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Abstract. Isogeometric analysis has been introduced as an alternative to finite element methods
in order to simplify the integration of CAD software and the discretization of variational problems
of continuum mechanics. In contrast with the finite element case, the basis functions of isogeometric
analysis are often not nodal. As a consequence, there are fat interfaces which can easily lead to
an increase in the number of interface variables after a decomposition of the parameter space into
subdomains. Building on earlier work on the deluxe version of the BDDC family of domain decom-
position algorithms, several adaptive algorithms are here developed for scalar elliptic problems in an
effort to decrease the dimension of the global, coarse component of these preconditioners. Numerical
experiments provide evidence that this work can be successful, yielding scalable and quasi-optimal
adaptive BDDC algorithms for isogeometric discretizations.
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1. Introduction. There has recently been a considerable effort in developing
adaptive methods for the selection of primal constraints for BDDC algorithms, in-
cluding its deluxe variant. The primal constraints of a BDDC or FETI–DP algorithm
provide the global, coarse part of such a preconditioner and is of crucial importance
for obtaining rapid convergence of these preconditioned conjugate gradient methods
for the case of many subdomains. When the primal constraints are chosen adaptively,
we aim at selecting a primal space, which for a certain dimension of the coarse space,
provides the fastest rate of convergence for the iterative method. In the alternative,
we can try to develop criteria which will guarantee that the condition number of the
iteration stays below a given tolerance.

In this paper, we will consider the use of adaptive algorithms to select the primal
constraints and the associated BDDC change of basis for elliptic problems and isoge-
ometric analysis. While for lower order finite element approximations, one typically
starts out with a small primal space, associated with all the subdomain vertex vari-
ables, and then adds primal constraints in order to obtain improved iteration counts,
a similar strategy for an isogeometric problem will introduce a primal space that can
be quite large especially if we have a high polynomial degree and high regularity in-
side the patches. This depends on the fact that we have fat vertices, potentially with
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many degrees of freedom, as well as fat edges, and faces, resulting from the fact that
the basis functions are not nodal and can have large supports. Therefore, in this
study, we will attempt to reduce this original primal space by developing adaptive
algorithms. We will also consider subspaces of primal variables associated with the
subdomain edges and, in three dimensions, subdomain faces. We note that we made
an attempt to shrink the primal spaces in a previous study [7], but that our results
then deteriorated when the degree of the basis functions grew. At that time, we did
not have tools for the automatic selection of our primal space. We also note that
the linear systems resulting from discretizing the elliptic problems using isogeomet-
ric analysis become extremely ill-conditioned with increasing polynomial degree and
high regularity, see [20], and that therefore the development of preconditioners is quite
challenging. For an introduction to isogeometric analysis, see [12], and for a recent
survey of the state of the theory, see [3]. For earlier work on the iterative solution of
isogeometric approximations, see [6, 8, 11, 19, 30].

The work on adaptive selection of primal constraints over the last few years has
focused on lower order finite elements and several of these methods are now fully jus-
tified theoretically and also perform very satisfactorily. Until quite recently, the de-
velopment of the theory has been focused on primal constraints for equivalence classes
with two elements such as those of subdomain edges for problems defined on domains
in the plane; see, e.g., a recent survey paper by Klawonn, Radtke, and Rheinbach
[28]. For other papers on this case, see [15, 22, 25, 26, 27, 34, 36, 37]. Most of these
papers focus on the adaptive selection of two-dimensional (2D) or three-dimensional
(3D) face constraints, i.e., constraints associated with the interface between pairs of
subdomains, by solving certain generalized eigenproblems. While it is important to
further study the best way of handling all cases, the basic issues appear to be well
settled when the equivalence classes have no more than two elements. We note that
in our context, an equivalence class is a set of spline knots, associated with basis
functions the supports of which intersect the same set of subdomains into which the
parameter space has been subdivided; see further sections 2 and 3.

For problems in three dimensions, there is, except for quite special subdomain
configurations, a need to develop algorithms and results for equivalence classes with
three or more elements. There is work by Mandel, Š́ıstek, and Soused́ık, who de-
veloped condition number indicators, cf. [34]. Recent talks by Clark Dohrmann and
by Axel Klawonn, see [24], at the twenty-third international conference on domain
decomposition methods, DD23, held on Jeju Island, Korea, in July 2015, reported on
progress to give similar algorithms a firm theoretical basis. A talk by Hyea Hyun Kim
at the same conference, on joint work with Eric Chung and Junxian Wang, [23], also
reported considerable progress. Their main algorithm for problems in three dimen-
sions are similar but not the same as that of [10]. The main results of the latter paper,
which were developed independently, were also reported at the same DD23 minisym-
posium by the second author of [10]. We have already noted that, for isogeometric
problems, we should consider issues related to fat subdomain vertices associated with
more than two subdomains even for 2D problems.

We note that in the design of a BDDC algorithm, we have to choose a primal space
and also an average operator associated with the interface between the subdomains
into which the given domain of the elliptic problem has been subdivided. The choice
of primal constraints is the main issue of this paper and we will explore a number of
different choices. As for the averaging, based on our experience in a previous study,
[7], we will exclusively use the deluxe variant of BDDC; for older, less competitive
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algorithms, see [5].
The rest of this paper is organized as follows: A brief overview of isogeometric

analysis is given in section 2. This is followed by a short introduction to BDDC,
including its deluxe variant, in section 3. The following section introduces several
generalized eigenvalue problems with which we can make adaptive choices of pri-
mal constraints for our BDDC algorithms. In the final section, numerical results
are provided for several different adaptive algorithms, which with quite small primal
constraint spaces results in a small number of iterations even for problems based on
splines of high order and high regularity.

2. Isogeometric discretization of scalar elliptic problems. Given a bound-
ed and connected domain Ω Ă Rd, d “ 2, 3, typically generated by a CAD software
system, we consider the model elliptic problem

´∇ ¨ pρ∇uq “ f in Ω, u “ 0 on BΩ, (2.1)

with a scalar coefficient ρ satisfying 0 ă ρmin ď ρpxq ď ρmax, @x P Ω. For simplicity,
we describe our problem and preconditioner mostly for the 2D single-patch case.
Comments on extensions to 3D and multi-patches can be found in [7].

We discretize (2.1) with Isogeometric Analysis (IGA) techniques based on B-
splines and NURBS basis functions; see, e.g., [21] for a general introduction to IGA.
The bivariate B-spline discrete space is defined by

pSh :“ spantBp,q
i,j pξ, ηq, i “ 1, . . . , n, j “ 1, . . . ,mu, (2.2)

where the bivariate B-spline basis functions Bp,q
i,j pξ, ηq :“ Np

i pξq Mq
j pηq are defined

by tensor products of 1D B-splines functions Np
i pξq and Mq

j pηq of degree p and q,
respectively; in our numerical experiments, we will only consider the case of p “ q.
An additional important parameter is k ď p ´ 1, the number of continuous deriva-
tives of the basis functions. In the parameter space, there is a tensor product mesh
with rectangular elements associated with the B-spline knots; we will also define our
subdomains in terms of rectangles formed by unions of such elements.

Analogously, the NURBS space is the span of NURBS basis functions defined in
1D by

Rp
i pξq :“

Np
i pξqωi

řn
k“1 N

p
k pξqωk

“
Np

i pξqωi

wpξq
, (2.3)

with a positive weight function wpξq :“
řn

k“1 N
p
k pξqωk P pSh, and in 2D by

Rp,q
i,j pξ, ηq :“

Bp,q
i,j pξ, ηqωi,j

řn
k“1

řm
ℓ“1 B

p,q
k,ℓ pξ, ηqωk,ℓ

“
Bp,q

i,j pξ, ηqωi,j

wpξ, ηq
, (2.4)

where wpξ, ηq is the weight function and ωi,j the positive weights associated with a
nˆm net of control points given by Ci,j . The discrete space of NURBS functions on
the domain Ω is defined as the span of the push-forward of the NURBS basis functions
(2.4) (see, e.g., [21])

Nh :“ spantRp,q
i,j ˝ F´1, with i “ 1, . . . , n; j “ 1, . . . ,mu, (2.5)

with F : pΩ Ñ Ω, the geometrical map between parameter and physical spaces, is
defined by Fpξ, ηq :“

řn
i“1

řm
j“1 R

p,q
i,j pξ, ηqCi,j .
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For simplicity, we will consider only the case with a Dirichlet boundary condition
imposed on all of BΩ and we can then define the spline space in the parameter space
and the NURBS space in physical space, respectively, as

pVh :“ pSh X H1
0 ppΩq “ spantBp,q

i,j pξ, ηq, i “ 2, . . . , n ´ 1, j “ 2, . . . ,m ´ 1u,

Vh :“ Nh X H1
0 pΩq “ spantRp,q

i,j ˝ F´1, with i “ 2, . . . , n ´ 1; j “ 2, . . . ,m ´ 1u.

The IGA formulation of problem (2.1) then reads:

#

Find uh P Vh such that:

apuh, vhq “ă f, vh ą @vh P Vh,
(2.6)

with the bilinear form apuh, vhq :“

ż

Ω

ρ∇uh ¨ ∇vhdx and right-hand side ă f, vh ą:“
ż

Ω

fvhdx.

3. Equivalence classes, Schur complements, and BDDC precondition-
ers. After introducing the equivalence classes relevant for isogeometric approxima-
tions, see also [7], we will give a short introduction to BDDC algorithms; for more
details, see, e.g., [31]. For an introduction to its deluxe variant, see, e.g., [39].

BDDC algorithms are domain decomposition algorithms based on the decompo-
sition of the domain Ω of an elliptic operator into non-overlapping subdomains Ωi.
They were introduced by Clark Dohrmann in 2003, [14], a few years after the in-
troduction of the FETI–DP algorithms; see [18]. Important theoretical findings are
given in [32, 33]. In the case of lower order finite elements, each of the subdomains
are often associated with tens of thousands of degrees of freedom. The subdomain
interface Γi of Ωi does not cut through any elements and is defined by Γi :“ BΩizBΩ.

In the isogeometric context, the subdomain Ωi are images of rectangles pΩi in the
parameter space, each a union of rectangular elements defined by four knots, which
form its vertices.

The equivalence classes associated with the subdomains are defined as follows for
three dimensional problems: We first separate the knots of the interior of these subdo-
mains and those associated with the interface Γ :“ YiΓi; those in the interior are the
knots with B-spline basis functions supported in individual subdomains. The set of
the remaining, the interface knots, are partitioned into equivalence classes associated
with subdomain vertices, edges, and faces. We first separate off the vertex equivalence
sets, which are given by the knots with B-spline basis functions with a subdomain
vertex inside their support. We next identify the edge equivalence classes among the
remaining interface knots with B-spline basis functions with supports that intersect
a subdomain edge. Finally, the remaining interface knots, which have basis functions
with supports intersecting a subdomain face, are separated into subsets associated
with the individual subdomain faces. Once these equivalence classes have been iden-
tified, we will find many similarities with the development of BDDC algorithms for
finite element problems.

Given the stiffness matrix Apiq of the subdomain Ωi and its part of the fat in-
terface, we obtain a subdomain Schur complement Spiq by eliminating the interior
variables, i.e., all those associated with basis functions with supports confined to
Ωi. We will also work with principal minors of these Schur complements associated
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with a subdomain vertex, subdomain edge, and subdomain face, denoting them by

S
piq
V V , S

piq
EE , and S

piq
FF , respectively.

The interface space is then divided into a primal subspace of functions which
are continuous and a complementary, dual, subspace for which we will allow multiple
values across the interface during part of the iteration. The BDDC and FETI–DP
algorithms can be described in terms of three product spaces of functions associated
with sets of interface knots:

xWΓ Ă |WΓ Ă WΓ.

WΓ is built as a product space of the spaces associated with the Γi, without any
continuity constraints across the interface. Elements of |WΓ have common values of
the primal variables but allow multiple values of the dual variables while the elements
of xWΓ are continuous at all knots of Γ. We can change variables, explicitly introducing
the primal variables and complementary sets of dual variables. This simplifies the
presentation and also appear to make the methods more robust. Alternative ways of
implementing the algorithms are possible, see e.g. [14]. After eliminating the interior
variables, we can then write the subdomain Schur complements as

Spiq “

˜

S
piq
∆∆ S

piq
∆Π

S
piq
Π∆ S

piq
ΠΠ

¸

.

We will partially subassemble the Spiq, obtaining qS, enforcing the continuity of the
primal variables only. Thus, we then work in |WΓ. In each step of the iteration, we solve
a linear system with the coefficient matrix qS. In the alternative, we could also work
with a linear system with a matrix obtained by partially subassembling the subdomain
stiffness matrices Apiq. We note that solving these linear systems will be considerably
much faster than if we work with the fully assembled system if the dimension of the
primal space is modest. At the end of each iteration, the approximate solution is
made continuous at all knots of the interface; continuity is restored by applying a
weighted averaging operator ED, which maps |WΓ into xWΓ.

In each iteration, we first compute the residual of the fully assembled Schur com-
plement. We then apply ET

D to obtain a right-hand side of the partially subassembled
linear system, solve this system and then apply ED. This last step changes the values
on Γ, unless the iteration has converged, and can result in non-zero residuals at inte-
rior knots next to Γ. In a final step of each iteration step, we eliminate these residuals
by solving a Dirichlet problem on each of the subdomains. We always accelerate the
iteration with the preconditioned conjugate gradient algorithm.

3.1. BDDC deluxe. When designing a BDDC algorithm, we have to choose
an effective set of primal constraints and also a good recipe for the averaging across
the interface. This paper concerns the choice of the primal constraints while we will
always use the deluxe recipe in the construction of the averaging operator ED.

In work on three-dimensional problems formulated in Hpcurlq, it was found that
traditional averaging recipes did not work uniformly well, cf. [16, 17]. The same is true
for problems in Hpdivq, see [35]. This occasional failure has its roots in the fact that
there are two sets of material parameters in these applications. The deluxe variant
that was then introduced has proven quite successful in a variety of applications; see,
e.g., [39] and, in particular [7].

A face component of the average operator ED, for a problem in three dimensions,
across a subdomain face F Ă Γ, common to two subdomains Ωi and Ωj , is defined
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in terms of that face equivalence set of variables and principal minors S
pkq

FF of the
Spkq, k “ i, j. The deluxe averaging operator, for F , is then defined by

w̄F :“ pEDwqF :“ pS
piq
FF ` S

pjq

FF q´1pS
piq
FFw

piq
F ` S

pjq

FFw
pjq

F q.

Here w
piq
F is the restriction of wpiq to the face set, F, (and analogously for w

pjq

F ). By
exchanging F by E, we obtain the formula for an edge for a 2D problem.

The action of pS
piq
FF `S

pjq

FF q´1 can be implemented by solving a Dirichlet problem,
with zero boundary values, on Ωi Y F Y Ωj , where F is the face between the two
subdomains and with a right hand side which vanishes in the interior of the two
subdomains. This can add significantly to the cost. In the economic version (e-
version), we replace this large domain by a thin domain built from one or a few layers
of elements next to the face and this often results in a very similar performance; see,
e.g., [17].

Deluxe averaging operators are also developed for subdomain edges and subdo-
main vertices for problems in three dimensions and for subdomain vertices alone for
problems in two dimensions. Given the simple geometry of the parameter space that
we are considering, we find that in all these cases the equivalence classes will have
four or eight elements for any subdomain vertex or edge in the interior of Ω. Thus,
for an interior subdomain vertex V in 2D, shared by subdomains Ωi,Ωj ,Ωk,Ωl, we
will use the formula

w̄V :“ pS
piq
V V ` S

pjq

V V ` S
pkq

V V ` S
pℓq

V V q´1pS
piq
V V w

piq
V ` S

pjq

V V w
pjq

V ` S
pkq

V V w
pkq

V ` S
pℓq

V V w
pℓq

V q.

The core of any estimate for a BDDC algorithm involves the norm of the average
operator ED. By an algebraic argument known, for FETI–DP, since 2002, cf. [29], we
know that

κpM´1Aq ď }ED}
qS . (3.1)

We recall that FETI-DP and BDDC methods with the same set of primal constraints
have essentially the same spectrum, except for possible 0 and 1 eigenvalues, see [33,
31, 9].

4. Condition number bounds and generalized eigenvalue problems. We
will base our discussion, in part, on results recently developed in [10]. But we will
first follow Dohrmann and Pechstein closely; cf. [15, 36]. They managed to simplify
a relevant expression for the case of equivalence classes with two elements and also
found an interesting old reference, [1], in which parallel sums were introduced; these
ideas have also been explored by Klawonn et al. [25] and by Chung, Kim, and Wang
[23].

For any two positive definite matrices A and B, we define their parallel sum as

A : B :“ pA´1 ` B´1q´1. (4.1)

This is relevant for a face in 3D (or an edge in 2D) since for equivalence classes with
two elements, the relevant generalized eigenvalue problem will turn out to be

rS
piq
FF : rS

pjq

FFϕ “ λS
piq
FF : S

pjq

FFϕ. (4.2)

Here the matrix on the right, built from principal minors of Spiq and Spjq, respec-
tively, will be strictly positive definite. The matrices on the left of (4.2) are Schur
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complements of the Schur complements on the right, see (4.3) below, representing the
minimal energy extension of the values on the face F onto the rest of Γi. More in
detail, writing a subdomain Schur complement as

Spiq “

˜

S
piq
F 1F 1 S

piq
F 1F

S
piqT
F 1F S

piq
FF

¸

,

where F 1 :“ ΓizF , we find that

rS
piq
FF :“ S

piq
FF ´ S

piqT
F 1F S

piq´1
F 1F 1 S

piq
F 1F . (4.3)

These matrices are only positive semidefinite for subdomains in the interior of the
domain Ω. We handle any such singular matrices by modifying the definition of the
parallel sum using generalized inverses or by adding to the Schur complements Spiq

and Spjq the term ϵI, with ϵ ą 0 small compared with the eigenvalues of Spiq and Spjq.
Instead of developing an estimate for ED, we will work with PD :“ I ´ED. Thus,

we estimate the Spiq´norm of RT
F pw

piq
F ´ w̄F q, instead of pRT

F w̄F qTSpiqRT
F w̄F . Here

RF denotes the restriction to the face F. By simple algebra, we find that

w
piq
F ´ w̄F “ pS

piq
FF ` S

pjq

FF q´1S
pjq

FF pw
piq
F ´ w

pjq

F q.

More algebra gives, by using that S
piq
FF :“ RFS

piqRT
F ,

pRT
F pw

piq
F ´ w̄F qqTSpiqpRT

F pw
piq
F ´ w̄F qq “

pw
piq
F ´ w

pjq

F qTS
pjq

FF pS
piq
FF ` S

pjq

FF q´1S
piq
FF pS

piq
FF ` S

pjq

FF q´1S
pjq

FF pw
piq
F ´ w

pjq

F q.

Adding a similar contribution from Ωj , we obtain, following Pechstein and Dohrmann
[36], that the relevant expression of the energy is

pw
piq
F ´w

pjq

F qT pS
piq´1

FF `S
pjq´1

FF q´1pw
piq
F ´w

pjq

F q “ pw
piq
F ´w

pjq

F qT pS
piq
FF : S

pjq

FF qpw
piq
F ´w

pjq

F q.

We easily find that

pw
piq
F ´ w

pjq

F qT pS
piq
FF : S

pjq

FF qpw
piq
F ´ w

pjq

F q

ď 2pw
piq
F ´ wΠqT pS

piq
FF : S

pjq

FF qpw
piq
F ´ wΠq ` 2pw

pjq

F ´ wΠqT pS
piq
FF : S

pjq

FF qpw
pjq

F ´ wΠq,

where wΠ is an arbitrary element of the primal space. We will show below that each of
these terms can be estimated by an expression which is local to only one subdomain.

Let w
piq
F∆ :“ w

piq
F ´ wΠ. There now remains to estimate w

piqT
F∆ pS

piq
FF : S

pjq

FF qw
piq
F∆ by

the energy of wpiq. We need to establish a bound for

w
piqT
F∆ pS

piq
FF : S

pjq

FF qw
piq
F∆ by w

piqT
F∆ p rS

piq
FF : rS

pjq

FF qw
piq
F∆

and show that

w
piqT
F∆ p rS

piq
FF : rS

pjq

FF qw
piq
F∆ ď wpiqTSpiqwpiq,
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where wpiq is an arbitrary extension of the values of w
piq
F on the face F to the rest of

Γi.
In standard BDDC theory, the required estimates can be obtained by using a

face lemma, cf. [38, subsection 4.6.3] where such a result is established for low order
finite elements, constant coefficients in each subdomain, and polyhedral subdomains.
For an adaptive algorithm, such a result is replaced by using a generalized eigen-
value problem. Thus, we generate elements for the primal space for F by solving
the generalized eigenvalue problem (4.2). Primal constraints are then generated by
making the eigenvectors of a few of the smallest eigenvalues of (4.2) orthogonal to

p rS
piq
FF : rS

pjq

FF qpw
piq
F ´ w

pjq

F q. This orthogonality condition allows us to conclude that

w
piqT
F∆ p rS

piq
FF : rS

pjq

FF qw
piq
F∆ ď w

piqT
F p rS

piq
FF : rS

pjq

FF qw
piq
F .

We now use that, trivially, rS
piq
FF : rS

pjq

FF ď rS
piq
FF and find that

w
piqT
F p rS

piq
FF : rS

pjq

FF qw
piq
F ď w

piqT
F

rS
piq
FFw

piq
F ď wpiqTSpiqwpiq,

for any wpiq which coincides with w
piq
F on F.

A bound can now be obtained in terms of the smallest eigenvalue with an eigenvec-
tor not used in deriving the primal constraints. Thus, if λtol is the smallest eigenvalue
of (4.2) ignored when we select the primal variables, we obtain the bound

}pPDwq|F }2
qS

ď
2

λtol
pwpiqTSpiqwpiq ` wpjqTSpjqwpjqq. (4.4)

4.1. Generalized eigenvalue problems for equivalence classes with more
than two elements. We will now attempt to derive primal constraints by using gen-
eralized eigenvalue problems for equivalence classes with four elements; this is relevant
for our special application since a subdomain vertex is common to four subdomains
in two dimensions as is a subdomain edge in 3D. We note that in 3D, an interior
subdomain vertex is common to eight subdomains. We also note that the case of
equivalence classes with three elements are discussed in detail in [10], and that there
are no essential differences in the development of theory and practice for equivalence
classes with three or more elements.

Let us focus on the case of a subdomain vertex V in 2D. We will consider a
number of algorithms built from S

piq
V V and rS

piq
V V , where i will take on the values of

the indices of the four subdomains, which have V in common. We will first derive an
algorithm, which can be fully justified and which works well for 3D lower order finite
element problems; see [10].

An expression for the norm of RT
V pw

piq
V ´ w̄V q can be borrowed from [10]. We

find that the sum of the squares of the Spiq´norms of RT
V PDw, for the four relevant

indices, can be estimated by the sum of four terms, the first two of which are

4wpiqTS
piq
V V : pS

pjq

V V ` S
pkq

V V ` S
pℓq

V V qwpiq

and

4wpjqTS
pjq

V V : pS
piq
V V ` S

pkq

V V ` S
pℓq

V V qwpjq.

Thus, with four subdomains in the equivalence class, there are four operators

T
piq
V :“ S

piq
V V : pS

pjq

V V ` S
pkq

V V ` S
pℓq

V V q, T
pjq

V :“ S
pjq

V V : pS
piq
V V ` S

pkq

V V ` S
pℓq

V V q, (and
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analogously for T
pkq

V , T
plq
V ). These operators are symmetric, positive definite and they

appear directly in our estimate of the energy of pPDwq|V . We can now use the trivial
inequality

wpiqTT
piq
V wpiq ď wpiqT pT

piq
V ` T

pjq

V ` T
pkq

V ` T
pℓq

V qwpiq

and very similar bounds for the other terms and arrive at the generalized eigenvalue
problem

p rS
piq
V V : rS

pjq

V V : rS
pkq

V V : rS
pℓq

V V qϕ “ λpT
piq
V ` T

pjq

V ` T
pkq

V ` T
pℓq

V qϕ. (4.5)

Suitable primal constraints can now be obtained from the eigenvectors associated
with the smallest eigenvalues in the same way as in the previous subsection. The
resulting primal space will be denoted by VT below (see (4.8)) and in the numerical
tests. A justification for this algorithm can then be obtained by developing a bound
of the same nature as (4.4) and combining these two sets of bounds. The result will
involve integer factors depending on the square of the maximal number of vertices
and edges of the subdomains. We note that in many cases, the condition numbers
actually observed in numerical experiments are much smaller than what can now be
established theoretically.

4.2. Alternative generalized eigenvalue problems. In addition to the al-
gorithm derived in the previous subsection, we have also experimented with several
alternative generalized eigenvalue problems. They are all defined in terms of the
Schur complements Spiq and rSpiq introduced early on in section 4 and we will build
the matrices of the generalized eigenvalue problems from these matrices, their sums
and their parallel sums. These alternative algorithms cannot, so far, be justified to
the same extent as the algorithm of subsection 4.1.

In order to simplify the description of our strategy, we will consider the case of
an equivalence class related to four subdomains, such as for a fat vertex in 2D or a
fat edge in 3D structured hexahedral subdomain meshes.

Generalized eigenproblem V1:

rS
pkq

V V ϕ “ λS
pkq

V V ϕ, (4.6)

where k is any of the indices of the subdomains sharing the edge.
Generalized eigenproblem Vpar:

´

rS
piq
V V : rS

pjq

V V : rS
pkq

V V : rS
pℓq

V V

¯

ϕ “ λ
´

S
piq
V V : S

pjq

V V : S
pkq

V V : S
pℓq

V V

¯

ϕ. (4.7)

Generalized eigenproblem VT :

´

rS
piq
V V : rS

pjq

V V : rS
pkq

V V : rS
pℓq

V V

¯

ϕ “ λ
´

T
piq
V ` T

pjq

V ` T
pkq

V ` T
pℓq

V

¯

ϕ, (4.8)

where T
piq
V “ S

piq
V V :

´

S
pjq

V V ` S
pkq

V V ` S
pℓq

V V

¯

, . . . , T
pℓq

V “ S
pℓq

V V :
´

S
piq
V V ` S

pjq

V V ` S
pkq

V V

¯

.

This is the same as (4.5) in the previous section.
Generalized eigenproblem Vmix:

´

rS
piq
V V ` rS

pjq

V V ` rS
pkq

V V ` rS
pℓq

V V

¯

ϕ “ λ
´

S
piq
V V : S

pjq

V V : S
pkq

V V : S
pℓq

V V

¯

ϕ. (4.9)
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In order to construct the BDDC primal space, for each of the previous four algo-
rithms, we can select a threshold 0 ă θ ă 1 and use the following strategy, consisting
of two sequential steps:
STEP 1: select the eigenvectors tv1, v2, . . . , vNcu of the chosen eigenproblem that are
associated to the eigenvalues tλ1, λ2, . . . , λNcu smaller than θ;
STEP 2: perform a BDDC change of basis to introduce the selected eigenvectors as
new primal constraints.
We now propose two different techniques to perform this change of basis, called in
the following AEIG and QR, respectively.

i) AEIG: this change of basis involves all the eigenvectors of the chosen general-
ized eigenvalue problem, leading to different BDDC preconditioners when some of the
eigenvectors of the change of basis differ, but the eigenvectors selected in STEP 1 as
new primal constraints are the same. Thus the columns of the matrix Φ realizing the
change of basis coincide with the eigenvectors of the generalized eigenvalue problem.

ii) QR: this change of basis depends only on the eigenvectors selected in STEP
1 as new primal constraints, thus, differently from the AEIG method, it leads to the
same BDDC preconditioner when the eigenvectors selected in STEP 1 are the same.
The QR method involves the following steps:

1. denoting by rSV ϕ “ λSV ϕ any of the eigenproblems (4.6), (4.7), (4.8), or
(4.9), compute the matrix

AV “ SV rv1v2, . . . , vNcs P RnˆNc ,

with n the size of the vi, i “ 1, ..., Nc, and Nc ď n the number of primal
constraints selected;

2. compute the SVD decomposition of AV , i.e. the matrices U,Σ, V such that

AV “ UΣV T

and denote by CT the first Nc columns of U ;
3. compute the QR factorization CT “ QR, where

Q “ rQrange Qnulls P Rnˆn,

with Qrange P RnˆNc and Qnull P Rnˆpn´Ncq spanning the range and the
kernel of CT , respectively, and

R “

„

rR
0

ȷ

P RnˆNc ,

with rR P RNcˆNc upper triangular;
4. construct the matrix Φ realizing the BDDC change of basis as

Φ “ rQrange
rR´T Qnulls.

In our 2D tests, the AEIG change of basis has been employed, except when
otherwise stated, whereas, in our 3D test, only the QR approach has been employed
because the AEIG did not yield a robust 3D BDDC preconditioner.

5. Numerical results. In our numerical experiments we have worked with the
generalized eigenvalue problems V1 (4.6), Vpar (4.7), VT (4.8), and Vmix (4.9) intro-
duced above and compared the performance of the associated BDDC deluxe precon-
ditioners. The model problem (2.1) is discretized on a 2D quarter-ring domain and
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a) 2D quarter-ring for b) 2D quarter-ring for c) 3D twisted domain
central jump test checkerboard test

Fig. 5.1. Computational domains used in the numerical tests.
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Fig. 5.2. BDDC deluxe preconditioner for a quarter-ring domain: condition number (cond) as
a function of the number of subdomains K (left) and H{h (right) for the minimal V1 (o), Vpar (+),
VT (˛) and Vmix (*) coarse spaces. The spline parameters p “ 3 and k “ 2 are fixed.

on a 3D twisted domain (see Fig. 5.1) using isogeometric NURBS spaces with a mesh
size h, polynomial degree p and regularity k. The domain is decomposed into K non-
overlapping subdomains of characteristic size H, as described in section 3. The Schur
complement problems are solved by the PCG method with one of the isogeometric
BDDC deluxe preconditioners, with a zero initial guess and and a stopping criterion
of a 10´6 reduction of the Euclidean norm of the PCG residual. In the tests, we
study how the convergence rate of the BDDC preconditioner depends on h,K, p, k,
and jumps in the coefficient of the elliptic problem. In all tests, the BDDC condition
number is essentially the maximum eigenvalue of the preconditioned operator, since
its minimum eigenvalue is always very close to 1. The 2D tests have been performed
with a MATLAB code based on the GeoPDEs library [13]. The 3D parallel tests
have been performed using the PETSc library [2] and its PCBDDC preconditioner
(contributed to the PETSc library by S. Zampini, see [40]), and run on the parallel
machine Shaheen of KAUST.

In all the following results, we denote by NV
c the number of primal variables for
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h = 1/8 h = 1/16 h = 1/32 h = 1/64 h = 1/128
K cond nit cond nit cond nit cond nit cond nit

2 ˆ 2 1.45 7 2.00 8 2.72 8 3.57 8 4.52 8
4 ˆ 4 10.06 15 13.90 16 18.66 18 23.92 21
8 ˆ 8 12.13 24 17.42 27 24.85 32

16 ˆ 16 12.79 24 18.96 29
32 ˆ 32 13.04 24

a)

k “ p ´ 1 k “ 2 k “ 1
p cond nit cond nit cond nit
2 7.09 14 n/a 7.09 14
3 18.66 18 18.66 18 7.59 15
4 233.81 26 19.74 20 8.31 15
5 8417.70 56 22.22 19 9.06 15
6 * 25.37 21 9.81 16
7 * 29.05 22 10.52 16
8 * 33.08 23 11.24 17
9 * 37.64 24 11.90 17
10 * 39.89 26 12.59 18

b)
Table 5.1

BDDC deluxe preconditioner with the minimal V1 coarse space for a quarter-ring domain:
condition number cond and iteration counts nit as functions of a) the number of subdomains K and
mesh size h for p “ 3, k “ 2; b) the polynomial degree p for fixed K “ 4 ˆ 4, H{h “ 16 (* means
that the generalized eigenproblem V1 breaks down)

in the tables

each fat vertex and by NE
c the number of primal variables for each fat edge. We

call a primal space minimal when it includes only one primal variable for each fat
object. Thus, the ‘”minimal V1 coarse space” uses NV

c “ 1 primal variables for each
fat vertex, and the ”minimal VE1 coarse space” employs NV

c “ 1 primal variables
for each fat vertex and NE

c “ 1 primal variables for each fat edge. In some tests, we
also explore adaptive primal spaces with more primal vertex variables, i.e., NV

c ą 1.
We remark that, with the AEIG change of basis, even if the first eigenvector of the
generalized vertex eigenproblem turns out to be the same (coinciding often with the
average over the fat vertex) irrespective of the kind of eigenproblem considered, the
other eigenvectors differ for different choices of primal spaces and give rise to different
BDDC changes of basis, and different preconditioners with different performance.

5.1. 2D results. Before considering the results for each primal choice in details,
we note, in summary, that our numerical results indicate that all primal choices
considered are scalable in the number of subdomains K and quasi-optimal in the
ratio H{h, see Fig. 5.2 (two plots in the left panel have fewer points because their
generalized eigenproblem broke down for the larger meshes). The performance with
respect to the polynomial degree p degenerates in case of maximal regularity k “ p´1
for the primal choices V1 and VT with the minimal primal spaces with NV

c “ 1, but a
good performance can be recovered by the minimal coarse space using richer primal
spaces with NV

c ą 1. We do not consider richer primal choices for Vpar and Vmix

since the minimal coarse space for each fat vertex already yields a good performance
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h = 1/8 h = 1/16 h = 1/32 h = 1/64 h = 1/128
K cond nit cond nit cond nit cond nit cond nit

2 ˆ 2 1.44 7 1.97 7 2.65 8 3.46 8 4.37 8
4 ˆ 4 5.09 13 4.65 13 5.31 14 5.99 15
8 ˆ 8 6.20 17 5.34 15 6.00 16
16 ˆ 16 6.66 18 5.73 16
32 ˆ 32 6.83 18

a)

k “ p ´ 1 k “ 2 k “ 1
p cond nit cond nit cond nit
2 2.91 11 n/a 2.91 11
3 5.31 14 5.31 14 2.80 11
4 41.17 24 4.85 21 2.88 11
5 1598.65 67 4.77 14 3.00 11
6 * 4.93 15 3.13 11
7 * 5.16 16 3.27 12
8 * 5.67 17 3.40 12
9 * * 3.53 13
10 * * 3.71 13

b)
Table 5.2

BDDC deluxe preconditioner with the minimal VE1 coarse space for a quarter-ring domain:
condition number cond and iteration counts nit as functions of: a) the number of subdomains K
and mesh size h for fixed p “ 3, k “ 2; b) the polynomial degree p for fixed K “ 4 ˆ 4, H{h “ 16 (*
means that the generalized eigenproblem VE1 breaks down)

in p independently of the regularity k. Some tests marked by ˚ in the following
tables could not be run since the MATLAB generalized eigensolver breaks down due
to the extreme ill-conditioning of the Schur complement involved, returning spurious
complex eigenvalues and eigenvectors.

Minimal V1 primal space (NV
c “ 1). Table 5.1 reports on the BDDC condition

numbers and iteration counts with the minimal V1 primal space using only one primal
constraint for each fat vertex (NV

c “ 1) for a quarter-ring domain. Table 5.1 a) shows
the results varying the number of subdomains K and the fine mesh size h for fixed
p “ 3, k “ 2. Moving along the diagonal of the table, the subdomain to element mesh
size ratio H{h remains constant and we see that this primal choice is scalable for an
increasing number of subdomains K and is quasi-optimal with respect to the ratio
H{h. We have also plotted the condition numbers in Fig. 5.2 for greater clarity. Table
5.1 b) reports the BDDC condition numbers and iteration counts for an increasing
polynomial degree up to p “ 10 for low regularity k “ 1 (right column), k “ 2 (middle
column) and maximal regularity k “ p´1 (left column) for fixed K “ 4ˆ4, H{h “ 16.
We see that the minimal V1 primal space performs well for k “ 1 and 2 but very poorly
for k “ p ´ 1, since the condition numbers seem to grow exponentially in p and the
generalized eigenproblem V1 breaks down for p ě 6.

Minimal V E1 primal space (NV
c “ 1, NE

c “ 1). Table 5.2 reports analogous
tests for the minimal VE1 primal space where edge primal constraints are added to the
vertex ones (NV

c “ 1, NE
c “ 1). In Table 5.2 a), we now consider only the classical

p “ 3, k “ 2 case. As expected, adding the edge constraints to the primal space
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NV
c “ 1 NV

c “ 4
K cond nit cond nit

2 ˆ 2 1.81 7 1.66 8
4 ˆ 4 12.74 14 6.74 13
8 ˆ 8 14.74 24 7.48 18
16 ˆ 16 15.67 26 7.78 18
32 ˆ 32 16.13 24 7.87 17

NV
c “ 1 NV

c “ 4
H{h cond nit cond nit

4 8.75 12 4.84 12
8 12.74 14 6.74 13
16 17.40 17 8.91 14
32 22.31 18 11.16 15
64 27.49 20 13.50 17

a) b)

NV
c “ 1

p cond nit cond nit NV
c

2 6.09 13 3.55 11 3
3 17.40 17 5.34 14 5
4 230.9 21 5.74 15 8
5 7545.9 39 12.25 18 10
6 * 73.08 31 12

c)
Table 5.3

BDDC deluxe preconditioner with an adaptive choice of the V1 coarse space on a square domain,
with NV

c selected primal constraints for each fat vertex. Condition number cond and iteration counts
nit as functions of: a) the number of subdomains K for fixed p “ 3, k “ 2, H{h “ 8; b) the ratio
H{h for fixed p “ 3, k “ 2,K “ 4 ˆ 4; c) the polynomial degree p for fixed K “ 4 ˆ 4, H{h “ 16,
k “ p ´ 1 (* means that the generalized eigenproblem V1 breaks down ).

improve all the results (see the corresponding results of the previous Table 5.1). The
method remains scalable in K, quasi-optimal in H{h and performs well for increasing
p and low regularity k “ 1 and 2, but still degenerates for increasing p for k “ p ´ 1.

Adaptive V1 primal space. In Table 5.3, we then study the adaptive primal
space V1 on a square domain to see the effect of adding more vertex primal constraint
in addition to the minimal choice of just one. We consider both the minimal choice
of NV

c “ 1 primal vertex constraint and a richer choice of NV
c “ 4 primal vertex

constraints for each subdomain vertex. In case of increasing polynomial degree p, we
also consider lower threshold θ “ 10{11 that leads to a richer choice of approximately
NV

c “ 2p primal constraints for each subdomain vertex. The results in a) show that
this BDDC deluxe preconditioner is scalable, since cond and nit appear to be bounded
from above by a constant independent of K, and the results in b) indicate that the
preconditioner is quasi-optimal, since cond and nit appear to grow polylogarithmically
in H{h. The results in c) confirm that the minimal choice NV

c “ 1 does not perform
well for an increasing p, while with the richer choice with increasing number of vertex
primal variables, we observe only a mild performance degradation for p ď 6.

Minimal Vpar primal space. Table 5.4 shows that the results improve con-
siderably with the minimal Vpar primal space for a quarter-ring domain. Again we
observe scalability and quasi-optimality in Table 5.4 a) (see also Fig. 5.2) and a good
performance in p in Table 5.4 b) even in case of maximal regularity k “ p ´ 1 up to
p “ 8. Note that in case of maximal regularity for p ě 7 the AEIG change of basis
breaks down, while the QR change of basis allow us to reach convergence.

Minimal and adaptive VT primal space. The results of Table 5.5 show that
the minimal VT primal space for a quarter-ring domain is still scalable in K and quasi-
optimal in H{h (Table 5.5 a) and Fig. 5.2) but with slightly larger condition numbers
and iteration counts than the previous primal choices. The performance in p in Table
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h = 1/8 h = 1/16 h = 1/32 h = 1/64 h = 1/128
K cond nit cond nit cond nit cond nit cond nit

2 ˆ 2 1.45 7 1.61 7 1.94 7 2.31 8 2.71 8
4 ˆ 4 3.24 11 4.19 12 5.20 13 6.32 13
8 ˆ 8 4.07 13 5.36 12 6.77 17
16 ˆ 16 4.67 15 6.21 16
32 ˆ 32 *5.01 15

a)

k “ p ´ 1 k “ 2 k “ 1
p cond nit cond nit cond nit
2 5.54 13 n/a 5.54 13
3 5.20 13 5.20 13 6.01 13
4 6.02 14 5.54 13 6.47 13
5 5.77 14 5.96 14 6.89 14
6 6.35 16 6.39 14 7.27 14
7 *6.32 16 6.86 16 7.62 15
8 *9.34 21 7.36 17 7.93 15
9 *21.6 31 8.04 20 8.23 16
10 *53.7 61 9.26 22 8.50 17

b)
Table 5.4

BDDC deluxe preconditioner with the minimal Vpar coarse space for a quarter-ring domain:
condition number cond and iteration counts nit as functions of a) the number of subdomains K and
mesh size h for fixed p “ 3, k “ 2; b) the polynomial degree p, for fixed K “ 4 ˆ 4, H{h “ 16 (*
means that the change of basis is performed by the QR approach)

5.5 b) for maximal regularity k “ p ´ 1 using only the minimal VT primal space (left
columns) degenerates again with increasing p as for the minimal V1 and VE1 primal
spaces, with an analogous break down for p “ 6, but a good performance can be
recovered for low regularity k “ 2 and 1 (middle columns). A good performance can
also be recovered in the maximal regularity case k “ p ´ 1 by adaptively increasing
the number NV

c of vertex primal constraints to about 70% of the total number, p2,
of possible vertex constraints for each fat vertex (last columns).

Minimal Vmix primal space. Table 5.6 shows that the minimal Vmix pri-
mal space for a quarter-ring domain yields the best performance among the choices
of primal constraints considered. Indeed, Table 5.6 a) shows scalability and quasi-
optimality with quite small condition numbers and iteration counts, see also Fig. 5.2.
Table 5.6 b) reports much better results than the previous coarse space choices for
increasing p, even in case of maximal regularity k “ p ´ 1 (left column) up to p “ 8,
with the eigenproblem breakdown occurring only for p ě 9.

Robustness with respect to jumping coefficients. We also study the ro-
bustness of the BDDC deluxe preconditioner with respect to jumps discontinuities of
the coefficient of the elliptic problem ρ. Due to space limitation, we only report the
results for the minimal VT and Vpar primal choices and three different classical tests,
that we call ”central jump”, ”checkerboard” and ”random mix”, for a 2D quarter-
ring domain decomposed into 4 ˆ 4 subdomains; cf. also [7]. In the central jump
test (see Fig. 5.1 panel a), the coefficient ρ varies by 8 orders of magnitude (from
10´4 to 104) in the 2 ˆ 2 central subdomains, while it equals 1 in the surrounding
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h = 1/8 h = 1/16 h = 1/32 h = 1/64 h = 1/128
K cond nit cond nit cond nit cond nit cond nit

2 ˆ 2 1.45 7 2.15 7 3.05 8 4.12 8 5.36 8
4 ˆ 4 12.49 14 16.18 16 19.74 17 23.32 17
8 ˆ 8 18.17 24 21.81 26 26.39 28

16 ˆ 16 22.83 30 26.09 31
32 ˆ 32 *

a)

NV
c “ 1 adaptive NV

c

k “ p ´ 1 k “ 2 k “ 1 k “ p ´ 1
p cond nit cond nit cond nit cond nit NV

c

2 5.53 13 n/a 5.53 13 4.33 12 3
3 19.74 17 19.74 17 6.00 13 9.09 15 5
4 499.95 24 20.92 16 6.46 13 10.62 14 10
5 1.65e+4 31 23.03 19 6.89 14 10.62 15 15
6 * 25.57 18 7.27 14 9.39 17 25
7 * 28.50 21 7.61 15 21.95 20 34
8 * 31.48 22 7.93 15 *

b)
Table 5.5

BDDC deluxe preconditioner with the minimal and adaptive choice of VT coarse space for a
quarter-ring domain, with NV

c primal constraints for each fat vertex. Condition number cond and
iteration counts nit as functions of: a) the number of subdomains K and mesh size h for fixed
p “ 3, k “ 2 and the minimal NV

c “ 1; b) the polynomial degree p for fixed K “ 4ˆ4, H{h “ 16 and
both the minimal and adaptive of NV

c (* means that the generalized eigenproblem VT breaks down)

subdomains. In the checkerboard test (see Fig. 5.1 panel b), ρ is 104 or 10´4 in the
white subdomains and 1 in the black subdomains. In the random mix test, ρ has
random values varying by 8 orders of magnitude between the different subdomains.
We fix h “ 1{64, H{h “ 16, and we test different splines spaces: p “ 2, k “ 1;
p “ 3, k “ 1; p “ 3, k “ 2. Tables 5.7 and 5.8 report the condition number of the
preconditioned system and the conjugate gradient iteration counts. The results show
clearly the robustness of BDDC, for both choices of primal spaces.

5.2. 3D results. In Table 5.9, we report results of parallel numerical experi-
ments on a 3D NURBS domain shown in Fig. 5.1, panel c) and using the PCBDDC
PETSc objects, see [40], to implement BDDC deluxe with the VEFpar coarse space,
i.e. with primal constraints for vertices (V), edges (E), and faces (F). We study only
this primal choice because Vpar was the algorithm attaining the best performance in
our 2D results. Let us denote by Nc the maximum number of constraints among all
equivalence classes, i.e. Nc “ maxpNV

c , NE
c , NF

c q. The coarse space is minimal, i.e.
Nc “ 1, for the scalability test in panel b) and the quasi-optimality test in panel
c), while it is both minimal and adaptive, i.e. Nc ě 1 in panel d). The number of
processors used in each test equals the number of subdomains K. The scalability
test b) shows that condition numbers and iteration counts are bounded from above
when the number of subdomains K is increased for fixed p “ 3, k “ 2,H{h “ 6. The
results of the quasi-optimality test c) are less clear, initially showing almost constant
condition numbers and iteration counts for 6 ď H{h ď 9 and then a modest growth
up to H{h “ 12 (the other parameters are fixed at p “ 3, k “ 2, K “ 4ˆ4ˆ4). The
last test d) for increasing polynomial degree p (and fixed K “ 4 ˆ 4 ˆ 4, H{h “ 8,
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h = 1/8 h = 1/16 h = 1/32 h = 1/64 h = 1/128
K cond nit cond nit cond nit cond nit cond nit

2 ˆ 2 1.63 7 1.99 7 2.37 8 2.77 8 3.20 8
4 ˆ 4 4.43 12 5.43 13 6.53 14 7.74 15
8 ˆ 8 5.54 15 6.91 17 8.33 18
16 ˆ 16 6.34 17 7.99 19
32 ˆ 32 6.84 17

a)

k “ p ´ 1 k “ 2 k “ 1
p cond nit cond nit cond nit
2 5.39 13 n/a 5.39 13
3 5.43 13 5.43 13 6.01 13
4 5.91 13 5.76 13 6.47 13
5 6.13 14 6.41 14 6.89 14
6 6.27 14 7.20 14 7.27 14
7 7.29 18 7.33 16 7.62 15
8 9.33 24 7.36 17 11.41 16
9 * 8.33 20 8.23 16
10 * 9.47 22 8.50 17

b)
Table 5.6

BDDC deluxe preconditioner with the minimal Vmix coarse space for a quarter-ring domain:
condition number cond and iteration counts nit as functions of a) the number of subdomains K and
mesh size h for fixed p “ 3, k “ 2; b) the polynomial degree p, for fixed K “ 4 ˆ 4, H{h “ 16 (*
means that the generalized eigenproblem Vmix breaks down)

k “ p ´ 1) shows, besides an unexpected decrease of the condition numbers when
increasing p from 2 to 3, a more than linear growth for p ě 3 with the minimal choice
Nc “ 1. This growth can be considerably improved by adaptively increasing Nc ě 1
as shown in the table.

6. Conclusions. We have developed several algorithms for the adaptive selec-
tion of primal constraints in BDDC deluxe preconditioners applied to isogeometric
discretizations of scalar elliptic problems. These new algorithms allow us to signif-
icantly reduce the coarse space dimensions compared with those of previously de-
veloped BDDC isogeometric preconditioners. For one of the proposed algorithms,
the VT choice, we have derived a theoretical estimate implying the quasi-optimality
and scalability of the associated BDDC preconditioner. Two- and three-dimensional
numerical tests demonstrate the quasi-optimality, scalability, and robustness of our
algorithms with respect to the spline polynomial degree and the presence of discon-
tinuous elliptic coefficients. The numerical results have shown that the most effective
primal spaces for our deluxe BDDC algorithms are Vpar and Vmix, particularly for
isogeometric discretizations with high polynomial degree and regularity. In future
work, we plan to study how to extend these adaptive primal spaces to isogeometric
discretizations of the linear elasticity system.
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VT coarse space

ρ p “ 2, k “ 1 p “ 3, k “ 1 p “ 3, k “ 2
cond nit cond nit cond nit

central jump test
1e ` 4 6.26 12 6.42 13 30.76 14
1e ` 2 6.37 13 6.55 13 33.53 16
1e ` 0 5.53 13 6.00 13 19.74 17
1e ´ 2 8.70 13 8.90 12 48.24 16
1e ´ 4 9.10 14 9.23 14 47.56 16

checkerboard test
1e ` 4 8.41 14 7.87 13 40.99 17
1e ´ 4 8.61 13 8.25 13 44.97 18

random mix test
3.17 10 3.15 11 13.85 14

Table 5.7
Robustness with respect to jumping coefficients: central jump, checkerboard and random mix

tests for BDDC deluxe preconditioner with the minimal VT coarse space for a quarter-ring domain.
The reported quantities are the condition number cond of the preconditioned system and the conjugate
gradient iteration counts nit. The spline spaces considered are: p “ 2, k “ 1; p “ 3, k “ 1;
p “ 3, k “ 2. Fixed mesh size h “ 1{64, number of subdomains K “ 4 ˆ 4, subdomain size
H{h “ 16.

Vpar coarse space

ρ p “ 2, k “ 1 p “ 3, k “ 1 p “ 3, k “ 2
cond nit cond nit cond nit

central jump test
1e ` 4 10.63 12 11.40 12 16.38 13
1e ` 2 10.31 13 11.06 13 14.56 13
1e ` 0 5.54 13 6.01 13 5.20 13
1e ´ 2 4.82 14 4.89 14 7.03 15
1e ´ 4 4.90 15 4.94 14 7.54 16

checkerboard test
1e ` 4 7.75 13 8.35 14 33.59 15
1e ´ 4 7.08 13 7.60 14 27.75 16

random mix test
5.28 12 5.65 13 22.19 17

Table 5.8
Robustness with respect to jumping coefficients: central jump, checkerboard and random mix

tests for BDDC deluxe preconditioner with the minimal Vpar coarse space in a quarter-ring domain.
Same format as in Table 5.7.

REFERENCES

[1] W.N. Anderson, Jr. and R.J. Duffin. Series and parallel addition of matrices. J. Math. Anal.
Appl. 26, 576–594, 1969.

[2] S. Balay, S. Abhyankar, M.F. Adams, J. Brown, P. Brune, K. Buschelman, L. Dalcin, V.
Eijkhout, W.D. Gropp, D. Kaushik, M.G. Knepley, L. Curfman McInnes, K. Rupp, B.F.
Smith, S. Zampini, and H. Zhang. PETSc Web page, url = http://www.mcs.anl.gov/petsc,
2015.

[3] L. Beirão da Veiga, A. Buffa, G. Sangalli and R. Vazquez. Mathematical analysis of variational
isogeometric methods. ACTA Numerica, vol. 23, 157–287, 2014.



Adaptive Isogeometric BDDC Deluxe 19

K cond nit
2 ˆ 2 ˆ 2 2.2 8
3 ˆ 3 ˆ 3 10.1 16
4 ˆ 4 ˆ 4 13.4 22
5 ˆ 5 ˆ 5 15.4 24
6 ˆ 6 ˆ 6 16.8 25
7 ˆ 7 ˆ 7 17.8 26
8 ˆ 8 ˆ 8 18.5 26
9 ˆ 9 ˆ 9 19.8 27

10 ˆ 10 ˆ 10 19.6 27

H{h cond nit
6 13.4 22
7 12.8 21
8 12.8 21
9 12.9 21
10 13.1 21
11 13.3 22
12 13.6 22

b) c)

minimal adaptive
p cond nit Nc cond nit Nc cond nit Nc

2 31.9 25 1 31.8 24 1 17.4 19 2
3 12.8 21 1 12.8 21 1 11.5 20 2
4 19.2 23 1 14.7 22 4 14.2 21 16
5 44.1 32 1 21.0 26 18 15.3 22 40

d)
Table 5.9

BDDC deluxe preconditioner with VEFpar coarse space on a 3D NURB domain shown in panel
a). Parallel tests with # processors = number of subdomains K. Condition number cond and
iteration counts nit as functions of: b) the number of subdomains K for fixed p “ 3, k “ 2, H{h “ 6;
c) the ratio H{h for fixed p “ 3, k “ 2,K “ 4 ˆ 4 ˆ 4; d) the polynomial degree p for fixed
K “ 4ˆ4ˆ4, H{h “ 8, k “ p´1, with both the minimal and adaptive choices of primal constraints
(Nc “ maxpNV

c , NE
c , NF

c q is the maximum number of primal constraints for each equivalence class).

[4] L. Beirão da Veiga, D. Cho, L.F. Pavarino, and S. Scacchi. Overlapping Schwarz methods for
Isogeometric Analysis. SIAM J. Numer. Anal., 50 (3), 1394-1416, 2012.

[5] L. Beirão da Veiga, D. Cho, L.F. Pavarino, and S. Scacchi. BDDC preconditioners for Isogeo-
metric Analysis. Math. Mod. Meth. Appl. Sci. 23 (6): 1099–1142, 2013.

[6] L. Beirão da Veiga, D. Cho, L.F. Pavarino, and S. Scacchi. Isogeometric Schwarz precon-
ditioners for linear elasticity systems. Comp. Meth. Appl. Mech. Engrg., 253: 439–454,
2013.

[7] L. Beirão da Veiga, L.F. Pavarino, S. Scacchi, O.B. Widlund, and S. Zampini. Isogeometric
BDDC preconditioners with deluxe scaling. SIAM J. Sci. Comp. 36 (3): A1118–A1139,
2014.

[8] L. Beirão da Veiga, L.F. Pavarino, S. Scacchi, O.B. Widlund, and S. Zampini. BDDC deluxe for
Isogeometric Analysis., in Domain Decomp. Meth. Sci. Engrg. XXII, Lugano, Switzerland,
Springer LNCSE, 2016, to appear.

[9] S.C. Brenner and L.-Y. Sung. BDDC and FETI-DP without matrices or vectors. Comp. Meth.
Appl. Mech. Engrg., 196: 1429–1435, 2007.

[10] J.G. Calvo and O.B. Widlund. An adaptive choice of primal constraints for BDDC domain
decomposition algorithms. TR2105-979 Courant Institute, NYU, 2015. In preparation.

[11] N. Collier, L. Dalcin, D. Pardo, and V.M. Calo. The Cost of Continuity: Performance of
Iterative Solvers on Isogeometric Finite Elements. SIAM J. Sci. Comp., 35(2): A767–
A784, 2013.

[12] J.A. Cottrell, T.J.R. Hughes, and Y. Bazilevs. Isogeometric Analysis. Towards integration of
CAD and FEA. Wiley, 2009.

[13] C. De Falco, A. Reali, and R. Vazquez. GeoPDEs: a research tool for Isogeometric Analysis
of PDEs. Advan. Engrg. Softw., 42 (12): 1020-1034, 2011.

[14] C.R. Dohrmann. A Preconditioner for substructuring based on constrained energy minimiza-
tion. SIAM J. Sci. Comput., 25: 246–258, 2003.

[15] C.R. Dohrmann and C. Pechstein. Constraints and weight selection algorithms for BDDC,
Talk by Dohrmann at Domain Decomp. Meth. Sci. Engrg. XXI, Rennes, France, 2012.

[16] C.R. Dohrmann and O.B. Widlund. Some Recent Tools and a BDDC Algorithm for 3D Prob-
lems in H(curl). Proceedings of the 20th Int. Conf. on Domain Decomposition Methods.



20 L. Beirão da Veiga, L. F. Pavarino, S. Scacchi, O. B. Widlund, S. Zampini

Held in San Diego, CA, February 7-11, 2011. Springer LNCSE, 91:15–26, 2013.
[17] C.R. Dohrmann and O.B. Widlund. A BDDC Algorithm with deluxe scaling for three-

dimensional H(curl) problems. Comm. Pure Appl. Math., 2015. Appeared electronically
in April 2015.

[18] C. Farhat, M. Lesoinne, P. LeTallec, K. Pierson, and D. Rixen, FETI-DP: a dual-primal unified
FETI method – part I. A faster alternative to the two-level FETI method, Internat. J.
Numer. Meth. Engrg., 50: 1523–1544, 2001.

[19] K. Gahalaut, J. Kraus, and S. Tomar. Multigrid Methods for Isogeometric Discretization.
Comp. Meth. Appl. Mech. Engrg., 253: 413–425, 2013.

[20] K. Gahalaut, S.K. Tomar, C.C. Douglas. Condition number estimates for matrices arising
in NURBS based isogeometric discretizations of elliptic partial differential equations.
arXiv:1406.6808 [math.NA], 2014.

[21] T.J.R. Hughes, J.A. Cottrell, and Y. Bazilevs. Isogeometric analysis: CAD, finite elements,
NURBS, exact geometry, and mesh refinement. Comp. Meth. Appl. Mech. Engrg., 194:
4135–4195, 2005.

[22] H.H. Kim and E.T. Chung. A BDDC algorithm with optimally enriched coarse space for two-
dimensional elliptic problems with oscillatory and high contrast coefficients. Multiscale
Model. Simul., 13(2), 571–593, 2015.

[23] H.H. Kim, E.T. Chung, and J. Wang. BDDC and FETI-DP Algorithms with Adaptive Coarse
Spaces for Three-Dimensional Elliptic Problems with Oscillatory and High Contrast Co-
efficients, Submitted, August, 2015.

[24] A. Klawonn, M. Khn, and O. Rheinbach. Adaptive Coarse Spaces for FETI–DP in Three Di-
mensions. Technical report 2015-11, Mathematik und Informatik, Bergakademie Freiberg.

[25] A. Klawonn, M. Lanser, P. Radtke, and O. Rheinbach. On an adaptive coarse space and on
nonlinear domain decomposition. In Domain Decomp. Meth. Sci. Engrg. XXI, Rennes,
France, 2012. Springer LNCSE, vol. 98, 71–83, 2014.

[26] A. Klawonn, P. Radtke, and O. Rheinbach. FETI–DP methods with an adaptive coarse space.
SIAM J. Numer. Anal., 53(1), 297–320, 2015.

[27] A. Klawonn, P. Radtke, and O. Rheinbach. FETI–DP with different scalings for adaptive
coarse spaces. Proc. Appl. Math. Mech., 14(1), 835–836, 2014.

[28] A. Klawonn, P. Radtke, and O. Rheinbach. A comparison of adaptive coarse spaces for iterative
substructuring in two dimensions. Technical report 2015-05, Mathematik und Informatik,
Bergakademie Freiberg. Submitted for publication, 2015.

[29] A. Klawonn, O.B. Widlund, and M. Dryja. Dual-Primal FETI Methods for Three-Dimensional
Elliptic Problems with Heterogeneous Coefficients. SIAM J. Numer. Anal., 40(1), 159–
179, 2002.
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