sum of indices propagated

through them. By then keeping track of the sum of these values of edges crossed during Dijk-

stra’s shortest path algorithm (applied to the dual mesh), we can read off the index sum of cones

enclosed between a Dijkstra path ℓ′ and bridge segment ℓ . The algorithm terminates when a path

enclosing the desired index sum (which determines the change to the holonomy number of 𝛾) is

found.

Similar to the path construction on𝑀4 described in section 6.5.1, this holonomy-constrained

path search effectively occurs on an (in this case infinite) cover of𝑀 (akin to the universal cover

of𝑀 \𝐶). Consequently, a non-simple path (in𝑀) can be the result in some cases. The following

guaranteed fallback strategy takes care of such cases.

6.5.3.2 Fallback Strategy

By following the rerouting construction used in the proof of Prop. 14, a proper simple replacement

path for a bridge segment ℓ can safely be found. Let 𝑣 be a vertex on a bridge segment ℓ whose

158

loop’s holonomy number needs to be increased by 𝑘 .

Assume for a moment that there is a cone vertex 𝑣∗ with |𝐼 (𝑣∗) | ≤ 𝑘 . Let 𝛼 be the shortest

path from cone 𝑣∗ to 𝑣—either meeting ℓ from the right if 𝐼 and 𝑘 have opposite sign, or from the

left in the case of equal sign. Among all suitable cones, we choose the one for which the path 𝛼

is shortest, so as to reduce the amount of modification.

Let the two vertices on ℓ which are directly adjacent to 𝑣 be 𝑣− and 𝑣+. Closely following the

conceptual rerouting from fig. 6.10 we remove the edges 𝑣−𝑣 and 𝑣𝑣+ from ℓ and replace them by

the path from 𝑣− to 𝑣+ tightly along 𝛼 and around 𝑣∗. Where necessary we split edges of 𝑀 to

make room so that this path does not touch any other part of 𝐺 .

This changes the loop’s holonomy number by 𝐼 (𝑣∗) or −𝐼 (𝑣∗), depending on which side of

ℓ the path 𝛼 connects to. This procedure can be repeated as long as the remaining difference

𝑘 ← 𝑘 ± 𝐼 (𝑣∗) is not zero yet.

While this strategy proved sufficient in all practical test cases (cf. section 6.7) (and indeed

is guaranteed to work if there is at least one cone of index ±1
4), in general a greedy selection

of reroute-cones 𝑣∗ in this greedy manner is insufficient. Instead, let 𝑉 be a multiset of cones

such that its index sum is 𝑘 . Under the GCD-condition (Prop. 6.2), 𝑉 exists, as also exploited

in the proof of Prop. 14. By selecting the cones from 𝑉 as 𝑣∗ in the above one after the other

(also considering multiplicity), the desired result is achieved. A suitable multiset 𝑉 , i.e. a subset

of cones and multiplicities, is easily computed using the Extended Euclidean Algorithm. The

incorporation of distances also in this general case would enable smaller rerouting modification,

but given the practical irrelevance of this multiset-case, the effort would hardly pay off.

Remark: In practice we tentatively perform the fallback-rerouting starting from multiple root

vertices 𝑣 (sampled equidistantly on the bridge segment; we use 10 samples in our experiments)

and retain the result of shortest length to reduce the complexity of the final cut graph.

159

6.6 Seamless Parametrization

Once the final, i.e., rerouted and possibly extended (recall the remark in section 6.5.1), cut graph

𝐺′ is available, the next step is to construct a domain that is compatible with the cut surface 𝑀𝑐

and suitable to serve as parameter domain for a seamless parametrization of 𝑀 . The domain

shape is derived from a conformal metric computed on𝑀𝑐 with prescribed cones and prescribed

boundary curvature.

6.6.1 Cut Graph aligned Metric

Akey role in the SPmethod that we build on is played by a discrete conformal metric computation

on the cut mesh𝑀𝑐 . While the conformal metric algorithm from [Campen and Zorin 2017b] that

is used in SPworks adequately in most cases, it does not provide strict guarantees of convergence.

The cut graph rerouting used in our method can sometimes lead to rather complex cut shapes,

thus boundary shapes of𝑀𝑐 , implying additional metric distortion, making the problem instances

particularly challenging.

Very recently, a novel algorithm for discrete metric computation with prescribed (boundary

and cone) angles has been proposed [Campen et al. 2021; Gillespie et al. 2021], based on mathe-

matical insights [Gu et al. 2018b; Springborn 2019] that guarantee convergence. We employ an

implementation based on this work.

Using this algorithm we compute a discrete metric (i.e., edge lengths) for 𝑀𝑐 , prescribing

the angles of cone vertices and the geodesic curvature on the boundary, i.e., along the cut 𝐺′.

Concretely, the segments of𝐺′ are constrained to be straight under the resulting metric, and the

corners (at branch points of 𝐺′) are constrained to be right.

160

6.6.2 Padding

Under the computed metric the two boundary segments of 𝑀𝑐 corresponding to a common seg-

ment of 𝐺′ are straight, their mutual angle is a multiple of 𝜋/2 (as required for seamlessness),

but their lengths may differ. The SPmethod uses so-called padding, i.e., parametrically stretching

out strips of the surface under the metric along the boundary segments so that the boundary seg-

ments’ lengths expand to equalize the lengths of all paired segments, and this provably is always

possible.

The following steps perform this padding, analogous to the original SPmethod from [Campen

et al. 2019]:

1. Add cuts from all cones to the boundary of 𝑀𝑐 . Make sure each boundary segment is

reached in at most one point. Around each interior vertex the angles under the metric from

section 6.6.1 now sum up to 2𝜋 , i.e. the cut surface is flat.

2. Lay out this flat mesh in the plane, i.e., assign (𝑢, 𝑣)-parameters to all vertices of the mesh,

e.g., in a breadth-first traversal. The global rotation is chosen such that the straight bound-

ary segments are aligned with𝑢 or 𝑣 axis directions. This yields the (non-seamless) domain

Ω.

3. For each straight boundary segment, compute the amount of padding (width 𝑤𝑖) required

to equalize parametric lengths of the paired segments, using the equation system of the SP

method.

4. Along each segment, determine a parametrically rectangular strip free of cones, and make

the mesh conform to this strip by inserting the strip’s boundary line by splitting. Then

apply a stretch transformation to the (𝑢, 𝑣)-coordinates inside the strip, so as to shift the

segment in perpendicular direction by its padding width𝑤𝑖 (fig. 6.8).

161

5. In cases where the cut graph has cut the surface intomore than one disk, glue these together

parametrically along pairs of boundary segments bymeans of rigid transformations applied

to the (𝑢, 𝑣)-coordinates to finally obtain a map 𝐹 ′ onto a single connected domain Ω′.

6.6.3 Optimization

As a final step, we optimize the established map for reduced distortion. As objective, we employ a

local cross-field (orientation and sizing) alignment energy 𝐸𝐴 [Bommes et al. 2009b] and add (with

a small factor of 𝑠 = 10−3) the symmetric Dirichlet energy 𝐸𝐷 [Rabinovich et al. 2017b], which

contributes its barrier behavior to prevent parametric inversions in the course of optimization.

Linear constraints are added to preserve seamlessness. We use a projected Newton solver and

use an explicit triangle inversion check in the line search [Smith and Schaefer 2015], using exact

predicates, to reliably maintain local injectivity. We experimentally discovered that using an

unconstrained Newton optimizer over the set of independent variables computed using a reduced

row echelon form of the constraint matrix is numerically more stable than solving a KKT system

at each iteration, leading to faster convergence.

We emphasize that we do not aim to address map optimality here; our focus is on constructing

a topologically correct initial map, subject to further improvement geometrically.

6.7 Evaluation

We apply our method to a dataset of 3D models with cross-fields [Myles et al. 2014]. We restrict

ourselves tomodels of genus > 0, as on topologically trivial surfaces there are no global holonomy

aspects to account for. The method succeeds in generating a cut graph with exactly the needed

holonomy numbers in all cases. As all cases satisfy the gcd=1
4 condition, and all crucial operations

are combinatorial/discrete, the general success of this step is indeed to be expected. For each

model, table 6.1 lists the number of rerouting operations that our method performed.

162

The construction of a seamless parametrization based on this cut then succeeds in most cases;

in six, however, the initial metric distortion is very high, causing subsequent steps (padding or

the simple distortion optimization approach) to get into numerical trouble. In fig. 6.9 obtained

optimized seamless parametrizations for examples from the dataset are shown, matching the

input cross-field by construction. table 6.2 reports the final distortion of these.

6.7.1 Comparison

To demonstrate the importance of our contribution in the context of guaranteed locally injective

seamless parametrization construction, we also apply the bare SPmethod of [Campen et al. 2019]

(which takes local holonomy (cones) but not global holonomy into account) to these models.

While SP is able to respect the singularities of the prescribed field by construction, whether

or not its resulting map matches the cross-field topologically is essentially a matter of chance.

If the cross-field is very smooth (as generally is the case in this data set) and the cut graph for

the map is constructed from certain shortest paths, the chance of a match may be higher than

that of any particular mismatch. Nevertheless, we encounter a mismatch for a large number of

models—in line with the fact that, as can be seen in table 6.1, our method had to employ at least

one rerouting operation in the majority of cases. In case of a mismatch, the resulting map cannot

continuously be optimized to achieve reasonable alignment between map isolines and the field,

as there is a topological obstacle. This can be observed in table 6.2, where the remaining final

distortion is significantly higher when not employing rerouting. The difference is also illustrated

in fig. 6.9. Our method, in essence by adjusting the cut graph in the described manner, ensures

a topological match between the signature induced by the cross-field and the signature of the

generated seamless parametrization.

163

6.8 Conclusion and Future Work

We have explored the relation between cross-fields and seamless surface parametrizations (and

therefore quadrangulations) on a topological level. A key insight is that there are hardly any

practically important obstacles to generating a seamless parametrization (or quadrangulation)

that topologically matches a given cross-field. We have described a method to generate such a

seamless parametrization, given an input cross-field or an abstract topological specification in

form of a holonomy signature. It is based on a variation of the SP method [Campen et al. 2019],

with the main difference being:

• The initial hole chain cut graph is constructed taking cross-field guidance into account.

• The hole chain is then modified by extracting a loop basis and rerouting of loop segments

based on our theory.

• The generation of a cut-aligned parametrization is performed using a different, theoretically

sound conformal mapping method.

From the SP method that we employ for the parametrization construction we inherit the

restriction to surfaces without boundary. While there are no fundamental obstacles to adding

boundary support to our rerouting procedure, padding feasibility requires additional theory in

this more general context. The situation regarding support for alignment to feature curves, which

is of interest in some use cases of seamless parametrizations, is very similar.

The algorithm stage described in section 6.5, in particular the holonomy-constrained cut

graph generation using rerouting, relies on discrete operations and therefore is not only sound

theoretically, but can be executed without the risk of numerical issues and limits in practice.

The algorithm stage described in section 6.6 (initial parametrization followed by constrained op-

timization), by contrast, involves numerical computations, with consequent limits in practice.

164

While for initial parametrization a discrete approach is imaginable [Zhou et al. 2020], at least for

the final distortion optimization a numerical approach is inevitable.

While we observe the choice of loops that form the initial cut graph to not affect the fi-

nal result conceptually (fig. 6.7), the distortion of the initial parametrization, and therefore the

numerical challenges in the final optimization, can depend strongly on this choice. By testing

various random root placements for the loop construction [Diaz-Gutierrez et al. 2009] employed

in section 6.5.1.1, initial parametrizations of low distortion could be found, but a more direct

approach—or a more resilient final distortion optimization technique—is desirable.

The GCD-condition asserts that, for any given signature, there is an equivalent signature

whose loops have any desired set of holonomy numbers. It therefore is a sufficient condition for

the existence of a seamless parametrization that topologically matches a given signature. It is

not necessary, though. While likely of limited practical relevance, the exploration of even tighter

conditions may be interesting.

6.9 Proof of Proposition 1

Proof. We consider the case where 𝛼 is a path between the right hand sides of the two loops. If

the mesh is suitably refined, there is a topological disk 𝐷 in the dual mesh that contains 𝛼 and

does not contain any cones (fig. 6.10 left). Without loss of generality, we may assume that 𝜕𝐷

intersects 𝛾 along a single nontrivial path 𝛽𝛾 and intersects 𝛿 along a similar path 𝛽𝛿 . We denote

the endpoints of 𝛽𝛾 as 𝑓 ∗1 and 𝑓 ∗2 and the endpoints of 𝛽𝛿 as 𝑔∗1 and 𝑔∗2. We now can define 𝛾0 as the

simple loop given by traversing 𝛾 \ 𝛽𝛾 (with respect to the orientation of this loop) starting at 𝑓 ∗2 ,

then traversing the component of 𝜕𝐷 (with boundary orientation) from 𝑓 ∗1 to 𝑔∗2, then traversing

𝛿 \ 𝛽𝛿 , and finally by traversing 𝜕𝐷 from 𝑔∗1 to 𝑓 ∗2 . We note that we can choose 𝐷 so that the

boundary is arbitrarily close to 𝛼 and thus so 𝛾0 is arbitrarily close to the original loops and path.

Since 𝜕𝐷 is the boundary of a topological disk that does not contain any cones, we have that

165

^𝐹𝜕𝐷 = 2𝜋 . In the computation of ^𝐹𝛾0 , we have that the signed angles satisfy 𝛼𝛾0 (𝑓 ∗) = 𝛼𝛾 (𝑓 ∗) for
𝑓 ∗ ∈ 𝛾 \ 𝛽𝛾 and 𝛼𝜕𝐷 (𝑓 ∗) = −𝛼𝛾 (𝑓 ∗) for 𝑓 ∗ ∈ 𝛽𝛾 \ {𝑓 ∗1 , 𝑓 ∗2 } (fig. 6.10 right). Furthermore, since 𝛼

intersects 𝛾 on the right, we must have that the angle of 𝑓1 that corresponds to 𝛼𝛾 (𝑓 ∗1) is on the

left hand side of 𝛾 , a different angle of 𝑓1 corresponds to 𝛼𝜕𝐷 (𝑓 ∗1) and is on the left hand side of

𝜕𝐷 , and the final angle of 𝑓1 corresponds to 𝛼𝛾0 (𝑓 ∗1) and is on the right hand side of 𝛾0. Therefore,

we have that

𝛼𝛾 (𝑓 ∗1) + 𝛼𝜕𝐷 (𝑓 ∗1) − 𝛼𝛾0 (𝑓 ∗1) = 𝜋,

and by a similar analysis the same result for 𝑓 ∗2 is obtained. The situation is similar for 𝛿 and 𝜕𝐷 ,

so we have that
^𝐹𝛾0 =

∑︁
𝑓 ∗∈𝛾0

𝛼𝛾0 (𝑓 ∗)

=
∑︁
𝑓 ∗∈𝛾

𝛼𝛾 (𝑓 ∗) +
∑︁
𝑓 ∗∈𝛿

𝛼𝛿 (𝑓 ∗) +
∑︁
𝑓 ∗∈𝜕𝐷

𝛼𝜕𝐷 (𝑓 ∗) − 4𝜋

= ^𝐹𝛾 + ^𝐹𝛿 − 2𝜋.

Thus, we have that

𝑘𝐹𝛾0 = 𝑘𝐹𝛾 + 𝑘𝐹𝛿 − 1.

The proof where 𝛼 is on the left hand side of the two loops is analogous. □

6.10 Proof of Proposition 2

Proof. We have that cutting 𝑀 along 𝛾1, ..., 𝛾2𝑔 results in a disk, so, if the mesh is sufficiently

refined, for any 𝛾𝑖 there is a path 𝛼 𝑗 /𝛼′𝑗 (fig. 6.11 left) from either side of 𝛾𝑖 to any 𝑣∗𝑗 such that

neither path intersects any of the other basis loops or cones. Thus, by the above, we may reroute

𝛾𝑖 around 𝑣 𝑗 clockwise or counterclockwise to obtain a new loop𝛾 ′𝑖 such that𝐻 ′ = (𝐻 \{𝛾𝑖})∪{𝛾 ′𝑖 }
also cuts 𝑀 into a topological disk and such that, for any seamless parametrization 𝐹 satisfying

166

the properties listed in the proposition, we have

𝑘𝐹𝛾 ′
𝑖
= 𝑘𝐹𝛾𝑖 ± 𝐼 𝐹𝑣 𝑗 = 𝑘𝐹𝛾𝑖 ± 𝐼 𝑗

Since𝐻 ′ still cuts𝑀 to a disk, we may still reroute any loop around any cone with either orienta-

tion, so we may iteratively reroute the basis loops to modify their holonomy number by integer

multiples of 𝐼 𝑗 . Since 1
4 is the greatest common divisor of 𝐼1, ..., 𝐼𝑚 , we have there are integers 𝑎𝑖

such that
1
4 =

𝑚∑︁
𝑖=1

𝑎𝑖𝐼𝑖

Thus, we have that iteratively rerouting each loop 𝛾𝑖 around the cone 𝑣 𝑗 |4𝑘𝑖𝑎 𝑗 | times, with ori-

entation determined by the signs of 𝑘𝑖 and 𝑎 𝑗 , will give us the desired system of loops. □

167

0

0

1
4

1
4

Figure 6.5: Example of two equivalent holonomy signatures. Red and blue cones have index − 1
4 and + 1

4 ,
respectively; the holonomy numbers of the green and yellow loops are indicated. Note that from left to
right, the loops are essentially deformed across a cone (the leftmost red cone), and this affects the loops’
associated holonomy numbers accordingly.

Figure 6.6: A hole-chain cut graph𝐺 , as used in [Campen et al. 2019]. As an example, the contained loop
that is highlighted in red, because it makes two left turns (in ccw sense), will have holonomy number 2

4
in the parametrization constructed by that method.

168

Figure 6.7: Two equivalent holonomy signatures, based on different signature loops; the different associ-
ated holonomy numbers are not shown in the figure. Both are the result of rerouting so as to achieve the
required holonomy pattern, therefore the resulting optimized seamless parametrizations based on the cut
graphs formed by these loop systems are identical (up to seamless transformation, due to a differently
located cut graph).

Figure 6.8: Illustration of padding operation (in parameter domain). A thin strip along the top straight
cut segment (with no interior vertices) is stretched in vertical direction by its required padding width.
Then, vertices are shifted horizontally to match their mates across the cut.

169

Table 6.1: Statistics about the number of cut segment reroutings performed. It is further split into the
numbers of field-guided and fallback reroutings.

Model Genus #Reroutings #Field-Guided #Fallback
twirl 1 0 0 0
robocatdeci 1 0 0 0
knot1 1 0 0 0
holes3 3 0 0 0
dancer2 1 0 0 0
sculpt 2 0 0 0
fertilitytri 4 0 0 0
rockerarm 1 1 1 0
genus3 3 1 1 0
elk 1 1 1 0
trimstar 1 1 1 0
wrench50K 1 1 1 0
bumpytorus 1 1 1 0
dancer25k 1 1 1 0
camel 1 1 1 0
dragonstandrecon 1 1 1 0
pulley 1 1 1 0
kitten 1 1 1 0
knot 1 1 1 0
mastercylinder 3 1 1 0
eight 2 1 1 0
femur 2 2 2 0
block 3 2 2 0
greeksculpture 4 2 2 0
elephant 3 2 2 0
thaistatue 3 2 2 0
oilpump 4 2 2 0
neptune0 3 2 2 0
carter 7 2 2 0
cup 2 2 2 0
botijo 5 3 3 0
chair 7 3 3 0
rollingstage 7 3 3 0
helmet 3 4 2 2
pegaso 6 4 4 0
chair 7 4 4 0
bozbezbozzel 5 5 5 0
dancingchildren 8 5 5 0
grayloc 9 6 6 0
seahorse2 8 10 5 5
raptor50K 10 12 6 6
heptoroid 22 15 14 1
gearbox 78 57 43 14
filigree 65 73 40 33
brain 57 83 70 13
vhskin 79 128 21 107

170

(a)

(b)

(c)

(d)

(e) (f)

Figure 6.9: Comparison of seamless parametrizations on surfaces of non-trivial topology, computed by
the bare SP method [Campen et al. 2019] (row b, e) and by our method (row d, f). The used cut graphs are
shown in red, the initial hole-chain used for SP (row a, e) and the rerouted version used by our method
(row c, f). Notice their topologically differing structure (i.e. they wind around some handles or cones
differently), as well as the higher distortion of the results by the bare SP method due to being unable to
properly align to the underlying smooth cross-field for topological reasons. Notice that this distortion
cannot be reduced further by continuous optimization; there are topological obstacles.

171

Table 6.2: Residual energy (normalized by surface area) for themodels from fig. 6.9. The columns “without
rerouting” correspond to the direct application of SP, without regard for global holonomy. From the last
column the advantage in terms of field alignment and distortion becomes clear.

with rerouting without rerouting
Model 𝐸𝐴+𝑠𝐸𝐷 𝐸𝐴 𝐸𝐴+𝑠𝐸𝐷 𝐸𝐴 ours/SP
block 0.0136 0.0136 0.1115 0.1052 12.2%
eight 0.0350 0.0328 0.1524 0.1432 22.9%
genus3 0.0221 0.0208 0.1891 0.1747 11.7%
oilpump 0.0296 0.0293 0.0450 0.0370 65.7%
rollingstage 0.0127 0.0124 0.2666 0.1163 4.8%
thaistatue 0.0225 0.0225 0.0272 0.0257 82.7%

Figure 6.10: Quasi-additivity of holonomy numbers, on the same example as in fig. 6.1. The inset on the
right is a blow-up of the spot circled on the left.

Figure 6.11: Example of iteratively rerouting one loop around two singularities. Left: initial state with
given loop 𝛾𝑖 and two paths 𝛼 𝑗 , 𝛼 ′𝑗 connecting to the singularity 𝑣 𝑗 . Center: reroute around singularity 𝑣 𝑗
and find paths 𝛼𝑘 𝛼 ′𝑘 for the next singularity 𝑣𝑘 . Right: result after rerouting around 𝑣 𝑗 and 𝑣𝑘

172

7 | Conclusion

In this dissertation, we investigate different types of user-prescribed constraints for the need

of different applications, and present robust algorithms for generating surface parameterization

with guarantees over these prescribed constraints.

In the first part, we introduced a robust algorithm, Progressive Embedding, to compute planar

embeddings more reliably than Tutte’s Embedding in practice. And we demonstrated its practical

utility in common geometry processing tasks. Combining our progressive embedding algorithm

and thematchmaker algorithm, we describe an algorithm for generating parameterization bitwise

exactly satisfies the user-defined positional constraints.

In the second part, we presented a practical realization of the method for computing discrete

conformal maps based on the ideas of [Gu et al. 2018b; Springborn 2020], elaborating how it can

be applied safely to meshes with boundary, the most practically relevant scenario for conformal

mapping. Our improvements include a straightforward to implement algorithm for maintain-

ing symmetric Delaunay triangulations and several improvements increasing the robustness of

Newton’s optimization method in the context of our application. We explored its behavior on a

standard dataset and for a number of challenging synthetic examples, demonstrating its robust-

ness for a broad range of cases involving high distortion. We also observe that common failure

cases can be addressed by using extended precision arithmetic, albeit at a significant cost in run

time.

In the third part, we provide a general path to obtaining seamless parameterization with a

173

given set of cones. On a conceptual level, the approach is simple: pad a parameterization that

maps cut segments to straight lines, with padding determined by solving a linear system. Our

algorithm demonstrates that for (almost) any user-specified or automatically computed choice

of cones, a corresponding global parameterization can be constructed, without introducing addi-

tional cones.

Lastly, we explored the relation between cross-fields and seamless surface parameterizations

(and therefore quadrangulations) on a topological level. A key insight is that there are hardly any

practically important obstacles to generating a seamless parameterization (or quadrangulation)

that topologically matches a given cross-field. We have described a method to generate such a

seamless parameterization, given an input cross-field or an abstract topological specification in

form of a holonomy signature.

174

References

Aigerman, N., Kovalsky, S. Z., and Lipman, Y. (2017). Spherical orbifold tutte embeddings. ACM

Trans. Graph., 36(4):90:1–90:13.

Aigerman, N. and Lipman, Y. (2015a). Orbifold tutte embeddings. ACMTrans. Graph., 34(6):190:1–

190:12.

Aigerman, N. and Lipman, Y. (2015b). Orbifold tutte embeddings. ACMTrans. Graph., 34(6):190:1–

190:12.

Aigerman, N. and Lipman, Y. (2016a). Hyperbolic orbifold tutte embeddings. ACM Trans. Graph.,

35(6):217:1–217:14.

Aigerman, N. and Lipman, Y. (2016b). Hyperbolic orbifold tutte embeddings. ACM Trans. Graph.,

35(6):217:1–217:14.

Aigerman, N., Poranne, R., and Lipman, Y. (2014). Lifted bijections for low distortion surface

mappings. ACM Trans. Graph., 33(4):69:1–69:12.

Basch, J., Guibas, L. J., and Hershberger, J. (1999). Data structures for mobile data. Journal of

Algorithms, 31(1):1–28.

Ben-Chen, M., Gotsman, C., and Bunin, G. (2008). Conformal Flattening by Curvature Prescrip-

tion and Metric Scaling. Computer Graphics Forum.

175

Bobenko, A. I. and Springborn, B. A. (2007). A discrete laplace–beltrami operator for simplicial

surfaces. Discrete & Computational Geometry, 38(4):740–756.

Bommes, D., Campen, M., Ebke, H.-C., Alliez, P., and Kobbelt, L. (2013a). Integer-grid maps for

reliable quad meshing. ACM Trans. Graph., 32(4):98:1–98:12.

Bommes, D., Campen, M., Ebke, H.-C., Alliez, P., and Kobbelt, L. (2013b). Integer-grid maps for

reliable quad meshing. ACM Trans. Graph., 32(4):98:1–98:12.

Bommes, D., Lévy, B., Pietroni, N., Puppo, E., a, C. S., Tarini, M., and Zorin, D. (2012). State of the

art in quad meshing. In Eurographics STARS.

Bommes, D., Lévy, B., Pietroni, N., Puppo, E., Silva, C., Tarini, M., and Zorin, D. (2013c). Quad-

mesh generation and processing: A survey. In Computer Graphics Forum. Wiley Online Library.

Bommes, D., Zimmer, H., and Kobbelt, L. (2009a). Mixed-integer quadrangulation. ACM Trans.

Graph., 28(3):77:1–77:10.

Bommes, D., Zimmer, H., and Kobbelt, L. (2009b). Mixed-integer quadrangulation. ACM Trans.

Graph., 28(3):77.

Bright, A., Chien, E., andWeber, O. (2017). Harmonic global parametrization with rational holon-

omy.ACM Trans.Graph.,36(4).

Brönnimann, H., Fabri, A., Giezeman, G.-J., Hert, S., Hoffmann, M., Kettner, L., Pion, S., and

Schirra, S. (2018). 2D and 3D linear geometry kernel. In CGAL User and Reference Manual.

CGAL Editorial Board, 4.13 edition.

Bunin, G. (2008). A continuum theory for unstructured mesh generation in two dimensions.

Comput. Aided Geom. Des., 25(1):14–40.

176

Campen, M., Bommes, D., and Kobbelt, L. (2012). Dual loops meshing: Quality quad layouts on

manifolds. ACM Trans. Graph., 31(4).

Campen, M., Bommes, D., and Kobbelt, L. (2015). Quantized global parametrization. ACM Trans.

Graph., 34(6):192.

Campen, M., Capouellez, R., Shen, H., Zhu, L., Panozzo, D., and Zorin, D. (2021). Efficient and

robust discrete conformal equivalence with boundary. ACM Trans. Graph., 40(6).

Campen, M. and Kobbelt, L. (2014). Dual strip weaving: Interactive design of quad layouts using

elastica strips. ACM Trans. Graph., 33(6):183:1–183:10.

Campen, M., Shen, H., Zhou, J., and Zorin, D. (2019). Seamless parametrization with arbitrary

cones for arbitrary genus. ACM Trans. Graph., 39(1).

Campen, M., Silva, C. T., and Zorin, D. (2016). Bijective maps from simplicial foliations. ACM

Trans. Graph., 35(4):74:1–74:15.

Campen, M. and Zorin, D. (2017a). On discrete conformal seamless similarity maps.

Campen, M. and Zorin, D. (2017b). Similarity maps and field-guided t-splines: A perfect couple.

ACM Trans. Graph., 36(4).

Chambers, E. W., Eppstein, D., Goodrich, M. T., and Löffler, M. (2011). Drawing graphs in the

plane with a prescribed outer face and polynomial area. In Proceedings of the 18th International

Conference on Graph Drawing, GD’10, pages 129–140, Berlin, Heidelberg. Springer-Verlag.

Chen, W., Zheng, X., Ke, J., Lei, N., Luo, Z., and Gu, X. (2019). Quadrilateral mesh generation i:

Metric based method. Computer Methods in Applied Mechanics and Engineering, 356:652–668.

Chen, W., Zheng, X., Ke, J., Lei, N., Luo, Z., and Gu, X. (2020). Quadrilateral mesh generation

ii: Meoromorphic quartic differentials and abel-jacobi condition. Computer Methods in Applied

Mechanics and Engineering, 366.

177

Cherrier, P. (1984). Problèmes de neumann non linéaires sur les variétés riemanniennes. Journal

of Functional Analysis, 57(2):154–206.

Chien, E., Levi, Z., and Weber, O. (2016). Bounded distortion parametrization in the space of

metrics. ACM Trans. Graph., 35(6).

Claici, S., Bessmeltsev, M., Schaefer, S., and Solomon, J. (2017). Isometry-aware preconditioning

for mesh parameterization. Comput. Graph. Forum, 36(5):37–47.

Crane, K. (2020). Discrete Conformal Geometry. In Proceedings of Symposia in Applied Mathe-

matics. American Mathematical Society.

Crane, K., Desbrun, M., and Schröder, P. (2010). Trivial connections on discrete surfaces. Computer

Graphics Forum, 29(5):1525–1533.

Davis, P. J. (2012).

Degener, P., Meseth, J., and Klein, R. (2003). An adaptable surface parameterization method. In

Proceedings of the 12th International Meshing Roundtable, pages 201–213.

Desbrun, M., Meyer, M., and Alliez, P. (2002). Intrinsic parameterizations of surface meshes. In

Computer graphics forum, pages 209–218. Wiley Online Library.

Dey, T. K., Edelsbrunner, H., Guha, S., and Nekhayev, D. V. (1999). Topology preserving edge

contraction. Publ. Inst. Math.(Beograd)(NS), 66(80):23–45.

Dey, T. K., Fan, F., and Wang, Y. (2013). An efficient computation of handle and tunnel loops via

reeb graphs. ACM Trans. Graph., 32(4).

Diaz-Gutierrez, P., Eppstein, D., and Gopi, M. (2009). Curvature aware fundamental cycles. In

Computer Graphics Forum, pages 2015–2024. Wiley Online Library.

178

Ebke, H.-C., Bommes, D., Campen, M., and Kobbelt, L. (2013). QEx: Robust quad mesh extraction.

ACM Trans. Graph., 32(6):168:1–168:10.

Ebke, H.-C., Schmidt, P., Campen, M., and Kobbelt, L. (2016). Interactively controlled quad

remeshing of high resolution 3d models. ACM Trans. Graph., 35(6):218:1–218:13.

Erickson, J. and Whittlesey, K. (2005). Greedy optimal homotopy and homology generators. In

SODA, volume 5, pages 1038–1046.

Fáry, I. (1948). On straight line representation of planar graphs. Acta Univ. Szeged. Sect. Sci. Math.,

11:229–233.

Fisher, M., Springborn, B., Schröder, P., and Bobenko, A. I. (2007). An algorithm for the con-

struction of intrinsic delaunay triangulations with applications to digital geometry processing.

Computing, 81(2-3):199–213.

Floater, M. and Hormann, K. (2005a). Surface Parameterization: a Tutorial and Survey. Advances

In Multiresolution For Geometric Modelling.

Floater, M. S. (1997a). Parametrization and smooth approximation of surface triangulations. Com-

puter Aided Geometric Design, 14:231–250.

Floater, M. S. (1997b). Parametrization and smooth approximation of surface triangulations. Com-

puter Aided Geometric Design, 14(3):231 – 250.

Floater, M. S. and Hormann, K. (2005b). Surface parameterization: a tutorial and survey. In

In Advances in Multiresolution for Geometric Modelling, Mathematics and Visualization, pages

157–186. Springer Verlag.

Fousse, L., Hanrot, G., Lefèvre, V., Pélissier, P., and Zimmermann, P. (2007). Mpfr: A multiple-

precision binary floating-point library with correct rounding. ACM Trans. Math. Softw., 33(2).

179

Fu, X.-M. and Liu, Y. (2016). Computing inversion-free mappings by simplex assembly. ACM

Trans. Graph., 35(6):216:1–216:12.

Fu, X.-M., Liu, Y., and Guo, B. (2015a). Computing locally injective mappings by advanced mips.

ACM Trans. Graph., 34(4):71:1–71:12.

Fu, X.-M., Liu, Y., and Guo, B. (2015b). Computing locally injective mappings by advanced mips.

ACM Trans. Graph., 34(4).

Gillespie, M., Springborn, B., and Crane, K. (2021). Discrete conformal equivalence of polyhedral

surfaces. ACM Trans. Graph., 40(4).

Gortler, S. J., Gotsman, C., and Thurston, D. (2006). Discrete one-forms on meshes and applica-

tions to 3d mesh parameterization. Computer Aided Geometric Design, 23(2):83 – 112.

Gotsman, C. and Surazhsky, V. (2001). Guaranteed intersection-free polygon morphing. Comput-

ers & Graphics, 25(1):67–75.

Granlund, T. (2018). GNU MP: The GNU Multiple Precision Arithmetic Library, 5.0.5 edition.

http://gmplib.org/.

Grisvard, P. (1985). Elliptic problems in nonsmooth domains, volume 24 of monographs and

studies in mathematics. pitman.

Gu, X., Guo, R., Luo, F., Sun, J., and Wu, T. (2014). A discrete uniformization theorem for polyhe-

dral surfaces ii.

Gu, X., Guo, R., Luo, F., Sun, J., and Wu, T. (2018a). A discrete uniformization theorem for poly-

hedral surfaces ii. Journal of differential geometry, 109(3):431–466.

Gu, X., Luo, F., Sun, J., and Wu, T. (2013). A discrete uniformization theorem for polyhedral

surfaces.

180

http://gmplib.org/

Gu, X. and Yau, S.-T. (2003). Global conformal surface parameterization. In Proc. Symp. Geometry

Processing 2003, pages 127–137.

Gu, X. D., Luo, F., Sun, J., and Wu, T. (2018b). A discrete uniformization theorem for polyhedral

surfaces. Journal of differential geometry, 109(2):223–256.

Guennebaud, G., Jacob, B., et al. (2010). Eigen v3. http://eigen.tuxfamily.org.

Halperin, D. and Packer, E. (2002). Iterated snap rounding. Computational Geometry, 23(2):209 –

225.

Hatcher, A. (2002). Algebraic Topology. Cambridge University Press.

Hefetz, E. F., Chien, E., andWeber, O. (2019). A subspacemethod for fast locally injective harmonic

mapping. In Computer Graphics Forum, pages 105–119.

Hoppe, H. (1996). Progressive meshes. In Proceedings of the 23rd Annual Conference on Computer

Graphics and Interactive Techniques, SIGGRAPH ’96, pages 99–108, New York, NY, USA. ACM.

Hormann, K. and Greiner, G. (2012). Mips: An efficient global parametrization method. Curve

and Surface Design: Saint-Malo, 2000:10.

Hormann, K., Lévy, B., and Sheffer, A. (2007). Mesh parameterization: Theory and practice. In

ACM SIGGRAPH 2007 Courses, SIGGRAPH ’07, New York, NY, USA. ACM.

Hu, Y., Zhou, Q., Gao, X., Jacobson, A., Zorin, D., and Panozzo, D. (2018). Tetrahedral meshing in

the wild. ACM Trans. Graph., 37(4):60:1–60:14.

Hudson, J. F. and Shaneson, J. L. (1969). Piecewise linear topology, volume 11. WA Benjamin New

York.

Jacobson, A., Panozzo, D., et al. (2016). libigl: A simple C++ geometry processing library.

http://libigl.github.io/libigl/.

181

Jiang, Z., Schaefer, S., and Panozzo, D. (2017). Simplicial complex augmentation framework for

bijective maps. ACM Trans. Graph., 36(6):186:1–186:9.

Jin, M., Kim, J., and Gu, X. D. (2007). Discrete surface ricci flow: Theory and applications. In IMA

International Conference on Mathematics of Surfaces, pages 209–232. Springer.

Jucovič, E. and Trenkler, M. (1973). A theorem on the structure of cell–decompositions of ori-

entable 2–manifolds. Mathematika, 20(01):63–82.

Kälberer, F., Nieser, M., and Polthier, K. (2007). QuadCover: Surface Parameterization using

Branched Coverings. Computer Graphics Forum, 26(3):375–384.

Kharevych, L., Springborn, B., and Schröder, P. (2005). Discrete conformal mappings via circle

patterns. In ACM SIGGRAPH 2005 Courses, SIGGRAPH ’05, page 6–es, New York, NY, USA.

Association for Computing Machinery.

Kharevych, L., Springborn, B., and Schröder, P. (2006a). Discrete conformal mappings via circle

patterns. ACM Transactions on Graphics (TOG), 25(2):412–438.

Kharevych, L., Springborn, B., and Schröder, P. (2006b). Discrete conformal mappings via circle

patterns. ACM Trans. Graph., 25:412–438.

Knupp, P. (1995). Mesh generation using vector fields. Journal of Computational Physics,

119(1):142 – 148.

Kovalsky, S. Z., Aigerman, N., Basri, R., and Lipman, Y. (2015). Large-scale bounded distortion

mappings. ACM Trans. Graph., 34(6):191:1–191:10.

Kovalsky, S. Z., Galun, M., and Lipman, Y. (2016a). Accelerated quadratic proxy for geometric

optimization. ACM Trans. Graph., 35(4):134:1–134:11.

182

Kovalsky, S. Z., Galun, M., and Lipman, Y. (2016b). Accelerated quadratic proxy for geometric

optimization. ACM Trans. Graph., 35(4):134:1–134:11.

Kraevoy, V. and Sheffer, A. (2004). Cross-parameterization and compatible remeshing of 3d mod-

els. ACM Trans. Graph., 23(3):861–869.

Kraevoy, V., Sheffer, A., and Gotsman, C. (2003). Matchmaker: Constructing constrained texture

maps. ACM Trans. Graph., 22(3):326–333.

Kucera, L. (1991). The greedy coloring is a bad probabilistic algorithm. Journal of Algorithms,

12(4):674 – 684.

Labsik, U., Hormann, K., and Greiner, G. (2000). Using most isometric parametrizations for

remeshing polygonal surfaces. In Proceedings of the Geometric Modeling and Processing 2000,

GMP 2000, Washington, DC, USA. IEEE Computer Society.

Lee, T. Y., Yen, S. W., and Yeh, I. C. (2008). Texture mapping with hard constraints using warping

scheme. IEEE Transactions on Visualization and Computer Graphics, 14(2):382–395.

Lévy, B., Petitjean, S., Ray, N., and Maillot, J. (2002a). Least squares conformal maps for automatic

texture atlas generation. ACM transactions on graphics (TOG), 21(3):362–371.

Lévy, B., Petitjean, S., Ray, N., and Maillot, J. (2002b). Least squares conformal maps for automatic

texture atlas generation. ACM Trans. Graph., 21(3):362–371.

Li, M., Kaufman, D. M., Kim, V. G., Solomon, J., and Sheffer, A. (2018). Optcuts: joint optimization

of surface cuts and parameterization. In SIGGRAPH Asia 2018 Technical Papers, page 247. ACM.

Li, W., Vallet, B., Ray, N., and Levy, B. (2006). Representing higher-order singularities in vector

fields on piecewise linear surfaces. IEEE Transactions on Visualization and Computer Graphics,

12(5):1315–1322.

183

Lipman, Y. (2012). Bounded distortion mapping spaces for triangular meshes. ACM Trans. Graph.,

31(4):108:1–108:13.

Lipman, Y. (2014). Bijective mappings of meshes with boundary and the degree in mesh process-

ing. SIAM Journal on Imaging Sciences, 7(2):1263–1283.

Liu, L., Ye, C., Ni, R., and Fu, X.-M. (2018). Progressive parameterizations. ACM Trans. Graph.,

37(4):41:1–41:12.

Luo, F. (2004). Combinatorial yamabe flow on surfaces. Communications in Contemporary Math-

ematics, 6(05):765–780.

Lyon, M., Campen, M., Bommes, D., and Kobbelt, L. (2019). Parametrization quantization with

free boundaries for trimmed quad meshing. ACM Trans. Graph., 38(4).

Mandad, M. and Campen, M. (2019). Exact constraint satisfaction for truly seamless parametriza-

tion. Computer Graphics Forum, 38.

Mijatović, A. (2003). Simplifying triangulations of 𝑠3. Pacific journal of mathematics, 208(2):291–

324.

Müller, M., Chentanez, N., Kim, T.-Y., and Macklin, M. (2015). Air meshes for robust collision

handling. ACM Trans. Graph., 34(4):133:1–133:9.

Myles, A., Pietroni, N., and Zorin, D. (2014). Robust field-aligned global parametrization. ACM

Trans. Graph., 33(4):135:1–135:14.

Myles, A. and Zorin, D. (2012). Global parametrization by incremental flattening. ACM Trans.

Graph., 31(4):109.

Myles, A. and Zorin, D. (2013). Controlled-distortion constrained global parametrization. ACM

Transactions on Graphics, 32(4):105.

184

Packer, E. (2018). 2D snap rounding. In CGAL User and Reference Manual. CGAL Editorial Board,

4.13 edition.

Panozzo, D., Lipman, Y., Puppo, E., and Zorin, D. (2012). Fields on symmetric surfaces. ACM

Trans. Graph., 31(4).

Peng, Y., Deng, B., Zhang, J., Geng, F., Qin, W., and Liu, L. (2018). Anderson acceleration for

geometry optimization and physics simulation. ACM Trans. Graph., 37(4):42:1–42:14.

Poranne, R. and Lipman, Y. (2014). Provably good planar mappings. ACM Trans. Graph.,

33(4):76:1–76:11.

Poranne, R., Tarini, M., Huber, S., Panozzo, D., and Sorkine-Hornung, O. (2017). Autocuts: Si-

multaneous distortion and cut optimization for uv mapping. ACM Trans. Graph., 36(6):215:1–

215:11.

Praun, E., Sweldens, W., and Schröder, P. (2001). Consistent mesh parameterizations. In Proceed-

ings of the 28th Annual Conference on Computer Graphics and Interactive Techniques, SIGGRAPH

’01, pages 179–184, New York, NY, USA. ACM.

Purnomo, B., Cohen, J. D., and Kumar, S. (2004). Seamless Texture Atlases. In Scopigno, R. and

Zorin, D., editors, Symposium on Geometry Processing. The Eurographics Association.

Rabinovich, M., Poranne, R., Panozzo, D., and Sorkine-Hornung, O. (2017a). Scalable locally

injective mappings. ACM Trans. Graph., 36(2):16:1–16:16.

Rabinovich, M., Poranne, R., Panozzo, D., and Sorkine-Hornung, O. (2017b). Scalable locally

injective mappings. ACM Trans. Graph., 36(2):16:1–16:16.

Ray, N., Nivoliers, V., Lefebvre, S., and Lévy, B. (2010). Invisible seams. Computer Graphics Forum,

29.

185

Ray, N., Vallet, B., Alonso, L., and Levy, B. (2009). Geometry-aware direction field processing.

ACM Trans. Graph., 29(1).

Ray, N., Vallet, B., Li, W. C., and Lévy, B. (2008). N-symmetry direction field design. ACM Trans.

Graph., 27(2).

Rivin, I. (1994). Euclidean structures on simplicial surfaces and hyperbolic volume. Annals of

mathematics, 139(3):553–580.

Sander, P. V., Snyder, J., Gortler, S. J., and Hoppe, H. (2001). Texture mapping progressive meshes.

In ACM SIGGRAPH, pages 409–416.

Sawhney, R. and Crane, K. (2017). Boundary first flattening. ACM Trans. Graph., 37(1).

Schmidt, P., Campen, M., Born, J., and Kobbelt, L. (2020). Inter-surface maps via constant-

curvature metrics. ACM Transactions on Graphics, 39(4).

Schnyder, W. (1990). Embedding planar graphs on the grid. In Proceedings of the First Annual

ACM-SIAM Symposium on Discrete Algorithms, SODA ’90, pages 138–148, Philadelphia, PA,

USA. Society for Industrial and Applied Mathematics.

Schreiner, J., Asirvatham, A., Praun, E., and Hoppe, H. (2004). Inter-surface mapping. ACM Trans.

Graph., 23(3):870–877.

Schüller, C., Kavan, L., Panozzo, D., and Sorkine-Hornung, O. (2013). Locally injective mappings.

In Proceedings of the Eleventh Eurographics/ACMSIGGRAPH Symposium onGeometry Processing,

SGP ’13, pages 125–135, Aire-la-Ville, Switzerland, Switzerland. Eurographics Association.

Schüller, C., Kavan, L., Panozzo, D., and Sorkine-Hornung, O. (2013). Locally injective mappings.

Computer Graphics Forum, 32(5):125–135.

186

Segall, A., Vantzos, O., and Ben-Chen, M. (2016). Hele-shaw flow simulation with interactive con-

trol using complex barycentric coordinates. In Proceedings of the ACM SIGGRAPH/Eurographics

symposium on computer animation, pages 85–95. Eurographics Association.

Sharp, N. andCrane, K. (2020). A laplacian for nonmanifold trianglemeshes. InComputer Graphics

Forum, pages 69–80. Wiley Online Library.

Sharp, N., Soliman, Y., and Crane, K. (2019). Navigating intrinsic triangulations. ACMTransactions

on Graphics (TOG), 38(4):1–16.

Sheffer, A., Praun, E., and Rose, K. (2006). Mesh parameterization methods and their applications.

Found. Trends. Comput. Graph. Vis., 2(2):105–171.

Shewchuk, J. R. (1996). Triangle: Engineering a 2D Quality Mesh Generator and Delaunay Trian-

gulator. In Lin, M. C. and Manocha, D., editors, Applied Computational Geometry: Towards Geo-

metric Engineering, volume 1148 of Lecture Notes in Computer Science, pages 203–222. Springer-

Verlag. From the First ACM Workshop on Applied Computational Geometry.

Shor, P. W. and Van Wyk, C. J. (1992). Detecting and decomposing self-overlapping curves. Com-

putational Geometry, 2(1):31–50.

Shtengel, A., Poranne, R., Sorkine-Hornung, O., Kovalsky, S. Z., and Lipman, Y. (2017a). Geometric

optimization via composite majorization. ACM Trans. Graph., 36(4):38:1–38:11.

Shtengel, A., Poranne, R., Sorkine-Hornung, O., Kovalsky, S. Z., and Lipman, Y. (2017b). Geometric

optimization via composite majorization. ACM Trans. Graph., 36(4):38:1–38:11.

Smith, J. and Schaefer, S. (2015). Bijective parameterization with free boundaries. ACM Trans.

Graph., 34(4).

Soliman, Y., Slepčev, D., and Crane, K. (2018a). Optimal cone singularities for conformal flattening.

ACM Transactions on Graphics (TOG), 37(4):1–17.

187

Soliman, Y., Slepčev, D., andCrane, K. (2018b). Optimal cone singularities for conformal flattening.

ACM Trans. Graph., 37(4):105:1–105:17.

Sorkine, O., Cohen-Or, D., Goldenthal, R., and Lischinski, D. (2002). Bounded-distortion piecewise

mesh parameterization. In Proceedings of the Conference on Visualization, pages 355–362.

Springborn, B. (2017). Hyperbolic polyhedra and discrete uniformization.

Springborn, B. (2019). Ideal hyperbolic polyhedra and discrete uniformization. Discrete & Com-

putational Geometry, pages 1–46.

Springborn, B., Schröder, P., and Pinkall, U. (2008). Conformal equivalence of triangle meshes.

ACM Trans. Graph., 27(3):1–11.

Sun, J., Wu, T., Gu, X., and Luo, F. (2015). Discrete conformal deformation: algorithm and exper-

iments. SIAM Journal on Imaging Sciences, 8(3):1421–1456.

Tong, Y., Alliez, P., Cohen-Steiner, D., and Desbrun, M. (2006). Designing quadrangulations with

discrete harmonic forms. Symposium on Geometry Processing, pages 201–210.

Troyanov, M. (1991). Prescribing curvature on compact surfaces with conical singularities. Trans-

actions of the American Mathematical Society, 324(2):793–821.

Tutte, W. (1963a). How to draw a graph. Proc. London Math. Soc.,, 3:743–768.

Tutte, W. T. (1963b). How to draw a graph. Proc. Lond. Math. Soc., 13:743–767.

Vaxman, A., Campen, M., Diamanti, O., Panozzo, D., Bommes, D., Hildebrandt, K., and Ben-Chen,

M. (2016). Directional field synthesis, design, and processing. Comp. Graph. Forum, 35(2).

Weber, O. and Zorin, D. (2014). Locally injective parametrization with arbitrary fixed boundaries.

ACM Trans. Graph., 33(4):75:1–75:12.

188

Weeks, J. R. (1993). Convex hulls and isometries of cusped hyperbolic 3-manifolds. Topology and

its Applications, 52(2):127–149.

Wu, T. (2014). Finiteness of switches in discrete yamabe flow. Master’s thesis, Tsinghua Univer-

sity.

Zhang, E., Mischaikow, K., and Turk, G. (2005). Feature-based surface parameterization and tex-

ture mapping. ACM Trans. Graph., 24(1):1–27.

Zhou, J., Tu, C., Zorin, D., and Campen, M. (2020). Combinatorial construction of seamless pa-

rameter domains. Computer Graphics Forum, 39(2):179–190.

Zhou, Q. and Jacobson, A. (2016). Thingi10k: A dataset of 10,000 3d-printing models. arXiv

preprint arXiv:1605.04797.

Zhu, Y., Bridson, R., and Kaufman, D. M. (2018a). Blended cured quasi-newton for distortion

optimization. ACM Trans. Graph., 37(4):40:1–40:14.

Zhu, Y., Bridson, R., and Kaufman, D. M. (2018b). Blended cured quasi-newton for distortion

optimization. ACM Trans. Graph., 37(4):40:1–40:14.

Zorin, D. (2021). Convergence analysis of the algorithm in "efficient and robust discrete conformal

equivalence with boundary".

189

	Acknowledgments
	Abstract
	List of Figures
	List of Tables
	Introduction
	Outline

	Related work
	Bijective Maps
	Planar Embedding of Graphs and Meshes
	Progressive Meshes
	Distortion-Minimizing Mappings

	Conformal equivalent metrics
	Seamless Parameterization

	Progressive Embedding
	Introduction
	Progressive Embedding
	Analysis of Tutte Embedding in Floating Points
	Progressive Embedding

	Matchmaker++
	Results and Discussion
	Progressive Embedding
	Matchmaker++

	Limitations
	Proofs
	Existence of the Collapse Sequence
	Vertex split

	Efficient and Robust Discrete Conformal Equivalence with Boundary
	Introduction
	Background
	Conformal Equivalence
	Dynamic Triangulation
	Evolution Step
	Hyperbolic Metric Approach

	Algorithm
	Boundaries
	Double Cover
	Symmetric Meshes
	Symmetric Flips
	Symmetric Metric
	Restriction to Single Cover

	Continuous maps from discrete metrics
	Cusped Hyperbolic Metric on Meshes

	Evaluation
	Validation
	Comparison
	Accuracy
	Failure Modes

	Proofs and additional Lemmas
	Double Cover: Formal Definition
	Conclusions and Future Work

	Seamless Parametrization with Arbitrary Cones for Arbitrary Genus
	Introduction
	Seamless Parametrization Construction
	Cutting to Disk(s)
	Cone Metric with Rectilinear Boundary
	Metric to Rotationally Seamless Parametrization
	Seamless Parametrization by Padding
	Length Equalization

	Equalizable Cut Graphs
	Hole Chain
	General Case (Genus 3+)
	Special Cases (Genus 0, 1, 2)

	Implementation
	Cut Graph
	Conformal Map
	Equalization
	Flattening
	Padding
	Distortion Optimization

	Examples
	Conclusion and Future Work
	Illustrative Example
	Proofs of Equalizability
	Genus 3+
	Genus 1
	Genus 2

	Proof of Cone Metric Existence
	Map Padding

	Global Parameterization from Prescribed Holonomy Signatures
	Introduction
	Existence of Seamless Parametrizations
	Holonomy Signature
	Relation to Cross-Fields

	Approach Overview
	Algorithmic Outline

	Holonomy-Constrained Cut Graph
	Field-Guided Hole-Chain
	Homology Basis Extraction
	Segment Rerouting

	Seamless Parametrization
	Cut Graph aligned Metric
	Padding
	Optimization

	Evaluation
	Comparison

	Conclusion and Future Work
	Proof of Proposition 1
	Proof of Proposition 2

	Conclusion
	Bibliography

