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Abstract

We consider the problem of planning curvature constrained paths amidst polyg-
onal obstacles, connecting given start and target configurations. Let the critical
curvature R, be the minimal curvature for which a constrained path exists. We
describe an algorithm, which approximates the critical curvature and finds a cor-
responding path. Further, we give an eflicient decision procedure to determine if
there exists a path satisfying a given curvature constraint R, with running time
polynomial in |R — R¢|/R.

1 Introduction

Traditional research in path planning focuses on the planning of collision-free paths for “free-
flying” objects. In recent years, research has begun to address the subject of planning trajec-
tories under non-holonomic constraints, such as constraints on velocity or curvature. Although
adding more complexity to the problem, such constraints are necessary to appropriately model
planning problems in real world applications.

One of the most basic problems in this area is the problem of planning paths for a point-sized
mobile robot with minimum turning radius, moving among polygonal obstacles in the plane.
This problem is regarded as a first step towards modeling the actual kinematics of a car. It
translates to planning smooth paths of bounded curvature from a given initial to a given final
configuration.

1.1 Problem Statement

In the bounded curvature problem, configurations correspond to tuples specifying position and
orientation of the moving point. Orientations are given by unit vectors u € R2.

The basic planning problem can be formulated as follows: given initial and final configura-
tions S = (Ps,us), T = (Pr,ur), a polygonal environment ¥ C R? and a curvature bound
R >0, find a Cl-path w : [0,]] — R? satisfying
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(1) w(t)e E VY tel0,1],
(2) [le(t)l] =1,

||w(t2) - w(tl)H < R_1|t2 - t1| v t, 11,13 € [Ovl]v

(3) (w(0),@(0)) =5, (w(l),@(l)) =T.

The environment F is given by disjoint polygonal obstacles, with a total of n vertices. For
simplicity, we shall assume that S and 7T coincide with obstacle vertices. The parameter R is
called the minimum turning radius of the robot or the maximal curvature of the unit speed
path w. We denote a path w satisfying all above constraints as R-constrained.

The shortest path problem in this context is to find an R-constrained path with minimal
Euclidian length [. Another criterium to optimize smooth paths is the curvature itself. This
is motivated by the fact that the speed at which we can follow the planned path will generally
depend on the maximal curvature (e.g.: pipe or track layout). Given again S, T" and E, we
define the critical curvature R¢ to be the supremum of R € [0, oo], for which an R-constrained
path w exists.

In contrast to the shortest path problem, there are situations in which no finite length path
satisfying the comstraint R. exists. However, in every e-neighborhood of R, we can find a
feasible finite length path. Thus approximation problems concerning R, are still well-posed.

See figure 1: The shown path from S to S has critical curvature R.. For any radius R < R,
T can be reached from S by a circling path, following arcs touching el, v2, €2, v1, el, and so
on. But at R, only points on el below S can be reached from 5.

In this paper, we present an algorithm to approximate R., and to construct an R-constrained
path with |R — R¢| < eR¢, for given ¢ > 0. Further, we shall develop an efficient algorithm to
plan an R-constrained path in running time dependent on the relative width W = |R — R¢|/R.
This reflects the observation, that the basic planning problem is intuitively easy if W is large,

but hard if W is small.

The methods used to obtain these algorithms are fairly general and should apply to similar
problems, e.g. in kinodynamic motion planning. For simplicity in this abstract, we do not focus
on optimizing paths according to length. However, the presented technique can be extended to
guarantee that the solutions found are shortest in an approximate sense.

1.2 Previous Work

The mathematical foundation for the algorithmic treatment of bounded curvature problems
has been laid in the 60’s, by a paper of Dubins [Du] characterizing the shortest R-constrained
trajectories between start and target configurations in the unrestricted plane. The main result
consists in the reduction of the set of possible solutions to a discrete set of canonical trajectories.
Recent research [RS,BCL] extends Dubin’s work by allowing cusps (i.e. backing up), and gives
alternative proofs.

The basic planning problem in (polygonal) environments has first been examined in [Lal],
giving a non-complete approach. Gordon and Wilfong [FW] describe an exact decision pro-
cedure, with a running time exponential in both the number of vertices and the bitsize of
coordinates.



Jacobs and Canny [JC1,JC2] describe an approximation algorithm to compute shortest R-
constrained paths. The grid-based algorithm finds an approximate shortest path if this path
is sufficiently robust to allow for small changes in orientation (resp., position) along the path
without causing collisions. The worst case running time is O(%log n+ (%)*log(%)), where 6
is a measure for both the closeness of the approximation and the robustness of the path. The
paper also presents a quadtree-based approach to optimize paths with regard to robustness.

A survey of this approach, as well as additional material on curvature constrained motion
planning, can be found in [La2].

1.3 Outline and Results

The key idea in our approach is to construct an algorithm A(R,¢), which finds a feasible
(R — 6)-constrained path if there exists a feasible R-constrained path.

The algorithm follows in principle Papadimitriou’s grid-based approach to the 3-dimensional
Euclidian shortest path problem [Pa], revisited in [CSY]:

Applying Dubins’ results, we can confine ourselves to canonical paths that connect contact
configuralions by canonical trajectories. The contact configurations arise as a contact of the
moving point at an obstacle wall or at an obstacle corner. The feasible configurations in either
situation can be described by a single parameter.

We subdivide each contact parameter uniformly into segments. To stress analogy to [Pa], we
call two segments visible if they contain configurations which can be connected by a collision-free
canonical trajectory. The main part of the algorithm is to compute the visibility relationship
between all segments. As in [CSY], this can be done efficiently by an interesting kind of plane
sweep. Finally, we interpret the segments as nodes of a visibility graph G, and search for a
(shortest) path @ in G connecting the segments corresponding to S and 7.

Section 2 gives a detailed description of this approach.

If we replace the edges of @ by canonical trajectories that realize the visibility, we get a
path w with kinks, violating the smoothness condition. The remaining part is to show, that
we can smoothen the path w by using a slightly higher curvature in the neighborhood of the
kinks. This finally gives a feasible (R — A)-constrained path.

The necessary grid-size to obtain A = § is derived in section 3. It depends, as well as
the approximation error in [JC1,JC2], on the smallest distance [,,;, between obstacle features
(for an exact definition see section 3). In fact, our approach relates the robustness notion in
[JC1,JC2] to the allowed curvature deviation 6.

Once we have constructed A(R,d), we can use this algorithm to search for the critical
curvature. By the derived relation between the grid-size and §, we can also give an upper
bound on the length of the shortest (R, — 6)-constrained path.

A more practical application of A(R,d) is however an algorithm, which constructs an R-
constrained path in time dependent on W = |R. — R|/R. Similar approaches have been suc-
cessfully applied to traditional motion planning [Al+]. Omitting the dependency on I,,;, and
assuming W < 1, we obtain the worst case running time
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Note that, for W # 0, this provides a decision algorithm which is easier and more practical
than the (inherently exponential) solution presented in [FW]. Although our running time can
be exponential for exponentially small /,,;, or W, the decision scheme is polynomial in the

O(l1og W] (#(50)% + (0 -+ 2 og(n + 1)),

absolute values of l;zlm and W1,
Section 4 describes and analyses the adequate algorithms on top of A(R,¢).

2 The Visibility Approach

2.1 Canonical Trajectories

To start with, we review normal form properties of curvature constrained paths.

A canonical trajectory with respect to constraint R is a path, which first follows an arc of
radius R, then either a straight line or another arc of radius R, and finally again an arc of
radius R. This includes degenerate cases, in which the initial arc, the line segment, or the final
arc are missing.

For a given configuration C' = (p, u), there are two circles of radius R passing through p and
tangential to u, corresponding to a left or right hand turn. Given start and target configurations
S and T, there are thus at most 6 different canonical trajectories from S to T, corresponding
to the turn types T = {LSL,LSR,RSL,RSR,LRL, RLR}.

Dubins [Du] shows, that the shortest path between S and 7T is a canonical trajectory pro-
vided £ = R2. Jacobs and Canny [JC1,JC2] extend this result to polygonal environments:



Lemma 1 Among all R-constrained paths w from S to T in E, there exists a path w of minimal
length, which touches OF only finitely many times, and which is canonical between two contact
configurations.

More precisely, the path w touches 0F during finitely many time intervals [t1,%;]. The
contact configurations may be defined as those configurations (w(t;),w(t;)), at which w enters
or leaves O F.

If we drop the requirement on w to be shortest, and assume £ to be bounded, then a
deformation argument shows that we only need to consider canonical trajectories of one of the

types 7' = {LSL,LSR,RSL, RSR} (see [La2]).

2.2 Grid Construction

Consider a vertex v, with 2 incident edges e; and ey, emanating from v with direction vectors
uy and uy. Interpreting direction vectors as points on the unit circle, let [uq, us] denote the arc
between uy and ug of length < m. Then the set of possible contact configurations for v is either
empty C(v) =0, or
C(v) = {v} x [u1, —uz] U {v} X [uz, —uq].

To stress the algebraic nature of the problem, we may parameterize v € [uy, u3] by its orthogonal
projection onto the line e = zu,, with € [—1, 1] and u, the bisector between u; and uy (rather
than by the angle # with v = (sin 6, cos8)).

For an edge e = { p+ azu ; = € [0,I] }, ||u|| = 1, the possible contact configurations are
given by

Cle)=ex{u} U ex{-u}.

Each set C(f) consists of 2 connected components CT(f) and C(f), f € {v,e}. They
constitute 1-dimensional curves in 4-space, parameterized by the real parameter z. We subdi-
vide the curves Ci(f) into segments of uniformly bounded Fuclidian length < e. Clearly, this
can be achieved by O(1/e) break points for C*(v), and O(/e) break points for C*(e), with
bounded above by the length Iy, 4z of the longest obstacle edge (the same dependency is present
in [JC1,JC2]).

In the following, we shall make implicit use of the parameterization of C*(f). We assume
break points to be given by algebraic numbers z; € R, and the midpoint C',;4(o) of a segment
o =[x, %i+1] to be the configuration corresponding to (z; + z;4+1)/2.

The break points subdivide each C*(f) into at most

segments. S will denote the collection of all the segments, and o(.5) (resp., o(1')) the segment
containing the start (target) configuration.

2.3 Computing Visibility

We call a segment oy visible from oy, if there exist configurations C; € o1, C; € 03, such that
one of the canonical trajectories from C7 to Cy is collision-free. This defines a visibility relation



R, C 8§ x S8, or a visibility graph G, = (S, R,). Note that the relation R, is not symmetric,
and that G, is directed.

Our goal is to compute the visibility graph G, (or G,(R,¢), to stress the dependency of G,
on R and the grid size). This is done in 2 steps, performed for each pair (CE(f1),C*(f,)), and
for each turn type 7' € 7':

(1) Compute the free space F(T) C C*(f1) x CE(f,), consisting of those configurations that
can be connected by a collision-free canonical trajectory of type T.

(2) For any grid rectangle oy X o3 C CE(f1) X CE(f2), decide if (o1 X a9) N F(T) is empty.

Finally, (01,02) € R, if and only if (61 x 02) N F(T') # () for some T € T'.

Let us analyse step (1). The boundary of F(7') in parameter space consists of algebraic
curves of bounded degree. As shown in [JC1,JC2], they are defined by the following constraints:
the initial or final arc of the canonical trajectory has two obstacle contacts, the straight line
segment touches an obstacle vertex, or the initial and final arcs are tangential.

There are O(n) such constraint curves, intersecting in O(n?) points. An explicit boundary
representation of F(7) can thus be computed by plane sweep in O(n?logn) time. Important for
practical implementation, all event points can be computed by sequences of simple geometric
primitives (e.g. to find a circle tangential to a line and passing through a point), see [JC1,JC2].

In step (2), we perform plane sweep over the computed representation of F(7'), to decide
for each grid rectangle if it contains a free configuration. This closely follows [CSY].
There are 3 kinds of events for the vertical sweep line:

(i) vertices and extremal points on the boundary of F(T'),
(ii) the break points of C*(f;), and

(iii) intersections between a horizontal grid line and a boundary arc of F(T).

The event points of type (iii) are dynamically inserted into the priority queue. Whenever a
grid line and a boundary arc become adjacent on the sweep line, we check if they will intersect.
This amounts to finding the initial arc of a canonical trajectory under a given constraint when
the final arc is fixed, and can again be expressed by simple geometric primitives.

Whenever we come to an event of type (ii), we have completely swept a column of at most
M grid rectangles, and check for visibility in O(M) time. In case (o7 X o) N F(T) # 0,
we may also output a sample trajectory realizing the visibility, i.e. a pair of configurations
(61,02) € (0'1 X 0'2) N f(T)

There are O(n?) events of type (i), and O(nM) events of type (iii). Each can be processed
in O(log(n + M)) time. Thus the sweep has an overall time complexity of O(M? + n?log(n +
M)+ nMlog(n + M)).



Summing over all pairs (C*(f1),C%(f2)), we get:
Lemma 2
(1) The visibility graph G,(R,¢) can be computed in time
O(n®*M?* + n*Mlog(n + M) + n*log(n + M)).
(2) If there exists an R-constrained path from S to T inside E, then G(R,¢c) contains a path
from (5) to o(T).

As in [CSY], the algebraic formulation allows us to perform plane sweep in the framework
of exact geometric algorithms. This means that operations may be carried out to a precision
which is sufficient to guarantee that all comparisons are made error-free. But unlike [CSY],
our problem involves algebraic formulas of very high degree, making the exact computation
paradigm a merely theoretical approach. All given time complexities are thus understood in an
algebraic computation model rather than a bit model.

3 Path Smoothening

Any path @ = (og,...,0%) in G, corresponds to a sequence of sample trajectories ¢;, i =
1...k, which connect some configuration ;" € o, 4 to C € 0. Let CF = (PE, ). If o;
corresponds to a corner contact, then Pi+ = P; but the smoothness condition u2+ = u; may
be violated. If o; corresponds to a wall contact, then u;” = u; but possibly PZ»+ # P

Let Cg* = 8, C' =T, and C7* = C,4(0:) for i = 1...k — 1. Our goal is to construct a
smooth path w, which connects the configurations C™ by (R — §)-constrained paths w;. The
subject of this section is to establish a relationship between ¢ (the maximal length of each o;

in parameter space) and 6.
Let us focus on a contact configuration Cs = (Ps,us) € o, and a canonical trajectory ¢
starting at Cs. Further, let
lmin = min{ dist(v,e) },
where v (resp., €) ranges over all non-adjacent obstacle vertices (edges).
To construct a smooth path w as above, it suffices to show that we can construct a free
path ¢’ with the following properties:

(1) t"is (R — 6)-constrained,
(2) t' starts at Cp, = (P, ) = Copia(0), and

(3) t' ends at a configuration C'y = (Py,uys) on t, with ||Ps — Pf|| < lpin/3-

A simple deformation argument shows, that we can confine ourselves to the case where ¢
consists of 1 or 2 arcs of radius R (but no straight line part). Let thus ¢ be a given 2-arc
trajectory from Cy to Cy, with ||Py — Ps|| = L50/3-

Our goal is to find the biggest ¢ (in terms of 6, R and l,;;,), for which an (R —¢)-constrained
path ¢’ from C,, to C'y always exists. In the following, we first give explicit constructions for ¢/,
and then analyze for which ¢ these constructions are possible.
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Basically, our constructions involve using arcs of curvature R — ¢ at either C, or Cy, and
straight line connections between arcs. The constructions are held as simple as possible, in
order to allow the required analysis.

With account to symmetry, we get the following possibilities, see figure 2:

(D)

(1)

C is a wall contact:

If P,, lies in negative direction to P, with respect to ug, then we can construct ¢’ by
expanding ¢ with a straight line connection between C and C,,. We thus assume that
P, lies in positive direction to P;.

(i) t consists of one arc Aj:
The trajectory ¢’ will consist of an initial arc A/, with radius R — é at C,,, a final
arc A’y with radius R at Cy, and a straight line L tangential to A}, and A’;.

(ii) ¢ conmsists of two arcs A;Ay, intersecting at C":
If Ag is longer than Ay, we set C'y = C' and proceed as in (¢). If As is longer than
Ag, then ¢’ will consist of an initial arc A’ with radius R at C,,, a final arc A’f with
radius B — ¢ at C'y, and a straight line segment L tangential to both.

C is a corner contact:

For the 1-arc and 2-arc trajectories, we have to distinguish if u,, lies clock- or counter-
clockwise to us, or equivalently, if the first portion of A, lies between us and u,, (a) or
not (b). In case (b), the 1-arc (i) and 2-arc (ii) instances can be handled analogous to (I).
In case (a), both instances can be reduced to case (b) (we omit the details).

In the following, we review some basic ideas of the technical analysis. Throughout the

analysis, we assume



06 < R/2
and

linin < const- R.
(Note that for [,,;, > 4R, there always consists an R-constrained path provided Ps and Pr lie
in the same connected component of E.)

Let us consider case (I)(i) (figure 3):

W.lo.g. we may assume the wall to be the z-axis, i.e. us = (1,0), and Ps to be the origin,
P; =(0,0). Let P, = (£,0), and let @ be the intersection of the line L with the circle of radius
R at C;. The distance between () and P, can be calculated as

Re
— P =2——.
Q- Pl =2
If we choose

l .
e < Mg
— 6R ?
then this evaluates to ||Q — Ps|| < l,in/3, proving the validity of the construction.

The case (I)(ii) is significantly harder. Indeed, the involved equations already exceed the
solving capabilities of common algebra systems, making good estimates a necessity. We consider
the case that Ay is longer than A, (figure 3):

Let @ be the intersection (i.e., common point) of A; and As. As Ay is longer than A,, we
have ||Q — P¢|| > l;pin/6. Now let {1 be the tangent to A, passing through @, and ¢, the line
parallel to ¢; and tangential to the circle with radius B — 6 at C'y. Then the tangent lines ¢,
and {, intersect the z-axis at I; and I, with



l .
|| — L2]| = Q(% )-
This means that for

l .
e=0( Tgné)

the arcs A/ and A’f do not intersect, proving again the validity of the construction.

The 4 cases in (II) are even more complicated. The upshot of similar estimates as above

finally leads us to
min )’

l
e=0( 7
which is by the factor 1/R worse than in (I). This has a simple explanation, on which our

analysis is partly based on: observe that a rotation of a circle with radius R at a configuration
C' by an angle O(¢) corresponds to a motion of the midpoint of the circle along an arc of length

O(eR).
Combining the above, we get:

Lemma 3 Lel t be a canonical trajectory starting at Cs € o, and C,, = C,,;4(0). If the grid
size is bounded by
l .
e = o(ming)
then there exists a path U satisfying conditions (1)-(3).
Corollary 1 If the visibility graph G,(R,e) contains a path @ from o(S) to o(T'), and ¢ is
chosen as in lemma 3, then there exists an (R — §)-constrained path w from S toT in E.

We conclude this section by an interesting bound on the length of paths with curvature near
the critical curvature:

Theorem 1 Lel R be the critical curvature with respect to S and T, let D denote the diameler
of the (bounded) environment £, and lel L = (Imaz + 1)/l pin- Then E contains an (R — 6)-
constrained path from S to T with length
2
O(D -n*. (L%)Q).

Proof (Sketch): By definition of R, F contains an (R — %6)—constrained path. Now let
G! be the visibility graph respective to R’ = R, — %(5, 6= %(5, and ¢’ as in lemma 3. By lemma
2, G! will contain a path @ from o(9) to o(7"). By lemma 3, the path @ corresponds to an
(R' — ¢")-constrained path w in £, with R’ — 6’ = R — 6. But G, and thus & contains at most
O(n*M'®) edges, each corresponding to a portion of w with length at most O(D). This proves
the claim. |
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4 Algorithms

Let A(R,8) be the algorithm described in section 2 to compute the visibility graph G,(R,¢) -
with ¢ depending on § as in lemma 3, and extended by a simple graph search to decide whether
G, contains a path from o(5) to o(7T).

Combining lemmata 2 and 3 shows:

o If A(R, ) outputs “yes”, then there exists an (R — §)-constrained path from S to 7" in E.

o If A(R,0) outputs “no”, then there exists no R-constrained path from S to 7" in F.

Let L = (Imaz + 1)/l p- With lemma 2, the running time of A(R,§) computes to
RY R? R?
0(7121126—2 + nS(LT +n) log(LT +n)).

By running the algorithm A(R,d) for different values of R and §, we will construct an
algorithm to compute the critical curvature, and a decision algorithm for fixed R.

Note that for § = const- R, the dependency of running times on R and 1/I,,;, is the same:
this shows that scaling down £ and R simultaneously does not affect running times.

For brevity of description, we will assume [,,,;, and {mqz as constant in the sequel.

4.1 Computing the Critical Curvature

Our goal is to find, for any given ¢ > 0, a value R, with |R. — R.| < cR,.

Note that, if the query A(R, ) returns “yes”, we know that there exists an R’-constrained
path for any R’ € [0, R — 6], and thus R, > R—§. If A(R,§) returns “no”, then there exists no
R'-constrained path for any R’ € [R, o], and thus R, < R.

The algorithm A1, described below, first computes an upper bound R,, on R., and then
successively refines the interval [a,b] C [0, R,,]. The correctness directly follows from

(1) Rpn/4 < Re < R, and
(2) R¢ € [a,b].
Algorithm A1l
(I) Find R, s.t. R¢ € [Rin/4, Ryl
(1) R:=2;6:=1;

2) If A(R,6) = “yes”
3) Then Repeat R :=2R; 6 := 26;
4 Until  A(R,é) = “no”;

R, = R;

Else Repeat R:= R/2;6:=6/2;
Until  A(R, ) = “yes”;
R, = R/2;

NN RN RN N NN

Fi.

11



(II) Refine [a,b] C [0, R,

(1) a:=0;b:= Ry;

(2) Repeat m:=a+(b—a)/2;6:=(b—a)/4;
(3) If A(m, é) = “no”

(4) Then b:= m;

(5) Else If A(m+6,6) = “yes”
(6) Then a := m;

(7) Else a:=a+6;b:=b—0;
(8) Fi;

(9) Fi;

(10) Until (b—a) < eRp;

(11) R} :=a.

Let us analyse the time complexity of part (I).
If the query A(R,R/2) in line (2) has result “yes”, then R; > 1 and we successively double
R until A(R, R/2) = “no”. But this means A(R/2, R/4) = “yes”, and hence R, > R/4. The
query time for each call of A is
O(n*R: 4+ n3(Re + n)log(Re + n)).
In case the query in line (2) has result “no”, then R; < 2 and we successively half R. Using
R < 2, the query time computes to O(n*logn).
The number of queries in each case is O(|log R¢|).
In part (II), we half in each loop the size of the interval I = [a,b]. In the ¢-th loop, we have
6 = O(27'R¢). The program exits the loop in line (10)if 46 < 4eR.. Hence § > ¢ R in each call
of A(R,¢). Further, R < 4R, in each such call. Thus each query (loop) has time complexity
O (2E) 4 n¥(n + %) log(n + °2)).
The number of queries (loops) is ¢ = O(|loge]).
Summing up, we get:
Theorem 2 The crilical curvature R. can be approzimated with relative error € in lime

O((|1oge| + [log Rel)
(W) 4 (4 ) log(n + 1))

An explicit representation of an R/-constrained path can be computed in the same time

bound.

4.2 A Width-Dependent Decision Algorithm

Let R be a given curvature. Our goal is to decide, if there exists an R-constrained path from

S toT.

Let 6 < R/2. Then the desired decision can be made if either A(R 4+ 4, 6) has output “yes”,
or if A(R,6) has output “no”. If both attempts fail, then R. € Is = [R — ¢, R + §], and we
repeat the queries for 6 := ¢§/2. This defines a loop which will terminate once R. ¢ Is.

12



Thus the running time of the algorithm A2, described below, depends on the relative width
W = |R — R¢|/R. The decision is fast if W is large. However if W = 0, the program will not
terminate.

Algorithm A2

(1) ¢:=RJ/2

(2) Repeat

(3) If A(R + 6,6) = “yes”

(4) Then  Print(“yes”); Exit;

(5) Else If A(R,6) = “no”
(6) Then Print(“no”); Exit;
(7) Fi;

(8)  Fi;

(9) 6:=08/2

(10) Until  False.

In the ¢-th loop, § = @(Q_ZR). The length of the interval I5 equals 26. The program exits
the loop if 6 < |R — R¢|/2, or 26 < WR. If W > 1, there will only be a constant number of
queries (loops), each with é = O(R), and time complexity

O(n*R* + n°(n + R)log(n + R)).
If W < 1, then the number of loops equals 7 = |log W|, and 6 = Q(WR) in each query to A.
The query time is

O (7o) 4+ n*(n + 1) log(n + 7))
Summing up, we get:
Theorem 3 Let W' = min{W,1}. Given R > 0, the existence of an R-constrained path can
be decided in time

O( (JlogW'| +1)

R R R
(n*(537)" + n°(n+ 777) log(n + 775))-
Again, this result includes the construction of an R-constrained path if the decision question
is answered positive.
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