[KLP89]

[KMP77]

[KMRT72]

[KP8S§]

[083]

[PVWS3]

[Rab93]

[Rag90]

[Vig5]

[Vig0]

Z. Kedem, G. Landau, and K. Palem. Optimal parallel suffix-prefix match-
ing algorithm and applications. Proc. 1st Annual ACM Symposium on Parallel
Algorithms and Architecture, 1989, 388-398.

D.E. Knuth, J. Morris, and V. Pratt. Fast pattern matching in strings. STAM
Journal on Computing, 6(1973), 323-350.

R. Karp, R. Miller, and A. Rosenberg. Rapid Identification of Repeated
Patterns in Strings, Trees and Arrays. Proc. 4th Annual ACM Symposium on
Theory of Computation, 1972, 125-136.

Z. Kedem and K. Palem. Optimal parallel algorithms for forest and term
matching. Theoretical Computer Science, 93, 1992, 245-264.

M. Overmars. The design of dynamic data structures. Lecture Notes in Com-
puter Science, Springer-Verlag, 156, 1983.

W. J. Paul, U. Vishkin, and H. Wagener. Parallel dictionaries on 2—3 trees.
Proc. ICALP, 1983, 597-609.

M. Rabin. Optimal parallel pattern matching through randomization. Se-
quences ‘91: Methods in Communication, Security and Computer Science, R.
Capocelli, A. De Santis and U. Vaccaro Ed., Springer-Verlag 1993.

P. Ragde. The parallel simplicity of compaction and chaining. Proc. of the
17th ICALP, Springer LNCS 448, 744-751, 1990.

U. Vishkin. Optimal pattern matching in strings. Information and Control,
Vol. 67, 1985, 91-113.

U. Vishkin. Deterministic sampling—A new technique for fast pattern match-
ing. In Proc. of the Twenty Second Annual ACM Symposium on Theory of
Computing, 1990, 170-180.

29

[Br74]

R. Brent. The parallel evaluation of general arithmetic expressions. Journal

of ACM, 1974, 21:202-206.

[CGRMR92] M. Crochemore, L. Gasieniec, W. Rytter, S. Muthukrishnan, and H.

[CV89)]

[F93]
[FL70]

[Ga84]

[Ga92]

[Gi93]

(GGO3)

[GMV91]

[H88]

[H92]

[HO3]

[1S91]

[Ja92]

Ramesh. Fast parallel two dimensional/string pattern matching. Manuscript,

1992.

R. Cole and U. Vishkin. Faster optimal parallel prefix sums and list ranking.
Information and Computation, 1989, 81, 334-352.

M. Farach. Personal Communication.

M. Fischer and L. Ladner. Parallel prefix computations. Journal of ACM,
Vol. 27, No. 4, 1980, 831-838.

Z. Galil. Optimal Parallel Algorithms for String Matching. Proc. ACM Sympo-
stum on Theory of Computation, 1984. Also in Information and Control, Vol.
67, 144-157, 1985.

Z. Galil. Hunting lions in the desert optimally or a constant time optimal par-
allel string matching algorithm. Proc. of the 23rd ACM Symposium on Theory
of Computation, 1992.

R. Giancarlo. The suffix trees of a square matrix with applications. Proc. ACM
Symposium on Discrete Algorithms, 1993, 402-411.

R. Grossi and R. Giancarlo. Parallel construction of suflix trees of matrices.
To appear in the Proc. of 5th ACM Symposium on Parallel Algorithms and
Architectures, 1993.

J. Gil, Y. Matias, and U. Vishkin. Towards a theory of nearly constant time
parallel algorithms. Proc. IEEE Foundations of Computer Science, 698-710,
1991.

T. Hagerup. On saving space in parallel computation. Information Processing

Letters, Vol. 29, 1988, 327-329.

T. Hagerup. The log-star revolution. Proc. of 9th Annual Symposium on The-
oretical Aspects of Computer Science, Springer Lecture Notes in Computer

Science, Vol. 577, 1992, 259-278.

T. Hagerup. Fast deterministic processor allocation. Proc. of the 4th Annual
ACM Symposium on Discrete Algorithms, 1993, 1-10.

R. Idury and A. A. Schaffer. Dynamic dictionary matching with failure func-
tions. Proc. Third Symp on Combinatorial Pattern Matching, 1991, 273-284.

J. JaJa. An introduction to parallel algorithms. Addison-Wesley Publ., 1992.

28

Bibliography

[AB92]

[ABF93]

[ACT5)

[AF91]

[AF92]

A. Amir and G. Benson. Two-dimensional periodicity in rectangular arrays.

Proc of the 3rd ACM Symposium on Discrete Algorithms, 1992, 440-452.

A. Amir, G. Benson, and M. Farach. Parallel two dimensional matching in
logarithmic time. To appear in Proc. 5th ACM Symposium on Parallel Algo-
rithms and Architectures, 1993.

A V. Aho and M.J. Corasick. Efficient string matching: An aid to bibliographic
search. Communications of ACM, 18(6), 333-340.

A. Amir and M. Farach. Adaptive dictionary matching. Proc $2nd IEEE Symp
Foundations of Computer Science, 1991, 760-766.

A. Amir and M. Farach. Two dimensional dictionary matching. Information

Processing Letters, Vol. 44, 1992, 233-239.

[AFGGP91] A. Amir, M. Farach, R. Giancarlo, Z. Galil, and K. Park. Dynamic dictio-

nary matching. Manuscript, 1991.

[AFILS93] A. Amir, M. Farach, R. Idury, J. La Poutre’, and A. Schaffer. Improved dy-

[AFMO2]

namic dictionary matching. Proc. 4th Annual ACM Symposium on Discrete

Algorithms, 1993, 392-401.

A. Amir, M. Farach, and Y. Matias. Efficient randomized dictionary matching
algorithms. Proc. 8rd Symp on Combinatorial Pattern Matching, 1992, 259-
272.

[AILSV88] A. Apostolico, C. Iliopoulos, G. Landau, B. Schieber, and U. Vishkin.

[B77]

[BaT78|

Parallel Construction of a Suffix Tree with Applications. Algorithmica 3, 1988,
347-365.

R. Bird. Two Dimensional Pattern Matching. Information Processing Letters

6:168-170, 1977.

T. Baker. A Technique for Extending Rapid Exact String Matching to Arrays
of More Than One Dimension. SIAM J. Computing 7:533-541, 1978.

[BDHPRS91] P.C.P. Bhatt, K. Diks,T. Hagerup, V.C. Prasad, T. Raznik, and S. Saxena.

[BGYO]

Improved deterministic parallel integer sorting. Information and Computation,

94, 1991, 29-47.

D. Breslauer and Z. Galil. An optimal O(loglog m) time parallel string match-
ing algorithm. SIAM J. Comput., 19(1990), pp. 1051-1058. Also in, O. Berk-
man, D. Breslauer, Z. Galil, B. Scheiber, and U. Vishkin. Highly Parallelizable
Problems. In Proc. 21st ACM Symp. on Theory of Computing, 1989.

27

length, same as in Step 3a, denoted by R. As in Step 3a, corresponding to each P; € D,
generate tuples of the form ((P;(1),6(P;),d'(r(P7))), B(P;)). Let this be set S,. Form

set S; by generating, for all even ¢ in each T},
(Tj(2), a(T;(i + 1)), &' (T;(0 + [T3 () + 1) - - - T3 (0 + [(T5()[+ R)))-

As in Step 3b, namestamp set S; with S,. The stamp for the tuple corresponding to
T;(7) gives the name of the pattern from D that matches T; beginning at ¢ where ¢ is
even.

That completes the description of our algorithm. Step 1 takes O(1) time and O(n+M)
work. Let OT(n,M,m) and OW(n, M, m) represent the time and work complexity of
our algorithm given text size n, dictionary size M such that each pattern is of length
m. Step 2 takes OT(n/2,M/2,m/4) time and OW (n/2,M /2, m/4) work. Step 3a takes
O(1) time and O(M) work. Steps 3b and 3¢ each take O(1) time and O(n + M) work.

Hence,

OT(n,M,m) < OT(n/2,M/2,m/4)+ 1.
OW(n,M,m) < OW(n/2,M/2,m/4) 4+ n + M.

Theorem 11 Given a text of size n, a dictionary of size M consisting of patterns each
of size m, static dictionary matching can be performed in O(logm) time and O(n + M)
work.

This result also yields optimal algorithms for multi-dimensional pattern matching and
other problems such as suffiz-prefiz matching studied in [KLP89,Rab93]. Rabin [Rab93]
provides randomized algorithms for these problems. Our algorithms, as those in [KLP89]
are deterministic and are much simpler and as efficient as the ones presented there.

Acknowledgements: We sincerely thank Martin Farach for several fruitful discussions
concerning [AF91, AFM92]. We are also grateful to Amihood Amir, Martin Farach, Zvi
Galil, Raffaelle Giancarlo, and Rajeev Raman for discussions related to this work.

26

T'. This returns a name for each string p € P’ denoted by é(p). In addition, for each
location 7 in each Tj € T", this returns the name of the pattern in P’ that matches be-
ginning at that location. Equivalently, for each odd text location T;(¢) € T, the name
of the pattern from P’ which matches at that location has been determined. Let this be

denoted by a(T}(2)).

Recall that in Section 4.1, prefix names were computed for D. At each level in re-
cursion, the prefix names for a new set of patterns for lower levels of recursion could
be gleaned from those of D because the new set of patterns were prefixes of D. In our
recursive step here, not all strings in P’ are prefixes of D. Hence, names for strings in P’
can not be directly derived from those of D. One approach towards generating the names
for P’ is performing a prefix-naming computation at each stage of recursion. However,
each stage would then take Ologm) time leading to an overall algorithm that works in
O(log® m) time. Our approach here has been to embed the computation of the names
for the pattern strings within the recursive framework by strengthening the recursive
invariant.

Step 3. In this step, we perform extension to the right and extension to the left as in
Section 4.1 and Section 4.4. In addition, we generate the prefix-names for the strings in
the set D so the recursive invariant is maintained.

Step 3a. We find the names for the strings in D. Consider each string P; € D. Let
the string obtained from P by shrinking by 4 be P;. The name é(P/) is known. From
6(P?), we compute 3(P;), the name for P; € D. Let r(P]) denote the residue when P/
is shrunk by a factor of 4. The residue is of length at most 3. The residue for each
pattern is of same length denoted by R. Assume that all substrings in 7" and D of length
R have been named using the function ¢’. Now, for each P; € D, generate the tuple
(6(PF),0'(r(P7)), P;(|P;])). Name this set of tuples. The result gives the name 3(P;) for
P; eD.

Step 3b. For each odd position in the text, we find the index of the pattern that
matches beginning at that position. As in Step 3a, corresponding to each P; € D, gener-
ate a tuple of the form ((6(P)),8'(r(P7)), P;(|P;])), B(P;)). Let this be set S,. Form set
St by generating, for all odd ¢ in each T},

(@(T;(2), &"(Ti(+ |(Ti() + 1) - Ti (2 + |a(T5()] + R)), T (@ + [T3 ()] + R + 1))

Namestamp S; with S,. The stamp for the tuple corresponding to T;(7) gives the
name of the pattern from D that matches T} beginning at : where : is odd.

Step 3c. (Extend-Left) For each even position in the text, we determine the pattern
that matches beginning at that position, by extending the pattern from P’ that matches
at the neighbor to the right. For each P; € D, §(P;) denotes the name of the string in P’
generated from P; by dropping the leading symbol and shrinking the resultant string by
a factor of 4. Let the residue of P} be denoted by r(P7). All such residues are of equal

25

Theorem 10 The dictionary Dy is processed in O(log My) time and O(M, log My) work.
The insert(P,D;—1) operation takes O(log M;_1) amortized time and O(p; log M;_1) amor-
tized work. The operation delete(P,Dy_1) can be performed in O(log My_1) amortized
time and O(nglog My_1) amortized work. The operation match (t;,Dy) takes O(log M;:)
time and O(n;log M) work.

7 Multi-pattern String Matching and Related Prob-
lems

We modify the algorithm for static dictionary matching in Section 4 to derive simple
optimal algorithms when all the patterns in the dictionary are of the same length; this
is the multi-pattern string matching problem of [KLP89]. In this process we make some
basic observations which we believe are critical in using the shrink-and-spawn technique
to derive optimal speed-up algorithms, even when the overall work is linear in the input
size. The main idea is similar in spirit to that in Section 4.4 where we discussed issues
in shrinking the text sizes by a fraction recursively. When all patterns are of the same
length, this step and the corresponding step of extending the match to the left when
returning from lower levels of recursion can be achieved efficiently. The details are as
follows.

Let T be the set of text strings and let D denote the set of pattern strings each of
length m. The total size of D is M. Unlike in Section 4 and other earlier sections where
we first solve the prefix-matching version of the problem, in this section we solve the dic-
tionary matching problem directly. Also as it turns out, we do not need the prefix-names
for the strings in D. The name of a pattern string, defined to be the prefix-name of the
last location in it, is sufficient. For reasons to be specified later, we maintain a stronger
recursive invariant of generating the names at each recursive level, for the appropriate set
of strings derived from the dictionary at that level; recall that in Section 4, the prefix-
names were computed in one step that preceded the recursive prefix-matching step. Our
algorithm proceeds as follows:

Step 1 (Optimal Shrink-and-spawn) Let P be obtained from D by replacing each P; € D
by the following two strings: P?, a suffix obtained by dropping the leading symbol in P;
and P/, a prefix obtained by dropping the last symbol in P;. All strings in P are of same
length. Let ¢’ be a naming function for all the substrings of length 4 in T and P. Shrink
each string in P by 4 to get P’. The residues of length at most 3 would be considered
later. Spawn 4 copies of each string in 7'. Note that for a string ¢ € T, the four copies are
tiforl1<i<4 (See the definition of shrink-and-spawn from Section 3). Delete alternate
strings #? and t* for each t € T. Let the resultant set be 7”. Note that the factor by
which the text is spawned is half the factor by which the dictionary strings are shrunk.
As a result, P’ is of size 2 x M /4 = M /2 and T" is of size n/2.

Step 2. (Recursive Step) Recursively, solve the dictionary matching problem on P’ and

24

as providing optimal algorithms for integer sorting. Note that no deterministic optimal
algorithms are known for the integer-sort problem.

Following this claim, dynamic stamp-counting can be done deterministically within
following bounds: 1. processing So in O(log | S|/ loglog|So|) time and O(|So|loglog |Sol)
work [BDHPRS91]. 2. insert(s,S;) and delete(s, S;) in O(1) time and O(1) work. 3.
namestamp(A, S;) in O(1) time and O(|A|) work. Dynamic stamp-listing can be per-
formed using integer-sorting using space quadratic in M when the sets are tuples with
two elements, each in the range 1--- M, as follows. Essentially keep a double linked list of
the tuples with a particular stamp on top of an array of size M for each stamp. In all our
applications of dynamic stamp-listing, the tuples have only two elements; hence, the space
utilized is at most quadratic in the dictionary size. It follows that the abovementioned
bounds are achievable for dynamic stamp-listing as well.

We now return to fully dynamic prefix-matching. As in partly dynamic prefix-
matching, we simulate parts of the static prefix-matching algorithm. Again the vari-
ous standard namestamping steps are replaced by the appropriate variants as follows:
(i) namestamping in prefix-naming and naming (shrink-and-spawn step) are replaced by
partly dynamic namestamping, (ii) namestamping in Extend-Right is replaced by dy-
namic stamp-counting, and (iii) namestamping in the retrieve-index problem (Phase 2)
is replaced by stamp-listing.

Theorem 9 The initial dictionary Dy can be processed in O(log Mo/ loglog My) time and
O(Myloglog My) work determanistically. The insert(P,D;) operation can be performed
in O(log w;) time and O(u;) work. The delete(P,Dy_1) operation can be performed in
O(log M}/ loglog My) time and O(ni loglog M;) amortized work. A match(t;, D;) is per-
formed in O(log m;) time and O(n;logm,) work.

Consider inserting or deleting several pattern strings simultaneously. The following
modifications are incorporated. The various tuples which are simultaneously inserted
or deleted are sorted using the integer-sorting algorithm. In dynamic name-listing, the
list of tuples with the same stamp are kept in a 2—3 tree which can be updated as
in [PVW83]. Dynamic stamp-counting and stamp-listing with these modifications yield
dynamic prefix-matching algorithms within bounds slightly worse than those cited in

Theorem 9.

6.2.2 Fully Dynamic Dictionary Matching

Combining our result for the fully dynamic prefix matching problem with techniques
of Amir, Farach and Matias [AFM92 F93], an algorithm for fully dynamic dictionary
matching is derived. As in partly dynamic dictionary matching, a trie of pattern strings
is maintained. In addition, UNION/FIND operations are implemented on the set of
marked nodes in the trie. This keeps track of the available marked ancestors for each
marked node as patterns get deleted. To sum,

23

using a fast prefix-sum computation [CV89] and the various tables are rebuilt. Hence, the
work bounds for deletions are amortized.® Again we first consider fully dynamic prefiz-
matching in which the output for the operation match(t;, D;1) is for each text location
t;(k), the longest prefix from D; which occurs beginning at t;(k).

6.2.1 Fully Dynamic Prefix-Matching

We describe modifications to our algorithm in Section 4.1. Our modifications concern
namestamping that yield more sophisticated variations to be used in the fully dynamic
case. This is because, deleting patterns brings up issues not encountered earlier. Re-
call from Section 3 that to namestamp with S;, each tuple (z,y) in S; is assigned a
namestamp /(z). When a tuple with element z is deleted, we need to change I(z). Two
possibilities occur: if deleting x leaves no tuples in S; with element z, I(z) has to be
cleared. On the other hand, if deleting = leaves some tuples in S; with element z, no
changes need be made provided we are not particular about the namestamp. To ensure
this, we need to only keep track of the number of tuples that have the same element.
To satisfy this requirement, we define below a variation of namestamping called dynamic
stamp-counting. Assuming now that we are particular about the namestamp I(z), it is
not sufficient to keep track of the number of tuples with an element z; we need to addi-
tionally keep track of the namestamps of these tuples. Corresponding to this, we define
a variant of namestamping called dynamic stamp-listing.

Now we formally define two variants of namestamping. Consider dynamic stamp-
counting. Initially we are given a set of tuples Sy. To each distinct element = in Sy, we
assign namestamp [/(z) as in standard namestamping. In addition, we assign to = a count
¢(x) of the number of tuples in Sy with element x. The following sequence of operations
is performed: (7) insert(s, S;), adds a tuple s to S; and S;US = Si;1 as defined in partly
dynamic namestamping. (:¢) delete(s, S;), removes a tuple s from S; and S; — S = S;41.
(121) namestamp(A, S;), i.e., namestamp set A as in standard namestamping. Dynamic
stamp-listing is defined analogous to dynamic stamp-counting by replacing ¢(x) with p(z)
which is a pointer to a list of all tuples (z1,y1) € S; such that = ;.

In our applications, all the integers in dynamic namestamping would be in the range
[1---M] where M is the dictionary size. We claim that dynamic stamp-counting is ex-
actly as hard as the integer-sort problem [BDHPRS91]|, that is, sorting M numbers in
the range [1--- M]. Obviously if the elements of Sy are sorted, the namestamps and
counts can be assigned in a(M) time and O(M) work using the standard algorithm to
find nearest 1, for each 0, in a boolean array [Rag90]. Also, if stampcounting the set Sy is
accomplished, the set of tuples in Sy can be sorted using prefix-sum computations which

take O(Flgolg(g—M) time and O(M) work [CV89]. Hence, stamp-counting is at least as hard

5We use a simple amortization here. Assume a sequence of operations the ith of which involves w;
work. After a sequence such that Y w; = ¢M for a constant fraction ¢, we have an operation that takes
F(M) work for some function f. The amortized work for the ith operation in this case is defined as

(wi/eM) x f(M).

22

Our description above carries over to the case when several pattern strings are inserted
simultaneously.

6.1.2 Partly Dynamic Dictionary Matching

Following [AFM92,AF91,F93|, a parallel algorithm for the following problem is easily
derived: given a prefix from the dictionary that is dynamic under insert operations, de-
termine its longest prefix that is a pattern. Essentially, the following simple subset of the
techniques developed in [AFM92] is sufficient. Maintain a trie of the pattern strings. Ini-
tially, the suffix tree of the dictionary can be modified to serve as the trie. Certain nodes
in the trie are marked corresponding to the patterns in the dictionary. The query con-
cerning the longest prefix of a given prefix that is a pattern in the dictionary, translates
to determining the nearest marked ancestor in this trie. To maintain this information
dynamically, they maintain the Euler tour of this trie in a balanced tree.

Inserting a new pattern is performed as follows. From the description of the algorithm
for partly dynamic prefix-matching, it follows that the longest prefix of the new pattern
that is present in the current dictionary is available. This information can readily be
obtained as a pointer to the node in the trie with the corresponding prefix. At this node,
the new pattern is inserted. In [AFM92], it is described how to maintain the Euler tour
when patterns are inserted. Given this algorithm, our result from Theorem 7 immediately
yields,

Theorem 8 Processing Dy takes O(log My) time and O(Mylog My) work. The oper-
ation insert (P, D;_1) takes O(log M,;_1) tuime and O(p;log M;_1) work. The operation
match(t;, D) takes O(log M) time and O(n;log M) work. The output for each text
location s the longest pattern that matches beginning at that location.

Once again, a detail concerns dynamic space allocation for maintaining the tries. As
mentioned in the Section 6.1.1, an amortized solution is immediate; this can be made
into a worst case solution using standard methods [O83].

6.2 Fully Dynamic Dictionary Matching

The fully dynamic dictionary matching problem admits the operation of deleting patterns
from the dictionary in addition to those supported by the partly dynamic dictionary
matching problem. Let the kth operation that modifies the dictionary (through inser-
tions and deletions) be delete(P, Dy_1) where P has length 7. This operation involves
removing the pattern P from Djy_; resulting in dictionary Dy;. We modify our static
dictionary matching algorithm from Section 4.

When a delete operation is performed, the pattern to be deleted is not removed from
the dictionary. It is simply “marked”. When the total size of the patterns in the dictio-
nary falls below a fraction of the size of the tables, the marked patterns are squeezed out

21

in prefix-naming, naming (shrink-and-spawn), Extend-Right and retrieve-index problems

(Phase 2).

Theorem 7 The initial dictionary Dy in which the longest pattern is of length at most
mg can be processed in O(logmyg) time and O(My) work. Following this, the insert(P,D;)
operation can be performed in O(log p;) time and O(p;) work. A match(t;, Dy1) is per-
formed in O(logm,) time and O(n;logmy) work. For each location t;(k), the output is
the longest prefiz from D; that matches beginning at t;(k).

A detail concerns dynamic space allocation. Note that as patterns get inserted, the
size of the arrays needed to perform namestamping increases. Such a situation arises in
the parallel construction of 2—3 trees [PVW83] in which it is assumed that an array of
infinite size is provided. The 2—3 tree is maintained at the beginning of this array dy-
namically. However, we feel that this is not a realistic assumption, especially in our case
where we are concerned the availability of several two dimensional arrays. We provide
the following solution for this problem.

An amortized solution is immediate: given the initial dictionary size My, procure ta-
bles of size 2Mjy x 2Mj, for namestamping. Now, patterns of total size M can be added to
this initial dictionary using the algorithm outlined above. When the size of the inserted
patterns goes beyond M)y, fresh tables of size 4My x 40, are procured. The old tables
are copied into this larger table (takes O(My) work corresponding to O(My) total work
done so far constructing this table). Now, the algorithm proceeds as earlier with the new
tables. The old tables are discarded. Various complexity bounds stated in the previ-
ous theorem remain unchanged except that the bounds for insertions become amortized
bounds. An important detail concerns copying the old tables into new tables; copying
i1s done by simulating the dictionary processing algorithm, on the new table with old
dictionary, rather than entry-by-entry copy of the tables. Note that this is particularly
critical since copying the tables entry by entry would result in quadratic work.

This amortized bound can be made worst case bound using a variation of standard
techniques for dynamizing data structures [O83]. Essentially, the technique is the follow-
ing: assume that tables of size 2My x 20, have been used for processing the dictionary
initially. Dynamic insert operations are performed till patterns of total size My are in-
serted into the dictionary. Following this, tables of size 4 My x 4Mj are procured. Without
copying the old tables into the new tables, the algorithm continues working on the new
table. When any insert is processed, two operations are performed, namely, inserting
into the new table as dictated by the algorithm being careful to read any relevant entries
in the old table and copying portions of the old table into the new table. Again copying
is done as in the amortized case, i.e., by simulating the dictionary processing algorithm.
When new patterns of total size M, are inserted, the old tables would have been fully
copied onto the new tables and therefore, the old tables can be discarded. Hence, the
previous theorem holds with worst case bounds.

20

Furthermore, it can be matched against a set of text arrays of total size n in O(logm)
time and O(nlogm) work.

6 Dynamic Dictionary Matching

6.1 Partly Dynamic Dictionary Matching

In partly dynamic dictionary matching, we have an initial dictionary Dy and are given
an arbitrary sequence of insert and match operations, on-line. The ith insert operation
is insert(P, D;_1) where pattern P has length p;. It involves adding P to the dictionary
D;_1. The resulting dictionary is D;. The jth match operation is match(t;, D) which
involves matching the text ¢; of n; characters, into D;; where there are exactly ¢’ inserts
in the sequence of operations before the jth match. The output for each location £ in ¢;,
is the longest pattern from D;; that matches at k. Each dictionary D; has size M; with a
longest pattern of length m;.

6.1.1 Partly Dynamic Prefix-Matching

First we consider the prefix-matching version of the problem. In partly dynamic prefiz-
matching, the output for the operation match(t;, D;s) is for each text location t;(k), the
longest prefix from D, which occurs beginning at t;(k). We modify our algorithm in
Section 4.1 to perform partly dynamic prefix-matching.

Our modifications to the algorithm in Section 4.1 concern namestamping. We first
define the partly dynamic namestamping problem; namestamping from Section 3 is hence-
forth called standard namestamping. A set of tuples Sy is initially processed as in stan-
dard namestamping. A sequence of two operations can be performed. The operation
insert(S, S;) is the ¢ + 1st insertion in which a set S of tuples is added to S; as follows:
the elements in S are assigned namestamps consistent with those in 5;. That is, if an ele-
ment z in S is in S;, then I(z) is unchanged. The elements in S and not in S; are assigned
namestamps as defined in Section 3. Following this operation, S|JS; = S;41. The opera-
tion namestamp(A, S;) is performed after the ith insertion and before the ¢ + 1st, and it
namestamps A with S; as in standard namestamping. We claim that by modifying the
standard namestamping procedure in Section 3 slightly, the following bounds are achieved
for partly dynamic namestamping: Sp is processed in O(1) time using O(|So|) processors
following which insert(S, S;) takes O(1) time using |S| processors and namestamp(A, S;)
takes O(1) time using O(|A|) processors.

We now return to partly dynamic prefix matching. The initial dictionary is prepro-
cessed as in the static prefix-matching algorithm in Section 4.1 and the insert(P,D;_1)
operation is performed by simulating this algorithm for dictionary processing on P. In
both these steps, all standard namestamping procedures are replaced by partly dynamic
namestamping. Recall that standard namestamping steps were involved in Section 4.1

19

Generate the set S; of tuples from the text. The set S;(7) consists of tuples generated
by those text locations 7 for which «(7) is a 2i x 2¢ square. Consider one such text
location 7 = T(j,k). Let its neighbor immediately to the right be 7¢ and the neighbor
immediately below be 77. Let the longest square-prefixes of P’ that match at 77 and 7°
be a(7") and a(7°) respectively. We determine if a (2¢ 4 1) x (2¢ + 1) square-prefix of any
pattern occurs at 7. The text location 7 generates the following tuple

(nt ity T + 20, b+ 20)

where n’, n! and n! are the prefix names of the 2: x 2¢ square-prefix of the pattern, if any,
which occur at 7, 77 and 7°, respectively. Note that n. corresponds to the prefix-name
of a(7). We show how to obtain n’; n! is similarly obtained.

Consider a(7°). If a(7°) were a square of size (2¢ — 2) X (2¢ — 2) or smaller, then there
does not exist any (2¢ 4+ 1) x (2¢ + 1) square-prefix of P that occurs at 7. This is because,
if a(7°) were a square of size (27 — 2) X (2¢ — 2) or smaller, then the longest prefix from P
can be a square of at most (2¢ — 1) X (2¢ — 1) in size. Note that «(7°) can not be of size
(22 — 1) x (2¢ — 1) since it is an even sided square. If a(7°) were of size 27 X 2¢ or larger,
then determine its largest square-prefix which is a square-prefix in P¢. This is sufficient
to determine n’, if any.

Having generated the text and pattern tuples, namestamp the set S;(7) with the set
Sp(7) for each i in parallel. This provides each text location 7 with the prefix-name of
the square-prefix of size (27 + 1) x (27 + 1), if any existed in P.

That completes our description of the recursive shrink-and-spawn steps for two di-
mensional prefix matching. For each location Ty(z,7), given the pattern square-prefix of
largest dimensions that matches at that location, it remains to extract the pattern array
of largest dimensions that matches beginning at that location. This is performed as in
the second phase described in Section 4.2. The only difference is that we look at the
diagonal for determining the longest pattern that is the prefix of the given match at a
text location.

We consider the complexity next. This brings up a detail concerning Steps 2a and
2b. This step is not performed at each recursive level. If it were, each level of recursion
would take O(logm) time, and the entire algorithm would then take O(log®m) time.
Rather, we wait for the recursion to reach its lower most level and then in parallel this
step is executed for each recursion level. Following this, “unwinding” of the recursive
levels continues. Hence, over all recursive levels, these two steps take O(logm) time and
O(M) work. The naming in Step 1 takes O(1) time and O(n + M) work. As a result,
the text size remains as n while the dictionary size falls to 3M /4. The dimension of the
largest pattern in P’ is m/2 x m/2. Step 4 takes O(1) time and O(n + M) work. Thus
we claim,

Theorem 6 A dictionary of two dimensional patterns of total size M such that the maz-
imum size of any pattern s mXxXm, can be preprocessed in O(log m) time and O(M) work.

18

Step 4. (Extend Right) This is the most complicated step of all.

Step 4a. Generate the prefix-names for the square-prefixes of P. Note that the square-
prefixes of even dimensions are retained as square-prefixes in P”. Therefore, it remains
to determine the prefix-names for the square-prefixes of odd dimensions. Consider all
square-prefixes of dimension (27 + 1) x (2¢ 4+ 1) in parallel. Consider in particular the
square-prefix Py(1---(2¢+1),1---(2¢ + 1)) for some integer .

Note that Pp(1---2:¢,1---21), Pp(1---2:,2---(2e+1)) and Pi(2---(2¢4+1),1---2¢) are
square-prefixes in P, P° and P" respectively; furthermore, they are all of even dimensions.
Hence, their prefix-names have been determined recursively. Denote their prefix-names
by n., n. and n, respectively. The square-prefixes of dimension (2¢ + 1) x (2¢ + 1) are
assigned prefix-names by namestamping with the tuple

{10y 71y, 1o, Po(2i + 1,20 + 1)), (k)

generated one per each square-prefix Py(1---(2¢ +1),1---(2¢ + 1)).

Step 4b. For each text location 7, the longest square-prefix from P” that matches at
7 is provided. This is a square-prefix in P’. Let this prefix be a(7). Note that this is a
21 X 21 square, for some 7. There are two cases.

1. If a(7) is not a square-prefix in any pattern in P, then the largest square prefix
from P is the largest square prefix of «(7) that is a square prefix in P.

2. Say a(7) is a square-prefix of some pattern in P. Then, one of the following is
true. Either a(7) is the largest square-prefix from P that occurs at 7 or the largest
square-prefix in P that occurs at 7 has sides of length (2¢ + 1) x (2¢ + 1).

Case 1 above is taken care of as in Section 4.2. We show how to take care of the Case
2. The first task is to check if a (27 + 1) x (2¢ + 1) square-prefix of any pattern occurs
at 7. If none such occurs, the longest square-prefix that matches at 7 is indeed a(7). If
such a square-prefix exists, then the second task is to determine the prefix-name of this
square-prefix. Both these tasks are accomplished using namestamping that we describe
below.

Generate a set S, of tuples from P. The set S,(7) consists of tuples in S, generated
by the pattern positions (2: + 1,2¢ + 1) in some pattern. Consider one such position
P(2¢ +1,2: + 1). This location generates the following tuple

((ne,npyne, Pr(20 + 1,20 + 1)), (k))
where n., n. and n, are the prefix-names of the squares of size 2¢ X 27, respectively given

by, Pe(1---20,1---22), Pp(1---2¢,2--- (20 + 1)) and Pg(2---(2¢ + 1),1---22). These are

square-prefixes in P’ and their prefix-names have been ascertained recursively.

17

disjoint subarray of size 2 X 2 into a single symbol using names. Note that there could
be a residue consisting of one row and one column of some of the pattern arrays. These
residues would be considered later.

We spawn copies of text arrays in the following sense. Consider the set of all text
arrays T’ such that each text array T; is replaced by 4 text arrays T/ for 1 < j < 4.
Each of these arrays is obtained from an appropriate array derived from 7; by first tiling
it with subarrays of size 2 X 2 and subsequently replacing each subarray with its name
8. The four arrays on which these two operations are performed so as to yield T for
1<j<4dare 1. T,(1---t;,1---t;), 2. T;(2---#;,1---¢;), 3. T;(1---¢;,2---¢;), and 4.
Ti(2---t;,2---t;). That is, each text array spawns off 4 copies by replacing each subarray
of size 2 x 2 in the original text array by a single symbol.

Step 2. (Computations for Extend-Right) We perform the following two operations on
P’
Step 2a. Prefix-name the set P’.

Prefix-name for P’ is computed in two steps. First, compute the prefix-names for the
set of strings obtained by considering each row of each of the arrays in P’ as a string.
Each location (¢,) in each array Py is associated with the prefix-name 6;(Px(7,7)). This
is the name for the prefix Py(¢,1)--- Px(7,j). Consider an auxiliary array for each array
Py, € P’ denoted by P} where P}"(i,5) = 61(Px(%,7)). Let P" be the collection of these
auxiliary arrays. Consider each column of these arrays as strings and perform another
prefix-naming. Each location (¢,7) in each auxiliary array P} is associated with the
prefix-name 62(P;"(7,7)). This is the name for the prefix P/"(¢,1)--- P"(,7).

Lemma 1 The function 6y assigns valid prefiz-names for the arrays in P’.

Proof: Consider two rectangles, that is the (1---4,1---7) entries in two pattern ar-
rays A and B. Their auxiliary arrays are A’ and B’ respectively. The claim is that
02(A'(7,5)) = 62(B'(7,5)) if and only if A(1---4,1---5) = B(1---¢,1---7). Assume
02(A'(7,5)) = 62(B'(2,75)). This implies A/(1---4,5) = B'(1---1,j) since 62 is a prefix
naming for the columns of P’. This in turn implies that 61(A(k, 7)) = 61(B(k, 7)) for all
kel---i. Thus A(k,1---5)=B(k,1---j) forall k € 1---¢ since é; is a prefix-name for
the rows of P. Hence, A(1---4,1---j) = B(1---4,1---j). The other direction is seen
similarly. O

Step 2b. For each square-prefix in P’, determine its longest square-prefix that is a
square-prefix in P. This is done as described in Section 4.2 corresponding to Step 2
in the static dictionary matching algorithm. Similarly, determine for each square-prefix
in P’ its longest square-prefix that is a square-prefix in P". Also determine for each
square-prefix in P’, its longest square-prefix that is a square-prefix in P°.

Step 3. (Recursive Step) Recursively determine, for each text location 7 in T, the
square-prefix of longest dimensions from P” that matches at 7. This additionally returns
the prefix-names for the square-prefixes of P”.

16

5 Higher Dimensional Dictionary Matching

We now discuss the two dimensional dictionary matching problem. Extensions to d-
dimensional dictionary matching for a fixed d are straightforward. Consider the static
two dimensional dictionary matching problem. We have a set D called the dictionary of
pattern arrays { Py, P, ..., Py} where each P, is a p; X p; square, given for preprocessing.

Input: The set T of text arrays {17, T3,...,7T,.} where each T; is a t; X t; square.

Output: For each location (z,5) in T} € T, the index of the pattern with largest sides
that matches at Ty (7, 7).

A match between two dimensional arrays is a standard notion [B77,Ba78]. Let
Y pepp; = M and Y rert? = n. Furthermore, each p; < m. Define a square-prefiz
of an array to be a subsquare at the top left corner. Also, prefix-names for squares
are defined analogous to prefix-names for strings. We extend our algorithm for static
dictionary matching with strings (from Section 4) to the case of square arrays. We first
describe some details of Step 1, namely, “two dimensional prefix-matching” defined below.
The input to two dimensional prefiz-matching is the same as that for two dimensional
dictionary matching. However, the output is as follows:

Output: For each text location Ty(7,j) denoted by 7, compute é:(7), |6:(7)| and Z(7)
such that the square-prefix of largest sides from P that matches at 7 is a |6:(7)| X |6:(7)|
square-prefix with prefix-name 6;(7), and Z(7) is the index of a pattern with this prefix.

Suppose that each location Py(i,7) in Py € P is assigned its prefix-name. Formally,
prefiz-naming a set of strings S is defined as follows. Consider the set S(z,7) of all the
subarrays Sg(1---¢,1---7) for every string Sy € S. Each of the sets S(¢,7) is individually
named. This name is called the prefiz-name. Note that we are implicitly using a more
general notion of prefix of an array being a rectangular subarray with the same left hand
corner.

While solving the two dimensional prefix-matching problem, largest square-prefix that
matches at a text location is specified by its prefix-name and dimensions. For the pattern
arrays, it is guaranteed that the prefix-names of all the square-prefixes would have been
determined. This is done recursively.

Step 1. (Two Dimensional Shrink-and-Spawn) Consider two sets P and P°® where P" is
obtained by stripping the top row in each pattern in P and P¢ is obtained by stripping
the leftmost column in each pattern in P. Let P’ = P U P” U P°. Note that |P’| < 3M.
Consider a naming of all subarrays of 7' and P’ of size 2 x 2. Let this naming function

be §'.

We shrink the patterns in the following sense. Consider the set of all patterns

P" = {P|,P;,--- P} where P] is obtained from P, € P’ as follows. Consider each
location (7,7) such that ¢ and j are odd. Replace Py(i--- (2 + 1),57---(j + 1)) by its
name O'(Pg(z---(¢4+1),7---(j+1))). That is, P/ is generated from P; by shrinking each

15

That completes the entire description of our algorithm. Step 1 takes O(log L) time
and O(n + ML) work to perform the naming. The sets 7' and P’ are of sizes n/L
and M respectively. The length of the longest pattern in P’ is m. From Theorem 1,
step 2 takes O(logm) time and O(nlogm/L + M) work. Step 3 takes O(L) time and
O(ML + 7 X L) =0O(n+ ML) work. The one time computation of all & values in Step 4
takes O(logm) time and O(ML|X|) work. This is the alphabet-dependent computation
in the entire algorithm. Rest of the Step 4 takes O(L) time and O(n) work. Hence,

Theorem 4 A dictionary of size M and longest pattern of length at most m s processed
in O(logm) time and O(M|Z|L) work. A text of size n can be matched against this
dictionary in O(L + logm) time and O(nlogm/L) work for any L < logm.

Corollary 1 Let |X| = o(logm). A static dictionary can be processed in O(logm) time
and O(M+/ logm|Z|) work. The text of size n can be matched against this dictionary in

O(logm) time and O(ny/ logm|Z|) work.

Corollary 2 For any |Z, static dictionary matching can be performed in O(logm) time.
Dictionary processing involves O(M|X|logm) work and text processing involves O(n)
work.

A slightly more general theorem can shown as follows. For the purposes of decreasing
the alphabet-dependent complexity, consider the Extend-Left step. Encode each symbol
in the dictionary using distinct binary code of length log |X|. The resultant dictionary
is of size Mlog|X|. Perform operations as described earlier to move left by one bit.
This takes log m + loglog |X| time and O(M L log |X|) work. Correspondingly, to perform
Extend-Left while text processing, consider the text symbols replaced by their binary
codes of length log |Z|. As before, text processing involves moving to the left by L posi-
tions. For each of these positions, move left log |Z| times, one bit at a time. It follows
that,

Theorem 5 A dictionary of size M and longest pattern of length at most m s processed
in O(logm + loglog |X]) time and O(M Llog |Z|) work. A text of size n can be matched
against this dictionary in O(Llog |Z|+1logm) time and O(nlogm/L+nlog|Z|) work for

any positive integer L.

Assume |X| < m (stronger than the Corollary 1). Set L = logm/log|Z|. The time
for static dictionary matching is O(logm). The work becomes O(nlog |X| + M logm).
Thus text processing involves o(nlogm) work while dictionary processing involves only

O(M log m) work.

14

Step 1. (Modified Shrink-and-Spawn) Consider L copies of each pattern string in D
obtained by successively dropping the leading symbol. Let resultant set be P. Shrink
strings in 7" and P by L to obtain text and pattern sets 7’ and P’ respectively.

Step 2. (Dictionary Matching) Solve static dictionary matching algorithm on 7" and P’
using the algorithm in Section 4. Output for each text position T;(j) such that j = kL+1
for some integer k, is the longest prefix from P’ of length a multiple of L that matches
beginning at T;(j).

Step 3. (Extend-Right) For each T;(j) such that j = kL 4+ 1 for some integer k, the
longest prefix from P’ of length a multiple of L is extended by at most L — 1 positions to
the right as in Step 3 in Section 4.1 to obtain the longest prefix from P that matches at
Ti(j). From this, determine the longest pattern that matches at T;(;) as in Section 4.2.

Step 4. (Extend-Left) Given the longest prefix from P that matches at T;(j) where
J = kL 4+ 1 for some k, extend this left and determine the longest prefix from P that
matches beginning at T;(j — £) for 1 < £ < L — 1. From this, determine the longest
pattern that matches at T;(j — £).

That completes the description of our algorithm at the high level. Consider each step
in some detail. The definition of set P is critical in being able to perform the Extend-
Left efficiently. P; obtained from P; € D by dropping the first j positions, is called the
j-suffiz of P.. A ck-suffiz of P; refers to any P/ for j < k. Hence, P is the collection of
the < L-suffixes of the pattern strings in D. The first three steps follow from Section 4.
We now consider the Extend-Left step. For each T;(j) such that j = kL 4+ 1 for some
integer k, the longest prefix of < L-suffixes of D that match beginning at T;(j) is given as
input to the Extend-Left step. Let this be ¢(T;(j)). Without loss of generality, consider
a fixed window T;(j — L)--- T;(j) henceforth for discussions. Extend-Left is done in two

steps.

Step A. For each location T;(j — £) compute a(L) defined iteratively as follows: a(0) =
P(Ti(7)) and a(L 4 1) is the longest prefix of T(j — £ — 1)||a(L) in P. Here the symbol
|| stands for string concatenation. The value a(L) satisfies the following property: the
longest prefix of «(£) which is a prefix in the <(L — £)-suffixes of D is the longest prefix
of the <(L — £)-suffixes of D that matches at j — L.

Step B. For each location T;(j — £), determine the longest pattern that is the prefix of
a(L). Since the longest prefix of <(L — £)-suffixes of D that matches at j — £ is a prefix
of a(L), the longest pattern in particular that matches at T;(j — £) is a prefix of a(L).

That completes our description of the Extend-Left step. Step B follows easily from
Section 4.2. It remains to demonstrate how a(L£) is computed in Step A. Consider set
P" obtained from each p € P by replacing it with o||p for each o € ¥. For each prefix
in P” compute into a table, the longest prefix from P as in Section 4.2. Now, string
T(j— L —1)||a(L) is a prefix in P” for any T(j — £ — 1). Thus, a(L) is looked up from

this table using namestamping.

13

1 7 741 longest prefix at 7+1
. . [text Ti
| 4

______ possible longest

\— longest prefix at 7-1

Figure 1: Longest Prefixes at Neighborhood

prefixes at 7

positions. For example, consider the scenario in Figure 1. For convenience, we refer to
locations 7 — 1, 7, 7+ 1 in text T; by 7 — 1, 7 and 7 4+ 1 respectively. Assume that the
longest prefixes from the dictionary that matches at text locations 7 — 1 and 7 4 1 are
known and from these, the longest prefix at 7 need to be inferred. Clearly, the longest
prefix at 7 is arbitrarily long/short relative to the longest prefixes at 7 — 1 and 7 + 1.

As it turns out, we can relate the longest prefixes at neighboring positions, by defin-
ing the prefixes of the patterns carefully. Consider a dictionary P. Let P°® be the set of
strings derived from P by replacing each string in it by its suffix obtained by deleting the
leading symbol. Define P= PJP*. Let ¢)(7 + 1) denote the longest prefix from P that
matches at 7+ 1. Let ¢(7) denote the longest prefix from P that matches at 7. We claim
that ¢(7) is the longest prefix of the string obtained by concatenating (7 + 1) to T;(j)
that is also a prefix in P. Using this observation, we can efficiently compute ¢ values
from the ¢ values as follows. Let ¢ be a string of the form a||B (a concatenated with B)
where a is a text symbol and B is a prefix in P. Our task of computing ¢ values from
values is essentially that of determining the longest prefix of a string of the form ¢ that
is also a prefix in P. We accomplish the following which is clearly sufficient for this task:
for every string of the form ¢, we determine its longest prefix that is also a prefix in P.
We accomplish this by considering a set of size |X| x |P| which contains all prefixes of
the form ¢ and performing a computation similar to that described in Step 2 in Section
4.2. Note that this computation is alphabet-dependent. By systematically utilizing these
ideas with a variant of the shrink-and-spawn technique, we derive an algorithm for static
dictionary matching which we now describe.

Our algorithm, modified from that in Section 4, is more efficient when the alphabet set
Y from which the strings are drawn is small. Our overall approach is to try and collapse
the text initially to length n/L for some parameter L thereby retaining only a fraction of
the text positions. Subsequently we match this shrunken text on a suitable dictionary.
From the output, we construct the solution for each of the original text positions. Again
for convenience, we consider that D and T are provided simultaneously. We proceed as
described below.

12

4.2 Finding Longest Pattern (Step 2)

For each prefix in D, we show how to determine its longest prefix that is a pattern. Fol-
lowing this, Z(7) for any text location 7 can be looked up from the prefix of length |6,(7)|
and prefix-name é;(7) computed in Step 1, using namestamping.

1. Determine for each location P;(j) if the prefix P;(1)--- P,(j) is a pattern. This is done
using namestamping. The output is an auxiliary array A of size M; corresponding to
each P;(j), there is a position in A that is set to 1 if P;(1)--- P;i(j) is a pattern and to 0
otherwise.

2. For each position P;(j), determine the largest k¥ < j such that P;(1)--- Py(k) is a
pattern. This is equivalent to finding, for each position in A, the nearest 1 to its left.

Theorem 2 For each location Pi(j) in D, its longest prefiz that is a pattern can be
computed in O(logm) time and O(M) operations.

4.3 Putting It Together—Static Dictionary Matching

Recall that 7" and D were presented simultaneously. The algorithm is slightly modified
if D is made available for preprocessing. Process the pattern strings by simulating their
role in the algorithm described earlier. In a manner similar to [AILSV88,KLP89], store
various tables used in the individual steps. Subsequently when 7 is presented, the text
strings are processed by simulating the algorithm using these appropriate tables.

Theorem 3 A set of patterns D each of mazimum length m with total size M 1is pro-
cessed in O(logm) time and O(M) work. For each location in a text of length n, the
longest pattern that matches at that location can be determined in O(logm) time and

O(nlogm) work.

From our description thus far, it easily follows that while preserving other bounds,
text processing can be performed with O(nlog A) work where A = liyax — lmin and lpayx
(= m) and Iy, denote the length of the longest and the shortest pattern respectively, in

D.

4.4 More Efficient Dictionary Matching with a Small Alphabet
Size

Our algorithm in the previous section is optimal in the size of the dictionary, but is sub-
optimal in the text size. Intuitively, an approach towards achieving work optimality in
the text size in Phase 1 of Step 1 (See Section 4.1), is to “drop” some text locations as
the recursion (Step 2) progresses. The difficulty in doing this lies in inferring the longest
prefix that matches beginning at each “dropped” position given those at the remaining

11

mental extension step: given the prefix-name of the prefix from D of length |5(7)| + £
that matches 7, determine the prefix-name of the prefix from D of length |3(7)| + £+1,
that matches at 7. Clearly, this incremental extension step can be used to check all
possible extension lengths.

Informally, incremental extension works as follows: each prefix in the dictionary marks
a table at a location indexed by its prefix-name. Each text location generates the prefix-
name of the prefix of the desirable length and checks the corresponding table location to
determine if there exists a prefix in D with that prefix-name. This procedure is imple-
mented using the namestamping operation as described below.

Let P(T;(j)) denote the prefix-name of the prefix in D of length |3(T;(5))| + £ that

matches T; at j. The goal in incremental extension is to determine the prefix-name of the
prefix of D of length |3(T3(7))] + £ + 1 that matches T; at j, if any. For each location

7 in each text string 7}, generate a tuple
(P(Ti(7)), T:(5 + 1B(T(7))| + £+ 1))

Consider the set S; of all these tuples. Partition this set into sets Si;(\) such that all
those tuples with |3(7;(5))| + £ +1 = X belong to Si(A). From each position r in each of
the pattern strings P; such that r = (£ 4+ 1) mod L, generate a tuple

((6(F;(r = 1)), Pj(r)), 6(F;(r)))-

Consider the set S5, of all such tuples. Partition this set into sets S,(A) such that all
pattern tuples with r = X belong to S,(A). Namestamp set S;(\) with set S,(\) for each
A. We claim the following: the stamp for the tuple corresponding to a text location T;(7)
is the prefix-name of a prefix from P of length |3(7i(j))| + £+ 1 that matches T; at j
if one such existed, and is 0 otherwise.

Implementation and Complexity.

Let T(n,M,m) and W(n, M, m) denote respectively, the time and work complexity
of this algorithm when the text strings have total size n, the pattern strings have total
size M and the length of the longest pattern string is m. The Extend-Right step takes
O(L) time and O(nL + M) work. To sum,

T(n,M,m) <logL+T(n,M/L,m/L)+ L
W(n,M,m) <nL+ M+ W(n,M/L,m/L)+nL+ M.

Setting L = 2 and solving,

Theorem 1 Phase 1 of prefiz-matching for a text of size n, a set of patterns each of
length at most m and total size M can be solved in time O(logm) and work O(M +
nlogm).

10

Phase 1. For each text location 7, determine 6;(7), the prefix-name of the longest prefix
in the dictionary that matches at 7 and |6;(7)|, its length.

Phase 2. Given &(7) and |6;(7)| for each text location 7, determine Z?(7), the index
of a pattern in D that has this prefix. This is called the retrieve-index problem.

We now describe Phase 1 in detail. Phase 2 is performed easily using a namestamping
operation.

Algorithm Description (Phase 1)

Let L be a parameter to be fixed later. Our algorithm for Phase 1 of static prefix-
matching has three steps:

1. Shrink-and-spawn Step. Shrink each string in D by a factor of L and spawn L
copies of each string in 7. The resultant set of text and pattern strings are 7" and P’
respectively.

2. Recursive Step. Recursively solve Phase 1 of static prefix-matching on P’ and T".
For each location T}(j) in 7" denoted by 7', the output is the prefix-name of the longest
prefix of any of the strings in P’ that matches at 7/, say 6:(7'), and |6;(7")], its length.
Equivalently, for each text location T;(j) denoted by 7, the output is the prefix-name of
the longest prefix of any of the strings in P’ that matches at 7, say a(7), and |a(7)|, its
length.

3. Extend-Right Step. For each text location T;(j) denoted by 7, given a(7), the
prefix-name of the longest prefix of any of the strings in P’ that matches at 7 and its
length |a(7)|, determine 6;(7), the prefix-name of the longest prefix of any of the strings
in D that matches at 7 and its length |6;(7)].

Note that Step 1 requires naming a set of strings of length L. In Step 2, prefix-names
for the strings in P’ are required to solve the prefix-matching problem recursively. These
can be found from the prefix-names for the strings in D, since each string in P’ is a prefix
of a string in D.

We now consider Step 3 in some detail. As before, we denote a text location T;(j)
by 7 for notational convenience. The longest prefix from P’ that matches at 7, a(7),
corresponds to a prefix in D. Let this prefix be 3(7). Its length |3(7)| = L|a(7)|. By the
guarantee in our recursive step, no prefix in P’ of length |a(7)| + 1 matches at 7. This
implies that no prefix in D of length L|a(7)| + L matches at 7. Hence, the prefix 6;(7) is
no more than L — 1 longer than (7). The task in Step 3 is to extend 3(7) in D to obtain
6:(7). Let [6:(7)| — |B(7)] be the extension length. To determine &;(7), check for each
possible extension length L, if there exists a prefix in D of length |3(7)|+ £ that matches
at 7 as described below. Clearly, |6;(7)]| is the largest £ for which there exists a prefix
in D of length |3(7)| + £ that matches at 7, but no prefix of D of length |3(7)| + £ + 1

matches at 7. Correspondingly 6;(7) is obtained.

It now remains to show for each possible extension length £, how we check if there
exists a prefix in D of length |3(7)| + £ that matches at 7. Consider the following incre-

Fact 1 Name-stamping set Sy with S1 can be done in O(1) time using |S1| + |Sz2| proces-
sors.

Prefix-naming and hence naming, rely on namestamping. Prefix-naming is performed
by executing a standard prefix-sum computation [FL70] using the namestamping opera-
tion in place of the standard arithmetic addition [KP88,KLP89].

Fact 2 Gwven a set of strings each of length at most m and total size M, deterministic
prefiz-naming and hence deterministic naming, can be done in O(logm) time and O(M)
work.

4 Static Dictionary Matching With Strings

Formally, the static dictionary matching problem with strings is as follows. A set of
distinct pattern strings D = {P;, P,,..., Py} called the dictionary is available for pre-
computations. The index of the pattern P; is .

Input: A set T = {13, T3,...,T,.} of text strings.
Output: For each j, the index of the longest pattern that matches at 7;(j) denoted by
I(T:(5))-

The maximum length of any of the pattern strings is m. The size of the dictionary
denoted by M, is the sum of the lengths of the individual pattern strings. The sum of

the lengths of the text strings is denoted by n. We denote a text location T;(j) by 7 for
notational convenience. Our algorithm proceeds as described below.

Step 1: For each text location 7, determine (i.) é:(7), the prefix-name of the longest
prefix in the dictionary that matches at 7, (ii.) |6:(7)|, its length and (iii.) Z?(7), the
index of a pattern with this prefix. This problem is called static prefiz-matching. The
shrink-and-spawn operation is applied recursively to achieve this step, as described in
Section 4.1 in detail.

Step 2: Given 6;(7), |6:(7)| and Z?(7) for each text location 7, determine Z(7), the index
of the longest pattern that matches at 7. The pattern Pr(,) is a prefix and the longest
such, of any prefix in the dictionary of length |6;(7)| with prefix-name é;(7).

We next describe each step in detail. For convenience, assume both 7" and D are
presented simultaneously. The easy modification to the case when D is presented before
T, is explained in Section 4.3.

4.1 Static Prefix-Matching (Step 1)

Assume prefix-naming has been performed on D. With each location j in P, € D, we
have its prefix-name 6(FP;(7)). Prefix-matching is performed in two phases.

Output: For a naming function é, two sets of strings U’ and V' described as follows. Set
V' contains the string 6(Vi...V))6(Vigr ... Vo) oo 6(V—ig1 ... Vin). Set U’ consists of [
strings U* for 1 < ¢ < [where the string U* = §(U;Uiy1 .. Uppic1)6(Upgi - Ugigia) - - - -
Residues of length at most [— 1 are ignored here.

The shrink-and-spawn operation utilizes the naming function to shrink the string V'
by a factor of [, spawn [copies of U and maintain the following criteria. Determining
all occurrences of the string V' in U is equivalent to determining all occurrences of V'
in U’. Hence, shrink-and-spawn essentially serves as a “match-preserving” reduction of
a pattern matching problem to a “smaller” one since the length of V' is m/I. For this
“match-preserving” property it is sufficient that only the substrings of length [which
actually appear in both U and V be named using the same function §. The substrings
in U not found in V' can be named using a set of special symbols distinct from the set of
special symbols used to name the substrings in V' which are not found in U.

3.2 Namestamping

Consider a set 57 of distinct tuples (z,y) where y is called the stamp and z is called the
element. Associate with each distinct element z in S, a namestamp denoted () which
is the stamp of one of the tuples with element x.

Input: A set Sy of tuples (z) where = is an element.

Output: To each tuple (z) € Sy, the namestamp ().

Henceforth, by the phrase “namestamp set S, with 5;”, we mean solving the above
namestamping problem. Note the similarity between namestamping and table lookup. In
later sections, we introduce variants of namestamping that bring out its similarity with
standard dictionary operations.

3.3 Prefix-Naming

Input: A set S of strings.

Output: To each location S;(j) for some S; € S, the prefiz-name denoted by 6(5;(j)). For
each 1, 6(S;(1)) is a naming function for S;(1)S;(2)--- S;(I) for each :.

Note that each distinct prefix in S is uniquely specified by its prefix-name and its
length.

3.4 Computational Issues

In all our applications, any integer or a symbol in a string that we consider, fits into
one PRAM word. Namestamping a set Sy with 57 in which the elements and stamps
are each integers or tuples of integers (a,b) can be done using standard techniques

[KP88,AILSV88,KLP89).

Our algorithms use up to m tables of size M? each. All of our techniques will work with
space O(M'*¢) for some € > 0 per table, as in the work of Apostolico et al. [AILSV&S].
Our work bounds include the cost for initializing these tables based on the methods
of Hagerup [H88]. Randomization [GMV91] can be used to decrease the above space
requirements substantially.

Parallel algorithms for dictionary matching specify the output by listing for each text
location, the longest pattern from the dictionary that matches there. An alternate output
format that is typically used in the sequential case is to list for each text location, all
the patterns that match there; this results in an output-bound computation. Should this
format be required in the parallel setting, even for static dictionary matching, the interval
allocation problem [H92] seems to be inherent. Indeed, given the output of our algorithm
for static dictionary matching, the algorithm of Hagerup [H93] for interval allocation can
be used to output for each text location, all the patterns that match at that location;
Hagerup’s algorithm takes O(loglog®n) time and linear work.

For dynamic pattern matching, our algorithms and those due to Amir and Farach
[AF91] process the initial dictionary in O(log |D|) time and O(|D|log(|D|)) work. We
remark that Idury and Schaffer [IS91] have improved the sequential running time of the
(initial) dictionary processing step to O(|D]) using quadratic space. Also, randomized
algorithms for dynamic and higher dimensional dictionary matching can be found in

[AFM92)].

3 Basic Primitives

We introduce three important operations used in this paper.

3.1 Shrink-And-Spawn

Before defining this operation, we need to define the following additional primitive.
Naming

Input: A set S of strings of length /.
Output: For each s; € S, a O(log|S|) bit name denoted by é(s;) such that §(s;) = 6(s2)

for s1,s9 € S if and only if s; = s5. The function ¢ is a naming function.

The function 6 is a naming function. For a given set, there exist several naming
functions. In our applications, it is sufficient that we find one naming function. Using
naming we now define,

Shrink-and-Spawn

Input: Two strings U = wjus...u, and V = vjvy...v, and a parameter [that divides
m.

and [Rab93], lead to efficient parallel algorithms only when the patterns are of equal
length.

In order to cope with the more general and demanding situation wherein the dictio-
nary consists of patterns of unequal length, we introduce the shrink-and-spawn technique
that builds on the above-mentioned naming techniques. To better understand our tech-
nique, let us consider the following oversimplified yet illustrative example. We are given
two strings A and B of lengths a and 3 respectively. The goal is to find all occurrences
of string A in B. Let L be the shrink (and spawn) parameter. During the shrinking step,
A is decomposed into non-overlapping sub-strings of size L and each of these sub-strings
are given names as in [KMR72].> The resulting shrunken string A’ of length «/L is sim-
ply the ordered composition of names given to locations (1, L,2L,...). Now in string B,
we replace each symbol with the name of the substring of L characters starting at that
position, with the same naming function used in the context of A. By doing this, we
spawn L copies from B each of length 3/L. Copy ? is derived by composing the names
given to locations (7,7 + L,7 + 2L,...). By executing this step once, we have effectively
reduced the size of one of the strings (A in this case) by a factor L without losing any
of the information needed for matching. This is because in order to find matches in
B, we need to essentially consider finding matches of the (smaller) string A’ in each of
the spawned copies of B. The overall technique involves applying this shrink-and-spawn
step repeatedly, with appropriate choices of the parameter L. In [KLP89] this technique
was implicitly used for L = log a exactly once, to decrease the size of one of the strings
initially by a log a factor.

The rest of the paper is organized as follows: in Section 3, we define the basic tech-
niques used by our algorithms. Our algorithms for static dictionary matching are de-
scribed in detail, in Section 4. The main ideas in our approach to solving dictionary
matching problems are highlighted in this section. In section 5, we sketch the extensions
of these algorithms to higher dimensional dictionary matching. The modifications and
extensions needed to cope with dynamic dictionaries are outlined in section 6. Finally, we
briefly mention the optimal speed-up algorithms for problems including multi-dimensional
pattern matching (from [KLP89]) in Section 7.

2 Model, Alphabet Size and Remarks

All our algorithms are designed using the arbitrary CRCW PRAM model[Ja92]. As in
[AILSVS88] and [KLP89|, we are concerned with an alphabet size that is polynomial in n
and M. All the bounds quoted thus far—including those for previously known algorithms
[AF91]—are in the context of this alphabet size. If the input alphabet is unbounded, all
known sequential and parallel algorithms for dictionary matching including that due to

Aho and Corasick [ACT5] perform Q((n + M)log M) work.

5We assume that a and 3 are multiples of L for ease of explanation; this is not a requirement in applying
the technique itself.

O(Xlog M) amortized work. Our parallel running time and work performed
for insertions and text-matching are identical to those for partly dynamic dic-
tionary matching stated above.

No deterministic parallel algorithms are known for this problem. The best-
known sequential algorithm for implementing deletions runs in O(\log M)

time [AFGGPI1].

4. Prefiz-matching that we characterize in this paper plays a significant role in our
approach to designing parallel algorithms for dictionary matching. Our main step
is to design extremely efficient parallel algorithms for prefix-matching (Theorems
1, 7, and 9), which we then use to achieve the above-mentioned improvements
for dictionary matching. This approach works since prefix-matching embodied the
bottlenecks in previously known algorithms for parallel dictionary matching.

5. For the multi-dimensional pattern matching problem (and related problems) from
[KLP89,Rab93], we present parallel algorithms with optimal speedup. In multi-
dimensional pattern matching, we are given a pattern of size M and a text of size
n, both of which are cubes in d-dimensions. By applying the shrink-and-spawn
technique, we derive an optimal speedup parallel algorithm for this problem that
runs in O(logm) time and O(n + M) work. Here, m = MY? denotes the number
of characters in each side of the pattern.

Kedem, Landau and Palem [KLP89] were the first to present an optimal speedup
parallel algorithm for this, and related problems. Rabin [Rab93| presented elegant
randomized algorithms for these problems—also with optimal speedup—based on
fingerprinting. It is interesting to note that by using the shrink-and-spawn tech-
nique, we are able to derive deterministic algorithms that are much simpler than
those from [KLP89]* while preserving optimal speedup, even when the overall work
18 linear in the input size.

Traditionally, the approach to designing very efficient and optimal speedup parallel
algorithms for string and pattern matching problems have relied on the notion of pe-
riodicities [Ga84,Vi85,BG90,Vi90,Ga92,AB92,ABF93,CGRMR92]. Unfortunately, these
methods do not seem to scale well beyond two dimensions, or when multiple patterns are
given. Therefore, Kedem, Landau and Palem [KLP89] and Rabin [Rab93] approach the
problem of matching in higher dimensions very differently. Their methods and those of
Apostolico et al. [AILSV88] for parallel construction of suffix trees, are inspired by the
naming technique of Karp, Miller and Rosenberg [KMR72]. Naming involves successively
refining the given set of strings into equivalence classes of increasing size. All the strings
in a given equivalence class are identical, and are given a unique name or “certificate”.
Currently known parallel algorithms based on these naming constructs, from [KLP89]

4Their algorithm uses a sophisticated parallel construction and simulation of the Aho-Corasick [ACT75]
automaton which we do not need.

bet, then we improve the above algorithm to solve static dictionary matching in time
O(logm) with only O((M + n)y/ logm) work. (Whenever convenient, we will use
the first and second terms in the expressions denoting time and work complexities
to correspond to dictionary and text processing respectively.)

We note that these bounds are better than those for the best-known parallel algo-
rithms for the above problem, even when randomization is used. Because of the
manner in which the shrink-and-spawn technique works based on “naming” (to be
described later), the running times and work overheads of this algorithm and its
extension to dictionary matching in higher dimensions (item 2 below), are depen-
dent only on the length of the longest pattern m rather than on M, the total size
of the dictionary.

2. We extend the above algorithm to run in O(logm) time and O(M + nlogm) work
for dictionary matching when the patterns and text are d-dimensional, for any fixed

d.

No deterministic parallel algorithms were known previously, and the most efficient
sequential algorithm from [AF92] runs in O(M + n) time using quadratic space,
and in O((M + n)log k) time using linear space; £ denotes the number of patterns
in the dictionary.

3. In the dynamic dictionary matching problem, we start with an initial dictionary
D and execute a sequence of insert, delete or match operations that are specified
on-line. Whereas insertions and deletions are meant to respectively add or delete a
given pattern from the “current dictionary”? of size M, a match operation is meant
to find all occurrences of patterns from it, in a given piece of text. We will use A to
denote the sizes of the patterns to be inserted or deleted, and that of the text to be
matched. Amir and Farach [AF91] distinguish the partly dynamic version of this
problem where only insert and match operations are allowed, from its fully dynamaic
variant where deletions are allowed as well.

a. We present a parallel algorithm for partly dynamic dictionary matching that
has optimal speedup for insertions and matching. Both these operations take

O(Xlog M) work and O(log M) time.

In [AF91], Amir and Farach present a parallel algorithm that does not have op-
timal speedup for matching the text, since it requires O(\ log m log M) work to
implement this step. Also, insertions and text matching take O(logm log M)
time and hence are slower than the corresponding running times of our algo-
rithm. The best sequential algorithm for insertions and matching is also due
to Amir and Farach [AF91] and runs in O(Alog M) time.

b. For fully dynamic dictionary matching, we present an optimal speedup par-
allel algorithm that implements the delete operation in O(log M) time and

3Each operation is defined on the dictionary that exists after all the other operations preceding it from
the given sequence have been applied to D, in the order specified.

1 Introduction

The input to the dictionary pattern matching problem is a union of distinct pattern strings
represented as a dictionary D, and a text string 7. The goal is to find for each location in
the text, all the patterns from the dictionary that match at that location. The classical
sequential algorithm for this problem is due to Aho and Corasick [AC75] that runs in time
O(n + M), where n and M respectively denote the sizes of the text and the dictionary.!
The dictionary D is assumed to be presented statically in the beginning, with the text
string—or more generally a sequence of text strings—presented subsequently. Aho and
Corasick preprocess the patterns in D and construct a tree (trie). This tree encodes a
generalization of the well-known “failure” and “go-to” functions introduced by Knuth,
Morris and Pratt [KMP77] in the context of string matching, wherein the dictionary con-
sists of a single pattern. Unfortunately, these approaches seem to be inherently sequential
and are not amenable to efficient parallelization.

The best known deterministic parallel algorithm for this problem, referred to hence-
forth as static dictionary matching, is due to Amir and Farach [AF91]. Their algorithm
runs in O(log mlog M) parallel time and O((M + nlogm)log M) work, where m denotes
the length of the longest pattern in D. Using randomization, Amir, Farach and Matias
[AFM92] have reported an algorithm with improved time and work bounds. Their al-
gorithm runs in O(log M) ezpected time and performs O((M + n)log M) work. (Given
an input of size N, a parallel algorithm running in time 7'(N) using P(N) processors
performs work P(N).T(N). A parallel algorithm has optimal speedup whenever it does
work that is asymptotically the same as the best-known sequential algorithm that runs
in seq(N) steps? i.e., P(N).T(N) = O(seq(N)).)

Previously known parallel algorithms for this and other well-studied dictionary pattern
matching variants [AF91,AFGGP91,AFILS93,Gi93] are not as efficient as their sequential
counterparts, in that they achieve parallel speedup at the expense of performing more
work. Additionally, owing to the suffiz tree constructions used previously [AF91,GGI3],
the running times and the work overhead incurred in parallelizing depended on the size
of the entire dictionary (M in the case of static dictionary matching), which can be
prohibitively large.

In this paper, we present highly efficient algorithms for a range of dictionary match-
ing problems, including the ones discussed above. We do this by introducing a general
shrink-and-spawn technique that we apply repeatedly to design our algorithms.

1.1 Main results and Significance

1. For static dictionary matching, we present an algorithm that preprocesses the dic-
tionary and matches the text in time O(logm). Its overall work complexity is
O(M + nlogm). If the text and patterns are derived from a constant-sized alpha-

IThis bound holds for an alphabet size that is polynomial in n and M.
2For a sequential algorithm, its work and running time are equivalent.

Highly Efficient Dictionary Matching in Parallel*

S. Muthukrishnant K. Palem?

Abstract

We present highly efficient parallel algorithms for several well-studied dictionary
matching problems. Our algorithms are faster and more efficient in terms of their
parallel work, compared to previously known results.

e For static dictionary matching, we present an algorithm that preprocesses the
dictionary and matches the text in O(logm) parallel time and O(M + nlogm)
work, given any dictionary of size M whose longest pattern is m characters
long, and a text of size n. We have further improved this algorithm to solve
static dictionary matching with only O((M +n)+/ log m) work, if the characters
are drawn from an alphabet of constant size. A distinguishing feature of these
algorithms and the one stated below for matching in higher dimensions, is that
in contrast with previous work, the running times, and work overheads when
applicable, are dependent only on the length of the longest pattern m.

o We present a parallel algorithm for d-dimensional dictionary matching that runs
in O(logm) time and matches the text in O(M + nlogm) work for any fixed d.

e We present a new and more efficient parallel algorithm for dynamic dictionary
matching. Insertionsinto and deletions from the dictionary, as well as matching
the text can be done with optimal speedup in O(Alog M) work and O(log M)
time. Here, A denotes the length of the string to be inserted, deleted or matched
into a dictionary of size M.

All of the above algorithms are designed by applying the shrink-and-spawn tech-
nique that we introduce in this paper. We also show that this technique leads to
parallel algorithms that only do optimal (linear) work, for multi-dimensional pattern
matching and related problems [KLP89,Rab93]. Our algorithms are deterministic, as
those in [KLP89], but however, are much simpler and preserve the efficiency as well
as the speed of those presented there.

*This research was partially supported by NSF/DARPA under grant number CCR-89-06949 and by
NSF under grant number CCR-~91-03953.

TCourant Institute of Mathematical Sciences, 251 Mercer Street, New York, NY 10012-1185, USA;
muthu@cs.nyu.edu, (212) 998-3061.

YIBM Research Division, T. J. Watson Research Center, P. O. Box 704, Yorktown Heights, NY 10598,
USA; kpalem@watson.ibm.com, (914) 984-9846; palem@cims.nyu.edu, (212) 998-3084.

