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Abstract

In this thesis, we present design techniques – and systems that illustrate and vali-

date these techniques – for building data-intensive applications over the Internet.

We enable the use of a traditional bandwidth-limited server in these applications.

A large number of cooperating users contribute resources such as disk space and

network bandwidth, and form the backbone of such applications. The applications

we consider fall in one of two categories. The first type provide user-perceived

utility in proportion to the data download rates of the participants; bulk data dis-

tribution systems is a typical example. The second type are usable only when the

participants have data download rates above a certain threshold; video streaming

is a prime example.

We built Shark, a distributed file system, to address the first type of applica-

tions. It is designed for large-scale, wide-area deployment, while also providing a

drop-in replacement for local-area file systems. Shark introduces a novel locality-

aware cooperative-caching mechanism, in which clients exploit each other’s file

caches to reduce load on an origin file server. Shark also enables sharing of data

even when it originates from different servers. In addition, Shark clients are mu-

tually distrustful in order to operate in the wide-area. Performance results show

that Shark greatly reduces server load and reduces client-perceived latency for

read-heavy workloads both in the wide and local areas.
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We built RedCarpet, a near-Video-on-Demand (nVoD) system, to address the

second type of applications. nVoD allows a user to watch a video starting at any

point after waiting for a small setup time. RedCarpet uses a mesh-based peer-

to-peer (P2P) system to provide the nVoD service. In this context, we study

the problem of scheduling the dissemination of chunks that constitute a video.

We show that providing nVoD is feasible with a combination of techniques that

include network coding, avoiding resource starvation for different chunks, and over-

lay topology management algorithms. Our evaluation, using a simulator as well

as a prototype, shows that systems that do not optimize in all these dimensions

could deliver significantly worse nVoD performance.
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Chapter 1

Introduction

Efficient distribution of large files over the Internet is key to enabling new function-

ality. Applications are becoming increasingly more complex and deal with large

amounts of data. Good examples of this trend are data distribution for grids and

video distribution over the Internet. A lot of new and interesting functionality

has been made possible through data mining on big data sets like the one used to

power Google maps [30], or the census data for the US [55, 71]. Similarly, while

movies were previously distributed through tapes, DVDs etc., video distribution

over the Internet is now becoming increasingly popular. Distribution of large files

to meet the demands of these new applications is thus an interesting and relevant

problem.

The performance of such applications depends largely on the data download

rates of the participants. However, this dependence generally falls in one of two

categories. With the first type of applications, performance improves proportion-

ally with the download rate. An example of such an application is a grid where

a number of clients do some computation on the census data (from the above ex-

ample). Given the normal case that the client is not limited by other resources
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(CPU etc.), the performance of such an application improves with the download

rate of the census data. The second type of applications are useful only when the

download rate is above a certain threshold. Video streaming is a good example

of this type. A user finds streaming video useful only when the client is able to

download data at a rate higher than the encoding rate of the video.

In addition, applications that deal in large files display two basic access patterns

– random and sequential. Taking the above examples, queries on the census data

usually hit random parts of the file. These parts then need to be supplied to

the application keeping the latency as low as possible. While fetching the relevant

parts of the file, it would be useful to transfer the rest of the file in the background,

so as to field further queries from the local cache. On the other hand, in the

example of video distribution, an application accesses the file sequentially (though

not necessarily from the beginning). The initial latency for fetching the first part

should be kept low.

Traditionally, a central server was used to distribute large files for such appli-

cations. As the data volume increased, individual servers have been replaced by

server farms [9]. But such server farms do not scale well to large numbers of users

because of huge operating costs. An alternative approach has been to use Content

Distribution Networks (CDNs) [3]. While CDNs scale better than server farms,

they are still quite expensive for the average content provider [56].

A relatively new approach towards distributing large files, in a scalable and

economical fashion, is peer-to-peer (P2P) systems. The Internet has scaled rapidly

to include a growing population of home users. The idea is to exploit the unused

resources of these machines (also referred to as nodes, users, clients) spread over

the wide area, to support a variety of applications. In such P2P systems, the

large file is usually divided into a number of chunks (also called blocks), and are
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disseminated across the nodes [20, 44, 21, 54]. The nodes themselves are organized

into a connected graph, so that each node can find the chunks it requires from

amongst the other nodes.

There are a number of challenges in distributing large files over P2P networks.

• An interesting problem is scheduling the dissemination of chunks of a file in

an efficient manner. Note that nodes only have partial information about the

rest of the system (typically, a small subset of all the nodes), for reasons of

scalability. Determining what chunks to fetch in order to benefit the entire

system, while having only partial information is a challenging problem.

• Another interesting problem is topology management, i.e., arranging the

nodes into an efficient network. The challenge here is to construct an efficient

topology based on the characteristics of the underlying network (such as

locality), of the nodes (such as upload bandwidth), and of the application

(such as which nodes perform well together).

• Another important aspect of P2P systems is security. Given that the nodes

are spread across the world, they are mutually distrustful. The challenge is in

ensuring data integrity in such an untrusted environment, and also providing

privacy and authentication for some applications.

In sections 1.1, 1.2, we will introduce two systems that we built, Shark and

RedCarpet, to give an overview of our approach towards addressing these problems.

Shark is a distributed file system that addresses the first type of applications, while

RedCarpet is a system that provides a near-Video-on-Demand (nVoD) service and

addresses the second type of applications.
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1.1 Shark: High-performance read-heavy filesystem

In this section, we give a brief overview of Shark, which illustrates distributed

applications that require a high-performance, read-mostly filesystem interface. We

provide the motivation for such applications, point out the challenges in designing

such systems, the techniques used to overcome these challenges, and the advantages

provided by Shark over existing systems.

Users of distributed computing environments often launch similar processes on

hundreds of machines almost simultaneously. Running jobs in such an environ-

ment can be significantly complicated, both because of data-staging concerns and

the increased difficulty of debugging. Batch-oriented tools, such as Condor [23],

can provide I/O transparency to help distribute CPU-intensive applications. How-

ever, these tools are ill-suited to tasks like distributed web hosting and network

measurement, in which software needs low-level control of network functions and

resource allocation. An alternative is frequently seen on network test-beds such

as RON [5] and PlanetLab [60]: users replicate their programs, along with some

minimal execution environment, on every machine before launching a distributed

application.

Replicating execution environments has a number of drawbacks. First, it wastes

resources, particularly bandwidth. Popular file synchronization tools do not opti-

mize for network locality, and they can push many copies of the same file across slow

network links. Moreover, in a shared environment, multiple users will inevitably

copy the exact same files, such as popular OS add-on packages with language in-

terpreters or shared libraries. Second, replicating run-time environments requires

dedicated resources, a scarce resource in a shared test-bed. Programs need suf-

ficient disk space, yet idle environments continue to consume disk space, in part
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because the owners are loathe to waste the bandwidth and effort required for re-

distribution. Third, replicated run-time environments differ significantly from an

application’s development environment, in part to conserve bandwidth and disk

space. For instance, users usually distribute only stripped binaries, not source or

development tools, making it difficult to debug running processes in a distributed

system.

Shark is a network file system specifically designed to support widely dis-

tributed applications. Rather than manually replicate program files, users can

place a distributed application and its entire run-time environment in an exported

file system, and simply execute the program directly from the file system on all

nodes. In a chrooted environment such as PlanetLab, users can even make /usr/

local a symbolic link to a Shark file system, thereby trivially making all local

software available on all test-bed machines.

The big challenge faced by Shark, of course, is scalability. With a normal

network file system, if hundreds of clients simultaneously execute a large, 40MB

C++ program from a file server, the server quickly saturates its network uplink

and delivers unacceptable performance. Shark, however, scales to large numbers

of clients through a locality-aware cooperative cache. When reading an uncached

file, a Shark client avoids transferring the file or even chunks of the file from the

server, if the same data can be fetched from another, preferably nearby, client. For

world-readable files, clients will even download nearby cached copies of identical

files—or even file chunks—originating from different servers.

Shark leverages a locality-aware, peer-to-peer distributed index [26] to coordi-

nate client caching. Shark clients form self-organizing clusters of well-connected

machines. When multiple clients attempt to read identical data, these clients

locate nearby replicas and stripe downloads from each other in parallel. Thus,
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even modestly-provisioned file servers can scale to hundreds, possibly thousands,

of clients making read-mostly accesses.

There have been serverless, peer-to-peer file systems capable of scaling to large

numbers of clients, notably Ivy [54]. Unfortunately, these systems have highly

non-standard models for administration, accountability, and consistency. For ex-

ample, Ivy spreads hard state over multiple machines, chosen based on file system

data structure hashes. This leaves no single entity ultimately responsible for the

persistence of a given file. Moreover, peer-to-peer file systems are typically notice-

ably slower than conventional network file systems. Thus, in both accountability

and performance they do not provide a substitute for conventional file systems.

Shark, by contrast, exports a traditional file-system interface, is compatible with

existing administrative procedures like backup and restore, provides competitive

performance on the local area network, and also scales easily to many clients in

the wide area.

For workloads with no read sharing between users, Shark offers performance

that is competitive with traditional network file systems. However, for shared read-

heavy workloads in the wide area, Shark greatly reduces server load and improves

client latency. Compared to both NFSv3 [12] and SFS [51], a secure network file

system, Shark can reduce server bandwidth usage by nearly an order of magnitude

and can provide a 4x-6x improvement in client latency for reading large files, as

shown by both local-area experiments on the Emulab [75] test-bed and wide-area

experiments on the PlanetLab [60] test-bed.

By providing scalability, efficiency, and security, Shark enables network file

systems to be employed in environments where they were previously desirable but

impractical.
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1.2 RedCarpet: Providing high-quality near-VoD

In this section, we give a brief overview of RedCarpet, which illustrates distributed

applications that require a guaranteed data download rate. We present video

streaming as a prime example of such an application (a user can watch a video

only if the download rate is higher than the encoding rate of the video.) We provide

the motivation for such applications, point out the shortcomings of previous ap-

proaches, describe the challenges involved, and highlight our contributions towards

solving these challenges.

Audio and video together form arguably the most popular form of content.

Their popularity can be easily gauged from the amount of audio-video content

generated each year. In 2002, there were 47, 776 radio stations generating 70 mil-

lion hours of original programming, and 21, 264 TV stations generating 31 million

hours of original programming, in the United States (US) alone [47]. Given the

convenience and the economy of the Internet, it is not surprising that much effort

has gone into bringing audio-visual content to the Internet.

There have been a number of paradigms for the dissemination of audio-video

over the Internet. One is the live streaming model, where users tune into a server

at a particular time for obtaining a specific audio-video, much like regular radio or

TV. Another is the blockbuster model, where users obtain the video in its entirety,

and then start watching it, much like getting a DVD from a nearby blockbuster

store. A third model is Video-on-Demand (VoD), where a user can start watching a

video at any time, at the click of a button. Note that the VoD paradigm combines

the utility of the DVD to watch a video at any time, with the convenience of the

TV in being able to watch at the click of a button. In this thesis, we thus focus

only on providing VoD over the Internet in a scalable and efficient manner.
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On the Internet, peer-to-peer (P2P) systems have been immensely successful

for large scale content distribution. Peer-to-peer systems provide for scalable con-

tent distribution without infrastructure support. Current peer-to-peer applications

generate a large percentage of the traffic over the Internet and, not surprisingly,

a large fraction of that traffic relates to distributing video content [58]. However,

with such systems, the users need to download the complete file, and as a result

incur a long delay before they can watch the video. Recently systems such as

CoolStreaming and others [79, 61, 25] have been very successful in delivering live

media content to a large number of users using mesh-based P2P technology.

In this thesis, we will explore the feasibility of using such P2P technologies to

provide a VoD service. A P2P VoD service is more challenging to design than a

P2P live streaming system (when there are no hard real-time constraints; note that

without this constraint, P2P live streaming becomes a special case of the VoD sce-

nario), because the system should allow users arriving at arbitrary times to watch

(arbitrary parts of) the video, in addition to providing a low start up delay. That

different users might be watching different parts of the video at a given time can

greatly impact the efficiency of a swarming protocol. The lack of synchronization

among users reduces the block sharing opportunities, and careful design of the

block transmission algorithms is required to achieve good performance.

There are two fundamental approaches to building P2P systems – tree-based

(push) systems where a tree (or a forest of trees) is usually constructed for dissem-

ination of data [13, 18, 40], and mesh-based (pull) systems where peers exchange

random blocks [20, 29, 42]. Recently, mesh-based systems have become very pop-

ular with the success of BitTorrent. In comparison with the tree-based approaches

which are usually complex, they are much simpler to design. Also, the mesh-based

approaches are robust to high rates of churn unlike the tree-based approaches. On
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the other hand, mesh-based systems usually incur higher control overhead than

tree-based systems [78]. Given that the control overhead is moderate in compari-

son with the amount of data distributed in the VoD scenario, we chose a mesh-based

approach for our study.

Note that while mesh-based P2P systems have proved to be efficient for bulk file

dissemination, it has been an open question if they are also efficient for providing

VoD. The challenge lies in the fact that users of the VoD service need to receive

blocks “sequentially” (and not in random order) in order to watch the movie while

downloading, and, unlike live streaming, the users may be interested in different

parts of the video, and there is competition for system resources between these

different parts. The goal then is to design a P2P system which meets these VoD

requirements, while maintaining a high utilization of the system resources.

In this thesis, we study algorithms that provide users with a high-quality VoD

service, while ensuring efficient utilization of the system resources. We evaluate

our algorithms using extensive simulations as well as real-world experiments under

different user arrival patterns, and heterogeneous user capacities. We show that

näıve, greedy scheduling algorithms provide bad throughput (number of blocks

disseminated per unit time). Applying Network Coding[28, 27, 2] over small time-

windows of the video (e.g. a segment with a few seconds worth of video frames)

minimizes the inefficiency resulting from uploading of duplicate content, and re-

duces the variance in the performance of the nodes.

While network coding solves the scheduling problem within a segment, schedul-

ing across segments (spanning the entire video file) requires algorithms that avoid

under-represented video portions. We present an algorithm that avoids the oc-

currence of such rare segments. The combination of this algorithm with network

coding provides good system throughput while allowing nodes to download blocks
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“pseudo-sequentially” (so that the user does not experience interruptions in play-

back).

The performance of the system, which measures both the utilization of the

system resources as well as user experience (low startup delay and sustained play-

back), depends critically on adaptively constructing proper mesh topologies using

efficient peer-matching algorithms. Such algorithms should take into account the

content available at each peer as well as their bandwidth. Our algorithm clusters

nodes that are interested in the same part of the video, and ensures that a high

throughput translates into good user experience.

RedCarpet is a peer-to-peer system that incorporates this combination of net-

work coding, segment scheduling, and peer-matching algorithms to provide a nVoD

service.

The rest of this thesis is organized as follows. In chapter 2, we discuss the design

and implementation of Shark, and evaluate its performance benefits in wide- and

local-area networks. In chapter 3, we discuss the algorithms mentioned above in

detail, and evaluate their benefits with a prototype implementation of RedCarpet.

We discuss related research in chapter 4, and conclude in chapter 5.
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Chapter 2

Shark

Shark is a distributed file system designed to scale a file server by leveraging a

locality-aware cooperative cache formed by mutually distrustful clients. In this

chapter, we first present an overview of the design of Shark. We then explore the

file system interface and consistency model, and go on to discuss the functioning

of the cooperative cache formed by the users of the system. We address the secu-

rity concerns posed by Shark, given that it operates in the wide-area and relies on

sharing of data between clients. We also present the use of LBFS-style chunks de-

signed to exploit file commonalities, as part of the cooperative caching mechanism.

Finally, we describe the implementation of Shark, and evaluate the performance

benefits offered in wide- and local-area networks.

2.1 Shark Design

Shark’s design incorporates a number of key ideas aimed at reducing the load

on the server and improving client-perceived latencies. Shark enables clients to

securely mount remote file systems and efficiently access them. When a client
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Figure 2.1: Shark System Overview. A client machine simultaneously acts as a

client (to handle local application file system accesses), as a proxy (to serve cached

data to other clients), and as a node (within the distributed index overlay). In

a real deployment, there may be multiple file servers that each host separate file

systems, and each client may access multiple file systems. For simplicity, however,

we show a single file server.

is the first to read a particular file, it fetches the data from the file server. Upon

retrieving the file, the client caches it and registers itself as a replica proxy (or proxy

for short) for the “chunks” of the file in the distributed index. Subsequently, when

another client attempts to access the file, it discovers proxies for the file chunks

by querying the distributed index. The client then establishes a secure channel

to multiple such proxies and downloads the file chunks in parallel (Note that the

client and the proxy are mutually distrustful.) Upon fetching these chunks, the

client also registers itself as a proxy for these chunks.

Figure 2.1 provides an overview of the Shark system. When a client attempts

to read a file, it queries the file server for the file’s attributes and some opaque
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tokens (Step 1 as shown). One token identifies the contents of the whole file,

while other tokens each identify a particular chunk of the file. A Shark server

divides a file into chunks by running a Rabin fingerprint algorithm on the file [53].

This technique splits a file along specially chosen boundaries in such a way that

preserves data commonalities across files, for example, between file versions or

when concatenating files, such as building program libraries from object files.

Next, a client attempts to discover replica proxies for the particular file via

the Shark’s distributed index (Step 2). Shark clients organize themselves into

a key/value indexing infrastructure, built atop a peer-to-peer structured routing

overlay [26]. For now, we can visualize this layer as exposing two operations, put

and get : A client executes put to declare that it has something; get returns the list

of clients who have something. A Shark client uses its tokens to derive indexing

keys that serve as inputs to these operations. It uses this distributed index to

register itself and to find other nearby proxies caching a file chunk.

Finally, a client connects to several of these proxies, and it requests various

chunks of data from each proxy in parallel (Step 3). Note, however, that the

clients themselves are mutually distrustful, so Shark must provide various mecha-

nisms to guarantee secure data sharing: (1) Data should be encrypted to preserve

confidentiality and should be decrypted only by those with appropriate read per-

missions. (2) A malicious proxy should not be able to break data integrity by

modifying content without a client detecting the change. (3) A client should not

be able to download large amounts of even encrypted data without proper read

authorization.

Shark uses the opaque tokens generated by the file server in several ways to

handle these security issues. (1) The tokens serve as a shared secret (between client

and proxy) with which to derive symmetric cryptographic keys for transmitting
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data from proxy to client. (2) The client can verify the integrity of retrieved data,

as the token acts to bind the file contents to a specific verifiable value. (3) A client

can “prove” knowledge of the token to a proxy and thus establish read permissions

for the file. Note that the indexing keys used as input to the distributed index

are only derived from the token; they do not in fact expose the token’s value or

otherwise destroy its usefulness as a shared secret.

Shark allows clients to share common data segments on a sub-file granularity.

As a file server provides the tokens naming individual file chunks, clients can share

data at the granularity of chunks as opposed to whole files.

In fact, Shark provides cross-file-system sharing when tokens are derived solely

from file contents. Consider the case when users attempt to mount /usr/local

(for the same operating system) using different file servers. Most of the files in

these directories are identical and even when the file versions are different, many

of the chunks are identical. Thus, even when distinct subsets of clients access

different file servers to retrieve tokens, one can still act as a proxy for the other to

transmit the data.

In this section, we first describe the Shark file server (Section 2.1.1), then discuss

the file consistency provided by Shark (2.1.2). Section 2.1.3 describes Shark’s coop-

erative caching, its cryptographic operations, and client-proxy protocols. Finally,

we present Shark’s chunking algorithm (2.1.4) and its distributed index (2.1.5) in

more depth.

2.1.1 Shark file servers

Shark names file systems using self-certifying pathnames, as in SFS [51]. These

pathnames explicitly specify all information necessary to securely communicate
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with remote servers. Every Shark file system is accessible under a pathname of

the form:

/shark/@server , pubkey

A Shark server exports local file systems to remote clients by acting as an NFS loop-

back client. A Shark client provides access to a remote file system by automounting

requested directories [51]. This allows a client-side Shark NFS loop-back server to

provide unmodified applications with seamless access to remote Shark file systems.

Unlike NFS, however, all communication with the file server is sent over a secure

channel, as the self-certifying pathname includes sufficient information to establish

a secure channel.

System administrators manage a Shark server identically to an NFS server.

They can perform backups, manage access controls with little difference. They can

configure the machine to taste, enforce various policies, perform security audits etc.

with existing tools. Thus, Shark provides system administrators with a familiar

environment and thus can be deployed painlessly.

2.1.2 File consistency

Shark uses two network file system techniques to improve read performance and

decrease server load: leases [31] and AFS-style whole-file caching [36]. When a

user attempts to read any portion of a file, the client first checks its disk cache. If

the file is not already cached or the cached copy is not up to date, the client fetches

a new version from Shark (either from the cooperative cache or directly from the

file server).

Whenever a client makes a read RPC to the file server, it gets a read lease on

that particular file. This lease corresponds to a commitment from the server to

15



notify the client of any modifications to the file within the lease’s duration. Shark

uses a default lease duration of five minutes. Thus, if a user attempts to reads from

a file—and if the file is cached, its lease is not expired, and no server notification

(or callback) has been received—the read succeeds immediately using the cached

copy.

If the lease has already expired when the user attempts to read the file, the

client contacts the file server for fresh file attributes. The attributes, which include

file permissions, mode, size, etc., also provide the file’s modification and inode

change times. If these times are the same as the cached copy, no further action is

necessary: the cached copy is fresh and the client renews its lease. Otherwise, the

client needs to fetch a new version from Shark.

While these techniques reduce unnecessary data transfers when files have not

been modified, each client needs to refetch the entire file after any modification from

the server. Thus, large numbers of clients for a particular file system may overload

the server and offer poor performance. Two techniques alleviate the problem:

Shark fetches only modified chunks of a file, while its cooperative caching allows

clients to fetch data from each other instead of from the server.

While Shark attempts to handle reads within its cooperative cache, all writes

are sent to the origin server. When any type of modification occurs, the server

must invalidate all unexpired leases, update file attributes, recompute its file token,

and update its chunk tokens and boundaries.

We note that a reader can get a mix of old and new file data if a file is mod-

ified while the reader is fetching file attributes and tokens from the server. (This

condition can occur, for example, when fetching the file tokens requires multiple

RPCs, as described next.) However, this behavior is no different from NFS, but it

could be changed using AFS-style whole-file overwrites [36].
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Figure 2.2: Shark GETTOK RPC

2.1.3 Cooperative caching

File reads in Shark make use of one RPC procedure not in the NFS protocol,

GETTOK, as shown in Figure 2.2.

GETTOK supplies a file handle, offset, and count as arguments, just as in a

READ RPC. However, instead of returning the actual file data, it returns the

file’s attributes, the file token, and a vector of chunk descriptions. Each chunk

description identifies a specific extent of the file by offset and size, and includes

a chunk token for that extent. The server will only return up to 1,024 chunk

descriptions in one GETTOK call; the client must issue multiple calls for larger

files.

The file attributes returned by GETTOK include sufficient information to deter-

mine if a local cached copy is up-to-date (as discussed). The tokens allow a client

(1) to discover current proxies for the data, (2) to demonstrate read permission for

the data to proxies, and (3) to verify the integrity of data retrieved from proxies.

We will now specify how Shark’s various tokens and keys are derived.
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Symbol Description Generated by . . . Only known by . . .

F File Server and approved readers

Fi ith file chunk Chunking algorithm Parties with access to F

r Server-specific randomness r = PRNG() or r = 0 Parties with access to F

T File/chunk token tok(F ) = HMACr(F ) Parties with access to F/Fi

I, E, AC , AP Special constants System-wide parameters Public

I Indexing key HMACT (I) Public

rC , rP Session nonces rC , rP = PRNG() Parties exchanging F/Fi

AuthC Client authentication token HMACT (AC , C, P, rC , rP ) Parties exchanging F/Fi

AuthP Proxy authentication token HMACT (AP , P, P, rP , rC) Parties exchanging F/Fi

KE Encryption key HMACT (E, C, P, rC , rP ) Parties exchanging F/Fi

Table 2.1: Notation used for Shark’s tokens, keys, and other values

Content-based naming. Shark names content with cryptographic hash opera-

tions, as given in Table 2.1.

A file token is a 160-bit value generated by a cryptographic hash of the file’s

contents F and some optional per-file randomness r that a server may use as a key

for each file (discussed later):

TF = tok(F ) = HMACr(F )

Throughout our design, HMAC is a keyed hash function [10], which we instantiate

with SHA-1. We assume that SHA-1 acts as a collision-resistant hash function,

which implies that an adversary cannot find an alternate input pair that yields the

same TF .1

1While our current implementation uses SHA-1, we could similarly instantiate HMAC with

SHA-256 for greater security.
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The chunk token TFi
in a chunk description is also computed in the same man-

ner, but only uses the particular chunk of data (and optional randomness) as an

input to SHA-1, instead of the entire file F . As file and chunk tokens play simi-

lar roles in the system, we use T to refer to either type of token, as the context

necessitates.

The indexing key I used in Shark’s distributed index is simply computed by

HMACT (I). We key the HMAC function with T and include a special character I

to signify indexing. More specifically, IF refers to the indexing key for file F , and

IFi
for chunk Fi.

The use of such server-selected randomness r ensures that an adversary cannot

guess file contents, given only I. Otherwise, if the file is small or stylized, an

adversary may be able to perform an offline brute-force attack by enumerating all

possibilities.

On the flip-side, omitting this randomness enables cross-file-system sharing, as

its content-based naming can be made independent of the file server. That is, when

r is omitted and replaced by a string of 0s, the distributed indexing key is dependent

only on the contents of F : IF = HMACHMAC0(F )(I). Cross-file-system sharing can

improve client performance and server scalability when nearby clients use different

servers. Thus, the system allows one to trade-off performance improvement with

additional security guarantees. By default, we omit this randomness for world-

readable files, although configuration options can override this behavior.

The cooperative-caching read protocol. We now specify in detail the cooperative-

caching protocol used by Shark. The main goals of the protocol are to reduce the

load on the server and to improve client-perceived latencies. To this end, a client

tries to download chunks of a file from multiple proxies in parallel. At a high
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level, a client first fetches the tokens for the chunks that comprise a file. It then

contacts nearby proxies holding each chunk (if such proxies exist) and downloads

them accordingly. If no other proxy is caching a particular chunk of interest, the

client falls back on the server for that chunk.

The client sends a GETTOK RPC to the server and fetches the whole-file token,

the chunk tokens, and the file’s attributes. It then checks its cache to determine

whether it has a fresh local copy of the file. If not, the client runs the following

cooperative read protocol.

The client always attempts to fetch k chunks in parallel. We can visualize the

client as spawning k threads, with each thread responsible for fetching its assigned

chunk.2 Each thread is assigned a random chunk Fi from the list of needed chunks.

The thread attempts to discover nearby proxies caching that chunk by querying the

distributed index using the primitive get(IFi
=HMACTFi

(I)). If this get request fails

to find a proxy or does not find one within a specified time, the client fetches the

chunk from the server. After downloading the entire chunk, the client announces

itself in the distributed index as a proxy for Fi.

If the get request returns several proxies for chunk Fi, the client chooses one

with minimal latency and establishes a secure channel with the proxy, as described

later. If the security protocol fails (perhaps due to a malicious proxy), or the

connection to the proxy fails, or a newly specified timeout occurs, the thread

chooses another proxy from which to download chunk Fi. Upon downloading Fi,

the client verifies its integrity by checking whether TFi

?
= tok(Fi). If the client fails

to successfully download Fi from any proxy after a fixed number of attempts, it

falls back onto the origin file server.

2Our implementation is structured using asynchronous events and callbacks within a single

process, we use the term “thread” here only for clarity of explanation.
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Reusing proxy connections. While a client is downloading a chunk from a

proxy, it attempts to reuse the connection to the proxy by negotiating for other

chunks. The client picks α random chunks still needed. It computes the corre-

sponding α indexing keys and sends these to the proxy. The proxy responds with

those γ chunks, among the α requested, that it already has. If γ = 0, the proxy re-

sponds instead with β keys corresponding to chunks that it does have. The client,

upon downloading the current chunk, selects a new chunk from among those nego-

tiated (i.e., needed by the client and known by the proxy). The client then proves

read permissions on the new chunk and begins fetching the new chunk. If no such

chunks can be negotiated, the client terminates the connection.

Client-proxy interactions. We now describe the secure communication mech-

anisms between clients and proxies that ensure confidentiality and authorization.

We already described how clients achieve data integrity by verifying the contents

of files/chunks by their tokens.

To prevent adversaries from passively reading or actively modifying content

while in transmission, the client and proxy first derive a symmetric encryption key

KE before transmitting a chunk. As the token TFi
already serves as a shared secret

for chunk Fi, the parties can simply use it to generate this key.

Figure 2.3 shows the protocol by which Shark clients establish a secure session.

First, the parties exchange fresh, random 20-byte nonces rC and rP upon initiating

a connection. For each chunk to be sent over the connection, the client must signal

the proxy which token TFi
to use, but it can do so without exposing information

to eavesdroppers or malicious proxies by simply sending IFi
in the clear. Using

these nonces and knowledge of TFi
, each party computes authentication tokens as
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Figure 2.3: Shark session establishment protocol

follows:

AuthC = HMACTFi
(AC , C, P, rC , rP )

AuthP = HMACTFi
(AP , P, C, rP , rC)

The AuthC token proves to the proxy that the client actually has the corresponding

chunk token TFi
and thus read permissions on the chunk. Upon verifying AuthC ,

the proxy replies with AuthP and the chunk Fi after applying E (see below) to it.

In our current implementation, E is instantiated by a symmetric block encryp-

tion function, followed by a MAC covering the ciphertext. However, we note that

AuthP already serves as a MAC for the content, and thus this additional MAC

is not strictly needed. 3 The symmetric encryption key KE for E is derived in a

similar manner as before:

KE = HMACTFi
(E, C, P, rC , rP )

3The results of Krawczyk [43] speaking on the generic security concerns of “authenticate-and-

encrypt” are not really relevant here, as we already expose the raw output of our MAC via IFi

and thus implicitly assume that HMAC does not leak any information about its contents. Thus,

the inclusion of AuthP does not introduce any additional data confidentiality concerns.
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An additional MAC key can be similarly derived by replacing the special character

E with M. Shark’s use of fresh nonces ensure that these derived authentication

tokens and keys cannot be replayed for subsequent requests.

Upon deriving this symmetric key KE, the proxy encrypts the data within a

chunk using 128-bit AES in counter mode (AES-CTR). For each 16-byte AES

block, we use the block’s offset within the chunk/file as its counter.

The proxy protocol has READ and READDIR RPCs similar to NFS, except they

specify the indexing key I and AuthC to name a file (which is server independent),

in place of a file handle. Thus, after establishing a connection, the client begins

issuing read RPCs to the proxy; the client decrypts any data it receives in response

using KE and the proper counter (offset).

While this block encryption prevents a client without TFi
from decrypting the

data, one may be concerned if some unauthorized client can download a large num-

ber of encrypted blocks, with the hope of either learning KE later or performing

some offline attack. The proxy’s explicit check of AuthC prevents this. Similarly,

the verifiable AuthP prevents a malicious party that does not hold Fi from register-

ing itself under the public IFi
and then wasting the client’s bandwidth by sending

invalid blocks (that later will fail hash verification).

Thus, Shark provides strong data integrity guarantees to the client and autho-

rization guarantees to the proxy, even in the face of malicious participants.

2.1.4 Exploiting file commonalities

We now describe the chunking method by which Shark can leverage file common-

alities. This method (used by LBFS [53]) avoids dependence on file-length changes

by setting chunk boundaries, or breakpoints, based on file contents, rather than
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on offset position. If breakpoints were selected only by offset—for instance, by

breaking a file into aligned 16KB chunks—a single byte added to the front of a file

would change all breakpoints and thus all chunk tokens.

To divide a file into chunks, we examine every overlapping 48-byte region, and

if the low-order 14 bits of the region’s Rabin fingerprint [62] equals some globally-

chosen value, the region constitutes a breakpoint. Assuming random data, the

expected chunk size is therefore 214 = 16KB. To prevent pathological cases (such

as long strings of 0), the algorithm uses a minimum chunk size of 2KB and a

maximum size of 64KB. Therefore, modifications within a chunk will minimize

changes to the breakpoints: either only the chunk will change, one chunk will split

into two, or two chunks will merge into one.

Note that although our implementation supports only Rabin fingerprints, it is

only one technique to divide a file into chunks; the key idea is to obtain chunks

which remain intact on simple modifications to a file. Thus, specialized techniques

could be used for files which show definite patterns.

Content-based chunking enables Shark to exploit file commonalities: Even if

proxies were reading different versions of the same file or different files altogether,

a client can discover and download common data chunks, as long as they share

the same chunk token (and no server-specific per-file randomness is used). As the

fingerprint value is global, this chunking commonality also persists across multiple

file systems.

2.1.5 Distributed indexing

Shark seeks to enable data sharing between files that contain identical data chunks,

both on the same file system and across different file systems. This functionality
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is not supported by the simple server-based approach of indexing clients, whereby

the file server stores and returns information on which clients are caching which

chunks. Thus, we use a global distributed index for all Shark clients, even those

accessing different Shark file systems.

Shark uses a structured routing overlay [67, 63, 65, 80, 49] to build its dis-

tributed index. The system maps opaque keys onto nodes by hashing their value

onto a semantic-free identifier (ID) space; nodes are assigned identifiers in the same

ID space. It allows scalable key lookup (in O(log(n)) overlay hops for n-node sys-

tems), reorganizes itself upon network membership changes, and provides robust

behavior against failure.

While some routing overlays optimize routes along the underlay, most are de-

signed as part of distributed hash tables to store immutable data. In contrast,

Shark stores only small references about which clients are caching what data: It

seeks to allow clients to locate copies of data, not merely to find network effi-

cient routes through the overlay. In order to achieve such functionality, Shark uses

Coral [26] as its distributed index.

System overview. Coral exposes two main protocols: put and get . A Shark

client executes the get protocol with its indexing key I as input; the protocol

returns a list of proxy addresses that corresponds to some subset of the unexpired

addresses put under I, taking locality into consideration. put takes as input I, a

proxy’s address, and some expiry time.

Coral provides a distributed sloppy hash table (DSHT) abstraction, which offers

weaker consistency than traditional DHTs. It is designed for soft-state where

multiple values may be stored under the same key. This consistency is well-suited
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Figure 2.4: Coral’s three-level hierarchical overlay structure. Nodes (solid circles)

initially query others in their same high-level clusters (dashed rings), whose point-

ers reference other proxies caching the data within the same small-diameter cluster.

If a node finds such a mapping to a replica proxy in the highest-level cluster, the

get finishes. Otherwise, it continues among farther, lower-level nodes (solid rings),

and finally, if need be, to any node within the system (the dotted cloud).

for Shark: A client need not discover all proxies for a particular file, it only needs

to find several, nearby proxies.

Coral caches key/value pairs at nodes whose IDs are close (in terms of identifier

space distance) to the key being referenced. To lookup the client addresses associ-

ated with a key I, a node simply traverses the ID space with RPCs and, as soon

as it finds a remote peer storing I, it returns the corresponding list of values. To

insert a key/value pair, Coral performs a two-phase operation. In the “forward”

phase, Coral routes to nodes successively closer to I and stops when happening

upon a node that is both full (meaning it has reached the maximum number of

values for the key) and loaded (which occurs when there is heavy write traffic for
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a particular key). During the “reverse” phase, the client node attempts to insert

the value at the closest node seen. Please see [26] for more details.

To improve locality, these routing operations are not initially performed across

the entire global overlay: Each Coral node belongs to several distinct routing

structures called clusters. Each cluster is characterized by a maximum desired

network round-trip-time (RTT) called the diameter. The system is parameterized

by a fixed hierarchy of diameters, or levels. Every node belongs to one cluster

at each level, as shown in Figure 2.4. Coral queries nodes in fast clusters before

those in slower clusters. This both reduces the latency of lookups and increases

the chances of returning values stored on nearby nodes.

Handle concurrency via “atomic” put/get. Ideally, Shark clients should

fetch each file chunk from a Shark server only once. However, a DHT-like interface

which exposes two methods, put and get , is not sufficient to achieve this behavior.

For example, if clients were to wait until completely fetching a file before referencing

themselves, other clients simultaneously downloading the file will start transferring

file contents from the server. Shark mitigates this problem by using Coral to

request chunks, as opposed to whole files: A client delays its announcement for

only the time needed to fetch a chunk.

Still, given that Shark is designed for environments that may experience abrupt

flash crowds—such as when test-bed or grid researchers fire off experiments on

hundreds of nodes almost simultaneously and reference large executables or data

files when doing so—we investigated the practice of clients optimistically inserting

a mapping to themselves upon initiating a request. A production use of Coral in

a web-content distribution network takes a similar approach when fetching whole

web objects [26].
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Figure 2.5: The Shark system components

Even using this approach, we found that an origin server can see redundant

downloads of the same file when initial requests for a newly-popular file occur syn-

chronously. We can imagine this condition occurring in Shark when users attempt

to simultaneously install software on all test-bed hosts.

Such redundant fetches occur under the following race condition: Consider that

a mapping for file/chunk F (and thus IF ) is not yet inserted into the system. Two

nodes both execute get(IF ), then perform a put . On the node closest to IF , the

operations serialize with both gets being handled (and thus returning no values)

before either put .

Simply inverting the order of operations is even worse. If multiple nodes first

perform a put , followed by a get , they can discover one another and effectively

form cycles waiting for one another, with nobody actually fetching the file from

the server.

To eliminate this condition, we extended store operations in Coral to provide re-

turn status information (like test-and-set in shared-memory systems). Specifically,

we introduce a single put/get RPC which atomically performs both operations.
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The RPC behaves similar to a put as described above, but also returns the first

values discovered in either direction. (Values in the forward put direction help

performance; values in the reverse direction prevent this race condition.)

While of ultimately limited use in Shark given small chunk sizes, this extension

also proved beneficial for other applications seeking a distributed index abstrac-

tion [26].

2.2 Implementation

Shark consists of three main components, the server-side daemon sharksd, the

client-side daemon sharkcd and the coral daemon corald, as shown in Figure 2.5.

All three components are implemented in C++ and are built using the SFS

toolkit [50]. The file-system daemons interoperate with the SFS framework, using

its automounter, authentication daemon, etc. corald acts as a node within the

Coral indexing overlay; a full description can be found in [26].

sharksd, the server-side daemon, is implemented as a loop-back client which

communicates with the kernel NFS server. sharksd incorporates an extension of

the NFSv3 protocol—the GETTOK RPC—to support file- and chunk-token re-

trieval. When sharksd receives a GETTOK call, it issues a series of READ calls to

the kernel NFS server and computes the tokens and chunk breakpoints. It caches

these tokens for future reference. sharksd required an additional 400 lines of code

to the SFS read-write server.

sharkcd, the client-side daemon, forms the biggest component of Shark. In

addition to handling user requests, it transparently incorporates whole-file caching

and the client- and server-side functionality of the Shark cooperative cache. The

code is 12,000 lines.
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sharkcd comprises an NFS loop-back server which traps user requests and

forwards them to either the origin file server or a Shark proxy. In particular, a

read for a file block is intercepted by the loop-back server and translated into

a series of READ calls to fetch the entire file in the background. The cache-

management subsystem of sharkcd stores all files that are being fetched locally on

disk. This cache provides a thin wrapper around file-system calls to enforce disk

usage accounting. Currently, we use the LRU mechanism to evict files from the

cache. The cache names are chosen carefully to fit in the kernel name cache.

The server side of the Shark cooperative cache implements the proxy, accepting

connections from other clients. If this proxy cannot immediately satisfy a request,

it registers a callback for the request, responding when the block has been fetched.

The client side of the Shark cooperative cache implements the various fetching

mechanism discussed in Section 2.1.3. For every file to be fetched, the client

maintains a vector of objects representing connections to different proxies. Each

object is responsible for fetching a sequence of chunks from the proxy (or a range of

blocks when chunking is not being performed and nodes query only by file token).

An early version of sharkcd also supported the use of xfs, a device driver

bundled with the ARLA [74] implementation of AFS, instead of NFS. However,

given that the PlanetLab environment, on which we performed our testing, does

not support xfs, we do not present those results in this paper.

During Shark’s implementation, we discovered and fixed several bugs in both

the OpenBSD NFS server and the xfs implementation.

30



2.3 Evaluation

This section evaluates Shark against NFSv3 and SFS to quantify the benefits of its

cooperative-caching design for read-heavy workloads. To measure the performance

of Shark against these file systems, without the gain from cooperative caching, we

first present microbenchmarks for various types of file-system access tests, both in

the local-area and across the wide-area. We also evaluate the efficacy of Shark’s

chunking mechanism in reducing redundant transfers.

Second, we measure Shark’s cooperative caching mechanism by performing read

tests both within the controlled Emulab LAN environment [75] and in the wide-

area on the PlanetLab v3.0 test-bed [60]. In all experiments, we start with cold

file caches on all clients, but first warm the server’s chunk token cache. The server

required 0.9 seconds to compute chunks for a 10 MB random file, and 3.6 seconds

for a 40 MB random file.

We chose to evaluate Shark on Emulab, in addition to wide-area tests on Plan-

etLab, in order to test Shark in a more controlled, native environment: While

Emulab allows one to exclusively reserve machines, individual PlanetLab hosts

may be executing tens or hundreds of experiments (slices) simultaneously. In ad-

dition, most PlanetLab hosts implement bandwidth caps of 10 Mb/sec across all

slices. For example, on a local PlanetLab machine operating at NYU, a Shark

client took approximately 65 seconds to read a 40 MB file from the local (non-

PlanetLab) Shark file server, while a non-PlanetLab client on the same network

took 19.3 seconds. Furthermore, deployments of Shark on large LAN clusters (for

example, as part of grid computing environments) may experience similar results

to those we report.

The server in all the microbenchmarks and the PlanetLab experiments is a
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1.40 GHz Athlon at NYU, running OpenBSD 3.6 with 512 MB of memory. It runs

the corresponding server daemons for SFS and Shark. All microbenchmark and

PlanetLab clients used in the experiments ran Fedora Core 2 Linux. The server

used for Emulab tests was a host in the Emulab test-bed; it did not simultaneously

run a client. All Emulab hosts ran Red Hat Linux 9.0.

The Shark client and server daemons interact with the respective kernel NFS

modules using the loopback interface. On the Red Hat 9 and Fedora Core 2 ma-

chines, where we did our testing, the loopback interface has a maximum MTU of

16436 bytes and any transfer of blocks of size >= 16 KB results in IP fragmenta-

tion which appears to trigger a bug in the kernel NFS code. Since we could not

increase the MTU size of the loopback interface, we limited both Shark and SFS

to use 8 KB blocks. NFS, on the other hand, issued UDP read requests for blocks

of 32 KB over the ethernet interface without any problems. These settings could

have affected our measurements.

2.3.1 Alternate cooperative protocols

This section considers several alternative cooperative-caching strategies for Shark

in order to characterize the benefits of various design decisions.

First, we examine whether clients should issue requests for chunks sequentially

(seq), as opposed to choosing a random (previously unread) chunk to fetch. There

are two additional strategies to consider when performing sequential requests: Ei-

ther the client immediately pre-announces itself for a particular chunk upon re-

questing it (with an “atomic” put/get as in Section 2.1.5), or the client waits until

it finishes fetching a chunk before announcing itself (via a put). We consider such

sequential strategies to examine the effect of disk scheduling latency: for single
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clients in the local area, we expect the random strategy to limit the throughput to

that imposed by the file server’s disk seek time. But when multiple clients operate

concurrently, we expect that the random strategy allows all clients to fetch inde-

pendent chunks from the server and later trade these chunks among themselves.

Using a purely sequential strategy, the clients all advance only as fast as the few

clients that initially fetch chunks from the server.

Second, we disable the negotiation process by which clients may reuse con-

nections with proxies and thus download multiple chunks once connected. In this

case, the client must query the distributed index for each chunk.

2.3.2 Microbenchmarks

For the local-area microbenchmarks, we used a local machine at NYU as a Shark

client. Maximum TCP throughput between the local client and server, as measured

by ttcp, was 11.14 MB/sec. For wide-area microbenchmarks, we used a client

machine located at the University of Texas at El Paso. The average round-trip-

time (RTT) between this host and the server, as measured by ping, is 67 ms.

Maximum TCP throughput was 1.07 MB/sec.

Access latency. We measure the time necessary to perform four types of file-

system accesses: (1) to read 10 MB and (2) 40 MB large random files on remote

hosts, and (3) to read large numbers of small files. The small file test attempts to

read 1,000 1 KB files evenly distributed over ten directories.

We performed single-client microbenchmarks to measure the performance of

Shark. Figure 2.6 shows the performance on the local- and wide-area networks for

these three experiments, We compare SFS, NFS, and three Shark configurations,

viz. Shark without calls to its distributed indexing layer (nocoral), fetching chunks
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Figure 2.6: Local-area (top) and wide-area (bottom) microbenchmarks. Normalized

application performance for various types of file-system access. Execution times

in seconds appear above the bars.
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from a file sequentially (seq), and fetching chunks in random order (rand). Shark

issues up to eight outstanding RPCs (for seq and rand, fetching four chunks simul-

taneously with two outstanding RPCs per chunk). SFS sends RPCs as requested

by the NFS client in the kernel.

For all experiments, we report the normalized median value over three runs.

We interleaved the execution of each of the five file systems over each run. We

see that Shark is competitive across different file system access patterns and is

optimized for large read operations.

Chunking. In this microbenchmark, we validate that Shark’s chunking mecha-

nism reduces redundant data transfers by exploiting data commonalities.

We first read the tar file of the entire source tree for emacs v20.6 over a Shark

file system, and then read the tar file of the entire source tree for emacs v20.7.

We note that of the 2,083 files or directories that comprise these two file archives,

1,425 have not changed between versions (i.e., they have the identical md5 sum),

while 658 of these have changed.

Figure 2.7 shows the amount of bandwidth savings that the chunking mech-

anism provides when reading the newer emacs version. When emacs-20.6.tar

has been cached, Shark only transfers 33.8 MB (1416 chunks) when reading

emacs-20.7.tar (of size 56.3 MB).

2.3.3 Local-area cooperative caching

Shark’s main claim is that it improves a file server’s scalability, while retaining

its traditional benefits. We now study the end-to-end performance of reads in a

cooperative environment with many clients attempting to simultaneously read the

same file(s).
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Figure 2.7: Bandwidth savings from chunking. “New” reflects the number of

megabytes that need to be transferred when reading emacs 20.7, given a cached

copy of emacs 20.6. Number of chunks comprising each transfer appears above the

bars.

In this section, we evaluate Shark on Emulab [75]. These experiments allowed

us to evaluate various cooperative strategies in a better controlled environment. In

all the configurations of Shark, clients attempt to download a file from four other

proxies simultaneously.

Figure 2.8 shows the cumulative distribution functions (CDFs) of the time

needed to read a 10 MB and 40 MB (random) file across 100 physical Emulab

hosts, comparing various cooperative read strategies of Shark, against vanilla SFS

and NFS. In each experiment, all hosts mounted the server and began fetching

the file simultaneously. We see that Shark achieves a median completion time < 1
4
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Figure 2.8: Client latency. Time (in seconds) required for 100 LAN hosts to read

a 10 MB (top) and 40 MB (bottom) file.
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that of NFS and < 1
6

that of SFS. Furthermore, its 95th percentile is almost an

order of magnitude better than SFS.

Shark’s fast, almost vertical rise (for nearly all strategies) demonstrates its

cooperative cut-through routing: Shark clients effectively organize themselves into

a distribution mesh. Considering a single data chunk, a client is part of a chain of

nodes performing cut-through routing, rooted at the origin server. Because clients

may act as root nodes for some chunks and act as leaves for others, most finish

at almost synchronized times. The lack of any degradation of performance in the

upper percentiles demonstrates the lack of any heterogeneity, both in terms of

network bandwidth and underlying disk/CPU load, amongst the Emulab hosts.

Interestingly, we see that most NFS clients finish at loosely synchronized times,

while the CDF of SFS clients’ times has a much more gradual slope, even though

both systems send all read requests to the file server. Subsequent analysis of NFS

over TCP (instead of NFS over UDP as shown) showed a similar slope as SFS, as

did Shark without its cooperative cache. One possible explanation is that the heavy

load on (and hence congestion at) the file server imposed by these non-cooperative

file systems drives some TCP connections into back-off, greatly reducing fairness.

We find that a random request strategy, coupled with inter-proxy negotiation,

distinctly outperforms all other evaluated strategies. A sequential strategy effec-

tively saw the clients furthest along in reading a file fetch the leading (four) chunks

from the origin file server; other clients used these leading clients as proxies. Thus,

modulo possible inter-proxy timeouts and synchronous requests in the non-pre-

announce example, the origin server pushed at most four new chunks concurrently.

Using a random strategy, more distinct chunks are fetched from the server si-

multaneously and thus propagate more quickly through the clients’ dissemination

mesh.

38



 0

 20

 40

 60

 80

 100

 120

 140

 160

 0  10  20  30  40  50  60  70  80  90

B
an

dw
id

th
 tr

an
sm

itt
ed

 (
M

B
)

Unique Shark proxies

Emulab hosts
Shark, 40MB
Shark, 10MB

Figure 2.9: Proxy bandwidth usage. Amount of data in MB served by each Emulab

proxy when reading 40 MB and 10 MB files.

Figure 2.9 shows the total amount of bandwidth served by each proxy as part of

Shark’s cooperative caching, when using a random fetch strategy with inter-proxy

negotiation for the 40 MB and 10 MB experiments. We see that the proxy serving

the most bandwidth contributed four and seven times more upstream bandwidth

than downstream bandwidth, respectively. During these experiments, the Shark

file server served a total of 92.55 MB and 15.48 MB, respectively. Thus, we conclude

that Shark is able to significantly reduce a file server’s bandwidth utilization, even

when distributing files to large numbers of clients. Furthermore, Shark ensures

that any one cooperative-caching client does not incur excessive bandwidth cost.
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MB file using Shark and SFS.

2.3.4 Wide-area cooperative caching

Shark seeks to improve a file server’s scalability while retaining its traditional us-

age. In our cooperative caching experiment, we study the end-to-end performance

of attempting to perform reads within a large, wide-area distributed test-bed.

On approximately 185 PlanetLab hosts, well-distributed across North America,

Europe, and Asia, we attempted to simultaneously read a 40 MB random file. All

hosts mounted the server and began fetching the file simultaneously.

Figure 2.10 shows a CDF of the time needed to read the file on all hosts,

comparing Shark with SFS.
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etLab proxy when reading 40 MB files.

% done in (sec) 50% 75% 90% 95% 98%

Shark 334 350 375 394 481

SFS 1848 2129 2241 2364 2396

We see that, between the 50th and 98th percentiles, Shark is five to six times

faster than SFS. The graph’s sharp rise and distinct knee demonstrates Shark’s

cooperative caching: 96% of the nodes effectively finish at nearly the same time.

Clients in SFS, on the other hand, complete at a much slower rate.

Wide-area experiments with NFS repeatedly crashed our file server (i.e., it

caused a kernel panic). We were, therefore, unable to evaluate NFS in the wide

area.

Figure 2.11 shows the total amount of bandwidth served by each proxy during
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Figure 2.12: Server bandwidth usage. Amount of data in MB read from server as

a 40 MB file is fetched by 185 hosts.

this experiment. We see that the proxy serving the most bandwidth contributed

roughly three times more upstream than downstream bandwidth.

Figure 2.12 shows the number of bytes read from our file server during the

execution of these two experiments. We see that Shark reduces the server’s band-

width usage by an order of magnitude. Thus, Sharkmeets the goal of improving

the scalability of a traditional file server.
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Chapter 3

RedCarpet∗

In this chapter, we describe the problem of providing a near-Video-on-Demand

(nVoD) service to a large population of users using a server with limited resources,

and define the metrics of interest in such a system. We then describe the simulator

we have built to evaluate different points in the design space. We initially consider

naive policies for scheduling the dissemination of data blocks in the system, point

out their shortcomings, and address them to arrive at policies which work well

in a variety of scenarios. We then describe our prototype implementation of the

system, and show that the results from our simulator tally with those from the

implementation. We then present an algorithm that introduces structure into the

placement of nodes in the system, which considerably improves performance. Fi-

nally, we show that our techniques work well even in the presence of heterogeneous

nodes (nodes with differing bandwidth capacities).

∗This work was started while interning at Microsoft Research Cambridge (MSRC), during the

summer of 2005.
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3.1 Problem Setting

We have a large number of users interested in some video content, which initially

exists on a special peer that we call a server. The users could arrive at any point in

time and watch the video from the beginning (fast-forward functionality is beyond

the scope of this thesis, though we believe that our techniques apply to this case

as well). In other words, we assume linear viewing, but we allow the users to join

at arbitrary times. The resources (especially network bandwidth) of the server are

limited, and the users contribute their own resources to the system.

The goal of our system is to ensure a low setup time (or initial buffering time

before playback starts), and a sustainable data download rate (which is higher than

the video encoding rate) for all users, regardless of their arrival time. For each user,

we plot the number of consecutive video blocks from the beginning that the user

has downloaded as a function of time (see Fig. 3.1). These blocks can be played

without interruption in playback. For a given setup time (i.e. amount of initial

buffering), we calculate the sustainable data download rate as the maximum slope

of a line that does not exceed the y-coordinate (number of contiguous blocks) at any

time. We call that rate the goodput. We typically use the 95th percentile goodput

over all nodes as a measure of system performance, as this number indicates the

data download rate that 95% of the nodes can support; when appropriate, we also

report the minimum and maximum values.

The users organize themselves into an unstructured overlay mesh which resem-

bles a random graph (as mentioned earlier), and download blocks of video content

from each other. A client joins the system by contacting a central tracker (whose

address is obtained by an independent bootstrap mechanism). This tracker gives

the client a subset of nodes already present in the system. The client then contacts
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Figure 3.1: This example graph shows the calculation of sustainable playback rate,

given the setup time. The y-axis shows the number of consecutive blocks, while

the x-axis shows the time.

each of these nodes, and incorporates itself into the overlay mesh. Thus, each node

is oblivious of the other nodes in the system except for this small subset, which we

designate as its neighborhood. Each node can exchange content, as well as control

messages, only with its immediate neighbors (or with the tracker/server).

Another metric of interest in such a mesh network with data exchange is the

total number of blocks exchanged amongst all the nodes in the system per unit

of time, which we call throughput. This is a measure of the utilization of system

resources. Similarly, we also define the node throughput as the amount of data

downloaded by a node in a unit of time. We note that not all block exchanges

increase the goodput of the nodes, as some of the blocks might be useful only

for future playback. Hence, our objective is to maximize throughput for high

system efficiency, while providing high goodput to ensure sustainable playback for

all nodes.

When a node loses a neighbor (for example, when a neighbor crashes) or wishes
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to increase its download rate, it can request additional neighbors from the tracker.

Note that we assume fail-stop behaviour from the clients, i.e., they either function

correctly or they cease to be a part of the system. In particular, they are not

actively malicious; malicious clients are outside the scope of this thesis.

We assume that the clients themselves are resource-constrained (esp. network

bandwidth). Thus, the download and the upload rates of a client are limited by

its capacity. We consider scenarios where clients have asymmetric links, i.e., their

upload and download capacities are different.

The file is divided into a number of blocks. A number of consecutive blocks

could be grouped into a segment to improve efficiency. The system is agnostic to

the media codec, and hence we do not rely on a knowledge of the media format to

recover from errors and packet losses; as a result, an important constraint on our

system is to ensure that all blocks are received by the clients without any errors.

Note that blocks can only be played if they are received within their playback

deadline. We assume that the users have enough storage capacity to keep a copy of

all the blocks downloaded up to that point in time. We feel that this is a pragmatic

assumption, given that disk space has become very inexpensive recently, as shown

in Figure 3.2 ([68]). Note that blocks are available for other peers to download

only while the user is watching the video content or shortly after he/she is done.

In our system, while we consider various arrival patterns, most of our motivating

examples focus on flash-crowd scenarios where most users arrive closely in time

after the video is published, and the file initially resides only at the server with

limited upload capacity. We note that typically, in steady-state, it is possible to

find a few nodes that have already downloaded the content (either entirely or in

part) and can act as servers; the resulting increase in serving capacity thus eases

the problem of content scheduling. Hence, we chose to focus on the flash-crowd
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arrival pattern, because this configuration exercises the system the most.

3.2 Simulator

We have done extensive simulations, and measurements using a prototype, to un-

derstand the various factors that affect the performance of VoD over P2P networks,

and also to evaluate the performance of our algorithms. The simulator models im-

portant elements of P2P networks like access capacities, supports different block

scheduling algorithms, and allows us to experiment with large networks; we de-

scribe it in detail below (the prototype will be described later).

The simulator takes as input the size of the video file in units of blocks (typically

250 in our simulations), the number of nodes (typically 500), their capacities,
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and the times at which nodes join/depart the system. The simulator operates

in discrete intervals of time called rounds. A client’s upload/download capacity is

measured as the number of blocks that the client can transmit/receive in one round

(typically 1 block/round). We note that with this setting, the maximum goodput

that can be achieved at a node is 1 block/round (i.e., the download capacity).

Each node connects to a small number of neighbors (typically 3-6). The topology

changes during the simulation as a result of node arrivals and departures, and as

the nodes try to find new neighbors to increase their download rates.

At every round, each node contacts its neighbors to identify those that have

useful blocks. Thus, there is a random matching of peers that can exchange con-

tent. All block transfers, both between the peers and from the server, happen

simultaneously, and the system then, as a whole, moves to the next round.

We now illustrate, with an example, what the above units (i.e., blocks, rounds

etc.) mean in a realistic setting. There are two independent parameters used in

the simulator – the unit of time (round) and the unit of bandwidth (blocks/round).

A round is equivalent to 10 s, and a block/round to 512 kbps in realistic terms.

Thus, if a strategy were to deliver a 95th percentile goodput of 0.6 blocks/round

with a setup time of 35 rounds, it implies that a node could wait for about 6min

(35 rounds ∗ 10 = 350 s), and watch a video whose size is about 70 min ((250

blocks) / (0.6 blocks/round) ≈ 416 rounds ≈ 70 min), and is encoded at a rate of

about 300 kbps (0.6 blocks/round ∗ 512 kbps = 307.2 kbps) without interruption.

Note that while our simulator does not model realistic P2P networks in all their

details (e.g. network delays, locality properties etc.), it does capture some of the

important properties of mesh-based P2P networks. Hence, we feel that many of

our results are applicable to the design of real mesh-based systems.
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3.3 Naive approaches

In this section, we present some näıve algorithms for scheduling the dissemination

of blocks in a simulated network of 500 nodes all arriving at the same time (flash

crowd scenario). We will show that the näıve approaches perform poorly. We then

investigate the factors responsible for their poor performance, and address the

issues on the way to developing new algorithms that perform significantly better.

Our first algorithm is based on current swarming systems that distribute the

blocks of the file in random order. This strategy results in high block diversity

amongst the nodes in the system, resulting in good system throughput. However,

since the nodes receive the blocks in random order, they may not be useful for

sustaining a high goodput. In Fig. 3.3 we plot the 95% percentile goodput as a

function of the setup time. The goodput is given as a fraction of the access link

capacity, which is a natural upper bound on the maximum sustainable goodput.

Indeed, the goodput is 0 blocks/round at a setup time of 35 rounds, even though

the system throughput is quite high with an average of 339.91 block exchanges per

round (out of a maximum of 500 blocks). Thus, despite the high throughput, the

random strategy results in a low goodput for the nodes.

Another näıve approach would be for a node to download the blocks in the

order required for playback, i.e., to use a sequential strategy. Indeed, Fig. 3.3

shows that this policy performs better than the random strategy, and is able to

deliver a sustained goodput of ≈ 0.21 blocks/round at a setup time of 35 rounds.

With this strategy, though, the peers all have very similar blocks (as they are all

interested in downloading the same blocks), and hence there are fewer chances

to find and exchange innovative blocks. Indeed, the throughput of the system is

very low at an average of 95.93 block exchanges per round, which in turn caps the
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Figure 3.3: Comparison of random, sequential, and segment-random policies

goodput that can be achieved.

The segment-random policy attempts to combine the high throughput of the

random strategy with the high goodput of the sequential strategy. This technique

divides the file into segments which are groups of consecutive blocks; for example a

file of 250 blocks is divided into 25 segments of 10 blocks each. The peers request

blocks within a segment in random order, but request the segments themselves

in sequential order. Fig. 3.3 shows that the segment-random strategy achieves a

goodput of 0.40 blocks/round at a setup time of 35 rounds, and has a reasonable

throughput of 195.47 block exchanges per round; thus, the performance is better

than with the above näıve algorithms.

We now look into the throughput of the system with the above policies, to
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Figure 3.4: Figure 3.4(a) shows system throughput over time, with the näıve

policies. Figure 3.4(b) is a blown-up graph showing system throughput over a

period of 20 rounds, with the sequential and segment-random policies.
51



investigate the bottlenecks. The results are shown in Figure 3.4(a). As expected,

the random policy takes a small time to ramp up initially, and consistently main-

tains a high throughput thereafter, which diminishes only towards the end of the

dissemination. This high throughput is, as pointed above, due to the diversity of

the cooperative cache formed by the nodes. With the sequential policy, we observe

a distinct “peaks and troughs” pattern spread over ≈ 5 rounds in the throughput

curve. We feel that the rise/fall in throughput corresponds to the availability/lack

of new blocks in the system (It is an interesting sidenote that the average through-

put with the sequential policy is only 95.93 blocks per round with a mesh structure,

as compared to ≈ 250 blocks per round that we would expect with a binary tree.)

With the segment-random policy, the “peaks and troughs” pattern is again

obvious, though spread over ≈ 20 rounds. We feel that the rise in this case corre-

sponds to the availability of new segments, while the fall in throughput is due to

the lack of new segments as well as the rarity of certain blocks in existing segments.

This observation suggests two techniques to increase the system throughput be-

yond that obtained with the segment-random policy, viz. to avoid the formation

of rare blocks in existing segments (in the system) and to increase the availability

of new segments.

To avoid rare blocks in existing segments, we use a segment-rarest policy [20] at

the clients. With this policy, the client identifies a segment it is interested in, and

downloads a block within this segment that is least popular in its neighbourhood.

Popularity of a block in a neighbourhood is the number of nodes that have a copy

of that block available. With this policy in place, the throughput of the system

increased to 208.61 block exchanges per round, a 6.72% improvement.

To increase the availability of new segments in the system, we introduce the

technique of pre-fetching where we probabilistically fetch a block from a segment
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that is required later than the segment which is currently of interest. The idea with

pre-fetching is that nodes download blocks from the future segments with a small

probability; even though these block downloads are not immediately useful, and

could be considered as ”wasted” downloads from a client’s standpoint, they still

hold an overall benefit for the system. The reason is that nodes doing pre-fetching

for future segments, act as launching pads for the content that they pre-fetch. In

essence, pre-fetching provides easy access to blocks when they are actually needed

by creating additional sources ahead of time, thus minimizing the latency incurred

for block propagation. The end result is a smoother transition across segments.

We have considered a number of policies some of which pre-fetch from all the

required segments, some of which only consider a few segments into the future, and

policies with different probabilities of pre-fetching. The policy which performed

consistently well across various scenarios is the following: each peer considers the

first two segments of blocks that it needs; the peer then chooses between the seg-

ments using a biased coin, typically it picks the first segment with 80% probability

and the second segment with 20% probability (80-20 policy). Within each segment,

it downloads a particular block using one of the block policies described earlier;

typically we use the rarest policy. The throughput of the system under this policy

is 212.21 block exchanges per round, an improvement of 8.56%. The impact of the

segment-rarest policy and pre-fetching on the goodput of the nodes is shown in

Figure 3.5.

In Figures 3.6, 3.7, we highlight the benefits of the segment-rarest policy and

pre-fetching vis-a-vis the segment-random policy. We observe that the peaks are

higher with the segment-rarest policy because of the avoidance of rare blocks,

enabling more block exchanges. Also, the depth of the valleys is considerably

decreased with pre-fetching because of smoother segment transitions. The trade-

53



0 10 20 30 40 50 60 70 80 90 100
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Setup Time (in rounds)

G
oo

dp
ut

 (i
n 

bl
oc

ks
/ro

un
d)

 

 
1nodehasallblocks−random
1nodehasallblocks−sequential
1nodehasallblocks−segment−random
1nodehasallblocks−segment−rarest
1nodehasallblocks−80rarest−20rarest

Figure 3.5: The above graph demonstrates the benefits of pre-fetching.

off with pre-fetching is that while it hurts the propagation of the current segment

at a few nodes, it also improves the height of the valleys, and we note that the

advantages far outweigh the disadvantages.

In addition to the approaches described above, we experimented with a number

of block scheduling policies (some leveraging even global knowledge of the system)

to discover good heuristics. A consistent observation was that greedy policies per-

formed quite badly, while algorithms which required the peers to download blocks

that are not of immediate interest to them but are from segments under-represented

in the network, improved the overall performance of the system. We will leverage

this observation for segment scheduling which is described later (Sec 3.6).
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Figure 3.6: This graph shows the system throughput over time with the segment-

random and segment-rarest policies.
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Figure 3.7: This graph shows the system throughput over time with the segment-

random and the 80-20 policies.

3.4 Network Coding

In this section, we study network coding techniques to optimize the goodput of the

nodes, and the throughput of the system. Network coding has been proposed for

improving the throughput of a network in bulk data transfer situations [2, 17, 28].

Network coding makes optimal use of bandwidth resources, and bypasses the block-

scheduling problem by allowing all nodes to produce encoded data blocks. A good

overview of network coding can be found in [52].
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We now present a short description of the benefits and the mechanics of net-

work coding. We illustrate the benefits of network coding with a simple example

(Figure 3.8). Assume that node A has already received blocks 1 and 2. Without a

scheduler having global knowledge, node B will download block 1 or 2 with equal

probability. Simultaneously, let’s say node C independently downloads block 1. If

node B were to download block 1, the link between B and C would be rendered

useless.

Figure 3.8: This example shows the benefits of network coding when nodes only

have local knowledge.

With network coding, however, node A routinely sends a linear combination of

the blocks it has (shown in the figure as 1⊕ 2) to node B, which can then be used

with node C. Note that without a knowledge of the block transfers in other parts

of the network, it’s not easy for node B to determine the right block to download
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(and hence the challenge in the scheduling problem). But with network coding,

this task becomes trivial.

We now detail how network coding can be used in a peer-to-peer system to

disseminate a large file (we will adapt it to our nVoD scenario later). In Figure 3.9,

the file exists initially only at the server. When node A contacts the server, the

server combines all the blocks of the file to create an encoded block E1. The server

picks random coefficients c1, c2, · · · , cn, and generates E1 =
∑n

i=1 ci.bi, where each

bi represents a block. The server then sends node A, E1 and the coefficient vector

−→c = (ci). Note that all the coefficients are chosen from and the operations done

in a finite field 1 When node A sends a block to node B, A similarly combines the

already encoded blocks it has (namely E1 and E2) and sends node B, the encoded

block E3 = c“1.E1 + c“2.E2, and the new coefficient vector c“1.
−→c + c“2.

−→
c

′
.

With network coding, any block that a node receives is useful with very high

probability. The downside is that a node often has to wait until it downloads

the whole file before it can start decoding the blocks. This is not acceptable in

the context of VoD systems where a node wants to play the blocks soon after the

download begins. We solve this problem by restricting network coding to segments.

A node only needs to wait until it downloads a complete segment before it can start

decoding. This limits the benefits of coding since an encoded block is only useful

to other nodes interested in a particular segment (rather than being useful to all

the nodes). Moreover, this imposes an initial buffering time which is at least one

segment size. (Note that non-uniform segment sizes can be used to minimize this

start-up delay.) However, coding prevents the occurrence of rare blocks within a

1If the finite field is small in size, there could be “collisions” where two nodes pick the same

set of coefficients, thereby degrading the performance [35]. Typically, field sizes of 216 provide

enough diversity.
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Figure 3.9: An illustration of network coding in RedCarpet.

segment, and ensures that bandwidth is not wasted in distributing the same block

multiple times. In essence, coding minimizes the risk of making a wrong upload

decision.

We have evaluated the efficacy of network coding with our simulator and our

prototype. Fig. 3.10) compares network coding against non-coding heuristics.

(Please refer to [7] for the terminology used.) We note that network coding achieves

a goodput of ≈ 0.58 blocks/round, while the best rate without using network cod-

ing (achieved with pre-fetching) is ≈ 0.44 blocks/round when the setup time is

35 rounds, representing a 31% improvement. (Network coding used along with
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pre-fetching delivered a goodput of ≈ 0.61 blocks/round). Also, the throughput of

the system with network coding is 261.26 block exchanges per round, as compared

to 212.21 without coding (Again, network coding along with pre-fetching delivered

a throughput of 271.20 block exchanges per round).
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Figure 3.10: The above graph demonstrates the benefits of network coding vis-a-vis

non-coding techniques.

3.5 Implementation

With the insights obtained from our experiments with the simulator, we have

developed a prototype in C# to validate our results in a realistic setting. Our

system resembles other typical peer-to-peer systems [27], and consists of three

types of participants: peers, a tracker, and a logger. The server is a special peer

that seeds content into the system. The tracker is based on BitTorrent [20] – it
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maintains a list of all the peers in the system, and when a peer joins the system,

the tracker supplies it with a random subset of active peers so that the new peer

can form its neighbourhood. The active peers periodically report to the tracker

(e.g. information about their content, rates etc.), and can also request the tracker

to provide them with a new subset if they have too few neighbors. The logger

is an aggregation point for peer and tracker trace messages. Every peer in the

system reports detailed statistics to the logger; using those statistics we were able

to perform an in-depth evaluation of the various system parameters. We rate-

limit the upload and download capacities of the peers using a token bucket based

algorithm.

In our prototype implementation, each peer maintains 6-8 connections to other

peers. The peers periodically connect to other peers at random and drop connec-

tions in an attempt to find better neighbors and increase their download rates.

The encoding and decoding operations, for experiments involving network coding,

were done over a Galois Field GF(216). In most of our experiments, the video file

was 128MB in size, and was divided into 100 “original” blocks each of which was

1.28MB in size. (we have also experimented with larger number of blocks obtaining

similar results).

The implementation is about 25000 lines of code in C#. We have used our

implementation to study small scale scenarios, in order to highlight some of the

techniques which are indispensable towards building an efficient peer-to-peer nVoD

system.
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3.5.1 Evaluation against non-coding techniques

We will now present the results from our implementation, and evaluate the benefits

of network coding. Consider a flash-crowd where 20 clients Bn join the network.

The server has the entire file (100 blocks) divided into 10 segments; network coding

is applied over all the blocks in a segment. A segment is decoded on-the-fly as soon

as 10 linearly independent blocks are received for each segment.

We compare this to a global-rarest policy which does not use network coding.

In the global-rarest scheme, a client requests the globally rarest block in the target

segment of its interest, either from the server or from its neighborhood. We note

that this scheme requires global information which is not available in such a system,

and is considered only for comparison purposes. We also note that this policy

works the best amongst non-coding policies; in particular, it works better than

pre-fetching which, of course, does not rely on global system information.

In Figure 3.11, we show the average number of all blocks as well as useful blocks

that are available at the nodes in the system with the global-rarest and network

coding policies. The bars mark the maximum and minimum values. Given that

global-rarest uses global information about the system, we would expect that it

performs optimally. However, this is not the case, and network coding provides

a higher throughput than the global-rarest scheme (≈ 14% better). And more

importantly, it results in significantly less variance and more predictable download

times.

In summary, network coding minimizes the risk of uploading duplicate blocks

within a segment, resulting in high system throughput/goodput. We note that

while we used network coding within a segment, the nodes still fetch the segments

in sequential order (or use pre-fetching). To further improve the performance of
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Figure 3.11: The above graph shows the average number of all blocks as well as

useful blocks available at the nodes with the global-rarest policy and with network

coding over segments.

the system, the next section considers better algorithms for scheduling the fetching

of segments.

3.6 Segment scheduling policies

Segment scheduling forms the analogue to the block scheduling problem ([7])

at the segment granularity. As with näıve block scheduling, we show that a näıve

segment policy where clients greedily request blocks from their earliest incomplete
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segments adversely affects the system throughput. And while block scheduling

inside a segment is amenable to network coding, coding cannot be used across

segments since the entanglement it creates prevents streaming VoD. Instead, we

propose a heuristic-based solution that schedules segments according to how poorly

they are seeded in the network. This approach is similar in spirit to the segment-

rarest approach that we discussed earlier.

Segment policy affects the overall throughput of the system when some of the

segments are poorly represented in the network. We will examine a represen-

tative scenario where a bandwidth-constrained node, that contains blocks from

both under-represented and popular segments, uploads blocks from the under-

represented segment; this scenario usually occurs when a flash-crowd arrives in the

middle of an ongoing download. Consider a server that has the entire file, which is

divided into 10 segments containing 10 blocks each. The block policy used within

a segment is network coding as described in Section 3.4. One client A has down-

loaded 75% of the file, when a flash-crowd of 20 clients Bn join the network. For

simplicity, we configured the nodes to have equal upload and download capacities.

With näıve segment scheduling where each node greedily requests from the

segment it requires, the server’s upload capacity is shared between client A, which

requests blocks from segments near the end of the file, and the different clients

B1..n (number depending on the outbound degree of the server), which request

blocks from the first segment(s). Since only the server has the end of the file

required by A, and the flash-crowd causes the server’s available upload bandwidth

to be used in sending blocks from the early segments, the throughput of A is

decreased. Also, since the clients B1..n all request from the same initial segment,

the server potentially wastes its bandwidth in repeatedly uploading blocks from

the same initial segment, i.e., it could serve more than the minimum of 10 blocks
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required to reconstruct the initial segment within the cooperative cache formed by

the clients; this hurts the performance of B1..n. Thus, both A as well as B1..n are

worse off with näıve segment scheduling.

Figure 3.12 shows the 95th percentile time required to download a given number

of blocks, both by A and the newly joined clients B1..n. Error bars mark the

maximum and minimum values. We observe, from the figure, that with a näıve

segment scheduling policy, A initially enjoys a good throughput, rate-limited only

by the server’s upload bandwidth, until the flash-crowd joins. After this point,

A’s throughput is severely reduced as the server re-uploads the initial parts of the

file to some Bis. The server’s upload bandwidth is thus wasted in uploading these

segments which are already represented in the network (at A).

The overall throughput of the system would improve if all the nodes contribute

to improving the diversity of segments in the network. If we change the seg-

ment policy to upload a block from a lesser represented segment whenever possible

(worst-seeded-first policy), throughput improves significantly for both A and the

new nodes B1..n as seen in Figure 3.12. Note that A’s throughput is noticeably

increased towards the end of the file, because the server continues to serve blocks

from later segments to Bi, and A subsequently retrieves these blocks from Bi.

Algorithm 1 describes our worst-seeded-first segment scheduling policy in

pseudo-code. We assume that every source node has knowledge of the rarity of

segments aggregated across the peers in the system; the aggregation can be per-

formed either centrally at the tracker, or can be approximated in a distributed

fashion by gossiping between neighboring nodes. In our implementation, we per-

form the aggregation at a central tracker.

We will now briefly describe our heuristic to improve segment diversity in the

system. Amongst the candidate segments available at the source node and not
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Figure 3.12: The above graph shows the 95th percentile time (shown on the x-axis)

required to download a given block (shown on the y-axis). The scenario is when A

has already downloaded 75% of the file and a flash-crowd B1..20 joins the system.

The results for both the näıve and the worst-seeded segment scheduling policies

are shown.
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Algorithm 1 SelectSegment(s,d)

Require: s is source node

Require: d is destination node

1: As ← AvailableSegments(s)

2: Cd ← CompletedSegments(d)

3: P ← SortSegmentsWorstSeededFirst(As \ Cd)

4: Cs ← CompletedSegments(s)

5: Id ← EarliestIncompleteSegment(d)

6: for i = 0 . . . Count(P) do

7: if Pi = Id or Pi ∈ Cs then

8: return Pi

9: end if

10: end for

11: return P1

available in full at the destination node (lines 1–3), we pick the segment that is

least well-represented (lines 3,6) subject to the conditions on line 7, to send to the

destination node. If the poorly seeded segment is immediately of interest to the

destination then it is uploaded (clause 1, line 7); otherwise, the source uploads

blocks from segments it has completed downloading (clause 2, line 7), in order to

ensure that the block is globally innovative with high probability; else, the source

simply uploads blocks from the segment which it considers to be the rarest, even

though it has only partially downloaded the segment.

A caveat with always uploading the worst-seeded segment is that even when

the segment is represented ”widely enough”, a new client is often forced to chase

segments that offer minimal benefits both to itself as well as the system. This
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problem arises when a client joins a mature system where enough copies of the

entire file exist. Hence, the computation of worst-seeded segments (line 3) uses

a threshold mechanism whereby two segments that are represented at a fraction

of nodes greater than a given threshold are considered equally well-seeded. The

sorting algorithm, when comparing equally well-seeded segments, prefers the earlier

amongst the two. The threshold is set adaptively; in our implementation, it is set

to 20% of the active clients. Thus, a new client can receive blocks from segments

that are of immediate interest to itself without being penalized.

Note that our algorithm hinges crucially on the availability of a good enough

estimate for the popularity of the segments in the system. This estimate should

include nodes that have the complete segment, as well as those that have only

partially downloaded the segment. In our implementation, the tracker aggregates

information about the rarity of segments in the system; the clients report the

fraction of blocks they have received from each segment to the tracker periodically.

These fractions are used to estimate the popularity of the segments; for example,

a segment is considered under-represented if the vast majority of nodes have very

few blocks from that segment.

We have shown that näıve greedy segment scheduling policies do not work well

in certain scenarios. We have proposed the worst-seeded-first segment scheduling

policy to improve the throughput of the system. This policy achieves the goal

by preventing the formation of rare segments, which increases the diversity of the

cooperative cache, and hence the throughput of the system.
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3.7 Topology Management

In this section, we will investigate the role of system topology (the arrangement

of the nodes w.r.t. each other, viz., the state of the system as represented by

an adjacency graph) in improving the goodput of the system. We again use the

flash-crowd scenario from Section 3.6 as our running example, in order to study

the behaviour of the system.

We will first illustrate how the lack of topology management significantly im-

pacts the goodput of individual clients. For instance, consider Figure 3.13 that

plots the 95th percentile time required to download a given number of blocks, by

an early node A that has downloaded 75% of the file, and a collection of late

arrivals B1..20, when using the worst-seeded-first segment scheduling policy (with

thresholds) described in Section 3.6. Note that A and B1..20 are interested in down-

loading different parts of the video and, hence, have competing interests. The steps

in the graph indicate when a node finishes downloading all the coded blocks from

a segment, and hence can decode and watch that segment. We observe that A sees

a consistent goodput (note that the goodput curve for A regularly intercepts the

throughput curve), implying that A always downloads blocks that are immediately

useful to it. In contrast, Bi have worse goodput as can be observed from the graph

where the throughput and the goodput curves for Bi are apart.

The problem with this scenario is two-fold. First, the Bis do not benefit from

the blocks they receive from the server, since the server gives them blocks from

segments near the end of the file (which happen to be the worst-seeded). Thus,

in this case, throughput does not translate into goodput. Second, A itself receives

some of the blocks that it needs from Bis, thereby incurring the delay for an extra

hop through a Bi. Both of these problems could be solved if A forms one cloud
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Figure 3.13: The above graph shows the 95th percentile time (shown on the x-axis)

required to download a given block (shown on the y-axis). The scenario is when A

already has 75% of the file and a flash-crowd B1..20 joins the system. The results

with and without topology management are shown.
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and the Bis form another; and the blocks from the server to A, and from A to the

Bis. The goal of topology management then is to create (overlay) connections that

improve the overall goodput of the system, without compromising the throughput

benefits achieved through segment scheduling. In effect, topology management

policies impose a beneficial structure on the mesh network.

We now briefly describe our topology management in Algorithm 2. The al-

gorithm essentially tries to retain connections that demonstrate a high goodput.

Thus, it encourages peers targeting the same parts of the video to communicate

with each other, resulting in a high goodput for the entire duration of the download.

A node S is allowed to upload to another node D if S has not already saturated

its upload bandwidth (line 1). If S’s upload capacity is used up, then S will ac-

cept D only if D is currently targeting the worst-seeded segment as calculated by

S (lines 4–6). If by accepting D, S crosses its configured limit for the number

of connections, S drops an existing connection that provides the least goodput

to the corresponding neighbour (lines 9–10). Periodically, nodes that have spare

download capacity request a set of random nodes from the tracker and attempt

to download from them; of course, subject to that node’s acceptance as per the

algorithm. These connection attempts cause nodes in the network to re-evaluate

their goodput, and opportunistically improve it. This induced connection-churn

also encourages neighbor diversity, and prevents the creation of isolated clusters.

The efficacy of topology management can be seen in Figure 3.13. Our algorithm

first restricts Bis from connecting to the server. Instead, Bns are steered to A as

well as other Bis. In this process, the server continues to seed innovative content to

A unimpeded increasing A’s goodput (as compared with no topology management).

At the same time, A serves the beginning of the file to some Bi, which in turn

disseminate the initial blocks amongst the other Bis. Once A finishes downloading,
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Bis can connect to both A and the server. It is clear from Figure 3.13 that the

proposed topology management policy improves the goodput both of the new nodes

(Bis) as well as that of the old ones (A).

Algorithm 2 ShouldUploadTo(s,d)

Require: s is the source node

Require: d is the destination node

1: if HasSpareUploadCapacity(s) then

2: return true

3: end if

4: Id← EarliestIncompleteSegment(d)

5: Sd← SelectSegment(s,d)

6: if Id 6= Sd then

7: return false

8: end if

9: if TooManyUploadConnections(s) then

10: KickUploadWithWorstPeerGoodput(s)

11: end if

12: return true

3.8 Heterogeneous Capacities

In this section, we will revisit our segment scheduling and topology management

policies, and refine them to handle heterogeneous networks where nodes have asym-

metric upload and download capacities (i.e., the capacities are different). As a mo-

tivation for our final enhancement to our algorithms, we present a scenario where

a capacity-oblivious segment policy falters.
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Consider a network with a fast server, a slow node A that has downloaded 25%

of the file and is connected to the server, and a flash-crowd B1..20 with a range

of bandwidth capacities (i.e., both fast and slow nodes) joins the network. The

distribution of the capacities of the nodes B1..20 is based on [11]. In this scenario,

consistent with the foregoing discussion, some Bi are allowed to connect to the

server given that it has spare capacity (Alg. 2, line 2). However, they are forced

to download segments that are not of immediate use to them (e.g. segments near

the middle or end of the file); they can only receive blocks from their immediate

segment of interest through node A which, however, happens to be slow.

Figure 3.14 shows that heterogeneity-oblivious algorithms (as presented above)

affect not only the goodput, but also the throughput of fast nodes. In particular,

we note that the throughput of the fast nodes is reduced to that of the slow nodes

(viz., that of node A). This is because fast nodes are initially forced to depend on

a slow node (A), which is the only node giving them ‘good’ blocks.

A small change in the computation of the worst-seeded segment solves this

problem. The change involves assigning a weight, to the contribution of each

node towards the aggregate seeding of each segment, in proportion to that node’s

upload bandwidth. This is a small but significant change w.r.t. traditional block

rarest-first policies, since it takes into account not only the number of copies of

a given segment, but also how efficiently they can be uploaded into the network.

Thus, nodes keep downloading a segment until that segment has an overall upload

capacity equal to that of the other “well-represented” segments. Our scheme thus

prevents the formation of rare segments.

The result of this change, as shown in Figure 3.14, is a high throughput and

goodput for both the fast and the slow nodes, and low start-up latencies. In fact,

from Figure 3.14, we can see that the fast nodes can target playback rates that are
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Figure 3.14: The above graph shows the 95th percentile time (shown on the x-

axis as a percentage) required to download a given block (shown on the y-axis).

The scenario is when A already has 25% of the file and a flash-crowd, B1..20 with

varying bandwidth capacities, joins the system. The results with and without the

heterogeneity-aware algorithms are shown.
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very close to their bandwidth, and are not limited by the slow nodes which also

experience better performance.
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Chapter 4

Related Work

A lot of research has gone into understanding and building scalable data-intensive

applications which utilize the resources provided by participants. In this chapter,

we will examine this prior work and distinguish our contributions.

Scalable file servers. JetFile [32] is a wide-area network file system designed to

scale to large numbers of clients, by using the Scalable Reliable Multicast (SRM)

protocol, which is logically layered on IP multicast. JetFile allocates a multicast

address for each file. Read requests are multicast to this address; any client which

has the data responds to such requests. In JetFile, any client can become the man-

ager for a file by writing to it—which implies the necessity for conflict-resolution

mechanisms to periodically synchronize to a storage server—whereas all writes in

Shark are synchronized at a central server. Note that while JetFile is intended for

read-write workloads, Shark is explicitly designed for read-heavy workloads.

High-availability file systems. Several local-area systems propose distribut-

ing functionality over multiple collocated hosts to achieve greater fault-tolerance
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and availability. Zebra [33] uses a single meta-data server to serialize meta-data

operations (e.g. i-node operations), and maintains a per-client log of file contents

striped across multiple network nodes. Harp [46] replicates file servers to ensure

high availability; one such server acts as a primary replica in order to serialize up-

dates. These techniques are largely orthogonal to, yet possibly could be combined

with, Shark’s cooperative caching design.

Serverless file systems. Serverless file systems are designed to offer greater

local-area scalability by replicating functionality across multiple hosts. xFS [6]

distributes data and meta-data across all participating hosts, where every piece

of meta-data is assigned a host at which to serialize updates for that meta-data.

Frangipani [69] decentralizes file-storage among a set virtualized disks, and it main-

tains traditional file system structures, with small meta-data logs to improve re-

coverability. A Shark server can similarly use any type of log-based or journaled

file system to enable recoverability, while it is explicitly designed for wide-area

scalability.

Farsite [1] seeks to build an enterprise-scale distributed file system. A single

primary replica manages file writes, and the system protects directory meta-data

through a Byzantine-fault-tolerant protocol [15]. When enabling cross-file-system

sharing, Shark’s encryption technique is similar to Farsite’s convergent encryption,

in which files with identical content result in identical ciphertexts.

Peer-to-peer file systems. A number of peer-to-peer file systems—including

PAST [66], CFS [21], Ivy [54], and OceanStore [44]—have been proposed for wide-

area operation and similarly use some type of distributed-hash-table infrastructure

([65, 67, 80], respectively). All of these systems differ from Shark in that they pro-
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vide a serverless design: While such a decentralized design removes any central

point of failure, it adds complexity, performance overhead, and management diffi-

culties.

PAST and CFS are both designed for read-only data, where data (whole files

in PAST and file blocks in CFS) are stored in the peer-to-peer DHT [65, 67] at

nodes closest to the key that names the respective block/file. Data replication helps

improve performance and ensures that a single node is not overloaded. In contract,

Shark uses Coral to index clients caching a replica, so data is only cached where it

is needed by applications and on nodes who have proper access permissions to the

data.

Ivy builds on CFS to yield a read-write file system through logs and version

vectors. The head of a per-client log is stored in the DHT at its closest node. To

enable multiple writers, Ivy uses version vectors to order records from different

logs. It does not guarantee read/write consistency. Also managing read/write

storage via versioned logs, OceanStore divides the system into a large set of un-

trusted clients and a core group of trusted servers, where updates are applied

atomically. Its Pond prototype [64] uses a combination of Byzantine-fault-tolerant

protocols, proactive threshold signatures, erasure-encoded and block replication,

and multicast dissemination.

Large file distribution. BitTorrent [19] is a widely-deployed file-distribution

system. It uses a central server to track which clients are caching which blocks;

using information from this meta-data server, clients download file blocks from

other clients in parallel. Clients access BitTorrent through a web interface or

special software.
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Compared to BitTorrent, Shark provides a file-system interface supporting

read/write operations with flexible access control policies, while BitTorrent lacks

authorization mechanisms and supports read-only data. While BitTorrent cen-

tralizes client meta-data information, Shark stores such information in a global

distributed index, enabling cross-file-system sharing (for world-readable files) and

taking advantage of network locality.

Video streaming over the Internet has seen a lot of research over the past decade,

for example, see [16, 76, 8, 37]. Most relevant to our work are video distribution

systems that can support a large number of users which are discussed below.

Video streaming using Multicast Multicasting has been proposed to pro-

vide a scalable video streaming service, even in the presence of heterogeneous

receivers [41, 59, 45]. Multicasting is a natural paradigm for live video streaming.

It has also been extended for supporting near-Video-on-Demand services. The sim-

plest approach is to periodically start a new broadcast cycle [4]. More elaborate

schemes propose to divide the video into segments and distribute each segment in

different multicast channels [72, 38, 37]. The obvious drawback of such systems is

that there is no support for native multicasting in the Internet today.

Peer-to-peer systems for live streaming There have been many proposals to

use overlay multicast distribution for streaming live events [77, 24, 39, 70, 34, 14].

Such systems unfortunately only support live streaming and not near-Video-on-

Demand. It is an open question whether such overlay multicasting approaches can

be extended to support nVoD, maybe by using similar approaches as in [72, 38].

Inspired by the success of unstructured P2P networks, the authors in [79, 48, 57]
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propose to use mesh-based P2P networks for live video streaming. While similar

to our approach, these systems do not support nVoD.

Peer-to-peer systems for nVoD The systems which are most relevant to our

work are the BASS [22] and BiToS [73] systems. BASS extends the current Bit-

Torrent system [19] to provide a nVoD service [22]. BASS uses a streaming server

which all nodes connect to though the nodes use the P2P network to help each

other and alleviate the load on the server. Even though BASS reduces the load

at the server by a significant amount, the design of the system is still server ori-

ented, and hence the bandwidth requirements at the server increase linearly with

the number of users. Note that in RedCarpet, the nodes rely only on the P2P

network to retrieve the content; hence, we place a greater emphasis on the perfor-

mance of the block scheduling algorithms. Also, since we depend on a dynamic

and fluctuating P2P network, we use deeper buffering compared to BASS.

The BiToS system is also based on BitTorrent [73]. The main idea is to divide

the missing blocks into two sets, “high priority set” and “remaining piece set”, and

request with higher probability blocks from the high priority set (Note that BiToS

too is video-agnostic). While the emphasis is on careful scheduling of the video

blocks in BiToS, network coding and an effective topology obviate this problem

in our system. Also, we note that BiToS does not deal with issues of topology

management and instead adheres to the standard BitTorrent algorithms.
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Chapter 5

Conclusions

This thesis has addressed the problem of designing scalable systems for new data-

intensive applications. We have presented design techniques to enable a low-end

server to support such applications by leveraging the resources of participating

users such as disk space, network bandwidth. We have identified two types of such

applications – those whose performance increases with the data download rates

of the users and usually involve random accesses to large files (e.g. file systems,

bulk data distribution systems) and those whose utility requires data download

rates which are above a certain threshold and typically involve sequential access

to large files (e.g. video streaming). We have built Shark and RedCarpet to

illustrate and validate our techniques for building applications of the above two

types (respectively).

Shark is a distributed file system designed for large scale usage in the wide-area,

and supports read-heavy workloads. Shark clients construct a locality-optimized

cooperative cache by forming self-organizing clusters of well-connected machines.

They efficiently locate nearby copies of data using a distributed index and stripe

downloads from multiple clients in parallel. We have shown that this reduces
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the load on file servers and delivers significant performance improvements for the

clients.

RedCarpet provides near-Video-on-Demand (nVoD) service by organizing the

participants into a mesh-based peer-to-peer (P2P) network. In particular, we have

addressed the problem of scheduling the dissemination of chunks of a video, in

order to achieve a low setup time and a sustained download rate (which is higher

than the video encoding rate). We have proposed network coding, worst-seeded-

first segment scheduling, and topology management algorithms that render nVoD

feasible in such a mesh-based P2P system. We have shown, using simulations as

well as a prototype, that these techniques are crucial towards maximizing network

utilization and delivering an acceptable nVoD performance.
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