
Leveraging Communication for Efficient Sampling

by

Sanyam Kapoor

A thesis submitted in partial fulfillment

of the requirements for the degree of

Master of Science

Computer Science Department

New York University

May 2019

Advisor: Professor Joan Bruna

Second Reader: Professor Kyunghyun Cho



Acknowledgements

I would like to wholeheartedly thank Professor Joan Bruna for advising me on this thesis

and getting me started with research. Thank you for letting me pursue half-baked ideas

and nudging me in the right directions all the time. I’ve been interested in the problem of

exploration for a while and he has been highly influential in helping me approach the right

formulations. I would like to thank Professor Kyunghyun Cho for agreeing to be the second

reader.

I would like to thank Cinjon Resnick, Roberta Raileanu and Ilya Kostrikov for being great

discussion partners and getting me started in Reinforcement Learning. I’ve had a great deal

to learn from them.

Finally, none of this would have been remotely possible without the everlasting support and

pep talks of my parents, Abha Kapoor and Sunil Kapoor.

i



Abstract

Machine Learning has shown promising success tasks like classification, regression and more

recently generation. However, long-term planning still remains a challenge for real-world

deployment and one of the key components of long-term planning is exploration. In this

work, we discuss how communication can be leveraged to improve space exploration. We

study this problem from the perspective of sampling from un-normalized density functions.

Hamiltonian Monte Carlo (HMC) finds it improbable to sample from highly separated multi-

modal distributions and parallel chains can be wasteful by the nature of Markov chain

sampling. We see how replica exchange induces a weak for of communication. This is

contrasted with a particle based approach called the Stein Variational Gradient Descent

(SVGD) which induces a stronger form of communication via kernel evaluations. The quality

of samples from both HMC and SVGD are evaluated with Maximum Mean Discrepancy.

We finally propose Graph Neural Networks with stronger inductive biases to amortize the

dynamics of SVGD for fast generation of representative samples.
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Chapter 1

Introduction

Machine learning (ML) has had tremendous impact in recent years. Particularly, reinforce-

ment learning has demonstrated great success by solving long-term planning games like Go

(Silver et al. 2017), Starcraft II (Vinyals et al. 2019) and Dota 2 (OpenAI 2018). These

works are solid proofs-of-concept because they present an approach without any structured

rule available to the learning algorithm. They present experimental evidence on how com-

binatorial generalization is imperative for future AI systems (Battaglia et al. 2018) and

the presence (or lack thereof) of inductive biases in our algorithms have led us so far. A

consequence of weak inductive biases is however the need for massive compute. AlphaStar

(Vinyals et al. 2019) reports an average of 200 years worth of gameplay per agent. Clearly,

this is unlike humans and we need to appeal to all elements of intelligence (Sukhbaatar 2018)

- memory, communication and intrinsic motivation.

In this work, we investigate how communication can affect the efficiency of learning systems.

We first discuss the motivation for our work and defer the exact notion of communication

relevant to our study.
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1.1 Motivation

We take a foundational approach to studying how communication affects the performance

of a system and discuss an abstract analogy first. We consider the problem of sampling

from a probability density function. The objective of any sampling algorithm is to provide

an efficient means to compute a statistic of interest under a given target distribution. For

instance, to compute the expected value of a random function f under a distribution p over

the reals R, we need the estimate of f̄ defined as

f̄ = Ep [f(X)] (1.1)

By definition, this is simply taking the intergral over the full real space. A naive approx-

imation is done via Monte Carlo samples xi ∼ p(x) combined with the weak law of large

numbers and leads to

f̄ =

∫
X
f(x)p(x)dx

≈ 1

N

N∑
i=1

f(xi) (1.2)

However, low density regions contribute very little to this expectation. We instead require

samples from a high volume region known as the typical set (Betancourt 2017) and need a

more informed routine to sample the most important parts of the space.

Analogously, we need an agent that can traverse and find the high density regions within a

prescribed computational budget. This task is more directly motivated when we view the

agent’s policies as a Gibbs distribution induced by the action-value function (Sutton and

Barto 2018) of the following form (Haarnoja et al. 2017)

π(at|st) ∝ exp

{
1

α
Q(st, at)

}
(1.3)
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In principle, quite naturally, this formulation encourages the agent to sample actions that can

lead to higher action values in expectation. To build good estimates of such functions, one

of the imperatives to efficient reinforcement learning systems is efficient exploration. While

we do not explicitly formulate reinforcement learning problems in this work, we hypothesize

that it has much to gain from sampling literature.

1.2 Connections to sampling

The rest of the work is organized around investigating the dynamics of particles (aka agents)

in density spaces and see how well they can explore. We consider toy density problems like

mixture of highly separated Gaussians and synthetic distributions like the ring and mixture

of rings. We keep the following assumptions in our experiments

• Density spaces are continuous.

• We can query the oracle for unnormalized density function p̃(x).

• We can compute derivatives of these density functions ∇p̃(x).

These assumptions are standard to many formulations in machine learning literature. As a

concrete example, Bayesian inference (Murphy 2012) requires us to compute the posterior

distribution over the parameter set θ given data D and further sample for the posterior

predictive distribution over a new sample x′

p(θ|D) =
p(D|θ)p(θ)
p(D)

(1.4)

p(y′|x′,D) =

∫
p(y′|x′, θ)p(θ|D)dθ (1.5)

p(D) is intractable for almost all problems of practical interest. Hence, we consider the

unnormalized posterior p̃(θ|D) = p(D|θ)p(θ) and our objective is to explore this posterior

well to build a good estimate for the predictive distribution from posterior samples.

3



In the rest of the work, we revisit Hamiltonian Monte Carlo (HMC) sampling and see how

parallel tempering induces a primitive form of communication. We also understand the

limitations of HMC and see how Stein Variational Gradient Descent (SVGD) imposes a

stronger form of communication via kernel evaluations. We finally propose amortization of

this communication into graph neural networks for efficient sampling.
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Chapter 2

Hamiltonian Monte Carlo

In this chapter, we revisit Hamiltonian Monte Carlo (Duane et al. 1987), one of the most

popular techniques from the family of Markov Chain Monte Carlo algorithms (Metropolis

et al. 1953) to sample from unnormalized density functions.

2.1 Background

The key inspiration behind HMC comes from the physical notion of Hamiltonian H of a

system. We augment the space of interest x with momentum variables p of equal dimension

colloqiually known as the phase space z = (x, p) and simulate the following differential

equations

dz

dt
=

dxdt
dp
dt

 =

 ∂H
∂p

−∂H
∂x

 (2.1)

where the Hamiltonian H is a sum of potential energy U(x) = − log p̃(x) and kinetic energy

K(p) = pTM−1p/2. Note the use of an unnormalized density function. Typically, the mass

matrix M is considered to be identity I. Application of this differential equation in practice
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requires discretization, however the basic Euler’s method leads to diverging trajectories.

Instead, we use a modified routine known as the leapfrog method (Neal et al. 2011) with

discretization steps of ε

p(t+ ε/2) = p(t)− (ε/2)
∂U(x(t))

∂x
(2.2)

x(t+ ε) = x(t) + εp(t+ ε/2) (2.3)

p(t+ ε) = p(t+ ε/2)− (ε/2)
∂U(x(t+ ε))

∂x
(2.4)

We finally need a Metropolis-Hastings correction given by

A(x→ x′) = min (1, exp {−H(z′) +H(z)}) (2.5)

where z and z′ are the augmented phase space variables with corresponding position as x

and x′ respectively.

The exact HMC step with the leapfrog integrator and the MH acceptance ratio is given in

Algorithm 2.1.

The HMC proposal satisfies the detailed balance and hence the stationary distribution is the

one induced by the density function p̃. For detailed proofs refer Neal et al. 2011; Murphy

2012. These steps are repeated to create a Markov chain. In principle, HMC builds chains

where the particle stays on iso-probability contours of the phase space. At each step of the

HMC step as seen in Algorithm 2.1, we resample momentum and effectively jump around

these contours. Betancourt 2017 discusses the geometry of Hamiltonian Monte Carlo in

greater detail. It is this same behavior that induces some pathologies in HMC.

• Due to the volume preserving transforms (Neal et al. 2011), HMC mixes poorly across

energy levels

6



Algorithm 2.1 Hamiltonian Monte Carlo Step

Input: An unnormalized probability density function p̃, leapfrog integrator steps τ , time

discretization ε

1: procedure HMC-STEP(x)

2: x0 ← x

3: p0 ∼ N (0, I) . Initialize momentum

4: H0 ← − log p̃(x0) + pT0 p0/2 . Initial Hamiltonian

5: for t in 1 to τ do . Leapfrog integrator

6: pt1/2 ← pt−1 + ε
2
∇x log p̃(xt−1)

7: xt ← xt−1 + εpt1/2

8: pt ← pt1/2 + ε
2
∇x log p̃(xt)

9: Hτ ← − log p̃(xτ ) + pTτ pτ/2 . Final Hamiltonian

10: a ∼ U(0, 1)

11: if a < A(x0 → xτ ) then . Acceptance step

12: return xτ

13: else

14: return x0

• HMC usually fails at sampling highly separated multi-modal distributions (like a mix-

ture of Gaussian) as the probability of sampling large momentum to jump the low

density regions is very low

• HMC struggles with ill-conditioned landscapes (Girolami and Calderhead 2011)

• HMC deals poorly with rapidly changing gradients (Sohl-Dickstein, Mudigonda, and

DeWeese 2014)

HMC requires careful tuning of τ and ε and this involves multiple initial chains to monitor

trace plots. We visit a few toy distributions and see how HMC behaves in experiments later

(§2.3).
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2.2 Parallel Tempering

To help HMC cover larger parts of the space, we can sample independent and parallel chains.

Under an over-dispersed initialization of such chains, they will likely traverse different parts

of the space especially when the distribution is multi-modal. Each chain can in principle

collapse into one of the many modes especially with multi-modal landscapes and find it

hard to jump out owing to ill-conditioned geometry. Naturally, stochasticity can also cause

multiple chains to collapse into the same mode as well. Clearly, this lack of information

sharing across chains is wasteful.

A very primitive way to share information instead is if we build multiple landscapes and

exchange replicas of particles across chains, we may be able to jump over low density regions

where a chain may not particularly mix fast enough. Multiple landscapes are generated

by varying temperatures of the system. This replica exchange leads to an idea known as

parallel tempering (Swendsen and J.-S. Wang 1986). Here again, we use the augmented

phase space from HMC and consider a physical property temperature. We characterize the

Gibbs distribution (unnormalized) of the system as

p̃T (x) = exp

{
− 1

T
log p̃(x)

}
(2.6)

Using T = 1 we can recover the original augmented distribution p̃(z). In the limit T →∞,

pT (z) approaches a uniform distribution. Intuitively, increasing the temperature makes the

phase space landscape becomes nicer and easier to traverse for a particle using gradient

information as it tends to flatten the sharp curvatures. During a parallel tempering run with

HMC, we “exchange replicas” to virtually jump across phase spaces. A more exhaustive

analysis from the perspective of physical applications is presented in Earl and Deem 2005.

Replica exchange is implemented as an additional step in the chain simulation by computing

the probability of the exchange between two systems at temperatures T and T ′ by the ratio

8



Algorithm 2.2 Parallel Tempering Step

Input: An unnormalized probability density function p̃, temperatures for N parallel chains

{Ti}Ni=1

1: procedure PT-STEP({xi}Ni=1)

2: {x(mcmc)
i }Ni=1 ← MCMC-STEP({xi}Ni=1) . e.g. Algorithm 2.1

3: for i in 2 to N do

4: a ∼ U(0, 1)

5: if a < Aexch(x
(mcmc)
i ↔ x

(mcmc)
i−1 ) then . Exchange step

6: swap(x
(mcmc)
i , x

(mcmc)
i−1 )

Aexch(xT ↔ xT ′) = min (1, exp

{
p̃T (xT ′)p̃T ′(xT )

p̃T (xT )p̃T ′(xT ′)

}
) (2.7)

Running parallel tempering involves many parallel chains at different temperatures (typically

increasing with a factor of
√

2 starting from T = 1). Choosing these pairs of systems

is an O(N2) routine where N is the total number of parallel chains. To overcome this

computational overhead, we simply pick adjacent chains for the replica exchange making

this an O(N) routine. In practice, this approach has proven to allow enough cross-chain

exchanges. This is summarized in the Algorithm 2.2 (with some notational overload).

2.3 Experiments

We first take a look at the simplest case with Hamiltonian Monte Carlo and then showcase

the pathologies. In Figure 2.1 we have plotted the two-dimensional Gaussian function

N (0, I) =
1

2π
exp

{
−1

2
xTx

}
(2.8)

We simulate the HMC Algorithm 2.1 for 2000 timesteps with τ = 10, ε = 0.1 and plot all
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the samples obtained in Figure 2.1. HMC has no troubles sampling from this distribution

as we can qualitatively visualize the typical set covered pretty well.

Figure 2.1: Samples from a Markov chain on N (0, I); τ = 10, ε = 0.1 sub-sampled from 2000

time steps

A typical qualitative analysis involves building trace plots and seeing if the chain hovers

around a small neighborhood. This hints towards convergence. In Figure 2.2, we visualize

the trace plots and see that both dimensions x and y converge to the neighborhood around

0 over time which is in fact the true mean as well.

10



Figure 2.2: Trace plots of a converged Markov chain for N (0, I); τ = 10, ε = 0.1

Building Markov chains requires careful tuning of the leapfrog integration steps τ and con-

tinuous time discretization ε or the chain will take too long to converge. One of the heuristics

is to make sure that the product of εL equals 1 (Neal et al. 2011). As an example, using

ε = 0.01 makes the chain diffuse too slow through the space and under the same computa-

tional budget of 2000 timesteps, the chain does not converge just yet. This is visualized in

Figure 2.3. It should be noted that in principle these chains can be run long enough and be

made to converge. However, in practice we seek high quality representative samples under a

constrained computational budget.

The samples generated by a Markov chain are correlated. Hence, effectively for a total of

T timesteps, we do not particularly have T independent and identically distributed samples

(i.i.d). Quantitatively, we measure this disparity using the Effective Sample Size (Gelman

et al. 2013). This value is computed per dimension and the values for the previous two

experiments are reported in Table 2.1.
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Figure 2.3: Trace plots of an unconverged Markov chain for N (0, I); τ = 10, ε = 0.01

As mentioned earlier, in practice, the Markov chain will have non-zero correlation between

consecutive timesteps. To minimize this side-effect, we generally throw away a few timesteps

from the start as the chain may still be moving across low density regions. Additionally,

to minimize correlation, we apply subsampling (or thinning) to select a sample every tth

time step. Table 2.1 shows the impact of such a heuristic as the effective sample size is a

magnitude larger than the previously converged chain.

Chain State x y ∇ evaluations

Unconverged 3.8315 9.9608 2000

Converged 658.2034 648.7103 2000

Converged (burn-in & thinning) 1331.4050 1357.5525 5000

Table 2.1: Effective Sample Size and gradient evaluations of HMC on N (0, I) with 2000

samples

While giving us high quality samples, a downside of this approach is that it is clearly wasteful

and we spend larger fraction of sample for gradient evaluations than the effective represen-

tative samples.

12



We now consider a harder distribution in the form of a mixture of two Gaussians. The

unnormalized density function is given by

p̃mog2 = N

−5.0

0.0

 , 0.5× I

+N

5.0

0.0

 , 0.5× I

 (2.9)

A few samples from Markov chain generated via HMC are show in Figure 2.4.

Figure 2.4: Samples from a Markov chain for p̃mog2

We observe that the chain collapses into one of the modes and is never able to jump out

from the mode. The trace plots for both dimensions of this chain are shown in Figure 2.5.

To be sure, we have run this chain for 5000 time steps and the chains have converged to

x = 5 and y = 0 as seen in the figure.

13



Figure 2.5: Trace plots of a Markov chain for p̃mog2

This is a result of the usage of the gradient information while the Markov chain simulation

and correct. The only way to fix this is to sample momentum large enough so as to jump

over the large region of low density between the two modes. This example illustrates that

in the absence of knowledge about multi-modality of the underlying density function, we

might as well start believing that there are no other modes to explore as the trace plots hint

towards convergence to a mode.

In the case of a mixture of six Gaussians defined below, we see that the particles mix between

two close by modes and the rest of the modes remain untouched in the sampling process.

µi =

cos 2π
6
i

sin 2π
6
i

 (2.10)

p̃mog6 =
6∑
i=1

N (µi, 0.5× I) (2.11)
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Figure 2.6: Samples from a Markov chain for p̃mog6

A similar situation is observed in a synthetic distributions termed Ring5 which is a mixture

of five rings. This is visualized in Figure 2.7 where we see that the samples have locked onto

one of the rings. Note that in such complex geometries, trace plots become futile.

di = (||x|| − i)/0.04 (2.12)

p̃ring5 = exp

{
− min
d∈{di}5i=1

d

}
(2.13)
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Figure 2.7: Samples from a Markov chain for p̃ring5

One of the approaches in practice to overcome this mode collapse is to run a number of

parallel chains with overdispersed initializations so that during the course of simulation,

they cover enough parts of the space and each mode is visited by at least one chain. A few

results from these parallel chains are shown in the upcoming figures.

(a) (b)

Figure 2.8: Samples from 10 parallel Markov chain for (a) p̃mog2, (b) p̃mog6
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Figure 2.9: Samples from 10 parallel Markov chain for p̃ring5

Another synthetic density function is the decaying periodic function given by a mixture of

Gaussian mask applied to the periodic kernel function.

p̃periodic = σ2 exp

{
−2 sin2 2π|x1 − x2|/p

`2

}
(2.14)

where p is the period and ` determines the lengthscale function (MacKay and Mac Kay

2003).

Figure 2.10: Samples from 10 parallel Markov chain for p̃periodic; p = 3.0

17



Figure 2.10 shows how many disjoint modes are covered by the HMC sampling routine

via parallel chains. A common theme to observe here is that many parallel chains need

to be evaluated in these cases to get a good coverage of the typical set of the underlying

distribution. There is a lot of redundancy. For instance, in Figure 2.8, we can see that 3 of

the chains collapse into one mode and the remaining 2 collapse into the second mode. This

is wasteful as ideally under the limitations of Hamiltionian Monte Carlo, 2 parallel chains

should have been enough to cover the typical set of p̃mog2. These challenges are alleviated in

the upcoming discussion on Stein Variational Gradient Descent.

18



Chapter 3

Stein Variational Gradient Descent

Algorithms from the Markov Chain Monte Carlo family typically involve initializing multiple

chains and running them long enough. To minimize the effects of any correlation between

timesteps in the chain, we typically rely on heuristic approaches like subsampling to the

chains and picking every tth timestep.

An alternative family of particle-based algorithms involve simulating particles so that at

the end of simulation we get representative samples from the target distribution. A recent

proposal using the Stein criterion is known as Stein Variational Gradient Descent and we

discuss it further.

3.1 Background

There are a few key ideas that make up the complete algorithm to sample from a (unnor-

malized) target density. We discuss them below.
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3.1.1 Reproducible Kernel Hilbert Space

A function K : X × X → R is called a kernel over X . For any two points x, x′ we want to

define the inner product of featurized vectors Φ(x),Φ(x′) as

K(x, x′) = 〈Φ(x),Φ(x′)〉 (3.1)

for some mapping Φ : X → H to a feature space called the Hilbert Space. By basing this

formulation on top of dot products, we have essentially defined a similarity metric and hence

can appeal to all the geometric niceties of angles, lengths and distances (Scholkopf and Smola

2001).

As it turns out every Positive definite symmetric kernel K defines a unique Reproducing

Kernel Hilbert Space H with a mapping Φ. This formulation also leads to a very interesting

property known as the reproducing property which is stated as

h(x) = 〈h,K(x, ·)〉 (3.2)

for all h ∈ H and x ∈ X . Intuitively, this property can be interpreted as the evaluation of

the function h being a linear combination of kernel evaluations over the full space X . This is

a very expressive representer of evaluations which takes into account the full feature space.

3.1.2 Stein’s Identity

We take a detour before understanding Stein’s identity. Machine Learning typically involves

building a model q for an unknown true data generating distribution p. A family of measures

that quantify this discrepancy between the model and the true distributions is Integral Prob-

ability Metric (Müller 1997). This metric simply builds an expressive family of test functions

and computes the maximum discrepancy under the two distributions as

20



d(p, q) = sup
h∈H

∣∣∣∣EX∼q [h(X)]− EY∼p [h(Y )]

∣∣∣∣ (3.3)

There are a few key elements to decode in this arrangement - the family of test functions

H and the computation of EY∼p [h(Y )]. Choosing a very expressive family can lead to

intractability of the supremum and only needs to be rich enough to distinguish the two

distributions. Computation of the second term EY∼p [h(Y )] relies on the knowledge of p

which is unknown. The only way to estimate this quantity is via a Monte Carlo averaging of

function evaluations over the data set. Modern variants of Generative Adversarial Networks

(Goodfellow et al. 2014) like the Wasserstein GAN (Arjovsky, Chintala, and Bottou 2017)

and MMD-GAN (Li et al. 2017) rely on this for computing the gradients.

To the contrary, consider the following Stein’s operator Ap of a distribution p on any vector-

valued function f

Apf(x) = ∇x log p(x)f(x)T +∇xf(x) (3.4)

Any smooth function f is considered to belong to the Stein class of p if

∫
x∈X
∇x(f(x)p(x))dx = 0 (3.5)

and this allows us to arrive at the Stein’s Identity.

Ep [Apf(x)] = 0 (3.6)

Connecting this back to Equation 3.3, if we were to choose H such that every h belongs to

the Stein class of a target distribution p, it nullifies the second term and leaves us in full

control of the model q. All we need now are tractable formulations for the supremum.
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3.1.3 Kernelized Stein Discrepancy

We’ve nullified the term containing unknown p. As a result, what we are left with Eq [h(x)].

We can show that (Ley, Swan, et al. 2013)

Eq [Aph(x)] = Eq
[
(∇x log p(x)−∇x log q(x))h(x)T

]
(3.7)

The magnitude of this quantity relates to how different p and q are. Intuitively, this can be

viewed as the function evaluation being a difference between the score functions of the two

distributions being compared. Further Gorham and Mackey 2015 showed

Eq
[
(∇x log p(x)−∇x log q(x))h(x)T

]
= Eq [trace (Aph(x))] (3.8)

Combining these observations, we arrive at the Stein Discrepancy between two continuous

distributions q and p over a family of test functions F as

S(q, p) = max
Φ∈F

{
[Eqtrace (ApΦ(x))]2

}
(3.9)

Choosing the family of functions F to be in the unit norm RKHS allows for the optimization

to have a closed-form solution (Liu, Lee, and Jordan 2016; Liu and D. Wang 2016).

S(q, p) = max
Φ∈Hd

{
[Eqtrace (ApΦ(x))]2 s.t. ||Φ||Hd ≤ 1

}
(3.10)

for the Hilbert space Hd induced by the kernel k. The optimal solution is given by

Φ(x) = Φ?(x)//||Φ?(x)||Hd (3.11)

where, Φ?(·) = Eq [Apk(x, ·)] (3.12)
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This makes the Kernelized Stein Discrepancy to be S(q, p) = ||Φ?||2Hd . The RBF kernel is in

the Stein class of all smooth densities on X = Rd.

3.2 SVGD

We finally arrive at the idea of Stein Variational Gradient Descent (SVGD) which shows

that the Kernelized Stein Discrepancy can be related to the gradient of the KL divergence

between our modeled distribution q and the true underlying distribution p (Liu and D. Wang

2016).

Given an identity perturbation T(x) = x+εφ(x), for x ∼ q(x) we have a one-step normalizing

flow leading to z = T(x) ∼ q[T](x) and because of Liu and D. Wang 2016

∇εKL(q[T]||p)
∣∣∣∣
ε=0

= −Eq [trace (Apφ(x)] (3.13)

For the case of Kernelized Stein Discrepancy, we can henceforth see that the optimal per-

turbation direction is the steepest descent on the KL-divergence in unit-norm balls of Hd.

Hence, at each step of the transform, we are decreasing the KL-divergence by a factor of

εS(q, p). The complete direction is therefore given by Equation 3.12 as

φ? = Ex∼q [k(x, ·)∇x log p(x) +∇xk(x, ·)] (3.14)

In practice, we can make a Monte Carlo estimate of φ? starting from a set of initial particles.

Additionally, it can also be seen that we can replace p with an unnormalized density function

p̃ as the score function does not depend on the normalizing constant. A step in SVGD is

summarized in Algorithm 3.1.

From the perspective of communication, we see that the kernel induces interaction between

particles where the second term encourages diversity. If we only have one particle and a
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Algorithm 3.1 SVGD Step

Input: An unnormalized probability density function p̃, a set of N particles at time t{
x

(t)
i

}N
i=1

1: procedure SVGD-STEP(
{
x

(t)
i

}N
i=1

)

2: for i in 1 to N do

3: φ
(t)
i = 1

N

∑N
j=1

[
k(x

(t)
j , xi)∇x

(t)
j

log p(x
(t)
j ) +∇

x
(t)
j
k(x

(t)
j , xi)

]
4: x

(t+1)
i = x

(t)
i + εφ

(t)
i

kernel where∇k(x, x) = 0, we can see that Equation 3.12 reduces to the classic MAP estimate

(Murphy 2012). Another important advantage of this approach is that we don’t need explicit

form for the modeled distribution to compute normalizing flow, which otherwise would make

the log-determinant of the inverse Jacobian which can be computationally prohibitive for

expressive transforms like neural networks. We see these behaviors in the experiments.

3.3 Experiments

We first do a similar visual analysis as for distributions from experiments in §2.3 but this

time using Stochastic Variational Gradient Descent. All the experiments use the radial basis

function kernel.

k(x, x′) = exp

{
||x− x′||2

σ2

}
(3.15)

The bandwidth was adaptively adjusted during the simulation of the differential equation

from Algorithm 3.1 via the median heuristic (Liu and D. Wang 2016) as

σ2 =
α2

2 log (N + 1)
(3.16)
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where α is the median distance among all pairwise distances of the N particles in motion.

This heuristic allows us to avoid a situation where the gradients with respect to one of

the particles tend to zero and effectively limits the gradient information from that particle.

Additionally, to stabilize the gradient flow, we use adaptive gradients via Adam (Kingma and

Ba 2014) while stepping through the differential equation. Quite naturally, we can replace

it with any other adaptive gradient method.

We first visualize the standard normal N (0, I) distribution and simulate SVGD for 150 time

steps with time discretization of ε = 0.1.

Figure 3.1: Samples using 10 Stein particles for N (0, I)

One of the observations to note here is that the particles are well spread out from each other

over the typical set of the underlying density function. This is attributed to the repulsive

kernel term in Equation 3.14. This observation remains consistent in few density functions

visualized next though with more particles for enough coverage of the typical set.
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(a) (b)

Figure 3.2: Samples using 50 Stein particles for (a) p̃mog2, (b) p̃mog6

As we see in Figure 3.2, SVGD doesn’t typically suffer from the mode lock-in contrary to

what see see in Figure 2.4 and 2.6. We further see that SVGD can generalize without much

fine-tuning to every more complex distributions with plenty of modes.

For instance, consider a mixture of 25 Gaussians whose density function is given by

p̃mog25 =
2∑

i=−2

2∑
j=−2

N (

i
j

 , 0.1× I) (3.17)

We simulate a total of 300 particles and use the Stein gradient update which includes the

kernel repulsive term and see in Figure 3.3 that SVGD is able to cover the typical sets of all

the modes to a reasonable level.
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Figure 3.3: Samples using 300 Stein particles for p̃mog25

SVGD is also able to generalize this across more complex geometries like those of p̃ring5 and

p̃periodic visualized in Figure 3.4.

(a) (b)

Figure 3.4: Samples using 300 Stein particles for (a) p̃ring5, (b) p̃periodic
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A consistent theme in these visualizations is to observe the fact that the particles com-

municate with each other via gradient of the pairwise kernel evaluations. This repulsive

term prevents particles from collapsing into one mode. Unlike, HMC where we used parallel

chains and the virtue of stochasticity to ensure we cover all modes, SVGD uses a determin-

istic gradient evaluation on the set of simulated particles to disperse in the best possible

manner. Effectively, as we’ve seen from theory in Equation 3.13, it tries to minimize the

KL-divergence between the transformed distribution and the target density in the RKHS

space induced by the kernel.

3.3.1 Maximum Mean Discrepancy

To quantitatively evaluate and compare SVGD with HMC, we introduce Maximum Mean

Discrepancy (MMD).

Suppose we are given two sets of samples from distributions P as X = {xi}Ni=1 and Q as

Y = {yj}Mj=1, one of the simplest ways of comparing whether the two distributions are the

same is to compare all possible statistics on the two sets of samples (Gretton et al. 2012).

This is in fact another Intergral Probability Metric (Müller 1997) that operates in the RKHS

space as well. Empirically, MMD with a statistic of interest phi is given by

LMMD =

∣∣∣∣∣
∣∣∣∣∣ 1

N

N∑
i=1

φ(xi)−
1

M

M∑
j=1

φ(yj)

∣∣∣∣∣
∣∣∣∣∣ (3.18)

This can be rewritten in the form of dot products as

LMMD =
1

N2

N∑
i=1

N∑
i′=1

φ(xi)
Tφ(xi′) +

1

M2

M∑
j=1

M∑
j′=1

φ(xj)
Tφ(yj′)−

2

MN

N∑
i=1

M∑
j=1

φ(xi)
Tφ(yj)

(3.19)

This dot product form naturally alludes to the usage of kernel trick where we are effectively
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lifting the samples into the Reproducible Kernel Hilbert Space induced by a kernel K as

LMMD =
1

N2

N∑
i=1

N∑
i′=1

K(xi, xi′) +
1

M2

M∑
j=1

M∑
j′=1

K(yj, yj′)−
2

MN

N∑
i=1

M∑
j=1

K(xi, yj) (3.20)

Gretton et al. 2012 show that asymptotically LMMD is only equal to zero if and only if P = Q.

Another interesting result is that minimizing MMD under the feature expansion of an RBF

kernel via a Taylor series expansion is equivalent to minimizing the distance between all the

moments of two distributions. We compare MMD between the samples generated via HMC

and SVGD to the true samples.

We first compare performance on p̃mog2 in Figure 3.5. In this chart, we compare a single

chain HMC, 10 parallel chains of HMC and 100 particles in SVGD. We compute the Ker-

nelized Maximum Mean Discrepancy with an RBF kernel using bandwidth of 0.5 for finer

comparison. Larger values of bandwidth may not yield perceptible differences as the kernel

becomes smoother. We can see that SVGD performs better than both the HMC and HMC

with parallel chains. The single chain HMC quite expectedly plateaus as it locks into one

mode.

Figure 3.5: LMMD improvement over time steps for p̃mog2

Figure 3.6 shows a similar analysis for p̃mog6 where the differences are much more pronounced

as the geometry is more complicated to cover.
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Figure 3.6: LMMD improvement over time steps for p̃mog6

Figure 3.7: LMMD improvement over time steps for p̃mog25

In these figures, it should be noted that we use the thinning heuristic to minimize correlations

between consecutive particles in a chain just like one would when using these samples in

practice. We effectively end up doing more computation than we use samples from in practice

which is unlike SVGD which by design manipulates particles to make them representative

of the underlying density function and seems to be much more efficient.

One of the key pain points of SVGD is that the kernel evaluations are quadratically expensive.

While we get away in these experiments with relatively small number of particles, it remains

to be seen whether certain geometries and higher dimensions need more particles to work

effectively or not. Another downside of both HMC and SVGD is the simulation of the
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differential equations. In an application where the latency of generation is crucial, this can

be unacceptable. In the next chapter, we look at how we can use neural networks to amortize

the generative process by learning the dynamics into neural networks for fast sampling.
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Chapter 4

Amortized Dynamics with

Communication

We have seen how a set of parallel chains are used by HMC to sample from different parts

of the space, albeit redundant. HMC typically requires us to apply heuristics like burn-

in and thinning to make sure the chains have mixed well enough before we use them as

representative samples. On the other hand we see via SVGD how we can do away with

such heuristics and rely on communication via kernel evaluations for sampling. However,

one of the concerns with SVGD is the costly O(N2) kernel computations and simulation of

the differential equations to convergence. There is scope to build faster samplers which can

bypass this element of repeatedly simulating differential equations for real-time usage.

4.1 Amortizing the Dynamics

A simple choice to amortize the dynamics of a differential equation is to simply consider the

input-output relationship between the particles and then approximate them via an expressive

parametric function f as x = fθ(z) parametrized by θ. f could be a neural network. However,
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this formulation of the problem is particularly hard and slow to train 1.

D. Wang and Liu 2016 propose to adjust the parameters θ in an incremental manner by

following the Stein Variational Gradient Descent. Specifically, consider sampling a noise

particle z and the transform x = fθ(z). The Stein Variational Gradient provides the direction

of steepest descent in the RKHS which can minimize the KL divergence to some target density

p̃ as in Equation 3.13. This can be represented by the transform x′ = x + ε∆x where ∆x

represents the update previously seen in Equation 3.12 and Equation 3.14. This new particle

is the target we would like our estimator to achieve and we can choose a metric to minimize

over the full sample set, for instance the Euclidean distance. As a result we get the following

formulation of the learning problem over a collection of M particles as

θ? = argmin
θ∈Θ

M∑
i=1

||fθ(zi)− x′i||22 (4.1)

where x′i = xi + ε∆xi and ∆xi is the same empirical update as in Algorithm 3.1. At the end

of this problem fθ becomes our fast amortized sampler for some underlying density function

p̃. Under the assumption of infinitesimal ε and Taylor series expansion of f around the

current parameter estimate θ(t), we get

||fθ(zi)− x′i||22 ≈ ||∂θfθ(t)(zi)(θ − θ(t))− ε∆xi||22 (4.2)

We can now use gradient descent and apply a one step update starting in the limit θ → θ(t)

and arrive at the final iterative approximation of the parameter update step as

θ(t+1) ← θ(t) + ε

M∑
i=1

∂θfθ(t)(zi)∆xi (4.3)

We summarize this in Algorithm 4.1 with some notational overloading for brevity.

1experiments using maximum mean discrepancy as the criterion did not bear fruit
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Algorithm 4.1 Amortized SVGD

Input: An unnormalized probability density function p̃, initial parameters θ(0) for estimator

f , proposal density function q (typically N (0, I)), kernel function k, batch size M

1: procedure AMORTIZED-SVGD

2: {zi}Mi=1 ∼ q

3: {xi}Mi=1 = fθ(t)
(
{zi}Mi=1

)
4: for i in 1 to M do

5: ∆xi = 1
M

∑M
j=1

[
k(xj, xi)∇xj log p(xj) +∇xjk(xj, xi)

]
6: θ(t+1) ← θ(t) + ε

∑M
i=1 ∂θfθ(t)(zi)∆xi

4.1.1 Experiments

We now see some results using Amortized SVGD from Algorithm 4.1. Our setup for the

densities remains similar to experiments in Section 2.3 and Section 3.3.

We use a simple neural network with 2-hidden layers of size 100 with tanh non linearity2.

Each network was trained using Adam with a learning rate of 0.001 (Kingma and Ba 2014).

(a) (b)

Figure 4.1: Mode collapse in samples from MLP trained via Amortized SVGD (a) p̃mog2, (b)

p̃mog6

2relu also achieved similar outputs
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Samples generated from the network and are plotted in Figure 4.1. It appears that the neural

network suffers from mode collapse and is not able to model the multiple modes. A similar

observation is made with other density functions as well.

(a) (b)

Figure 4.2: Mode collapse in samples from MLP trained via Amortized SVGD (a) p̃mog25,

(b) p̃ring5

The parameters learned lead to fairly stable results, albeit with mode collapse. Further

training does not improve or deteriorate the quality of samples from what has been achieved.

4.2 Learning to communicate

The two key components in Algorithm 4.1 that we rely on for quality are the inductive biases

encoded in the parametric architecture of function transform f and the kernel k. The kernel

is particularly influential as it induces diversity by acting as the additional repulsive force in

the standard likelihood maximization problem.

We hypothesize that this communication via the kernel evaluations can be replaced by ex-

pressive graph neural networks (Zhou et al. 2018). Graph Neural Networks are a potential

candidate to model the communication as they help model a message passing interface be-
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tween nodes in a graph.

We specifically formulate the problem of amortizing the dynamics of SVGD as in the previous

section as problem of learning graph representations. We model the particles {xi}Ni=1 of

interest as nodes in a complete graph. The graph is complete to allow communication

between each pair of nodes. Each node updates its state with respect to the neighbors using

the following transformation equations for each node of a graph xi ∈ G

h
(l)
i = fθ(z

(l)
i ) (4.4)

αi = softmax(fφ(z
(l)
i ,
{
z

(l)
j

}
j∈N (i)

)) (4.5)

h
(l+1)
i =

∑
j∈N (i)

αijz
(l)
j (4.6)

Effectively, we first build the embedding zi ∈ Rh for each node xi ∈ Rd using fθ, using

a message passing routine, we build attention αi ∈ R|N (i)| over the set of neighbors N (i)

using fφ and then use a linear combination of all the messages, which in this case is simply

the embeddings of all the neighbors to compute the final state of the node hi ∈ Rd. This is

effectively equivalent to a Graph Attention Network (Veličković et al. 2017). We use multiple-

heads and multiple layers l of such attention modules as described by equations above and

combine the outputs of all the heads via mean aggregation. Additionally, to break symmetries

in a complete graph, we apply neighborhood sub-sampling to the communication channel

between pair of nodes. This is effectively equivalent to applying dropout before applying

softmax in Equation 4.5.

4.2.1 Experiments

So far, using this approach, we have been able to train stable networks however these still

suffer from mode collapse. Further work is needed to get this to achieve better coverage of

multiple modes.
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(a) (b)

Figure 4.3: Mode collapse in samples from Graph Attention Sampler (a) p̃mog2, (b) p̃mog6

(a) (b)

Figure 4.4: Mode collapse in samples from Graph Attention Sampler (a) p̃mog25, (b) p̃ring5
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Conclusion and Future Work

The comparison of HMC and SVGD shows us how communication can help us improve

our sampling schemes using just the gradient information of a continuous density function.

Using single particle Langevin dynamics as in HMC is not particularly efficient even though it

utilizes the gradient information of the density surface. HMC finds it extremely improbable

to jump across modes in a single chain over the low density surfaces. SVGD on the other

hand benefits from repulsion induced by the kernel evaluations however comes at additional

computation burded of O(N2) kernel evaluations. Amortization of these dynamics into an

expressive neural network can allow us to sample fast without repeatedly simulating long

trajectories of HMC or SVGD. Current architectures remain ineffective in their vanilla form

to be able to model the dynamics and hence need stronger inductive biases to be able to

perform. The overarching idea of using communication between particles however clearly

remains a promising direction to pursue to prepare modern samplers for real-time usage.
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