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Abstract. A new domain decomposition method with Lagrange multipliers for elliptic problems
is introduced. It is based on a reformulation of the well-known FETI method as a saddle point
problem with both primal and dual variables as unknowns. The resulting linear system is solved with
block—structured preconditioners combined with a suitable Krylov subspace method. This approach
allows the use of inexact subdomain solvers for the positive definite subproblems. It is shown that
the condition number of the preconditioned saddle point problem is bounded independently of the
number of subregions and depends only polylogarithmically on the number of degrees of freedom of
individual local subproblems. Numerical results are presented for a plane stress cantilever membrane
problem.
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1. Introduction. In the last decade a great deal of research has been carried
out on nonoverlapping domain decomposition methods using Lagrange multipliers. In
these methods the original domain is decomposed into nonoverlapping subdomains.
The continuity is then enforced by using Lagrange multipliers across the interface
defined by the subdomain boundaries. A computationally very efficient member of
this class of domain decomposition algorithms is the Finite Element Tearing and
Interconnecting (FETT) method introduced by Farhat and Roux [7]. In its original
version, a Neumann problem is solved on each subdomain and the method is known
to be scalable in the sense that its rate of convergence is independent of the number
of subproblems. In a variant of the FETI method introduced in Farhat, Mandel, and
Roux [6] an additional Dirichlet problem is solved exactly on each subdomain, in each
iteration. This makes the rate of convergence of the iteration even less sensitive to
the number of unknowns of the local problems. The use of inexact Dirichlet solvers 1s
possible without a radical change of the FETI method. However, the use of inexact
Neumann solvers does require a redesign of these algorithms; this is the topic of the
present work.

In this paper, a new domain decomposition method with Lagrange multipliers is
introduced by first reformulating the system of the FETI algorithm as a saddle point
problem with both primal and dual variables. The resulting system is then solved
using block—structured preconditioners and a suitable Krylov subspace method. We
can then avoid potentially quite costly direct solvers relying instead on any of a number
of well tested preconditioners for positive definite subproblems, such as incomplete
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LU methods, (algebraic) multigrid, etc. The good features of the FETT method such
as scalability and efficiency are preserved.

The remainder of this article is organized as follows. In section 2, we present the
equations of linear elasticity and a finite element discretization thereof. In section
3, we review the FETI method and we develop our new method in section 4. In
subsection 5.1, the convergence analysis of Mandel and Tezaur [15] is extended from
scalar, second order elliptic equations to the system of equations of linear elasticity.
A convergence analysis and condition number estimates for the block—diagonal pre-
conditioner are given in subsection 5.2. The paper concludes with section 6, in which
we report on some of our numerical experiments.

We note that a short conference paper [12] has previously been prepared which
describes and discusses a slightly different version of our main algorithm.

2. The elliptic problem. In this section, we introduce our model problem,
the elliptic system arising from the displacement formulation of compressible, linear
elasticity, and its discretization by conforming finite elements.

2.1. The equations of linear elasticity. The equations of linear elasticity
model the displacement of a linear elastic material under the action of external and
internal forces. We denote the elastic body by Q C R?, d = 2,3, and its boundary by
09 and assume that one part of the boundary, 'y, is clamped, i.e. with homogeneous
Dirichlet boundary conditions, and that the rest, T'y := 9Q\Tg, is subject to a surface
force g, i.e. a natural boundary condition. We can also introduce an internal volume
force f, e.g. gravity. The appropriate space for a variational formulation is the Sobolev
space H%D(Q) ={ve H Q) : vy, = 0}. The linear elasticity problem consists in
finding the displacement u € H%O(Q) of the elastic body €, such that

(1) G/ v)de + Gﬂ/dlvudlvvcbc (F,v) Vv e H (Q).

Here G and ( are material parameters depending on the Poisson ratio v and Young’s
modulus E. In the case of plane stress, we have G = E/(1+v),3 = 1/(1—v?) and for

plane strain and three dimensional elasticity, we have G = E/(1+v), 3 = v/(1 — 2v).
( 6ul

Furthermore, ¢;;(u) := + 6u]) is the linearized strain tensor, and

d

cu) e(v) = 3 ey (v), (Fv)i= Z/ frvide + 2/ givi o

i,7=1

The associated bilinear form of linear elasticity is
(u,v) G/ v)de + Gﬂ/dlvudlvvcb:

In this article, we only consider the case of compressible elasticity. This means
that the Poisson ratio v is bounded away from 1/2. We will also specialize to the case
of d = 2 in order to simplify our notations. We note that all our work extends easily
to the case of d = 3 and to many other elliptic problems.

We will also use the standard Sobolev space norm

2 2 1/
allzrs ey = (Tl + a0
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with ||u||%2(ﬂ) = /ﬂ |u|?d, and |u|%11(ﬂ) = ||Vu||%2(ﬂ). It is obvious that the bilinear

form a(-, -) is continuous with respect to || - ||g1(q). However, proving ellipticity is far
less trivial but it can be established from Korn’s first inequality, see, e.g. Ciarlet [3].

LeMMA 1 (KORN’S FIRST INEQUALITY). Let Q C R% d > 2, be a Lipschitz
domain. Then, there exists a positive constant ¢ = ¢(2, '), such that

/ g(u) :e(u)de > ¢ |u|12£11(ﬂ) Yu € Hy ().
Q

The wellposedness of the linear system (1) follows immediately from the continuity
and ellipticity of the bilinear form a(-,-).

It follows from Korn’s first inequality that ||(u)||z,(q) is equivalent to [[ul|z1(q)
on H%D(Q). This result is not directly valid for the case of pure natural boundary
conditions when we are working with the space (H*(Q))¢. This case is of interest when
considering interior subregions, i.e. those that do not touch I'y. However, a Garding
inequality is provided by Korn’s second inequality

LEMMA 2 (KORN’S SECOND INEQUALITY). Let Q C R4, d > 2, be a Lipschitz
domain with diameter one. Then, there exists a positive constant ¢ = ¢(2), such that

/06(11) ve(u)de + [|ulf7,q) > ellulfhq) Yue (H'(Q)"

There are several proofs; see, e.g. Nitsche [18].

We can now derive a Korn inequality on the space {u € (H!(Q))? : u L ker (g)}.
The null space ker (¢) is the space of rigid body motions. Thus, for d = 2, the
linearized strain tensor of u and its divergence vanish only for the elements of the
space spanned by the two translations

and the single rotation

I3
r3 = .
3 —z

In three dimensions the corresponding space is spanned by three translations and
three rotations.
For convenience, we also introduce the notation

(e(n),e(v))L.a) = /ﬂe(u) ce(v)de,
and introduce two inner products on (H!(Q))?, for a region Q with diameter one,

(W, v)g, = (e(u),&(v))r,(0) + (W, V)1, (@)

and
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where the /;(-) are defined by

) = [ 1) u

By using Lemma 2, || - ||, , given by the inner product (-, -)g,, is a norm and not just
a seminorm, and so, by construction, is || - ||z,

These norms are equivalent:

LEMMA 3. There exist constants 0 < ¢ < C' < oo, such that

cllullg, < llulle, < Cllulls, Yue (H'(Q)*

Proof: The proof of the right inequality follows immediately from the Cauchy-—
Schwarz inequality. The left inequality is proven by contradiction and by using Rel-
lich’s theorem as in a proof of generalized Poincaré-Friedrichs inequalities, cf.; e.g.
Necas [17, Chapt. 2.7].

O
We obviously have

(2) lle()l|za(0) < IVullz@) Yue (H'(2))%

Using (2) and Lemmas 2 and 3, we obtain
LEMMA 4. There exist constants 0 < ¢ < C' < oo, such that

e 9ullz.@) < lle(llza@) < ClIValliye Yo e (H (@) u L ker (o).

2.2. Finite elements and the discrete problem. Since we only consider
compressible elastic materials, it follows from Lemma 1 that the bilinear form a(-,-)
is uniformly elliptic. We can therefore successfully discretize the system (1) with
low—order, conforming finite elements, such as linear or bilinear elements.

We assume that a triangulation 7% of Q is given which is shape regular and has
a typical element diameter of h. We denote by W”(Q) C H%D(Q) the corresponding
conforming space of finite element functions, e.g. piecewise linear or bilinear continu-
ous functions. Thus, it is our goal to solve the discrete problem

(3) a(up,vy) = (F,vp) Vv, € Wh(Q)

In what follows, we work exclusively with the discrete problem and we drop the
subscript A from now on.

3. A review of the FETI method. In this section, we give a brief review of
the original FETT method introduced in Farhat and Roux [7] and the variant with
a Dirichlet preconditioner introduced in Farhat, Mandel, and Roux [6]. For more
detailed descriptions and proofs, we refer to [4, 5, 16, 21] and the references therein.

Let the domain Q@ C R? be decomposed into N non-overlapping subdomains
Q;,1 = 1,..., N, each of which is the union of elements and such that the finite
element nodes on the boundaries of neighboring subdomains match across the interface

r = (Uf\;l 392') \ 02 Let the corresponding conforming finite element spaces be

W, = W"(Q,;),i=1,...,N,and let W := Hf\;l W; be the associated product space.
When it is necessary to use vectors of nodal values, which define the elements of
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a finite element space, we underline, e.g. W is the product space that corresponds
to W. Analogously, we denote the vector of nodal values associated with the finite
element function u by u.

For each subdomain Q;,i = 1,..., N, we assemble the local stiffness matrices K;
and local load vectors f; by integrating the appropriate expressions over individual
subdomains. We denote the local vectors of nodal values by u;.

We can now formulate a minimization problem with constraints given by the
intersubdomain continuity conditions:

Find u € W, such that

(4) J(u) := %gtl{g—f_'tg% min
Bu=0
where
K O -+ O
u, £, ; .
u= = ,and K = 0 K
0
Uy fy
O -+ O Ky
The matrix B = [By, ..., By] is constructed such that the values of the solution
u, associated with more than one subdomain, coincide when Bu = 0. The local

stiffness matrices K; are positive semidefinite. The problem (4) is uniquely solvable
if and only if ker (K) Nker (B) = {0}, i.e. K is invertible on the null space of B. This
condition holds since the original finite element model is elliptic.

By introducing a vector of Lagrange multipliers A to enforce the constraint Bu =
0, we obtain a saddle point formulation of (4):

Find (u,A) € W x U, such that

Ku + B'A = f
) s s

We note that the solution A of (5) is in general only unique up to an additive vec-
tor from ker (B"). The space of Lagrange multipliers U is therefore chosen as the
range (B); see also discussion below.

We will also use a full rank matrix, built from the rigid body motions on the
interior subdomains,

R, O --- O
R = O Ry )
N ¢
O --- O Ry

such that range (R) = ker (K).
The solution of the first equation in (5) exists if and only if f — B*A € range (K );
this constraint will lead to the introduction of a projection P. We obtain

u= K'(f— B'A) + Raif f — B'A 1 ker (K),

where KT is the pseudoinverse of K which provides the solution orthogonal to the
null space of K and a has to be determined; see discussion below.
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We assume, for the time being, that B has full rank, i.e., the constraints are
linearly independent. Substituting u into the second equation of (5) gives

BK'B') = BK'f + BRa.
By considering the component orthogonal to BR, we find that

PFA = Pd
(6) GtA — e }

with G := BR,F := BK'B! d := BK'f P := I - G(G'G)"'G?, and e := R'f. We
note that P is an orthogonal projection from U onto ker (G?).

Any solution A of (5) and (6) yields the same solution u of (4) and (5) if a =
—(G*G)~1G*(d — F) is chosen; see Mandel, Tezaur, and Farhat [16, Theorem 2.4].

We define the space of admissible increments by
Vi={pclU:pl Bw Vwcker(K)}=ker (GY).
The original FETI method is a conjugate gradient method in the space V applied to
(7) PFA=Pd, del+V

with an initial approximation A, chosen such that G*)A, = e. To introduce pre-
conditioned variants, let D be a diagonal matrix. Then, the preconditioner A1,
introduced in Farhat, Mandel, and Roux [6], is of the form

0 0 -Bt

-1 _
M7 =Bl o psp |
with
S 0O - O]
g = 0O S
. .0
O - 0 Sy |

The matrix S is the Schur complement of K obtained by eliminating the interior
degrees of freedom of each of the subdomains. This computation can clearly be
carried out in parallel and results in the block-diagonal matrix .S which only operates
on the degrees of freedom on the subdomain boundaries. In the application of M~ to
a vector, N independent Dirichlet problems have to be solved in each iteration step;
it is therefore often called the Dirichlet preconditioner. The simplest choice for D is
the 1dentity matrix; this choice is made for the original Dirichlet preconditioner as
introduced in Farhat, Mandel, and Roux [6]. Another possibility, which leads to faster
convergence, is to choose D as a diagonal matrix where the diagonal elements equal
the number of subdomains to which the interface node belongs. This multiplicity
scaling (MS) is discussed in Rixen and Farhat [21, 22].

To keep the search directions of this preconditioned conjugate gradient method in
the space V, the application of the preconditioner M ! has to be followed by another
application of the projection P. Hence, the Dirichlet variant of the FETI method 1s
the conjugate gradient algorithm applied to

(8) PM™'PFA=PM™'Pd, A€E)N+V.
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4. The block-diagonal preconditioner. Using the decomposition A = A+,
with g € V, we can rewrite (7) as

(9) PBK'B'y = PBK'(f — B'),).

Since u = KT(f — B')A) + Ra, we see immediately that the solution of (9) can also be
obtained by solving

K B u _ f — Bt
PB O I a 0 '
Using that p € Vi.e. Ppu = p, we can make the system matrix symmetric
(10) K (PB)! u _ f— B')\,
PB 0] I a 0 '
We note that in this formulation we are not enforcing Bu = 0 but only its

projected version PBu = 0. The addition of an element of ker (K) does not change
the solution u of the first equation in (10). Since B*u L ker (K) for u € V, this is also
true for the second equation in (10). We use this fact to post-process u, such that
Bu = 0 is finally satisfied. This can be done by setting u, . := u — R(G'G)~'G!Bu;
it easily follows that Bu,,, = PBu = 0. Thus, we first compute the component of
the solution in range (K') and then add the correct null space component, such that
the solution has no jumps across the interface.

For the solution of the saddle point problem (10), we propose a preconditioned
conjugate residual method with a block-diagonal preconditioner. For a detailed de-
scription of this algorithm, see Hackbusch [8] or Klawonn [10, 11]. We note that this
algorithm will be designed such that the first component of the iterates belong to
range (K).

Our preconditioner has the form

K O
B = —
o M

Here K is assumed to be symmetric and a good preconditioner for K + Dy @,
where

Q1 O 0
o=| ¢ @ ,

: .0

O - 0 Qn

with ); the mass matrices associated with the mesh on Q; and Dy = diagij\;l(HZ-_QIi)
is a diagonal Qatrix. Here H; denotes the diameter of the subdomain Q;. We further
assume that M is symmetric and a good preconditioner for M, i.e. we assume there
exists constants mq, ko, k1, mg,m; with 0 < e <myg <m; <C < ocand 0 < ¢ <
ko < k1 < C < o0, such that

(11) kou'(K +DpQu < u'Ku < ku'(K+DyQu Yue W,
mg A'MA < MMM < my A'MA VAeV.
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Here ¢ and C' are generic constants independent of, or only weakly dependent on, the
mesh size. Because of the block diagonal structure of K and M and the precondition-
ers, ¢ and C do not depend on the number of subdomains.

A preconditioner is often said to be optimal when the constants ¢ and C' can
be chosen to be independent of the mesh size and the number of subdomains. We
also note that all that is required here are preconditioners for quite benign positive
definite problems on individual subregions and that the bounds are independent of
the number of subdomains.

From these assumptions it is clear that our preconditioner B is symmetric positive
definite and thus it can be used with the preconditioned conjugate residual method.
In order to have a computationally efficient preconditioner, we must also assume that
K~ and M~ can be applied to a vector at a low cost.

To guarantee that the iterates belong to range (K), we introduce the projection
Pr onto range (K) by

Pr:=1—R(R'R)"'R".

We recall that range (R) = ker (K') and note that Pg is a block matrix with a 3 x 3
block for each interior subdomain; the expense of applying Pg to a vector is therefore
very modest.

The resulting domain decomposition method is the conjugate residual algorithm
applied to the preconditioned system

B 'Ax = B~'F

)

K (PB)'] PRE~'Pf O
’ 0O PM~1Pt
x=|

We note that it is easy to see that only two matrix-vector products with the projection
P and one with the projection Pg are required in each step. We note that the iterates
of the conjugate residual method belong to W x V with Wy := range (K).

0

] F= -ﬁ_BtAO].

= I=

5. Analysis. In this section, we will work with both finite element functions
and vectors of nodal values representing them. We will make no distinction between
operators and their matrix representation.

We will use the spaces W, U, and V|, and we begin by defining a norm || - ||w
and a semi—norm | - |yv on W by

N N
VI = D Ivillzay, VI =D Iviltnq,),
i=1 i=1

where ||vi||12ql(ﬂl) = |Vi|12LIl(Ql) + %HWH%Q(QI) for v.= [vy,...,vNy] € W. We also
need the orthogonal decomposition of W into Wg := range (K) and its orthogonal
complement W4 := ker (K), i.e.

W=WrpoWs.
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For the analysis we need to consider the trace space Wr of W. We equip the
space Wr with the semi-norm and norm

N N
1
|WF|%/VF = E |WF,i|12ql/2(an,)a ||WF||%/VF = |WF|%/VF + Z E||WF,i||%2(an,)~
i=1 i=1
We also define
BF : WF — U BF = BlWr'
From the construction of the jump operator B it is clear that

Bw = Brwr for w € W where wr 1= w|,,

since continuity is only enforced accross the interface. As a consequence, we obtain
ker (B') = ker (B}). A direct computation yields

F = BK'B' = BrSTBE.

Let us now introduce a norm on V by |||y := |BEA|wy.. This defines a norm,
and not only a seminorm, since range (Bf) L ker (S). We will also use the dual space

) A
V' with a norm defined by ||Al|y = sup (A, )
uev lullv

identify the space V' with V, but we will use both norms.
Let us also define the product space X := W x V which we equip with the graph

%,, for x = (v,A) € X. We also need the subspace

Xpr := Wg x V with the same norm as X.

. For the sake of simplicity, we will

norm |x[|x := /I + [IA

5.1. FETI for linear elasticity. For scalar, second order elliptic equations, it
has been shown by Mandel and Tezaur [15] that the condition number of the FETI
method with the original Dirichlet preconditioner (D=I) satisfies

R(PM='PF) < C (1 +log(H/h))"

We note that (H/h)? is proportional to the number of degrees of freedom of a sub-
domain. In the proof of such results, additional assumptions on the shape of the
subregions ; are required; typically it is assumed that the €; are tetrahedra or
cubes, or smooth images of such a regular region. In addition, the mesh is assumed
to be quasi—uniform on each subregion.

In this section, we extend the results of Mandel and Tezaur [15] from scalar elliptic
equations to the system of of linear elasticity. To be able to use the results of [15],
we now introduce the vector-valued Laplacian to be used only in our analysis. We
denote by

Ka @] e 0
Ka = 0] IXAQ : ’
: . . O
@] e O Kanw
a block-diagonal matrix, where the local stiffness matrices Ka;,2 = 1,..., N, are

obtained from the discretization of the inner product (Vu, vu)Hl(ﬂl) using the same
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finite element space as for a(-,-). We denote by Sa the Schur complement of Ka
obtained by eliminating the interior variables of each €;, just as in the case of K and

S.

It is well known, that

(Saur,ur) = Hliv{ll (Kav,v) = (KAVharm, Vharm)
e

for ur € Wr. Here viparm € W 1s the discrete harmonic extension of ur € Wr
defined as the unique solution of

([{Avharm, V) =0 Vv € Wy with Vharm|T = Ur.

Here Wy is the subspace of W with elements that vanish on the interface T'.
Returning to the elasticity case, it can also easily be seen that

(SUF, HF) = mg} (I{Vy V) = (I{Velastyvelast)
e

for ur € Wr. Here vgast € W 1s the extension of ur € Wr with the smallest elastic
energy defined as the unique solution of

(KVelast, v) = 0 ¥Yv € W with Velast|p = Ur.
It follows from these formulas, using inequality (2), that for ur € Wr,

(Sur,ur) = min (Kv,v)
vVEW
v|p=ur

(I{Vharma Vharm)
C (I{Avharma Vharm)

C' min (Kav,v)
VEW

INIA

vir=ur

= C (SAUF, UF).

To bound (Sur,ur) from below, we restrict ourselves to a subspace. Using the
left inequality in Lemma 4, we obtain for ur € range (5),

(Saur,ur) = min (Kav,v)
vEW
v|p=ur

(I{Avelast 3 Velast)

C ([(Velast ) Velast)

C min (Kv,v)
verange (K)

V|r=ur

= C(SHF, UF).

INA A

Since (Saur,ur) and |u1~|%,[,F are equivalent for ur € range (S), we have proven
the following

LEMMA 5. There exist constants 0 < ¢ < C' < oo, independent of the mesh size
and the subdomain diameters, such that

clur|fy, < (Sur,ur) < Clur|jy, VYur € range(S).
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The next lemma follows from Mandel and Tezaur [15, Proof of Lemma 3.11].

LEMMA 6.
A B
inf  sup _ (O Brwr) > C(1+log(H/h))~/?,
A€V wreWr ||)‘/\V'BWF||WF
sup sup (A, Brwr) < C(1+log(H/R)).

rev wrewr [[Allv[|wr|lwr

The next result is essentially an extension of that lemma to the system of equations
of linear elasticity.

LEMMA 7. There exist constants 0 < ¢ < C' < oo, independent of the mesh size
and the number of subdomains, such that

2, YaeVv.

e(1+ log(H/) ™ [AIZ: < (FAX) < C(1 + log(H/h)[AII%

v’

Proof. As shown in [15, Proof of Lemma 3.11], we have for A € V

2
(FA,A)=  sup m.
wrErange (5) (SWFa WF)

Using Lemma 5 and that BEA L ker (S) for A € V, we obtain

A B 2 A B
(FAXA) < C sup w <C sup - (A, Brwr) 3
wr €range (5) |VVF|WF wr €range (5) inf ”WF + ZFHWF
zr €ker (S)
A B A, Brwr)?
- C sup ( 3 FWF2) - C sup ( a~ FV;IF) ]
Wp=wp+zp €W ||WF + ZFHWF wreWr ”WFHWF
wp Erange (S),zp €ker (S)
Analogously, we obtain
(A: BFWF)2

(FA,A\) > ¢ sup )
wrEWr ||WF||%VF

The bounds of (FA, A) now follow from Lemma 6.
O
Combining the definitions of the (exact) Dirichlet preconditioner M ~! and of the
norm || - ||y with Lemma 5, we obtain
LEMMA 8. There exist constants 0 < ¢ < C' < oo, independent of the mesh size
and the number of subdomains, such that

clMlF < (MTIAN) S C|AE YAe V.

A condition number estimate of PM~1PF follows casily from these estimates;
cf. also [15]. The proof for the algorithm using an inexact Dirichlet solver proceeds
along very similar lines.

THEOREM 1. There exists a positive constant C, independent of the mesh size
and the number of subdomains, such that

R(PM™'PF) < C (1 +log(H/h))’,
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where kK(PM~YPF) := 0maz/Tmin is the spectral condition number defined by the
ratio of the largest and the smallest eigenvalue opmar and opin of PM~'PF.

Simalarly, there exists a positive constant C, independent of the mesh size and the
number of subdomains, such that

K(PM~'PF) < C (1 +log(H/h))*,

for any preconditioner M- that is spectrally equivalent to the exact Dirichlet precon-
ditioner.

In Tezaur [26], a condition number estimate of C(1 + log(H/h))? is given for an
algebraic FETT method developed by Park et al. [19, 20]; see also the discussion in
Rixen et al. [23]. A modification of the FETT preconditioner with almost no extra
cost, is introduced by the authors in [13]. For the case when B has full rank, it is of
the form

0O O

a7-1 ty—1 t ty—1
Mgp:. = (BB") B[O S]B(BB) .
and it is shown that the condition number is bounded by C (1+log(H/h))?. It is easy
to see that all that is required, in addition to the previous algorithm, is the matrix—
vector product with the matrix B*(BB*)~!B. Such a product can be computed very

inexpensively since only local operations are required.

5.2. Analysis of the block—diagonal preconditioner. In this section, we
give a condition number estimate for the block—diagonal preconditioner for the systems
of equations arising from linear elasticity. This results in a convergence estimate for
the preconditioned conjugate residual method.

As shown in section 4, the system of equations (10) involves an operator from
W x V onto itself. The component of uin ker(K) is determined after the completion
of the iteration. It is therefore appropriate to consider the restriction of the operator
A to the subspace Xz = Wg x V. Similarly, we can view the preconditioner B~! as
a mapping from Xpg onto itself; see (12).

An upper bound for the convergence rate of the conjugate residual method can
be given in terms of the condition number x(B~1.A) of the preconditioned system. A
theory of block—diagonal preconditioners for saddle point problems of different origins
has been developed by several authors; see Rusten and Winther [24], Silvester and
Wathen [25], Kuznetsov [14], and Klawonn [11]. To the best of our knowledge, the
first proof for block—preconditioners applied to saddle point problems with a singular
block K is given in Klawonn [9, 10] and independently in Arnold, Falk, and Winther
[1]. In order to obtain a condition number estimate for B~'A, we follow the short
argument given in [1] which is in the same spirit as the argument given by Mandel and
Tezaur [15, Lemma 3.1] for the positive definite case. For completeness, we include
the short proof here using our notations and the norms of Xg and its dual. Denoting
by p(-) the spectral radius of a matrix, we find

k(B A) p(B~TA)p((B~1A)7Y)
1B~ Allx o xn l(B™1A) " Hxpm x5

—1 -1
1B ||X;%—>XR||A||XR—>X;%||B||XR—>X;%HA ||X1'R—>XR'

INIA

Hence, we need estimates of the norms of the operators B, .4 and their inverses.
The next lemma is given in Brezzi [2].
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LEMMA 9. Let B: Wg — V| satisfy an inf-sup and a sup—sup condition, i.e.

A, Bw
inf sup _ (A Bw) > B,
(13) AEV wewr H)‘ v’ WHW
A, Bw)
sup sup B,
reV wewnr [|Allv[[wllw

where [y, 1 > 0.
Furthermore, let K : W — Wpg be a symmetric operator satisfying

(14) [(Kw,v)| < aillwllw|v|lw Yw,ve Wkg,

(Kw,w) > aollwllfy Yw € Wg,

where ag, a1 > 0. )

Then, A : Xgr — Xpg is an isomorphism with || Allx, _ x~ < C(ai,p1) and
R

||«4_1||X;%_>XR < Clag, a1, Bo), where Clar,B1) = a1 + p1 and C(ag, a1, fo) =

max{(ag" + 0" (1 + a1/a0)), (B3 " + a1 %) (1 + ar/ao)}.

The uniform boundedness and ellipticity of K on W g follows directly from the
definition of the norm || - ||w. Thus, we obtain constants ag,a; > 0 which are
independent of h, H.

We are left with showing the inf-sup and sup-sup conditions for B.

LemMA 10.
. (A, Bw) B
inf sup —— —— C (1 +log(H/h /2 —.
g S w2 ¢ les(H/A) Bo
A B
sup sup (A, Bw) C (1 +log(H/h)) =: B
AEV weWg ||)\ v’ WHW

Proof. For A € V, let us now consider
A B A B
sup 7( . Bw) C sup 7( . Bw)
wEWR HW”W weWR |W|W

(A, Bw)
< C —_—
- wséli;gR (Kw,w)l/2

()\, BFWF)

weWg Inf (Kv,v)l/2
v EW

V|p=wr

(A, Brwr)

C sup 73

wr €range (5) (SWFa WF)

A B
< C sup 7(’ rwr)
wr EWrp HWFHWF

< BullA

with 31 := C (1+1log(H/h)). The last inequality follows from Lemma 6. Analogously,
we obtain

A

v

A, Bw
sup 2B
e Twllw

with By := C (1 4 log(H/h))~/2.
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O
Combining these results with Lemma 9, we obtain estimates of the norm of A

and A~
LEMMA 11. The operator A: X — Xpg 1s an isomorphism and satisfies

[l mx: < C(1+log(H/h)),
A My Sx, < C(1+log(H/R)),

where C' > 0 s a generic constant independent of the mesh size and the subdomain
diameters.

The next lemma provides bounds for ||B||XR_>X;% and ||B—1||X;?_>XR.

LEMMA 12. There exist constants 0 < ¢ < C < oo, which depend only on
ko, k1, mg, and my, such that
1 1
1Bl <C0 Byt < =
These bounds are uniform with respect to the mesh size and the number of subdomains
if B is an optimal preconditioner, i.e. if the constants kg, k1, mg, m1 are uniformly
bounded.

Proof: From the first inequalities of (11) and Lemma 2, we obtain by a standard
scaling argument that (Ku, u) and |[u||}, are spectrally equivalent for u € W g. From
the second inequalities in (11) and Lemma 5, it follows that for y € V

(M=, p) < C (Mg, p) = C(BoSBhpi, p) < C|Bbpliy, = C |}

In the last inequality, we have used that 1 € V implies Bl € range (S). Analogously,
we obtain

(M~ 1) > e|lully-

By using these inequalities, we get for A € V

A p)? A, p)? N M/2)2 .
||)\||%/,:sup( ’/12) ngup%:CsupM:C(M)\’)\)’
pev [l pev (M~1u, p) vev (v,v)

and analogously
A2 > (WA, ).
From the definition of B follows with x = (u,A) € Xr

(Bx,x) = (Ku,u) + (MA, ) < C(|Julliy + [All5) = C x|k

v’

and
(Bx,x) > c|x[/%.

The boundedness of B and B~! follows by using the following formulas

(Bx, x)

IBllxnsx, = s
XXy = TR
1805y, = o X

XpmXn © x@Xn x|
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From Lemmas 11 and 12 follows
THEOREM 2.

k(B71A) < C (1 +log(H/h))?,

with a constant C' independent of H, h.

6. Numerical Results. We have applied our domain decomposition method to
a plane stress problem described in section 2. The Poisson ratio is ¥ = 0.3 and the
elasticity modulus E = 2.1- 10 N/m?, which models steel. The domain € is the unit
square fixed on the left hand side and free on the other three edges except for the
upper right corner, where we impose a non-homogeneous natural boundary condition
in the form of a point force that has components in the positive z and y directions
both equal to 105N ; cf. Figure 1.

All our computations have been performed in MATLAB 5.0. Our Krylov subspace
method is the preconditioned conjugate residual method with a zero initial guess. The
stopping criterion is |2/||oll2 < 107°, where r,, and r, are the n—th and initial
residual, respectively.

Our domain € is decomposed into N x N square subdomains with H := 1/N;
see Figure 1. In our implementation, we use the maximal possible number of con-
straints, pairwise connecting all degrees of freedom, which physically belong to the
same location, using a Lagrange multiplier for each possible pair. There are therefore
redundancies in the compatibility constraints at the crosspoints. This is known to
yield a smaller number of iterations. An explanation from a mechanical viewpoint 1s
given in Rixen and Farhat [22]; see also our forthcoming paper [13].

We have carried out three different types of experiments for different combinations
of preconditioners K and M, in order to analyze the numerical scalability of the
method. In our first set of runs, we have kept the dimension of the subproblems,
and H/h, fixed and have increased the number of subdomains and thus the overall
problem size. In a second set of experiments, we have considered a fixed mesh size h
and again increased the number of subdomains. This results in decreasing dimensions
of the subproblems and in decreasing values of H/h. Our last series of experiments is
carried out with a fixed number of subdomains and increasing values of H/h resulting
in an increased 1/h.

In order to see how our method behaves in the best possible case, we first report
on results for K = K + %Q and M = M; cf. Tables 1,2, and 3 and Figures 2, and 4.

For all three cases, we present results for M constructed using D = I as well as with
the multiplicity scaling D = M S} cf. section 3. As in the original FETI algorithm,
the convergence is considerably faster with multiplicity scaling; using this scaling the
asymptotic convergence rate is also reached much earlier than for D = I. For both
choices of D, we obtain scalable domain decomposition methods, in all three set of
experiments. R .

To gain insight into the convergence behavior with inexact blocks K and M, we
have used preconditioners based on an incomplete Cholesky factorization (ILU). In
the following, TLU(0) stands for an incomplete Cholesky factorization with no fill in
while TLU(%ol) is a threshold ILU factorization, with a threshold of tol, as provided
in MATLAB 5.0; any entry in a column of the Cholesky factor L is dropped if its
magnitude is smaller than the drop tolerance tol times the norm of its column. We
denote by S the matrix that replaces S when TLU(0) is used to solve the Dirichlet

r,



16 A. KLAWONN AND O.B. WIDLUND

Fic. 1. Sample domain decomposition of the cantilever with 16 subdomains.
1.0E5

1.0E5

TaBLE 1
(1) : K=K + 1/H2MQ and M = M, (1) : K=K + 1/H2MQ and M using ILU(0), (III)
K ILU(1072) of K + 1/H2MQ and M = M, (IV) : K using ILU(1073) of K + 1/H2MQ and M
using ILU(0). MS : D= multiplicity scaling, I : D=Identity.

H/h =8 | Tter (I) | Tter (II) | Tter (ITI) | Tter (IV)
1/h[1/H [MS I |MS 1 |MS I |[MS I

16 2 11 19 11 19) 23 37| 25 38
32 4 17 27| 17 27| 33 69| 37 73
64 8 21 35| 25 35| 41 8 | 45 89
96 12 21 41| 25 41| 47 91 | 51 97
128 16 21 41| 25 43| 51 93 | 57 101

problems in each subdomain. Three different combinations are considered: 1) K =

K+ %Q and

0 0

o p-igp-1 | B

M'=B
2) K is built with ILU(1073) applied to K + %Q and M~1 = M~ 3) K is built
with ILU(1073) applied to K + %Q and M~! again, as in 1), uses the inexact Schur
complement S. The computational results are given in Tables 1, 2, and 3; cf. also
Figures 2, 3, and 4. We also present results with a more accurate ILU decomposition

based on a threshold tolerance of tol = 10~% in Table 4. We see that a more accurate
preconditioner K improves the overall rate of convergence significantly.

Acknowledgments. The first author would like to acknowledge the hospitality
and many discussions while visiting Xiao—Chuan Cai, Charbel Farhat, and Daniel
Rixen at the University of Colorado at Boulder and also wishes to thank Daniel
Rixen for providing parts of his FETI MATLAB code.
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FiG. 2. H/h =8, Upper left : K=K+ 5Q,M=M, Upper right : K=K+ 1/H?M¢ and
M using ILU(0), Lower left : K ILU(1072) of K + 1/H2MQ and M = M, Lower right : K using
ILU(10~%) of K +1/H? M
and M using ILU(0).

TABLE_2
(1) : K=K + 1/H2MQ and M = M, (1) : K=K + 1/H2MQ and M using ILU(0), (II])
K ILU(1072) of K + 1/H2MQ and M = M, (IV) : K using ILU(1073) of K + 1/H2MQ and M
using ILU(0). MS : D= multiplicity scaling, I : D=Identity.

h=1/96 Tter (I) | Tter (IT) | Tter (ITT) | Tter (TV)
H/h|1/H MS I |MS 1 |MS 1 |MS 1

24 4 19 33| 49 79| 56 111 | 101 165
16 6 21 33|27 39| 55 113 | 75 131
12 8 25 35|29 39| 56 114 | 73 129
8 12 21 41| 25 41| 47 91 51 97
6 16 | 19 37| 23 39| 48 87 | 52 89

TaBLE_3
(1) : K=K + 1/H2MQ and M = M, (1) : K=K + 1/H2MQ and M using ILU(0), (II])
K ILU(1072) of K + 1/H2MQ and M = M, (IV) : K using ILU(1073) of K + 1/H2MQ and M
using ILU(0). MS : D= multiplicity scaling, I : D=Identity.

H=1/4 Tter (I) | Tter (TT) | Tter (ITT) | Tter (TV)
1/h [H/h [MS I |MS 1 |MS 1 |MS 1

16 4 15 25| 15 25| 41 84 | 41 84
32 8 17 27| 17 27|33 69 | 37 73
64 16 | 19 29| 27 49| 49 97 | 63 114
128 32 19 35| 51 69| 72 142 | 118 209
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ITERATIONS
ITERATIONS
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FiG. 3. h = 1/96, Upper left : K= K+ #Q,M = M , Upper right : K= K+ 1/H2MQ and
M using ILU(0), Lower left : K ILU(1072) of K + 1/H2MQ and M = M, Lower right : K using
ILU(1072) of K + 1/H2MQ and M using ILU(0).

TABLE 4
(I) : K based on ILU(107¢) of K + 1/H?M¢g and M = M, (II) : K based on ILU(1078) of
K+ 1/H2MQ and M using ILU(0). MS : D = multiplicity scaling, I : D= Identity.

H/h = 8 | Tter (I) | Tter (IT)
/h [1/H [MS T |MS 1
16 2 18 30| 20 32
32 4 17 29| 19 29
64 8 21 35| 25 35
128 16 23 41| 25 43
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Fic. 4. H = 1/4, Upper left : K= K+ #Q,]@: M , Upper right : K= K+ 1/H2MQ and

M using ILU(0), Lower left : K ILU(1072) of K + 1/H?M¢g and M = M, Lower right : K using
ILU(1072) of K + 1/H2MQ and M using ILU(0).

(9]
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