OVERLAPPING SCHWARZ METHODS FOR MAXWELL’S
EQUATIONS IN THREE DIMENSIONS

ANDREA TOSELLI *

Abstract. Two-level overlapping Schwarz methods are considered for finite element problems
of 3D Maxwell’s equations. Nédélec elements built on tetrahedra and hexahedra are considered.
Once the relative overlap is fixed, the condition number of the additive Schwarz method is bounded,
independently of the diameter of the triangulation and the number of subregions. A similar result is
obtained for a multiplicative method. These bounds are obtained for quasi-uniform triangulations.
In addition, for the Dirichlet problem, the convexity of the domain has to be assumed. Our work
generalizes well-known results for conforming finite elements for second order elliptic scalar equations.

1. Introduction. When time-dependent Maxwell’s equations are considered, the
electric field u satisfies the following equation

0’u du oJ .
(1) cu1lcu1lu+p6w+/ﬂ7§ =—Hg in Q,

where J(x, 1) is the current density and €, u, o describe the electromagnetic properties
of the medium. For their meaning and for a general discussion of Maxwell’s equations,
see [4]. Here Q is a bounded domain, with boundary T and outside normal n. A
similar equation holds for the magnetic field. For a perfect conducting boundary, the
electric field satisfies the natural boundary condition

(2) u X n|r =0.

For the analysis and solution of Maxwell’s equations suitable Sobolev spaces must
be introduced. f Q c R*is a bounded, open, connected set with Lipschitz continuous
boundary T, the space H(curl, Q), of square integrable vectors, with square integrable
curls, 1s a Hilbert space with the scalar product

(3) a(u,v) = (curlu, curlv) + (u,v).

Here, (-, -) denotes the scalar product in L%(Q2) (or L?(Q)3); we will use || -|| to denote
the corresponding norm. For the properties of H(curl, ), see [6]. In particular, we
recall that if T' is Lipschitz continuous, then for every function u € H(curl, Q) it is
possible to define a tangential trace over ['; u X n, as an element of H~ 3 (T')3 and that
the functions of H(curl, Q) with vanishing tangential trace form a proper subspace
of H(curl, ), denoted by Hg(curl, Q). Additional properties will be mentioned in
the next section. The bilinear form a(-, ) is related to the differential operator I =
I+ curlcurl.

Variational problems involving the bilinear form a(-, -), arise, for instance, when
equation (1) is discretized with an implicit finite difference time scheme. For the
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spatial approximation of (1), Nédélec spaces can be employed; see [11], [12]: only the
continuity of the tangential component across the faces of the triangulation is ensured.
See [17], [15], [16], for the finite element approximation of time-dependent Maxwell’s
equations; and [18], for a discussion of approximations of hyperbolic equations.

When an implicit FD scheme is employed and a finite element space V' C Hg(curl, )
is introduced, equation (1) can be approximated by:

Find u € V such that

(4) ay(u,v) = (u,v) + g(curlu, curlv) = (f,v), Vv eV,

at each time step; 7 is a positive quantity that vanishes when the time step At tends
to zero and f depends on the solution at the previous steps, as well as on the right
hand side of (1).

In the last few years, a considerable effort has been devoted to the study of Schwarz
methods for the solution of linear systems arising from non-conforming finite element
problems; see [2], [9], [8], [10], [14], [20]. Our analysis of overlapping methods has been
inspired by [2], where a Schwarz method for non-conforming finite element problem in
2D is studied; their result is valid for 2D Maxwell’s equations; see [20]. In addition,
we will also use the technical tools and the analysis originally developed in [8], where
a multigrid method 1is studied for a divergence-conforming finite element problem in
3D. In particular, we will prove a regularity property that will enable us to extend the
tools in [8] and [10] to a general convex polyhedron.

We will only consider the bilinear form a(-, -) for n = 1. In addition, we will first
consider a(-,-) defined on Hg(curl, Q) (Dirichlet problem); the extension to the whole
space H(curl,Q) (Neumann problem) will be then carried out. In the following, the
capital letter C', possibly with a subscript, will be used for a positive constant that is
bounded away from co.

Let us introduce the operator

J
(5) T=)T;:V—YV,

7=0

where Ty and {T]}j:1 are operators defined on a coarse finite element space and on
spaces related to subdomains {Qg}, respectively. When using a two-level Schwarz
additive algorithm, one solves the equation

(6) Tu=g,

with the conjugate gradient method, without any further preconditioner, employing
a(-,-) as the inner product and a suitable right hand side g ([5],[19]). We will prove
that

(7) C’l_la(u,u) <a(Tu,u) < Cya(u,u), Yuev,

where the constants C; and C5 are independent of the mesh size A and the number of
subregions, and depend only on the overlap. The condition number of the operator T
is thus bounded uniformly with respect to h.

Tterative two-level multiplicative schemes can also be designed (see [5],[19]). The
error e, at the n-th step satisfies the equation

(8) ent1=Fe, =T —-Ty) --(I-Ty)en, Yn > 0.
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An upper bound for the norm of £ will follow directly from Schwarz theory. Differ-
ent choices of multiplicative operators are also possible; see [19] for a more detailed
discussion.

We end this section by remarking that the bounds in formula (7) allow us to build
some optimal block-diagonal preconditioners for mixed problems: the general theory
for such preconditioners is developed in [14]. Magnetostatic or electrostatic problems
are generally reformulated in a mixed form ([13],[9]). Equations for vector potentials
also give rise to mixed problems ([1],[8]) and for time-dependent Maxwell’s equations,
it is often convenient to consider a mixed formulation ([17]).

In Section 2, we will state some properties of the space H(curl,Q) and prove an
embedding theorem that we will need for the proof of (7), while in Section 3 we will
describe the Nédélec finite element space V' and introduce some operators. Section 4
is devoted to the description of the Schwarz methods.

2. Sobolev spaces and regularity results. In this section, we will describe
some results on the space H (curl, ); as a general reference for this section, see [6] and
[4]. In addition we will need the space H(div, (), that consists of square integrable
vector functions, with square integrable divergence. In H(div, ), it is possible to
define a normal trace on the boundary I' of 2, as an element of H~ 3 (T). The subspace
of functions of H(div, ), with vanishing normal trace is denoted by Hg(div, £2).

In the following, the domain 2 C R? will be a bounded, convex, open polyhedron.
We will assume that its boundary consists of a finite number of plane surfaces. Thus
Q 1s simply connected, and its boundary is connected and Lipschitz continuous.

An orthogonal decomposition of L?(Q)?, valid in a general Lipschitz domain, holds

(9) Ho(curl, Q) = grad H (Q) @ Hy"(curl, Q),
where

(10) Hi (curl, Q) = H(divg, Q) N Ho(curl, ),
with

(11) H(divg, Q) = {u € H(div, Q)| diva = 0} ;

see [4, Proposition 1, p. 215, vol. 3]. As usual, H!(f) is the Sobolev space of functions
that are square integrable, together with their first derivatives, and H () its subspace,
consisting of functions that vanish on the boundary. Relation (9) is equivalent to

(12) HOL(curl, Q)= {u € Hy(curl, Q)| (u,gradq) =0, Vq € Hé(Q)} ;

this implies that the space grad H( () is a closed subspace of Hg(curl, Q) and that its
orthogonal complement is the space of functions in Hg(curl, ) with zero divergence.

Since Q is simply connected and its boundary is connected, the kernel of the curl
operator defined on Hg(curl, Q) is grad H} (Q) (see [4, Proposition 2, p. 219, vol. 3])
and the following inequality holds:

(13) [lu]| < C||curlu||, Yu € Hd‘(curl,Q).

C is a given constant. In particular, inequality (13) implies that the L?-norm of the
curl is an equivalent norm in Hg (curl, Q). We will use this property extensively.
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The main result of this section, Theorem 2.3, is an embedding theorem for
Hg (curl, Q) and some subspaces of functions with more regular curls. We start by
stating a regularity result for the Dirichlet problem for the Laplace operator that is
proved in [3, Corollary 18.18]. In the following, we will denote the largest angle be-
tween the faces of the given polyhedron €, by w.

LEMMA 2.1. Giwen a bounded, open, convezx, polyhedron Q C R® and a real
number s # —%, such that

3 7
14 1 - ——1
(14) 3<m1n{2,w },

then the Laplace operator A defines an isomorphism:

(15) A HPAH Q)N H (Q) +— H*(Q).

REMARK 2.1. Since, for every fized bounded, convez, polyhedron the mazimum
angle w 1s strictly smaller than w, Lemma 2.1 implies that there exists a real number
sq > 0, such that the mapping (15) is an isomorphism, for any s € [0,sq). The
exponent sq can always be chosen to be less than 1/2.

Our second lemma ensures the existence of a vector potential for solenoidal func-
tions; for a proof see [6, Theorem 3.4, Corollary 3.3 and Remark 3.12].

LEMMA 2.2. Let Q C R be a bounded, Lipschitz region, with a connected bound-
ary, and let s € [0,1]. A function u € H*(Q)? satisfies

divu = 0,
if and only if there exists a v € H'T*(Q)3, such that

(16) u = curlv,

(17) divv = 0.

We are now ready to prove an embedding theorem.

THEOREM 2.3. Guen a bounded, open, convez, polyhedron Q@ C RS, then there
erists a real number sq € (0,1/2), such that, for every t € [0,sq), the space of
functions w € H (curl, Q), satisfying the conditions

(18) w xn|r =0,
(19) divw =0in Q ,
(20) curlw € H'(Q)?,

is continuously embedded in H'T*(Q)3.

Proof. The argument is the same as in the proof of similar embedding theorems:
see [1, Proposition 3.7]. It employs the existence and regularity of the vector potential
of Lemma 2.2 and the regularity result for the Laplace operator given in Lemma 2.1.

Let sq € (0,1/2) be the exponent of Remark 2.1 and let ¢ € [0,sq). Given
w € Hy(curl, Q), satisfying (18), (19), (20), define

u=curlwe Ht(Q)S.
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Let O be an open ball that contains Q and let @ be the extension by zero of u to O\Q:
1 belongs to H'(O)3, as t < 1/2. Since, by Stokes’ theorem, the normal component
of u on T is zero, therefore u belongs to H(div, @), and diva = 0in O.

The vector u satisfies the hypothesis of Lemma 2.2. There exists a vector v €
H*(0)3, satisfying

u = curlv,

divv = 0.

Consider now the vector v in O\£: since Q C R? is simply connected, O\Q is
also simply connected. From

curlv=u=0in O\Q;

we deduce that there exists a function ¢ € H*+*(0\Q), such that v = grad ¢ in O\Q.
Define now y by

(21) Ay =0inQ,
(22) xIr = qr.

Then the vector grad y has zero divergence and curl in Q, and satisfies the boundary
conditions

grady xn=gradg xn=v xn, on [}

It is easy to see that the vector (w — v 4+ grad x) has zero divergence and curl in Q
and has zero tangential trace on T'. By [6, Remark 3.9] it then follows that

w =v —grad y.

Consider now the Laplace problem given by (21), (22). For each face F of Q,
qlr € H%‘H(F) and the traces of ¢ match along the edges of €; for the definition of
trace spaces in polyhedral domains, see [7]. By Lemma 2.1, the solution of (21), (22)
belongs to H?**(Q2) and, finally, w belongs to H!*t*(Q). O

REMARK 2.2. Fort = 0, the result of Theorem 2.3 is well-known; see [6, Theorem
3.7]. The constraint t < sq < 1/2 is necessary for the extension by zero of curlw
to be in H'(Q). Theorem 2.3 is part of a more general embedding result that is
stated in [1, Remark 3.8], where some embedding results are linked to the regularity
of the Laplace problem. Observe that the H**' regularity of problem (21), (22), for
t > 0, s employed. The conclusion of Theorem 2.3 is false for a general non-convez
polyhedron.

3. Finite element spaces and projections. Let 7y be a triangulation of
the bounded, open, convex polyhedron (2, consisting of tetrahedra {Q;}7_,. H is
the maximum diameter of the triangulation. Let 7 be a refinement of Tp, with
characteristic diameter h < H. We suppose that Ty and 7T, are shape-regular and
quasit-uniform. The second property is required for the proof of Lemma 3.3.

We will consider the Nédélec spaces of the first kind, built on tetrahedra, which
were introduced in [11]; see also [6] and [8]. Other choices of finite element spaces
are also possible, see [12], as well as triangulations made of hexahedra and prisms,
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see [11], [12]. Given a tetrahedron K and an integer & > 1, we define the following
spaces:

(23) Ri(K) = {u+v; ue Py i(K)*, v € By(K)", v -x =0},

where Pk(l() is the space of homogeneous polynomials of degree k. Functions in
Ry (K) are uniquely defined by the following sets of degrees of freedom, see [6],

a

(24) my(u) = {/ u-tep, forall p e Pyr_q(a), for the six edges a of K} ,

and, for k > 1,

(25) ma(u) = {/ (uxmn)-p,
f
for all p € Px_o(F)?, for the four faces F of K} ,

and, additionally, for k > 2,

(26) ma(u) = {/K u-p, forallpe Pk_g(K)?’} .

Here t, denotes the unit vector in the direction of the edge a. Let us remark that they
involve integrals of the tangential components over the edges and the faces of each
tetrahedron. Tt can be proven that this finite element is conforming in H (curl, Q);
see [6]. Thus the following finite element spaces are well-defined:

(27) VE =V = {u € Hy(curl, Q); u|lx € Rp(K), VK € Tn},

(28) Vi =Vy = {u € Ho(curl, Q); u|x € R(K), YK € Trr} .

A nodal interpolation operator II§ = II can now be defined. The functionals in m; (u)
are not defined for all vectors in H'(f2), but it follows from Sobolev’s inequality that
they are well defined for u € H*(Q), for s > 1. We will employ the error estimates
proved in [8], that we summarize in the following lemma.

LEMMA 3.1. Let Ty be a shape-reqular triangulation. The following estimate
holds, for k > 2,

(29) [u—Tull, o <Ch* lull, o, Yae H*(Q), 1 <5 <2,

with a constant C' independent of u and h.
We will also need the usual spaces of continuous, piecewise polynomial functions,
contained in H'(Q), together with their gradients:
Sk =S={q€ H}(Q);qlx € Px(K), VK € Tn},
SE=5S0={q€ H:Q);q|x € Px(K), VK € Tt },
Z% = 7 = grad S,
Zg =7y = grad Sy.

30
31
32
33

(30)
(31)
(32)
(33)

The following lemma provides an orthogonal decomposition of V and a characteri-
zation of the kernel of the curl operator; for a proof see [6, Lemma 5.10 and Proposition
5.1].LEMMA 3.2. Suppose that Ty is shape-reqular. Then;
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a) ifu = gradq, with ¢ € H}(Q), and if Ifu is well defined, then there exists
a unique p € S*, i.e. a unique v € ZF, such that H’fbu =v =gradp;
b) let Z+ be the orthogonal complement of Z in V:

(34) ZJ"k:ZJ‘:{uEV|(u,gradq):0, VqESk}.
Then, if the mesh Ty, is quasi-uniform, the following inequality holds
(35) [u]| < Cl|curlul|, Yu € Z*+,

with a constant C' independent of u and h.
As a consequence of Lemma 3.2, the LZ-norm of the curl is an equivalent norm in
Z1. We will also need the orthogonal complement of Z; in Vj:

(36) Z;"k =7+ ={ue Vy| (u,gradq) =0, Vg € So} .

The decomposition given by Lemma 3.2 and inequality (35) are the discrete
analogs of (9), (12) and (13). But, while the following inclusions hold

Vo CV C Hg(curl, Q),
Zo C Z C grad Hy(Q),

the space Zg- is not contained in Z1, and neither of them is contained in Hy (curl, Q).
This fact, together with the regularity required by the interpolation operator, makes the
analysis of multilevel methods for H (curl, 2)-conforming elements particularly cum-
bersome. In order to obtain suitable projections onto Zi- and Zt, Hiptmair [8] has
introduced auxiliary subspaces, defined in the following way:

Let

© : Hg(curl, Q) — Hd‘ (curl, ),
be the orthogonal projection onto Hi (curl, Q). In particular, ©u is defined by
(37) ©Ou =u —grad ¢, Yu € Hy(curl, Q),
where ¢ € H}(Q) satisfies
(38) (grad g, grad p) = (u,gradp), Vp € Hy(Q).

It is readily seen that © preserves the curl and does not increase the L%-norm.
Define now 9o and ¥ as the restrictions of © to Z3& and Z1, respectively, and the
following spaces:

(39) Zy = 9(Zy) = 0(Zy ),

(40) 7t =9zt =0e(z1).

We note that we use different notations than those in [8]. The spaces Z; and Z7t are
finite dimensional. They are not finite element spaces, but the curls of these functions

are finite element functions. It can be proven that ZJ’ is contained in Z7T, and that
they are both contained in Hy (curl, Q); moreover the operators

(41) Vo Zy — Z7F,
(42) 9zt — 77T,
7



are isomorphisms. Their inverses satisfy the following L?-bounds.
LEMMA 3.3. Let k > 2 and suppose that the triangulations Tg and Ty, are shape
reqular and quasi-uniform. Then, there exists a constant C, depending only on k and

Q, such that

(43) VIl < C ([[9o(v)l| + H [|curlv])), Vv € Z3*,
(44) IVl < C ([9)]| + h[leurlv]]), ¥v € ZH*.

REMARK 3.1. Lemma 3.3 is the main result of this section. Its proof can be found
in [8, Lemma 5.15]. Lemma 2.3, the validity of which has been proven for a general
convex polyhedron, is applied to functions in Z; and 7%, and the error estimate in
Lemma 3.1 1s employed. A quasi-uniform mesh s required, since an inverse estimate
for the H®-norm of curlv s used.

We end this section, by introducing a projection onto the coarse space Z0+. We
recall that, it follows from (13), that the L?-norm of the curl is an equivalent norm in
Z0+. Define Py by

(45) Py Hy (curl, Q) — 7,
(46) (curl (Pyv), curlw) = (curlv, curlw) , Yw € 7.

The operator Py is well defined, by the Lax-Milgram lemma, and it does not increase
the LZ-norm of the curl.
Given a function v € Z1 | some important properties of the splitting

(47) v =Pyv+ (I — Py)v,

are given in the following lemma.
LEMMA 3.4. Let Q be a conver polyhedron and let v € Zt. Then,

(48) [|Pov]| < C H ||curl (Pyv)]|,
(49) I(1 = Po)v|| < C h [[eur] ((I — Po)v)||,

with C independent of h, H and v.
Proof. The proof can be found in [8, Lemma 5.19]. We remark that it requires a
regularity result that is only valid for a convex polyhedron. O

4. Overlapping methods. Given the two triangulations 7z and 7, of 2, defined
in Section 3, let us consider a covering of Q, say {Q:}7_,, such that each subregion
is the union of tetrahedra of 7 and contains ;. We will assume that the following
two properties hold.

ASSUMPTION 4.1.

a) There is a constant o > 0, such that dist(9Q},Q;) > aH;
b) for every point P € Q, P belongs to at most 3 subregions in {Q4}7_,.

Given the finite element spaces introduced in (27) and (28), we define for i =
1,--+,J, the subspaces V; C V, by setting the degrees of freedom outside €} to zero.

The space V' admits the decomposition V = Z;']:o Vi.

Let us now define the following operators for ¢ =0, -+, J:
(50) T V—V,
(51) a(Tiu,v)=a(u,v), Vv eV,
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where a(, -) is defined in (3). The additive and multiplicative Schwarz operators have
been introduced in Section 1, in (5) and (8). The three following fundamental lemmas
state the convergence properties of the additive and multiplicative algorithms. We
refer to [5], [19], and to the references contained therein for proofs and additional
comments.

LEMMA 4.1. Let T; and T be defined by (50), (51), and (5). If a representation,
u =) wu;, can be found, such that

(52) Za(ui,ui) < CZa(u,u),YueV,
then
(53) a(Tu,u) > C;? a(u,u), Yu € V.

LEMMA 4.2. Let || - ||o be the norm induced by a(-,-) and let £ = {e;;} be the
smallest constants for which

(54) la(ui, uj)| < eijlluilla ([wjlla, Vi € Vi, Va; € Vj, 4,5 2 1,
holds. Then,
(55) a(Tu,u) < C; a(u,u), Yu e V,

where C1 = (o(&) + 1), with o(&) the spectral radius of €.
LEMMA 4.3. Assume that Lemma 4.1 and 4.2 hold. Then,
a) the condition number k(T of the operator T of the additive Schwarz method

satisfies

(56) (T) < (e(€) +1)C3;

b) for the multiplicative Schwarz method, the error operator, E, satisfies

1
(57) 1E]la < \/1 G

The bound (57) can be improved by suitably rescaling the local problems.
We are now ready to prove our main results.

LEMMA 4.4. Inequality (55) holds with C; = (8 + 1), where (3 is defined in
Assumption 4.1.

Proof. The proof can be carried out in the same way as in [2, Theorem 4.1]. The
bound (55) is proved directly, without employing Lemma 4.2. O

We recall that a partition of unity {y;}7_,, relative to the covering {Q:}/_,, is a
set of functions, satisfying the following properties,

xi € C(Q), supp (xi) C

0<xi<1, Y xi=1

Before proving inequality (53), we need the following lemma.
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LeEMMA 4.5. Let v € V and {x;}{_, be a partition of unity relative to the cov-
ering {Q4}/_,. If 1 is the nodal interpolation operator onto V, then the following
inequalities hold,

(58) MOVl < C flxavl], Vi=1,---.J,
(59) [[eurl (TI(x;v)) [| < C [leurl (xv)|l, ¥i=1,---, J,

with constants C' independent of v, ¢, h and H.

Proof. We recall that the degrees of freedom (24), (25), (26), involve integrals
of the tangential components over the edges and the faces, as well as values of the
function in the interior of each tetrahedron in 7.

Let us first consider (58). The vector v has continuous tangential component
across the edges and faces of the tetrahedra; since the scalar function y; belongs to
C(9), the vector x;v has continuous tangential component across each element and,
thus, the degrees of freedom are well defined.

The interpolation operator II is local. On each tetrahedra K € 7j, the degrees of
freedom are calculated and the interpolated function is built from the appropriate basis
functions. Therefore, we need only consider one tetrahedra. We also note that the
vector x;v is C'™ over each element. Since on the reference tetrahedra the interpolation
operator is bounded in the L?-norm, it is easily seen, by a scaling argument, that, on the
generic tetrahedra K, it is bounded independently of the diameter of K. Inequality (58)
is, then, obtained by summing over all the elements of 7.

Let us next consider inequality (59). The space curl V can be fully characterized.
It is contained in Hy(div, Q) and is a proper subspace of the Raviart-Thomas finite
element space of degree k, W = W¥; see [11], [6], [8]. The interpolation operator, I gr,
onto W involves integrals of the normal component on the faces of the tetrahedra, as
well as the value of the function in the interior.

The vector curl(x;v) is a C* function over each element and has continuous
normal component: the interpolant Ty (curl (x;v)) is, therefore, well defined. First
on each tetrahedron, and then in Q, by the commuting diagram property, see [8,
Theorem 2.30], we obtain

(60) curl (TI(x;v)) = Hprr(curl (x;v)).
The inequality
(61) Mgz (curl (xiv))|| < C [[eurl (x;v)|],

can be then obtained in the same way as (58), and this proves (59). O
THEOREM 4.6. Let k > 2. Then, for every u € V¥, inequality (53) holds. Cq
depends on k, the domain QQ, the overlap constants, a and 3, and the shape-reqularity
and quasi-uniformity constants for Ty and Ty, but is independent of h, H and u.
Proof. Let u € V. By Lemma 4.1, we have to find a suitable decomposition, such
that inequality (52) holds. By Lemma 3.2, u can be decomposed as

(62) u=gradq+w,

where grad ¢ € Z and w € Z+. We will decompose grad ¢ and w separately.

Let us first consider the gradient term. Using the domain decomposition theory
for scalar elliptic operators (see [5] and [19]), for ¢ € S C H}(2), we can obtain a
decomposition ¢ = Y ¢;, for ¢ € S C H{(Q2), and the following bound:

(63) Za(grad qi,grad g;) = Z |qz'|12ql(ﬂ) <C |q|12ql(ﬂ) = C a(gradq,gradq),
10



where C depends on the overlap, linearly; see [5].

Consider now w € Z1. We will first employ the decomposition described in [8],
by projecting onto ZT, then onto the coarse space ZS' and finally go back to Z+. We
will, then, divide the reminder into a sum of functions supported on the individual
subdomains {€}}.

The first step is performed in the following way. Define

wt=0(w)ec 7T,
and consider the splitting
wt = v(')i' + V+,
where

v(‘)" =Pwt ¢ Zé",
vt=(-P)wt ezt.

The operator Py is defined in (45) and (46).
Since ¥ and ¥y are invertible on Z1 and 73, respectively, the following vectors
are well defined

Vozﬁgl(vg)EZd‘,
V:ﬁ_l(v-i_) EZJ'~

The sum vo + v = w' is not equal to the original vector w, but it can easily be seen
that the difference (w — w') is curl-free and, thus, by Lemma 3.2, is the gradient of a
function p € S. Consequently, we have found the decomposition

(64) w = vg + v + gradp.

Before proceeding, we have to find some bounds for the terms in (64) and their
curls. Since the operators O, ¥ and 9o preserve the curl and Py does not increase the
L?-norm of the curl, it can be casily seen that

(65) [[curl vo|| < ||curlw]||,
(66) [[curl v|| < ||curlw]|.

We employ Lemma 3.3 to bound the L?-norm of vo and v. We remark that Lemma 3.3
is only valid for £ > 2. Consider, first, vo. By (43), we can write

[voll < € (IIv§ I + H [leurlvo|[) = C ([vq || + H [leurlv{]]),
and, by Lemma 3.4,
[voll < € (H [Jeurlv{]]).
Finally, we obtain
(67) voll < C H [Jeurlw].
Through Lemma 3.3 and 3.4, we find, in the same way,

(68) Ivll < € b [jeurl ]|
11



Since the L?-norm of vo and v is bounded, we can bound the L?-norm of gradp
n (64) in terms of the norm of w in H(curl, ). The term gradp can therefore be
decomposed in the same way as the gradient part of u in (62).

We now decompose the vector v as a sum of terms in {V;}7_,. Let {x;}/_, be a
partition of unity, relative to the covering {Q:}/_,. We define

(69) w, =I(xv) eV, i=1,---,J,

where TT = TI% is the interpolation operator introduced in Section 3. The function

w’ = vg + v is thus decomposed as w' = ijo w;, with
(70) Wy = V.

We have to check that the sum of the squares of the a-norm of the w; is bounded by
the square of the a-norm of w. The bounds for wq are given by (65) and (67).
By inequality (58) of Lemma 4.5, we can write

willz2a) < C lIxivllz2(0) < ClIvIlLaa)
and, by (68),
(71) [[willL2(q) < C b ||curl w||L2(q)

Employing (59), we can also write

lcurlwi||z2) < C |leurl(x;v)||r2) <
S C (”gradXZ X VHL2 + ”XZ Cul‘lVHLz ) S
< C (Hgl‘adXiHL""(ﬂ) Ivllz2ar) + [IxillL=(a) ||cu1‘lv||L2(Q,l)) <
< C (H Y |v|lL2qo) + [Jeurlv||L2(q), )

where, for the last inequality, we have used Assumption 4.1.a. Finally, by (66) and
(68), we obtain

(72) ||cu1‘1wi||Lz(Q) C ((h/H)||curlw|| + [Jcurlw]]) <

C ||curlw||.

INIA

By summing over i, employing Assumption 4.1.b and (65), (67), (71) and (72), we
find

Mg

(73)

a(w;, w;) < Ca(w,w).
=0

Since (62) is an a-orthogonal decomposition, inequality (52) is valid, and Lemma 4.1
proves the theorem. O

THEOREM 4.7. The conclusion of Theorem 4.6 is valid for k = 1.

Proof. The proof is the same as the one for [10, Corollary 1]. The decomposition
for V2 and the hierarchical decomposition of the degrees of freedom for the Nédélec
spaces are employed, in order to obtain a stable splitting for V'. O

The following theorem gives the final result.

12



THEOREM 4.8. There exist two constants Cs and Cs, such that

(74) &(T) < Cy,
(75) [|Elle < Cs < 1.

Cy and C5 depend on the domain QQ, on the overlap constants, a and 3, and on the
shape-reqularity and quasi-uniformity constants for Ty and Ty, but are independent
of h and H.

Proof. The first inequality is a consequence of Lemma 4.4, and Theorems 4.6 and
4.7. The second bound can be easily found by using Lemma 4.3.b. O

For the Neumann problem, convexity does not have to be assumed.

THEOREM 4.9. When the whole space H(curl,Q) is considered, the conclusions
of Lemma 4.4, and Theorems 4.6 and 4.7 are still valid, for a general polyhedral
domain.

Proof. For inequality (55), the proof is the same as in Lemma 4.4. For the lower
bound for the minimum eigenvalue of the additive method, the proof can be carried out
as in [10, Theorem 5]. The domain € is embedded in a larger convex domain, Q, and
the decomposition for Hg(curl, Q), together with an extension theorem, is exploited.
The result for the multiplicative method is straightforward. O

We conclude with some remarks on our assumptions. A conver polyhedral do-
main is considered for the Dirichlet problem: this is necessary for the Embedding
Theorem 2.3 to hold. As pointed out in Remark 2.2, the theorem is not valid for a
general non-convex domain, unless the boundary is sufficiently regular. This assump-
tion is also required for the proof of Lemma 3.4.

Quasi-uniform triangulations are assumed, for the proof of the inequalities in
Lemma 3.3. As is pointed out in Remark 3.1, the proof of Lemma 3.3 relies on an
inverse estimate.
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