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When g¢,, or g,, is a discrete Dirac or a discrete complex exponential, dif-
ferent formula must be used. If we limit the computation to a precision e,
for any Gabor atom g, , there are O(N /| log ¢|) other vectors g., such that
< Gy 59y, > 1s not negligible. One can show that equation (127) requires
O(N|loge|*/?) operations to compute the inner product of any atom G,
with all other discrete atoms (g, ),er,. The total numerical complexity for
one matching pursuit iteration is O(N log N). By tabulating the Gaussian
and complex exponential functions, each iteration requires approximatively
as much CPU time as a Fast Fourier Transform on a signal of N samples.
In the experiments shown in this paper, we restricted the scale s, of the
selected atoms to powers of 2, to minimize the memory required by the tab-
ulation. However, the choice of s, may have no such restriction, if we do
not use any tabulation.
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ha(n) = —io h(n 4+ mN). (122)

m=—00

Then

N +oco
< fd,hd >= Z fd(n) Z Z / t‘|‘ mN) ZQqut.
n=1

m=—00 ¢g=—00

(123)
Proof:
N B N 4 too
< fdshd >:Zfd(n)hd(n) = Z Z f(n+¢N) Z h(n + mN)
n=1 n=1g=—o00 m=—00
+co +co _
= Y J») Y hpAmN). (124)
p=—00 m=—00
Hence,
< fihg> = Z 2/ Bt + mN)8(1 — p)dt. (125)
m=—00 p=—00
Let us recall the Poisson formula:
+oco +oo i
Yoob(t—p)= D e (126)

p=—00 qg=—00

Inserting this in (125) yields equation (123). This finishes the proof of the
lemma. O

For 71 = (s1,p1, 25¢%) and 72 = (s2,p2, %) and g(1) given by (59), one

can derive from equation (123) of lemma 6 that the inner product of two
discrete Gabor signals is

- 25182 . 2m(ky — Ky
< G5 G~s > = ]X51IX52 WQXP(—’LPQ¥) X (127)
1 <2 -

+oo too ( _ 7 _ 7\2
P2 P1 +mN)? (k2 — k1 +qN)
Z Z ( eXP(_ $2 + 52 ) eXP(_W N2(s—2 3 )X
M=—00 g=—00 1 2 B (81 + $9 )
2
2
exp(1 282 il

-t —(ky — k N — N .
sl—l—sgN(Q 1+ gN)p2—p1i+m )))
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One can derive that the normalization constant is

3 V2
\/1 + Real(e?? < g, 9.~ >)

, (114)

K9

where Real(z) is the real part of the complex number z. For any residue
R"f,
|< R"f.g(y.0) > | = K( 4| Real(e™® < B™f, g, >)|. (115)

By chosing ¢ equal to the complex phase ¢, of < R"f, g, >, we obtain
|Real(e™ % < R'f, gy >) =< R"f,gy >|. (116)

We search for an index 7,, that maximizes | < R"f, g, >| for 7 in the subset

T',, of I'. With a Newton algorithm, we then look in the neighborhood of

, in T for an index 7, = (8n, Py, 252) € T, where | < R"f, g, >| reaches a

local maxima. One can verify that there exists @ > 0 such that

|< Rnfvg('yn,dwn) >| > o sup |< Rnfag('y,gb) >|' (117)
(v,0)€lax[0,2n[

Since
Rn+1f — Rnf_ < Rﬂf, g(’yn,qfwn) > g(’)’nﬁbvn)’ (118)

for the next iteration we must compute for any v € T,

< Rn+1f, gy >=< R"f, gy > — < R™f, Iy, >< Iy )2 9 > .
(119)
We therefore estimate

f((

’an(bvn)

9 (62%" < Gy Gy > ‘|‘€_Z¢V" < YG\=:9y >)7

(120)
To compute fast this inner product, we use an analytical formula that gives

< Y(vnpyn ) 9y > =

the inner product of two discrete complex Gabor signals. This formula is
derived from the following lemma.

Lemma 6 Let f(t) and h(t) be two contlinuously differentiable functions

such that f(1) = O(ljj) and h(t) = O(H}tz). Let fq and hq be the discrete

signals of period N defined by

+oo
fa(n) = Z f(n+mN), (121)

m=—00
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and
| < Gjip ks Gro > | < Dyexp(—Cal kAL — a’]). (108)
Clearly

+oco
< Ginisoo >1 S [ 180aOllgr(0)] dt (109)

With a change of variable, we derive that

- too fai @it .
1< Bigirg > < [\ S 10D 50+ a0 - pAw)] i (110)

Since ﬁ < % < /a, and since both ¢(t) and §(t) have an exponential
decay, one can derive that there exists two constant C; > 0 and D > 0 that
satisfy equation (107). To prove equation (108), we observe that

+oo
1< Bigr 90 > < [ 1@l ()] o (111)
— 00
From the expression of §;, r(w) in equation (5), with a change of variable
we derive that

- too g sw s j
< Bipirgn > < [\ SICD i+ € - BAG o, (112)

Since both g(w) and f}(w) have an exponential decay and ﬁ < 5 <V,
we can also derive that there exists two constant Cy and D, that satisfy
(108). From the upper bounds (107) and (108) we can show that the sum
S+, of equation (106) is bounded by a finite constant K that is independent
of 79. From equation (105), we derive that any constant a < % satisfies the
condition (62) of theorem 2.

Appendix E: Matching Pursuit Implementation with Gabor Dictionaries

This appendix describes the numerical implementation of a matching
pursuit for a Gabor dictionary. Instructions to obtain a free copy of the soft-
ware implementing this transform are available through anonymous ftp at
the address cs.nyu.edu, in the file README of the directory /pub/wave/software.

For any v = (s, p, %) and ¢ € [0, 27[, real discrete time-frequency atoms
are related to complex atoms by

Ki0)

g(’y,(b) = T(€Z¢9’Y + €_i¢g'y_)' (113)
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Appendix D: Proof of Theorem 2

We denote g;, k(1) = g,(t) for v = (¢’, pa? Au, ka™? A€) € T,,. Since Au =
% and AuA¢ < 27, Daubechies [6] proved that for the Gaussian window

g(t) specified by equation (59), (go,.4(t))(pr)ez2 is a frame of L*(R). The
dual frame is given by (o, x(t))(px)ezz2, Where §(t) € L*(R) and

L — pQ]AU)eika—mgt.
al

Giplt) = ja_jg( (101)

The dual window §(¢) has an exponential decay and its Fourier transform
g(w) also has an exponential decay [5]. For any f € L*(R),

+ oo 4o

Fy=> > < figopk> Gopr(l). (102)

pP=—00 k=—0c0
With a change of variable, one can derive that for any j € Z

+oo +oo

JW =3 " < [gipk > Gipk(l). (103)

P=—00 k=—00

Let v0 = (s,u,£) € I and j € Z be such that @712 < 5 < @I t1/2

+ oo + oo
< [iGv >= Z Z < [:9imk >< Gipks Yo > - (104)

p=—00 k=—00

Since g;p,r = g, with v € Ty,

+oo +oo
|<fvg’yo >|§ sup |< fvg’y>| Z Z |<gj,p,k7g’yo>|' (105)
’yEI‘a pP=—00 k=—0o0

Let us now prove that there exists a finite constant K such that for all g

+ oo + oo
S’VO = Z E |< gj,p,k,f]wo >| < K. (106)

pP=—00 k=—0o0

For this purpose, we shall prove that there exists Dy > 0, C; > 0 and
Dy > 0, Cy > 0 such that

| < G920 > | < Drexp(=CilpAu — a7 ul), (107)
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We can finally derive that £; that is the supremum of all £ such that
(s1,u1,&) € A. Since A is closed, (s1,u1,&) € A. This finishes the proof of
the lemma. O

Let us prove the covariance of a matching pursuit based on covariant
choice functions. Let us define

£ty = 2 oL, (94)

Va a

Let 7! = (s,u,§) and 40 = (£, %2, a(£ — b)). With a change of variable, we
prove that

< fYgp >=detm) < [0 g0 > (95)

Hence sup. cp | < f', 9y >| = dsup,cp|< f°, g, >|. Let us define

A={B€eT : |<f1,gﬁ>|Zasu}I:)‘|<f1,gw>|}. (96)
o=

Equation (95) proves that the set A, ) defined in (92), also satisfies

Aapey={B€T : |< [ gs>|> asu¥|< 19, >1} (97)
YE

The covariance of the choice function implies that if C(A) = v¢ = (80, uo, &),
then C'(A(gp,e) =75 = (22, %2, a(§ — b)). We can thus derive that

a’ a

RI(0) = = Rp

Similarly, we can prove by induction that for any n > 0

byt (98)

a

R0 = SR e (99)

and if 7} = (85, U, &) then 7Y = (22, %2=¢ q(¢, — b)), and

< R”fl,g%% >= detclt=én) < R”fo,gwg > . (100)

Conversely, if the residues of fO(¢) and f1(t) satisfies these equalities, equa-
tion (42) proves that equation (94) is satisfied. Hence, a matching pursuit
based on covariant choice functions is covariant by dilation, translation and
modulation.
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A choice function (' is said to be covariant if and only if for any admissible
set A, C(A) = (so, ug, &) implies that

Sg Ug — C

CMapo) = (- ——allo = b)) (93)

a

If we restrict our signal space to functions that are bounded and absolutely
integrable, the matching pursuit residues are also bounded and absolutely
integrable. Let us give an example of covariant choice function. For any
admissible set A, associated to a bounded and absolutely integrable function,
C(A) = (s1,u1,&1), such that sy = sup{s : I(u, &) € R?,(s,u,&) € A},
uy = sup{u: 3§ € R,(s1,u,§) € A}, and & = sup{€ : (s1,u1,&) € A}. The
following lemma proves that the index (s1,u1, &) is well defined and belongs

to A

Lemma 5 For any admissible set A, associated to a bounded and absolutely
integrable function, (s1,u1,&1) € A.

Proof: let A be an admissible index set associated to f. Since g(t) is
bounded and f(¢) is absolutely integrable, one can prove that

lim sup |< f,g4>|=0.
s5—400 (u,§)€R2

We can thus derive that there exist a finite s; that is the supremum of all s
such that (s,u,&) € A. Since A is closed, there exists (s1,u,£) € A. Since

lim _[g(1)] = 0

|t|—>oo
and f(¢) is absolutely integrable, we can prove that for v = (s1,,§),

lim sup|< f,g, >|=0.
eR

u—>—|—oo£

We can then derive that there exists u; that is the supremum of all w such
that (s1,u,£) € A. Since A is closed, there exists £ such that (s, us, &) € A.
Since
lim[§(w)] =0
|w]—o0

and f(w) is absolutely integrable, we can prove that for v = (s1,u1,§),

li =0.
QgJ<ﬁ%>l
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and 372 < R*f, g, > g, € V, we derive that

+ oo

Pv/f= E <R[, 9y, > Gy, (87)
n=0
and
Pw/ =R/ (88)
O

Appendix B: Proof of Lemma 1

If this lemma was wrong, one could construct a sequence of unit vectors
(fn)neN and a sequence (Ay,),eN of decreasing real numbers converging to
zero such that for all n > 0

sup | < frn, 9y >| < A (89)
~el

Since the unit sphere of the finite dimensional space H is compact, there
exists a sub-sequence ( f,,),eN that converges to a unit vector f € H. Hence

sup [ < f, g, >| =

> < lim A, =0. 90
sup SUp | < fr,, 97 >| < lm A, (90)

lim
p—+oo ~el
Since f has a norm 1, the inner product which each element of D can not
be zero since D is complete and thus includes at least a basis of H. This

contradicts our assumption, which finishes the proof. O

Appendix C: Dilation, Translation and Modulation Covariance

We say that a subset A of T is admissible and associated to f € L%(R)
if
A={BeTl : |<f,gg>|2asu¥|<f,gy>|}. (91)
V€

Let A be an admissible set and (a,b,c) € RT x R?. Let

S uUu—=¢C

A(a,b,c) = {ﬂ = (S,U,f) el : (_7

a a

a(§ — b)) € A}. (92)
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Lemma 3 implies that
9 M-1
[N = RM 1P < RN PP = [RY PP + =Jhaa] 32 [hal. (30)
n=N

The energy conservation equation (13) proves that the sequence (|R" f|),eN
is monotonically decreasing and thus converges to some value R.,. Let € > 0,
there exist K > 0 such that for all m > K, |[R™f|? < R% + €. Let p > 0.
We want to estimate |R™f — R™*Pf|, for m > K. Equation (17) proves
that 370 | < R™f, 9., > | = 12 |ha]?® < |f]* < +oc, hence lemma 4
implies that there exist ¢ > m + p such that

q
17 Y~ IRl < €. (81)
n=0
We can decompose
|R™ f = R™Pf| < |R™f — R f| + |R™*7 f — R?f]. (82)
Equation (80) for N = m and M = ¢ implies
2
[Rmf - R < 4 2 (53)
Similarly
2
|R™Pf RO < &4 2 (84)
Hence

2
|R™ [~ R™ ] < 26 [14 (55)

which proves that (R"f),cn is a Cauchy sequence. Let
R*f= lim R"[.

n—-4oo

We know that lim, 4. | < R"f,g,, >| = 0. Since

|< R"f,g,, >| > asup|< R"f,g, >|,
~el

for any vy € T, lim,, 4o | < R"f, 94 >| = 0, and thus [ < R*f,¢g, >| = 0.
This implies that R f € W. Since

+oo
f= Z < Rnfvgwn > Gy, t+ R™f, (86)

n=0
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Appendix A: Proof of Theorem 1

This appendix is a translation in the matching pursuit context of Jones’s
proof [11] for the convergence of projection pursuit regressions.

Lemma 3 Let h, =< R"f,g., > gy,. For any n > 0 and m > 0,
n 1
< s BT > < ] ] (73)

Proof: Since h,, =< R™ [, g~,, > G,

| < b, R[> = | < R™ [, Gy >< Gy B* [ >] = |Bmn] | < gryps R f > 1.

(74)

Equation (11) implies

" " 1 1
|< o RS 51 < Ml 1< B L0 > | = il el (75)
O

Lemma 4 If (s,,),cz is a posilive sequence such that Z:i% 52 < 4o, then
lim inf s, =0. 76
lm infs ];Jsk (76)

Proof: For any ¢ > 0, we choose n such that 2;02 s? < €/2. Since

limg 400 S5 = 0, we can choose k large enough such that s, Y 7 s, < €/2.
Let s; be the minimum element for indexes between n + 1 and £,

J n J J
S]‘ZSkISjZSk—I—S]‘ E sp < €/2+ Z st < e (77)
k=0 k=0

k=n+1 k=n+1
O

To prove Theorem 1, we prove that the sequence (R"f), N is a Cauchy
sequence. Let N > 0and M >0

M-1
IRNf = RMF2 = |RMf - RMf+ 3 hyl? (78)
n=N
M-1
= RN FI* + [RMFI* = 2)RMfI* =2 ) Real(< RM f by, >).  (79)
n=N
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are guaranteed to obtain better results than decompositions on orthonor-
mal bases. Indeed, an orthonormal decomposition is a particular case of
matching pursuit where the dictionary is the orthonormal basis. For dic-
tionaries that are not orthonormal bases, we must code the inner products
of the structure book but also the indexes of the selected vectors. This re-
quires to quantize the inner product values and use a dictionary of finite
size. The matching pursuit decomposition is then equivalent to a multistage
shape-gain vector quantization in a very high dimensional space.

For information processing or compact signal coding, it is important to
have strategies to adapt the dictionary to the class of signal that is decom-
posed. Time-frequency dictionaries include vectors that are spread between
the Fourier and Dirac bases. They are regularly distributed of the unit
sphere of the signal space and are thus well adapted to decompose signals
over which we have little prior information. When enough prior informa-
tion is available, one can adapt the dictionary to the probability distribu-
tion of the signal class within the signal space H. Learning a dictionary
is equivalent to finding the important inner structures of the signals that
are decomposed. Classical algorithms such as LBG to optimize code-books
[9] do not converge to satisfying solutions in such high dimensional vector
spaces. Finding strategies to optimize dictionaries in high dimensions is an
open problem that shares similar features with learning problems in neural
networks.

Acknowledgements We thank Francois Bergeaud, Wen Liang Hwang and
Mike Orszag who helped us to develop the software. We are also grateful to
Dave Donoho and Ilain Johnstone for showing us the relations between this
work and projection pursuit regressions.
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of D which minimizes the entropy

N

n=1

The choice of this “optimal” orthonormal basis is thus obtained through
a global minimization over all the signal components. Fig. 7(b) displays
the structure book (< f, ¢+, >,7n)neN that is obtained by decomposing
the signal of Fig. 1(a) in the optimal wavepacket orthonormal basis. One
can hardly distinguish many of the signal components, including the two
chirps. The entropy optimization creates a competition between the sig-
nal components that are in the same frequency range, but have different
time-frequency signatures. Since the signal is not stationary, the global en-
tropy minimization is driven by the transients of highest energy. It leads to
a choice of orthonormal basis that is well adapted to represent the corre-
sponding transients, but not to represent other signal structures that have
different time-frequency behaviors. For highly non-stationary signals, the
entropy minimization produces mismatch between the “best” orthonormal
basis and many local signal components. On the contrary, a matching pur-
suit is a greedy algorithm that locally optimizes the choice of the wavepacket
function, for each signal residue. It can thus adapt itself to varying struc-
tures. On the other hand, this greedy strategy requires more computa-
tions than the best basis decomposition algorithm, whose total complexity
is O(Nlog N). The best basis algorithm is thus better suited to represent
simpler signals that have stationary properties. The global optimization is
then valid locally, and yields good results.

9 Conclusion

Matching pursuits provide extremely flexible signal representations since the
choice of dictionaries is not limited. We showed that time-frequency dictio-
naries yield adaptive decompositions where signal structures are represented
by atoms that match their time-frequency signature. The properties of the
signal components are explicitly given by the scale, frequency, time and
phase indexes of the selected atoms. This representation is therefore well
adapted to information processing.

Compact signal coding is another important domain of application of
matching pursuits. For a given class of signals, if we can adapt the dic-
tionary to minimize the storage for a given approximation precision, we
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Figure 7(a): time-frequency display of the wavepacket structure book of the
signal shown in Fig.1(a). Each rectangle roughly represents the location and
time-frequency spread of a selected wavepacket function.

Figure 7(b): time-frequency display of the signal in Fig.1(a) decomposed in

the best wavepacket orthonormal basis.
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O(N logy(N)) operations [4]. The implementation of the matching pursuit
decomposition follows the general outline of the algorithm described in sec-
tion 4. In this case, we set the optimality factor a to 1 and search over the
whole dictionary D because it is not to large. To compute the inner product
updating formula (33), we calculate the inner product of wavepacket vec-
tors from the coefficients of the quadrature mirror filters [4]. Each matching
pursuit iteration requires O(N log,(N)) operations.

Fig. 7(a) shows the structure book (< R"f, gy, >,Vn)neN of the signal
in Fig. 1(a), with the display conventions of Coifman and Wickerhauser[4].
The wavepacket dictionary is built with the Daubechies 6 quadrature mirror
filters [5]. The horizontal and vertical axes of Fig. 10 are respectively
the time and frequency axes. Each vector g.., for v, = (jn,kn,pn), is
represented by a rectangle which is centered at the time 2/» (pn + %) and at
the frequency 27279 (k,, + ). This rectangle has a width of 2/» along time
and 27771 along frequencies. It gives an approximate idea of the localization
in time and frequency of the atom g, , but in reality g, is much more spread
in time and frequency than the zone indicated by its rectangle. Wavepacket
functions are not as well localized in time and frequency as Gabor functions.
When the scale 27 increases, these atoms have a complicated time-frequency
localization studied by Coifman, Meyer and Wickerhauser [3]. The time-
frequency image obtained with this wavepacket dictionary is similar to the
energy distribution in Fig. 1(b), obtained with Gabor dictionary. Some
signal features do not appear as clearly because wavepackets are not as well
localized in time and frequencies as Gabor functions. Moreover, wavepacket
functions do not include a phase parameter and thus can not match signal
components as well Gabor functions. We must also mention that the Gabor
dictionary includes Gabor functions translated in time and frequency over
a much finner grid than wavepackets, so that the different time-frequency
signal features can be located more precisely. Although the Gabor dictionary
is much larger than the wavepacket dictionary, the matching pursuit does not
require much more calculations because we limit most of the computations to
a sub-dictionary D, that is approximately of the same size as the wavepacket
dictionary.

By combining the vectors of a wavepacket dictionary, Coifman and Wick-
erhauser [4] proved that we can build 2%V different orthonormal bases. They
have introduced an algorithm that finds the orthonormal basis (gw”)lgngN
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Figure 6(a): time-frequency energy distribution of the m = 76 coherent
structures of the noisy speech signal shown in Fig.4(a).
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Figure 6(b): Fig. 6(a): time-frequency energy distribution of the m = 76
coherent structures of the noisy speech signal shown in Fig. 4. (b): signal
reconstructed from the 76 coherent structures shown in (a). The white noise
has been removed.
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Figure 5(a): the curve (c) is a plot of E(A(R"W)) as a function of n, for a
discrete Gaussian white noise of 5786 samples. The curves (a) and (b) give
the values of A(R™f) for the speech signal in Fig.3(a) and the noisy speech
signal in Fig.4(a).

8 Wavepacket Dictionary

A wavepacket dictionary is a family of orthonormal bases composed of vec-
tors that are well localized both in time and frequency. It is computed with a
quadrature mirror filter bank algorithm [15]. Through our numerical experi-
ments with wavepacket dictionaries, we intend to compare matching pursuit
decompositions with the best basis algorithm of Coifman and Wikerhauser
[4], that selects an “optimal” orthonormal basis within the wavepacket dic-
tionary. This highlights the respective advantages of procedures that glob-
ally adapt the signal representation versus the greedy strategy of a matching
pursuit, that locally optimizes the decomposition.

For signals of N samples, each vector g, of a wavepacket dictionary is
indexed by v = (j,p, k), with 0 < j < logy(N),0 < p< 279N, 0< p< 2,
Such a vector has a similar time-frequency localization properties as a dis-
crete window function, dilated by 27, centered at 27 (p+ %), and modulated
by sinusoidal wave of frequency 27277 (k + %) The wavepacket dictionary
D = (gy)yer includes (N + 1)logy(N) vectors. For any discrete signal
f(n) of N samples, the inner products (< f,g, >).,er are computed with
a filter bank algorithm based on quadrature mirror filters, that requires
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a uniform probability distribution over the unit sphere of H. We define
the coherent structures of a signal f as the first m vectors (g, Jo<n<m that
have a higher than average correlation with R™f. In other WOI’dS_, J has m
coherent structures if and only if for 0 <n < m

AR f) > E(A(R"W)), (69)
and
MR™ ) < E(MR™W)). (70)
Equation (13) proves that ;\(R”f) is related to the decay of |R™f| by
5 pn | R+
MR =4/l - ——F5—. 71
D 77T i

One can verify that for a Gabor dictionary, the signal shown in Fig. 1(a)
has m = 130 coherent structures that correspond to the iterations where the
|R™f| has a relatively faster decay in Fig. 2.

For all the dictionaries that we studied numerically, we have observed
that when n increases, E(A R"W)) converges quickly to a constant E(A(R®W)).
In fact, the process R™W seems to converge to a process R®W that we call
dictionary noise, whose properties are now being studied. The realizations of
a dictionary noise have an energy that is uniformly spread across the whole
dictionary. For a Gabor dictionary this process is a stationary white noise,

that is not Gaussian. The curve (c) in Fig. 5 gives the value of E(A(R"W))
as a function of n, for a discrete Gaussian white noise of 5762 samples,

decomposed in a Gabor dictionary. The limit is E(A(R*W)) = 0.0506.

The curve (a) in Fig. 5 gives the value of A(R"f) as a function of n
for the speech recording f shown in Fig. 3(a). The number of coherent
structures is the abscissa of the first intersection between curves (a) and
(c), which is located at n = 698. We have observed numerically that after
removing the coherent structures from a signal f, the residue R f behaves
like a realization of the dictionary noise R®W. This property remains to be
studied more precisely. The curve (b) in Fig. 5 gives the value of A(R™ f) for
the noisy speech signal in Fig. 4(a). The noise has destroyed the low-energy
coherent structures and only 76 coherent structures remains at an SNR of
1.5db. Fig. 6(a) is the time-frequency energy distribution of these m = 76
coherent structures. Fig 6(b) is the signal reconstructed from these time-
frequency atoms. The SNR of the reconstructed signal is 6.8db. The white
noise has been removed and this signal has a good auditory quality because
the main time-frequency structures of the original speech signal have been
retained.
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Figure 4(a): signal obtained by adding a Gaussian white noise to the speech
recording shown in Fig.3(a). The signal to noise ratio is 1.5db.

Figure 4(b): time-frequency energy distribution of the noisy speech sig-
nal. The energy distribution of the white noise is spread across the whole
time-frequency plane.
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Figure 3(a): speech recording of the word “greasy”, sampled at 16 kHz.

Figure 3(b): time-frequency energy distribution of the speech recording
shown in (a). We see the low-frequency component of the “g”, the quick
burst transition to the “ea” and the harmonics of the “ea”. The “s” has
energy spread over high frequencies.
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Figure 2(a): The curve (a) gives the decay of logio "T;"f", as function of the

number of iterations n, for the signal f of Fig.1(a). The curve (b) gives the

1Py fl
decay of logig %

of the signal residues

|< R™f, gy >|
MR f) = sup ———————
(B = =00 = qn ]

The matching pursuit selects vectors g, that almost best correlate the signal
residues. Let us denote

(66)

3 n _|<Rnfvgn>|
A(R f)—W- (67)

Equation (11) implies that

MR f) < MR"f) < —A(R"f). (68)

Q|+

For any h € H, the choice procedure implies that /N\(h) = ;\("Z—") Hence,

;\(h) only depends upon the position of ﬁ on the unit sphere of the signal
space H. Let W be a discrete Gaussian white noise. For any n > 0, the
average value of A(R"f) measured with a uniform probability distribution

over the unit sphere, is equal to the expected value E(A(R"W)). Indeed,
after normalization, the realizations of a discrete Gaussian white noise have
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Figure 1(a): Signal of 512 samples built by adding chirps, truncated sinu-
soidal waves and waveforms of different time-frequency localizations.

Figure 1(b):

shown in (a).

Time-frequency energy distribution FE f(t,w) of the signal
The horizontal axis is time. The vertical axis is frequency.

The highest frequencies are on the top. The darkness of this time-frequency
image increases with the value £ f({,w).
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iterations is of the order of the dimension of the signal space. For almost
all signals f, the decays of |R" f| and |Pwy, f| have the same qualitative
behavior as in Fig. 2.

Fig. 3(a) is the graph of a speech recording corresponding to the word
“greasy”, sampled at 16 kHz. From the time-frequency energy displayed in
Fig. 3(b), we can see the low-frequency component of the “g” and the quick
burst transition to the “ea”. The “ea” has many harmonics that are lined
up but we can also see localized high-frequency impulses that correspond to
the pitch. The “s” component has a time-frequency energy spread over a
high-frequency interval. Most of the signal energy is characterized by few
time-frequency atoms. For n = 250 atoms, w = .169, although the signal
has 5782 samples, and the sound recovered ilrom these atoms is of excellent
quality.

Fig. 4(a) shows a signal obtained by adding a Gaussian white noise
to the speech recording given in Fig. 3(a), with a signal to noise ratio of
1.5 db. Fig. 4(b) is the time-frequency energy distribution of this noisy
signal. The white noise generates time-frequency atoms spread across the
whole time-frequency plane, but we can still distinguish the time-frequency
structures of the original signal because their energy is better concentrated
in this plane.

7 Noise and Coherent Structures

Generally, the notion noise versus signal information is ill-defined. Even
though a signal component might carry a lot of information, it is often con-
sidered as noise if we can not make sense out of it. In a crowd of people
speaking a language we do not understand, surrounding conversations are
generally perceived as a noise background. However, our attention will be
attracted by any remote conversation in a language we know. In this case,
what is important is not the information content but whether this informa-
tion is in a coherent format with respect to our system of interpretation. A
matching pursuit decomposition in a given dictionary defines a system of
interpretation for signals. We study the notion of coherence and describe an
algorithm that isolates signal structures that are coherent with respect to a
given dictionary.

Coherent signal components have a strong correlation with some dictio-
nary vectors. The more coherent a signal, the larger the correlation ratios
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v = (&, pa? Au, ka™7 AE), with a = 2, Au = %, A =7,0< j <logy N,
0<p< N277%1 and 0 < k < 2771, We also add the discrete Dirac and
Fourier bases to D,. The number of vectors in D, is O(Nlogy N). The
implementation of the matching pursuit iterations is further described in
Appendix E. The search over D, finds the approximate scale, time and fre-
quency localization of the main signal structures. These values are then
refined with a Newton search strategy to recover the time-frequency pa-
rameters that best match the signal components. Fach iteration requires
O(N log N) operations and as much CPU time as a fast Fourier transform
subroutine applied to a signal of N samples.

Fig. 1(a) is a signal f of 512 samples that is built by adding chirps,
truncated sinusoidal waves and waveforms of different time-frequency lo-
calizations. No Gabor function have been used to construct this signal.
Fig. 1(b) shows the time-frequency energy distribution £ f(¢,w). Since
Ef(t,w) = Ef(t,—w), we only display its values for w > 0. Each Ga-
bor time-frequency atom selected by the matching pursuit is an elongated
Gaussian blob in the time-frequency plane. We clearly see appearing two
chirps that cross each others, with a localized time-frequency waveform at
the top of their crossing point. We can also detect closely spaced Diracs,
and truncated sinusoidal waves having close frequencies. Several isolated lo-
calized time-frequency components also appear in this energy distribution.

The curve (a) in Fig. 2 gives the decay of logy, "T;"f" as a function of the

number of iterations n. For n < 130, |R™f| has a relatively faster decay.
These iterations correspond to the coherent signal structures, as shown in
section 7. For n > 130, the decay rate is almost constant. This confirms the
exponential decay proved by lemma 2. For any n > 0, the back-projection
algorithm described in section 3 recovers a better approximation of f from
the n atoms selected from the dictionary. The reconstruction error is then
the orthogonal projection of f on the space W, that is orthogonal to the
n vectors selected by the matching pursuit. The back-projection requires

much less computation than the matching pursuit. The curve (b) in Fig. 2

P
gives the decay of log; % For n <130, |R"f| = |Pw, f|. It means

that the matching pursuit computes a close approximation of the orthogonal

projection of f on the n vectors selected from the dictionary. For n = 300,

P
|R™f| = 1.5|Pw, f|. For n =N =512,log,, % drops to —oc because

Pvwy_ [ = 0. This indicates that the N vectors selected by the matching pur-
suit are linearly independent and thus define a basis of the signal space H.
The relative gain of the back-projection is important when the number of
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6 Discrete Matching Pursuit in Gabor Dictionar-
ies

We explain the discrete implementation of a matching pursuit for a dictio-
nary of Gabor time-frequency atoms. Numerical examples are shown at the
end of this section. We suppose that our signal is real and has N samples.
The space H is the set of infinite discrete signals of period N. Due to the
limitations of the sampling rate and the signal size, the scale s can only
vary between 1 and N. The window function g(t) is the normalized Gaus-
sian given by equation (59). To obtain a discrete and periodic signal, at any
scale s, the window function is uniformly sampled and periodized over N
points
Ky ¥X n—pN
gl =2 3 9(—). (63)

p=—00

The constant K normalizes the discrete norm of g;. For any integer 0 <
p< N and 0 < k < N, we denote v = (s,p,%) and define the discrete

Gabor atom
2nk

gr(n) = go(n — p)eFEn, (64)
The discrete complex Gabor dictionary is the set of all such atoms for s €
J1, N[ and p, k integers between 0 and N. To this dictionary of atoms, we
add the canonical basis of discrete Diracs and the discrete Fourier basis of
complex exponentials. For v = (1,p,0), g,(n) is a discrete Dirac centered

at p. For v = (N,0,k), g4(n) = \/Lﬁel%”,
2rk

Similarly to equation (56), for any v = (s,p, 4~ ) and ¢ € [0, 27, real
discrete time-frequency atoms are given by

27k
N

Gty () = Ko y9(n = pleos(Etn + ), (65)
with K, 4) such that |g(, 4)| = 1. Appendix E describes an efficient imple-
mentation of a matching pursuit with this real discrete Gabor dictionary and
gives informations to obtain a copy of a matching pursuit software. The im-
plementation follows the general algorithm described in section 4. We com-
pute the inner products of the signal residues with the complex Gabor atoms
(64) and recover the phase from the complex coefficients. As suggested by
theorem 2 and the implementation algorithm of section 4, we only com-
pute the inner product of the signal residues with a subset Dy = (g-) er,
of the complex Gabor dictionary. The index set I', is composed of all
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This distribution also satisfies the energy density property (53).

In signal processing applications of time-frequency matching pursuits,
we process directly the discrete parameters (7., ¢n) = (Sn,&n, Un, ¢r) and
< R™f, g, > of the selected atoms, rather than the energy density F f(¢,w).
Indeed, these parameters carry all the necessary information and are much
easier to manipulate than the two-dimensional map F f({,w). This energy
distribution is rather used for the visualization of the structure book infor-
mation. If ¢(¢) is the Gaussian window

g(t) = 2"/4e=", (59)

then
Wy(t,w) = 2e7 27+, (60)

The time-frequency atoms g.(¢) are then called Gabor functions. The time-
frequency energy distribution F f({,w) is a sum of Gaussian blobs whose
locations and variances along the time and frequency axes depend upon the
parameters (S, un, &,).

As explained in section 4, to implement efficiently a matching pursuit, we
must avoid computing the inner products of the signal residues with all the
dictionary vectors. The following theorem guaranties that if we discretize
appropriately the Gabor dictionary, one can obtain a sub-dictionary that
satisfies the property (30).

Theorem 2 Let Au and A& be respectively a time and a frequency dis-
cretization interval that satisfy
Ag
Au=—<1. 61

YT o (61)
Let a > 1 be an elementary dilation factor. Let T, be the discrete subsel of
I' = Rt x R?, of all indezes v = (a’, pa’ Au, ka™7 AE), for (j,p, k) € Z°.
There exists a constant o > 0 such that for all f € L*(R)

sup | < f,gy >| > asup|< f,g4 >|. (62)
'VEI‘OL ’YEF

Appendix D gives a proof of this theorem. The fast numerical imple-
mentation of a matching pursuit in a Gabor dictionary is based on this
theorem.
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it does not include cross terms. It also remains positive if Wg(t,w) is posi-
tive, which the case when g¢(¢) is Gaussian. On the other hand, the energy
density F f(t,w) does not satisfy marginal properties, as opposed to certain
Cohen class distributions [1]. The importance of these marginal properties
for signal processing is however not clear.

When the signal f(¢) is real, to get a decomposition with real expansion
coeflicients, one must use dictionaries of real time-frequency atoms. For any
v =(s,§,u), with £ # 0, and any phase ¢ € [0, 27[, we define

K b t—u
9(v,¢) = \(}5)9( P

The constant K(,4) is adjusted so that |g(, 4| = 1. The phase ¢ that

Jeos(EL + ¢). (54)

was hidden in the complex numbers, now appears explicitly as a parameter
of the real atoms. The dictionary of real time-frequency atoms is defined
by D = (g(~,6))(v,¢)erx[0,2x[, With T' = RT x R?. The matching pursuit
performed with this dictionary decomposes any real signal f(t) into

+co

n=0

where the indexes (75, ¢n) = (Sn, Un,&n, ¢rn) are chosen to best match the
residues of f. For any v = (s, &, u), real atoms are related to complex atoms

by

Kive) i i
9o () = =2 (g, (1) + g, (1), (56)
where v7 = (s,—&,u). However, one can show that the real matching

pursuit decomposition (55) is not equivalent to the complex decomposition
(42), because the two vectors g,(¢) and g.,-(%) are not orthogonal.

The time-frequency energy distribution of a real function f(¢) is derived
from its matching pursuit decomposition, by summing the Wigner distribu-
tion of the underlined complex atoms:

+o0 1
Ef(t,w) =3 1< B[00 > 5 (W (t,0) + Wy ~(1,w)). (57)

n=0

By inserting equation (50) in this expression, we obtain

1E%
Ef(t,w) =5 DI B gmsn) > 1P Wy, su(w - €)) +
n=0

Sn

Wo(55, 50w+ &))) . (58)
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The Wigner distribution of f(¢) is W f(t,w) = W]/, fl(t,w). Since the
Wigner distribution is quadratic, we derive from the atomic decomposition

(42) of f(t) that

+oo
Witw) = Y I<R'f gy, >I"'Wg,,(t,w) (48)

n=0
+oo +co
+ > Y <R'.9y, > < B[, gy >WGn, 0l (1, 0).

n=0 m=0,m#n

The double sum corresponds to the cross terms of the Wigner distribution.
It regroups the terms that one usually tries to remove in order to obtain a
clear picture of the energy distribution of f(¢) in the time-frequency plane.
We thus only keep the first sum and define

+ oo
Ef(t,w) =Y |< R"f, gy, >|*Wg,,(t,0). (49)
n=0
A similar decomposition algorithm over time-frequency atoms was derived
independently by Qian and Chen [14], in order to define this energy dis-
tribution in the time-frequency plane. From the well known dilation and
translation properties of the Wigner distribution and the expression (43) of
a time-frequency atom, we derive that for v = (s, &, u)

t—u

Wgﬁ(tvw) = Wg( P 75(w - ‘E))v (50)
and hence
= " 9 t— up
Ef(t,W)IZ|<R fag’vn >| Wg(s—vsn(w_fn)) (51)
n=0 n
The Wigner distribution also satisfies
+oo +oo
| watewdt do = gl = 1. (52)

so the energy conservation equation (22) implies

+co +co
| Erwed s = i1 (53)

We can thus interpret F f({,w) as an energy density of f in the time-
frequency plane (¢,w). Unlike the Wigner and the Cohen class distributions,
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Since a time-frequency atom dictionary is complete, Theorem 1 proves
that a matching pursuit decomposes any function f € L%(R) into

+oo
/= Z <R[, 90 > Gy (42)

n=0
where v, = (s, up, &) and

N S e o
Gyn(l) = f—sng(T)e : (43)
These atoms are chosen to best match the residues of f.

The matching pursuit algorithm depends upon a choice function that
selects at each iteration a vector g,, among all vectors that satisfy equa-
tion (11). Appendix C proves that we can define choice functions for which
the matching pursuit is covariant by dilation, translation and modulation.
Let us denote (g,0)neN and (g,1)uen, with 7 = (s, up,€)) and 7, =
(sl ul 1)) the family of time-frequency atoms selected to decompose re-
spectively f9(¢) and f1(¢). Appendix C proves that there exists a class of
choice functions such that

d t—c. .
1 1) = 0 bt 44
10 =S (1)
if and only if for all n > 0
1 1
0_5%5% _o0_ U —C o 1

== = = —b 45
f=m = Il @ (el ), (45)

and _ )
< RfO, gp >=de ) < RPN g > (46)

The translation, modulation and dilation of a function appears as simple
modifications of the selected atom indexes. The covariance through dilation,
translation and modulation is important to perform a signal analysis that
takes into account any of these transformations.

From the decomposition of any f(¢) within a time-frequency dictionary,
we derive a new time-frequency energy distribution, by adding the Wigner
distribution of each selected atom. Let us recall that the cross Wigner
distribution of two functions f(¢) and h(t) is defined by

1 gtoo T T, _;
WIS, B(t,w) = 5/_00 Jt+ DRt = Dy rar. (47)
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Lemma 2 Let f € H. For any m > 0

|71 < 11 = o2 12(0))% (38)
Proof: the matching pursuit chooses a vector g,, that satisfies
| < R, 9y, > 2 a8u¥|< R"f, gy >| = aA(R"[)|R"f].  (39)
ve
Since |R* T f|? = [R"f|* = |< R"f, gy, > I,
1
[R™ I < R JI(1 — o® A% (R )2, (40)
and hence, for any m > 0
m—l 1 m
I1R™FI < 1/1 TT (1 = X3 (R™ )= < [fI(1 @ I*(N)= (41)

n=0

O

The lower the correlation ratios of a particular signal f and its residues,
the slower the decay of their norm. If the signal f is the sum of a few
high energy components that belong to the dictionary, the correlation ratios
of f and its residues is high so their norm decrease quickly. These high
energy components can be viewed as “coherent structures” with respect to
the dictionary. If the residues of f have low-correlation ratios, their norm
decay slowly and f must be expanded over many dictionary vectors in order
to be well approximated. This means that the information of f is diluted
across the dictionary. The extraction of coherent signal structures is further
studied in section 7.

5 Matching Pursuit With Time-Frequency Dic-
tionaries

For dictionaries of time-frequency atoms, a matching pursuit yields an adap-
tive time-frequency transform. It decomposes any function f(¢) € L*(R)
into a sum of complex time-frequency atoms that best match its residues.
This section studies the properties of this particular matching pursuit de-
composition. We derive a new type of time-frequency energy distribution
by summing the Wigner distribution of each time-frequency atom.
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upon the desired precision €. The number of iterations is the minimum p
such that

p—1
IR I =17 =3 < B"[. 9y, > 9ol < €l 1. (34)

n=0

The energy conservation (17) proves that this equation is equivalent to

p—1
A2 =D 1< R fr95, > 17 < E 1% (35)
n=0
Since we do not compute the residue R™f, at each iteration we test the
validity of (35) to stop the decomposition. The number of iterations p
depends upon the decay rate of |[R™f|. It can vary widely depending upon
the signals but is much smaller than N in most applications. The energy
of the residual error can be decreased with the back-projection algorithm
described in section 3. Many types of dictionaries do not contain any sub-
family of less than N + 1 vectors that are linearly dependent. In this case,
once the matching pursuit has selected N different vectors, these vectors
spans the whole signal space H. Hence, after back-projection there is no
more residual error and f is recovered as a linear expansion of the N selected
vectors. However, this basis of H might be badly conditioned which slows
down the convergence of the back-projection algorithm.
The decay of |R™f| depends upon the correlation between the residues
and the dictionary elements. Let us define the correlation ratio of a function
f € H with respect to D as

|< fr9v >
A = e
()= sup =7

The following lemma guaranties that for any f € H, A(f) is larger than a

(36)

strictly positive constant.

Lemma 1 Let D be a complete dictionary in a finite dimensional space H,

1(0) = inf A(/) > 0. (37)

The proof of this lemma is in Appendix B. The value of I()) is the cosine
of the maximum possible angle between a direction in H and the closest di-
rection of a dictionary vector. If D is an orthogonal basis, one can prove that

1
I(\) = I The next lemma guaranties that |R"f| decays exponentially

in a finite dimensional space, with a rate proportional to a?I?(}).
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4 Matching Pursuit in Finite Spaces

When the signal space H has a finite dimension N, the matching pursuit has
specific properties that are studied in this section. The dictionary D may
have an infinite number of elements and we suppose that it is complete.
We describe an efficient implementation of matching pursuit algorithms and
prove that the norm of the residues decays exponentially.

When the dictionary is very redundant, the search for the vectors that
match best the signal residues can mostly be limited to a sub-dictionary
Dy = (9~)yer, C D. We suppose that Ty, is a finite index set included in T’
such that for any f € H

sup | < f,g, >| > asup|< f,g, > (30)
'Vera ’YEI‘

Depending upon « and the dictionary redundancy, the set I', can be much
smaller than I". The matching pursuit is initialized by computing the inner
products (< f, gy >).er,, and continues by induction as follow. Suppose
that we have already computed (< R"f, g, >),er,, for n > 0. We search
in D, for an element g5, such that

|<R"[,g5, >| = sup |< R"f,g,>|. (31)
'VEI‘OL

To find a dictionary element that matches f even better than gs,, we then
search with a Newton method for an index 7, in a neighborhood of 4, in T’
where | < f, g, >| reaches a local maxima. Clearly

| < R"[, gy, >| 2 |< R" [, 95, >| > asu¥|< R"f, g, >|. (32)
YE

Let us observe that the choice function mentioned in section 3 is defined
indirectly by this double search strategy. Omnce the vector g, is selected,
we compute the inner product of the new residue R"*! f with any ¢, € D,,
with an updating formula derived from equation (12)

<R g, >=<R"f,gy>— < R"[,gv, > < gonr9v > .  (33)

Since we previously stored < R"f,g, > and < R"f,g,, >, this update
requires only to compute < g¢,,.,¢, >. Dictionaries are generally built so
that this inner product is recovered with a small number of operations. The
number of times we sub-decompose the residues of a given signal f depends

11



without any particular structure. Let p be the number of non-zero coeffi-
cient of GG. The conjugate gradient algorithm, when initialized to Xg = 0,
iteratively computes a sequence of vectors X, that converge to the vector X
of minimum norm which satisfies Y = GX [8]. Let k be the ratio between
the largest eigenvalue of G and the smallest non-zero eigenvalue. One can
prove [8] that

VE+1

The main computational burden of each iteration is to apply G to some

X - X, < ||X||¢E(‘/E ‘1) . (20)

intermediate residual vector, which requires O(p) operations. The conjugate
gradient algorithm thus requires O(np) operations to compute X,,. If ng is
the rank of G, unless k! is comparable to the computational precision, this
algorithm guaranties that X = X, , and clearly ng < m.

A matching pursuit is similar to a shape-gain vector quantizer [16]. The
code-book of a shape-gain quantizer is composed of a family of K unit vec-
tors which is equivalent to a dictionary, and of a sequence of scalars to
quantize inner product values. The quantization approximates any vector
f by projecting it on a vector g.,, which correlates best f among the K
vectors of the code-book. The inner product < f,¢,, > is quantized by
approximating it to the closest scalar stored in the code-book. Vector quan-
tizations algorithms can be extended with a multistage strategy [9]. After
quantizing a given vector, the remaining error is quantized once more, and
the process continues iteratively. A matching pursuit is similar to a mul-
tistage shape-gain vector quantizer. However, a matching pursuit does not
quantize the inner products < R"f,g,, >, as opposed to this vector quan-
tizer. For information processing applications, matching pursuits use very
redundant dictionaries of infinite size, whereas vector quantizers are based
on finite dictionaries that are best adapted to data compression. Another
major difference is that vector quantizations are performed in spaces of low
dimension, generally smaller than 16. For example, image quantizers are
based on blocks of less than 4 by 4 pixels. On the contrary, a matching
pursuits is performed in a signal space H whose dimension N is equal to the
total number of signal samples, which is typically several thousands. The
underlined mathematical and algorithmic issues are thus quite different.
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If we stop the algorithm at this stage and only record the partial structure
book (< R"f, g, >, 7n)0<n<m7 the summation of equation (23) recovers an
approximation of f, with an error equal to R™f. However, this sum is not
a linear expansion of the vectors (g, Jo<n<m that approximates f at best.
Let V,,, be the space generated by (g-, )B<n<m and Py be the orthogonal
projector on V,,. For any f € H, Pvmf_is the closest vector to f that can
be written as linear expansion of the m vectors (gwn)0§n<m. We derive from

(23) that

m—1

Py, f=Y <R'f.gy,>gy, +Py R"[ (24)

n=0

If the family of vectors (g, Jo<n<m is not orthogonal, which is generally the
case, then Py R™f # 0. The computation of

m—1

Py R"™f = Z Tp G (25)

n=0

is called a back-projection. Instead of storing the inner products < R" f, g, >
in the structure book, we then store < R"f, g,, > +z, in order to recover
Py, [ with (24). In this case, the approximation error

Pw,f=/f-Pv,f (26)

is the orthogonal projection of f on the space W,,, which is orthogonal
complement of V,,, in H. One can derive from (23) that

[Pw,. fI* = [Pw, B [|* = |E" [|* = [Py, B" []*. (27)

The reduction of the approximation error thus depends upon [Py, R™ f]|.
The calculation of the coefficients (xn)05n<m requires to solve the fol-
lowing linear system. For any g.,, 0 <k <m

m—1

<Py, B[, gy, >=< R™[,0y, >= > 05 < g Gy > - (28)

n=0

Let us denote X = (z,)o<n<m and Y = (< R™f,g,, >)o<k<m- Let
G = (< Gyn» Gy >)0§k<m,0§;<m be the Gram matrix of the family of selected
vectors. The linear system of equations (28) can be written Y = GX. The
matrix GG is non-negative symmetric but might have some zero eigenvalues
if the vectors (g, Jo<n<m are linearly dependent. It is often a sparse matrix



and

4o
IPv/I* =Y < R 9y, > " (20)
n=0
Theorem 1 proves that the matching pursuit recovers the components of
J that belongs to the space spanned by the vectors of D. The proof is in
Appendix A. When the dictionary is complete, which means that V = H,
then Py f = f and Pyw f = 0. Hence

+ oo
[= Z <R[, 9y, > G (21)
n=0
and
+co
1717 =" I< R" [, 9y, > (22)
n=0

The vector f is characterized by the double sequence (< R™f, ¢, >, A/n)neN
that we call structure book. Each 7, indexes an element selected in the
dictionary and < R" f, g, > is the corresponding inner product. The order
of elements in a structure book is not important for the reconstruction.
The smallest complete dictionaries are bases. If D is an orthogonal
basis, < R"f,g,, >=< f,gy, >. The matching pursuit decomposition is
then equivalent to an orthogonal expansion in the basis D. In this case, the
indexes 7, carry no information. Indeed for almost all vectors f € H, the
inner product with elements of the basis are never zero. Hence the sequence
(7n)neN includes exactly once each index of the basis vectors and is thus
a permutation of the index set I' of D. Since the order is unimportant
for the reconstruction, the sequence (7,),eN carries no information. The
largest possible dictionary D is the set of all unit vectors in H. For this
dictionary, we can set the optimality factor a to 1 and the matching pursuit
converges in one iteration with g., = "ji—" and < f,g,, >=|f|. The index 7

characterizes |3§—" among all unit vectors of H. If H has a finite dimension
N, the unit sphere is a surface of dimension N — 1, so 7 is characterized by
N —1 scalars whereas < f, g,, > is given by 1 scalar. In this case, the index
7o carries much more information than < f, g,, >. In general, the balance
of information between indexes and inner products depends upon the size
of the dictionary.

After m iterations, a matching pursuit decomposes a signal f into

m—1

f=3 <R[, 9y, > gy, + R"[. (23)

n=0



Equation (13) yields an energy conservation equation

m—1

1112 =22 I< R*fogy > 12+ R fI2. (17)

n=0

The original vector f is decomposed into a sum of dictionary elements, that
are chosen to best match its residues. Although this decomposition is non-
linear, we maintain an energy conservation as if it was a linear orthogonal
decomposition. A major issue is to understand the behavior of the residue
R™f when m increases. Let us mention that the algorithm can be modified
by selecting several vectors from the dictionary at each iteration and pro-
jecting the residue over the space generated by these vectors [12], but we
shall not further develop this approach here.

Functional approximations through such iterated orthogonal projections
has previously been studied in statistics by Friedman and Stuetzle [7], under
the name of projection pursuit regressions. Our algorithm was developed
independently in a very different context, but the underlying mathematics
are similar, so we adopted the same vocabulary. The statistical problem is
to estimate the conditional expectation of a random variable Y with respect
to d random variables X1, X5, ..., X4. To reduce the dimensionality of the
problem, a projection pursuit regression decomposes the conditional expec-
tation as a sum of conditional expectations of successive residues of Y, with
respect to one-dimensional random variables that are linear expansions of
X1, X5,...,X4. This decomposition is obtained with a strategy similar to
the matching pursuit approach. Readers further interested by projections
pursuits are referred to a tutorial review written by Huber [10]. The math-
ematical similarities of the two algorithms allow us to transpose a result of
Jones [11] that proves the convergence of projection pursuit algorithms. Let
us recall that V is the closed linear span of vectors in D. We denote by W
the orthogonal complement of V in H. The orthogonal projectors over V
and W are respectively written as Py and Pvy.

Theorem 1 Let f € H. The residue R™ [ defined by the induclion equation
(12) salisfies

lim B[~ Py /] =0. (18)
Hence
+ oo
Py/f=Y <R[, gy, > Gy, (19)
n=0



by a choice function C', that associates to any sub-set A of I' an index that
belongs to A. Let us define the set of vector indexes that satisfy (9)

Ap={BeT: |<f,gg>|2asu}I)‘|<f,gw>|}. (10)
o=

The choice of a vector g,, that satisfies (9) is equivalent to the choice of
the index 7o within Ag, formally defined by 79 = C(Ag). The axiom of
choice guaranties that there exists at least one choice function, but in prac-
tice there are many ways to define it, and it depends upon the numerical
implementation.

Let us explain by induction, how the matching pursuit is carried further.
Let R°f = f. We suppose that we have computed the n'" order residue R™ f,
for n > 0. We choose, with the choice function (', an element g, € D which
closely matches the residue R"™f

|< R”f,g%>|2asu¥|< R" [, gy >|. (11)
YE

The residue R™f is sub-decomposed into
R"f =< R"f, Gvp > Gy T Rn+1f7 (12)

which defines the residue at the order n+1. Since R"T!f is orthogonal to
g'Yn 2 2 1 2

IR"fI* = | < B" [, 9, > +[|R"T1[]2. (13)
Let us carry this decomposition up to the order m. We decompose f into

the concatenated sum

m—1

[=3 (R r=R™) + R (14)
n=0
Equation (12) yields
m—1
/= Z < R"f Gy, > gy, + R™[. (15)
n=0

Similarly, || f|? is decomposed in a concatenated sum

m—1

1712 =32 (1R™ 712 = 1R £17) + | B 1. (16)

n=0



3 Matching Pursuit in Hilbert Spaces

The general issue behind adaptive time-frequency decompositions is to find
procedures to expand functions over a set of waveforms, selected appro-
priately among a large and redundant dictionary. We describe a general
algorithm, called matching pursuit, that performs such an adaptive decom-
position.

Let H be a Hilbert space. We define a dictionary as a family D = (g,),er
of vectors in H, such that |g,] = 1. Let V be the closed linear span of the
dictionary vectors. Finite linear expansions of vectors in D are dense in the
space V. We say that the dictionary is complete if and only if V = H. For
the dictionary of time-frequency atoms described in section 2, H = LZ(R),
and each vector g, is an atom defined by equation (4). Finite linear expan-
sions of time-frequency atoms are dense in L?(R) [17], hence this dictionary
is complete.

Let f € H. We want to compute a linear expansion of f over a set of
vectors selected from D, in order to best match its inner structures. This
is done by successive approximations of f with orthogonal projections on
elements of D. Let g, € D. The vector f can be decomposed into

f:< fvg’)’o >970+Rf7 (7)

where Rf is the residual vector after approximating f in the direction of
g~,- Clearly g, is orthogonal to Rf, hence

1712 = 1< J.g20 > 1"+ IRTI™ (8)

To minimize |Rf|, we must choose g,, € D such that | < f,g,, > | is
maximum. In some cases, it is only possible to find a vector g., that is
almost the best in the sense that

| < figyo >| > asup |< f,gy >, (9)
~el

where « is an optimality factor that satisfies 0 < a < 1.

A matching pursuit is an iterative algorithm that sub-decomposes the
residue R f by projecting it on a vector of D that matches R f almost at best,
as it was done for f. This procedure is repeated each time on the following
residue that is obtained. Before giving further details, let us emphasize that
the “choice” of a vector g, that satisfies (9) is not random. It is defined



Since |§(w)| is even, |g(w)| is centered at the frequency w = . Its energy
is concentrated in a neighborhood of £, whose size is proportional to 1/s.

The family D = (gﬁ(t))weI‘ is extremely redundant, and its properties
have been studied by Torresani [17]. To represent efficiently any function
J(t), we must select an appropriate countable subset of atoms (g, (1)), cN>
with v, = (s, Un, £ ), so that f(¢) can be written

+ oo
J(1) = 32 angs,(0). (6)
n=—0oo
Depending upon the choice of the atoms g.,(¢), the expansion coefficients
a, give explicit information on certain types of properties of f(¢). Window
Fourier transforms and wavelet transforms correspond to different families
of time-frequency atoms, that are frames or bases of L*(R).
In a window Fourier transform, all the atoms g,, have a constant scale
Sp = So and are thus mainly localized over an interval whose size is propor-
tional to sg. If the main signal structures are localized over a time-scale of
the order of sy, the expansion coefficients a,, give important insights on their
localization and frequency content. However, a window Fourier transform
is not well adapted to describe structures that are much smaller or much
larger than sy. To analyze components of varying sizes, it is necessary to
use time-frequency atoms of different scales.
In opposition to the window Fourier transform, the wavelet transform de-
composes signals over time-frequency atoms of varying scales, called wavelets.
A wavelet family (g, (1)), is built by relating the frequency parameter

£, to the scale s, with £, = S—O, where &y is a constant. The resulting family

is composed of dilations and translations of a single function, multiplied by
complex phase parameter. The expansion coefficients a,, of functions over
wavelet families characterize the scaling behavior of signal structures. This
is important for the analysis of fractals and singular behaviors. However,
expansion coefficients in a wavelet frame do not provide precise estimates
of the frequency content of waveforms whose Fourier transform is well lo-
calized, especially at high frequencies. This is due to the restriction on the
frequency parameter £,, that remains inversely proportional to the scale s,,.

For signals f(¢) that include scaling and highly oscillatory structures,
one can not define a priori the appropriate constraints on the scale and
modulation parameters of the time-frequency atoms g,,(¢) used in the ex-
pansion (6). We need to select adaptively the elements of the dictionary
D = (gv(t))werv depending upon the local properties of f(t).



The inner product of (f,g) € L?(R)? is defined by

+co
<lg>=[ g @)
where g(¢) is the complex conjugate of g(¢). The Fourier transform of f(t) €
L%(R) is written f(w) and defined by

for= [ swea, Q)

— o0

2 Time-Frequency Atomic Decompositions

Decompositions of signals over family of functions that are well localized
both in time and frequency have found many applications in signal pro-
cessing and harmonic analysis. Such functions are called time-frequency
atoms. Depending upon the choice of time-frequency atoms, the decom-
position might have very different properties. Window Fourier transforms
and wavelet transforms are examples of time-frequency signal decomposition
that have been studied thoroughly [2] [5] [13] [15]. To extract informations
from complex signals, it is often necessary to adapt the time-frequency de-
composition to the particular signal structures. This section discusses the
adaptivity requirements.

A general family of time-frequency atoms can be generated by scaling,
translating and modulating a single window function g¢(¢) € L%(R). We

T 1). We also

impose that |g| = 1, that the integral of g(¢) is non-zero and that g(0) # 0.
For any scale s > 0, frequency modulation £ and translation u, we denote

v = (s,u,£) and define

suppose that g(?) is real, continuously differentiable and O(

i) = S e (4)

1
The index 7 is an element of the set I' = Rt x R2?. The factor 7 nor-
S
malizes to 1 the norm of g,(¢). If g(¢) is even, which is generally the case,
g~(1) is centered at the abscissa u. Its energy is mostly concentrated in a
neighborhood of u, whose size is proportional to s. Let §(w) be the Fourier

transform of g(t). Equation (4) yields
() = Vi (s — €m0, (5)



thogonal expansion, it maintains an energy conservation which guaranties
its convergence. It is closely related to projection pursuit strategies, devel-
oped by Friedman and Stuetzle [7] for statistical parameter estimation. The
general algorithm in the Hilbert space framework is explained in section 3
and the finite dimensional case is further studied in section 4.

The application of matching pursuits to adaptive time-frequency decom-
positions is described in section 5. The signal is decomposed into waveforms
selected among a dictionary of time-frequency atoms, that are the the dila-
tions, translations and modulations of a single window function. We derive
a time-frequency energy distribution, by adding the Wigner distribution of
the selected time-frequency atoms. Contrarily to the Wigner distribution or
Cohen’s class distributions, this energy distribution does not include inter-
ference terms and thus provides a clear picture in the time-frequency plane.
Qian and Chen [14] have developed independently a similar algorithm to
expand signals over time-frequency atoms. A fast implementation of the
matching pursuit for dictionary of Gabor time-frequency atoms is described
in section 6, with numerical examples.

A matching pursuit decomposition provides an interpretation of the sig-
nal structures. If a structure does not correlate well with any particular
dictionary element, it is sub-decomposed into several elements and its in-
formation is diluted. Section 7 formally defines coherent signal structures
with respect to a given dictionary, and explains how to detect them. An
application to the extraction of patterns from noisy signals is described.

A matching pursuit is a greedy algorithm that chooses at each iteration
a waveform that is best adapted to approximate part of the signal. Section
8 compares this locally adaptive method to the algorithm of Coifman and
Wickerhauser [4], which selects the basis that is best adapted to the global
signal properties, among all bases of a wavepacket family. Numerical results
show that the global optimization does not perform well for highly non-
stationary signals, as opposed the greedy approach of a matching pursuit.
On the other hand, the best basis algorithm is efficient to represent simpler
signals that have stationary properties.

Notations

The space L%(R) is the Hilbert space of complex valued functions such that

1= [ 1w < oe. 1



1 Introduction

We can express a wide range of ideas and at the same time easily commu-
nicate subtle differences between close concepts, because natural languages
have large vocabularies, that include words with close meanings. For in-
formation processing, low level signal representations must also provide ex-
plicit informations on very different properties, while giving simple cues to
differentiate close patterns. The numerical parameters should offer compact
characterizations of the elements we are looking for. The wide scope of
patterns embedded in complex signals and the precision of their characteri-
zation, also motivate decompositions over large and redundant dictionaries
of waveforms. Linear expansions in a single basis, whether it is a Fourier,
wavelet, or any other basis, are not flexible enough. A Fourier basis provides
a poor representation of functions well localized in time, and wavelet bases
are not well adapted to represent functions whose Fourier transforms have
a narrow high frequency support. In both cases, it is difficult to detect and
identify the signal patterns from their expansion coeflicients, because the in-
formation is diluted across the whole basis. Similar examples can be found
for any type of basis. Such decompositions are similar to a text written with
a small vocabulary. Although this vocabulary might be sufficient to express
all ideas, it requires to use circumvolutions that replace non available words
by full sentences.

Flexible decompositions are particularly important for representing sig-
nal components whose localizations in time and frequency vary widely. The
signal must be expanded into waveforms whose time-frequency properties are
adapted to its local structures. Such waveforms are called time-frequency
atoms. For example, impulses need to be decomposed over functions well
concentrated in time, while spectral lines are better represented by wave-
forms which have a narrow frequency support. When the signal includes
both of these elements, the time-frequency atoms must be adapted accord-
ingly. One must therefore introduce a procedure that chooses the waveforms
that are best adapted to decompose the signal structures, among all the
time-frequency atoms of a large dictionary. Section 2 briefly reviews the
properties of time-frequency atoms and their relations to window Fourier
transforms and wavelet transforms.

We introduce an algorithm called matching pursuit, that decomposes
any signal into a linear expansion of waveforms that belong to a redundant
dictionary of functions. These waveforms are selected in order to best match
the signal structures. Although a matching pursuit is non-linear, like an or-
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Abstract

We introduce an algorithm, called matching pursuit, that decomposes any
signal into a linear expansion of waveforms that are selected from a redun-
dant dictionary of functions. These waveforms are chosen in order to best
match the signal structures. Matching pursuits are general procedures to
compute adaptive signal representations. With a dictionary of Gabor func-
tions, a matching pursuit defines an adaptive time-frequency transform. We
derive a signal energy distribution in the time-frequency plane, which does
not include interference terms, unlike Wigner and Cohen class distributions
[1]. A matching pursuit isolates the signal structures that are coherent with
respect to a given dictionary. An application to pattern extraction from
noisy signals is described. We compare a matching pursuit decomposition
with a signal expansion over an optimized wavepacket orthonormal basis,
selected with the algorithm of Coifman and Wickerhauser [4].
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