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Abstract

The classic method of Nelson and Oppen for combining decision procedures requires the the-
ories to be stably-infinite. Unfortunately, some important theories do not fall into this category
(e.g. the theory of bit-vectors). To remedy this problem, previous work introduced the notion
of polite theories. Polite theories can be combined with any other theory using an extension of
the Nelson-Oppen approach. In this paper we revisit the notion of polite theories, fixing a subtle
flaw in the original definition. We give a new combination theorem which specifies the degree
to which politeness is preserved when combining polite theories. We also give conditions under
which politeness is preserved when instantiating theories by identifying two sorts. These results
lead to a more general variant of the theorem for combining multiple polite theories.

1 Introduction

The seminal paper of Nelson and Oppen [4] introduced a general combination framework that allows
the creation of a decision procedure for the combination of two first-order theories in a modular
fashion. Using the Nelson-Oppen framework, decision procedures for two individual theories can be
used as black boxes to create a decision procedure for the combined theory.

Although very general and widely-used in practice, the Nelson-Oppen approach is not applicable
to all theories encountered in practical applications. A significant restriction of Nelson-Oppen is
the requirement that theories be stably-infinite. While many important theories are stably-infinite,
some are not, including those with inherently finite domains such as the theory of bit-vectors. As
bit-precise reasoning about both programs and hardware is becoming more important and more
feasible, it is desirable to find ways of overcoming this restriction.

As a possible remedy for this problem, the notion of shiny theories and an appropriate combi-
nation algorithm was introduced in [11]. The requirements on a shiny theory are stronger than just
stable-infiniteness, but this allows it to be combined with an arbitrary other (possibly non-stably-
infinite) theory. The main drawback to this approach is the requirement that a shiny theory T has
to be equipped with a function mincardT . This function, given a set of constraints, must be able
to compute the minimal cardinality of a T -interpretation that satisfies the constraints.

A related approach for combining theories is presented in [3]. The authors start from a framework
of parametrically polymorphic logics to devise a Nelson-Oppen-style combination procedure for
theories that are flexible. Flexibility is a property similar to the ability to move to a bigger or a
∗This work was funded in part by SRC contract 2008-TJ-1850.
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smaller (infinite) model via the Löwenheim-Skolem theorem in first-order logic. Most commonly-
used theories can be represented in this framework and are shown to be flexible. Reasoning about
cardinality also plays a major role in this approach–a solver for a parametric theory (called a strong
solver) is required to process not only the formula being checked, but also a set of cardinality
constraints over the domain sizes. Although this direction is promising, particularly because of the
advantages of parametricity, the approach as developed thus far would be cumbersome to implement
in a practical system. In particular, while reasoning about cardinalities is possible for a wide class
of important theories, it can be computationally expensive, and theory decision procedures are
typically not designed with this additional requirement in mind.

An alternative approach uses the notion of polite theories introduced in [7]. Polite theories can
also be combined with an arbitrary other theory. However, this approach does not require the
computation of the mincard function. Instead, a decision procedure for a polite theory must be
able to generate explicitly a witness formula that enumerates any required domain elements using
additional variables. The authors show that many commonly-used theories are polite (including
theories of lists, arrays, sets, and multi-sets). This approach seems more practical than those that
require reasoning about cardinalities explicitly. And, while proving that a theory is polite can be
difficult and needs to be done on a per-theory basis, once this is done, the combination method can
be easily implemented.

In this paper, we revisit and extend the results on polite theories from [7]. Section 2 gives
definitions and background on many-sorted logic and theory combination. Section 3 begins by
introducing polite theories, making a small but needed modification to the definition of finite wit-
nessability (one of the two properties that make up politeness), and then goes on to show that when
combining polite theories, the resulting theory is also polite (with respect to a possibly reduced set
of sorts). Section 5 addresses theory instantiation, the construction of a new theory by identifying
two sorts in an existing theory; we prove that instantiation preserves politeness. Finally, Section
4 discusses the combination of multiple polite theories, culminating in a combination result that is
more general than the ones presented in [7].

2 Preliminaries

2.1 Many-Sorted First-Order Logic

We start with a brief overview of the syntax and semantics of many-sorted first-order logic. For a
more detailed exposition, we refer the reader to [2, 9].

Syntax. A signature Σ is a triple (S, F, P ) where S is a set of sorts, F is a set of function symbols,
and P is a set of predicate symbols. For a signature Σ = (S, F, P ), we write ΣS for the set S of
sorts, ΣF for the set F of function symbols, and ΣP for the set P of predicates. Each predicate
and function symbol is associated with an arity, a tuple constructed from the sorts in S. We
write Σ1 ∪ Σ2 = (S1 ∪ S2, F1 ∪ F2, P1 ∪ P2) for the union1 of signatures Σ1 = (S1, F1, P1) and
Σ2 = (S2, F2, P2). Additionally, we write Σ1 ⊆ Σ2 if S1 ⊆ S2, F1 ⊆ F2, P1 ⊆ P2, and the symbols
of Σ1 have the same arity as those in Σ2.

For a signature Σ, we assume the logic (but not the signature) includes an equality symbol =σ,
for each sort σ ∈ ΣS. We will frequently omit the subscript on equality when the sort of the equation

1In this paper, when combining two signatures, we always assume that function and predicate symbols from the
signatures do not overlap, so that the union operation is well-defined. On the other hand, the signatures are allowed
to have non-disjoint sets of sorts.
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is not relevant to the discussion. We assume the standard notions of a Σ-term, Σ-literal, and Σ-
formula. In the following, we assume that all formulas are quantifier-free, if not explicitly stated
otherwise. A literal is called flat if it is of the form x = y, x 6= y, x = f(y1, . . . , yn), p(y1, . . . , yn),
or ¬p(y1, . . . , yn), where x, y, y1, . . . , yn are variables, f is a function symbol, and p is a predicate
symbol.

If φ is a term or a formula, we will denote by varsσ(φ) the set of variables of sort σ that occur
(free) in φ. We overload this function in the usual way, varsS(φ) denoting variables in φ of the sorts
in S, and vars(φ) denoting all variables in φ. We also sometimes refer to a set Φ of formulas as if it
were a single formula, in which case the intended meaning is the conjunction

∧
Φ of the formulas

in the set.

Semantics. Let Σ be a signature, and let X be a set of variables whose sorts are in ΣS. A
Σ-interpretation A over X is a map that interprets

• each sort σ ∈ ΣS as a non-empty domain Aσ,2

• each variable x ∈ X of sort σ as an element xA ∈ Aσ,

• each function symbol f ∈ ΣF of arity σ1×· · ·×σn×τ as a function fA : Aσ1×· · ·×Aσn → Aτ ,

• each predicate symbol p ∈ ΣP of arity σ1 × · · · × σn as a subset pA of Aσ1 × · · · ×Aσn .

A Σ-structure is a Σ-interpretation over an empty set of variables. As usual, the interpretations
of terms and formulas in an interpretation A are defined inductively over their structure (with
equality, Boolean operations, and quantifiers interpreted as usual). For a term t, we denote with tA

the evaluation of t under the interpretation A. Likewise, for a formula φ, we denote with φA the
truth-value (true or false) of φ under interpretation A. A Σ-formula φ is satisfiable iff it evaluates
to true in some Σ-interpretation over vars(φ).

Given a Σ-interpretation A, a vector of variables −→x , and a vector of domain elements of A,
−→a , we denote by A{−→x ← −→a } the Σ-interpretation with the same domains as A that interprets
each variable in −→x as the corresponding element in −→a and all other symbols as in A (note that
to be well-defined, we require that for each corresponding pair (xi, ai) in −→x and −→a , we must have
ai ∈ Aσi where σi is the sort of xi).

Let A be an Ω-interpretation over some set V of variables. For a signature Σ ⊆ Ω, and a set
of variables U ⊆ V , we denote with AΣ,U the interpretation obtained from A by restricting it to
interpret only the symbols in Σ and the variables in U .

Theories. We will use the definition of theories as classes of structures, rather than sets of sen-
tences. We define a theory formally as follows (see e.g. [10] and Definition 2 in [7]).

Definition 2.1 (Theory). Given a set of Σ-sentences Ax a Σ-theory TAx is a pair (Σ,A) where
Σ is a signature and A is the class of Σ-structures that satisfy Ax.

Given a theory T = (Σ,A), a T -interpretation is a Σ-interpretation A such that AΣ,∅ ∈ A.
A Σ-formula φ is T -satisfiable iff it is satisfiable in some T -interpretation A. This is denoted as
A �T φ, or just A � φ if the theory is clear from the context. Given a Σ-theory T , two Σ-formulas
φ and ψ are T -equivalent if they evaluate to the same truth value in every T -interpretation.

2In the rest of the paper we will use the calligraphic lettersA, B, . . . to denote interpretations, and the corresponding
subscripted Roman letters Aσ, Bσ, . . . to denote the domains of the interpretations.
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2.2 Combination of Theories

As theories in our formalism are represented by classes of structures, a combination of two theories
is represented by those structures that can interpret both theories (Definition 3 in [7]).

Definition 2.2 (Combination). Let T1 = (Σ1,A1) and T2 = (Σ2,A2) be two theories. The com-
bination of T1 and T2 is the theory T1 ⊕ T2 = (Σ,A) where Σ = Σ1 ∪ Σ2 and A = {Σ-structures
A | AΣ1,∅ ∈ A1 and AΣ2,∅ ∈ A2}.

The set of Σ-structures resulting from the combination of two theories is indeed a theory in the
sense of Definition 2.1. If Ax1 is the set of sentences defining theory T1, and Ax2 is the set of
sentences defining theory T2, then A is the set of Σ-structures that satisfy the set Ax = Ax1∪Ax2

(see Proposition 4 in [7]).
Given decision procedures for the satisfiability of formulas in theories T1 and T2, we are interested

in constructing a decision procedure for satisfiability in T1 ⊕ T2 using as black boxes the known
procedures for T1 and T2. The Nelson-Oppen combination method [4, 8, 9] gives a general mechanism
for doing this. Given a formula φ over the combined signature Σ1 ∪ Σ2, the first step is to purify
φ by constructing an equisatisfiable set of formulas φ1 ∪ φ2 such that each φi consists of only Σi-
formulas. This can easily be done by finding a pure (i.e. Σi- for some i) subterm t, replacing it
with a new variable v, adding the equation v = t, and then repeating this process until all formulas
are pure. The next step is to force the decision procedures for the individual theories to agree on
whether variables appearing in both φ1 and φ2 (called shared variables) are equal. This is done by
introducing an arrangement over the shared variables [7, 8].

Definition 2.3 (Arrangement). Given a set of variables V over a set of sorts S, with Vσ = varsσ(V )
so that V =

⋃
σ∈S Vσ, we call a formula δV an arrangement of V if there exists a family of equiva-

lence relations E = { Eσ ⊆ Vσ × Vσ | σ ∈ S }, such that the equivalence relations induce δV , i.e.
δV =

∧
σ∈S δσ, where each δσ is determined by Eσ as follows:

δσ =
∧

(x,y)∈Eσ

(x = y) ∧
∧

(x,y)∈Eσ

(x 6= y) .

In the above definition, Eσ denotes the complement of the equivalence relation Eσ, i.e. Vσ ×
Vσ \Eσ. When the family of equivalence relations is not clear from the context, we will denote the
arrangement as δV (E).

The Nelson-Oppen combination theorem states that φ is satisfiable in T1⊕T2 iff there exists an
arrangement δV of the shared variables V = vars(φ1) ∩ vars(φ2) such that φi ∪ δV is satisfiable in
Ti, for i = 1, 2. However, as mentioned earlier, some restrictions on the theories are necessary in
order for the Nelson-Oppen method to be complete. Sufficient conditions for completeness are:

• the two signatures have no function or predicate symbols in common, and

• the two theories are stably-infinite over (at least) the set of common sorts ΣS
1 ∩ ΣS

2.

Stable-infiniteness was originally introduced in a single-sorted setting [5]. In the many-sorted
setting, stable-infiniteness is defined with respect to a subset of the signature sorts (Definition 6
from [9]).

Definition 2.4 (Stable-Infiniteness). Let Σ be a signature, let S ⊆ ΣS be a set of sorts, and let T be
a Σ-theory. We say that T is stably-infinite with respect to S if for every T -satisfiable quantifier-free
Σ-formula φ, there exists a T -interpretation A satisfying φ, such that Aσ is infinite for each sort
σ ∈ S.
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It is interesting to note that stable-infiniteness is preserved when combining theories, a fact that
follows easily from known results. For completeness, we give the proof here. First, we need the
following theorem, obtained by adapting Theorems 10 and 11 of [9].

Theorem 2.5. Let Ti be a Σi-theory for i = 1, 2 such that the two theories have no function or
predicate symbols in common. Let Σ = Σ1 ∪ Σ2, T = T1 ⊕ T2, and let S = ΣS

1 ∩ ΣS
2 be the set of

shared sorts. Let Γi be a set of Σi-literals for i = 1, 2, and let V = vars(Γ1) ∩ vars(Γ2) be the set of
variables shared between Γ1 and Γ2. If there exists a T1-interpretation A and a T2-interpretation B
and an arrangement δV of V such that:

• A |= Γ1 ∪ δV ,

• B |= Γ2 ∪ δV , and

• |Aσ| = |Bσ|, for all σ ∈ S,

then there exists a T -interpretation C such that:

• C |= Γ1 ∪ Γ2 ∪ δV ,

• Cσ = Aσ for all σ ∈ ΣS
1, and

• Cσ = Bσ for all σ ∈ ΣS
2 \ S.

Proof. Let Vσ = varsσ(Γ1) ∩ varsσ(Γ2), for σ ∈ S. Define a family of functions h = {hσ : V Bσ 7→
V Aσ | σ ∈ S} such that hσ(vB) = vA for each v ∈ Vσ. Since the interpretations B and A agree on
equalities over V (by satisfying the same arrangement δV ), the functions hσ are well-defined and
bijective. This implies that |V Bσ | = |V Aσ | and, since |Bσ| = |Aσ| for σ ∈ S, we can extend each
function to a bijection h′σ : Bσ 7→ Aσ. Let h′σ be the identity function for each σ ∈ ΣS

2 \S. Now, we
can define a new Σ2-interpretation B′ (over the same set of variables as in B) in such a way that
h′ =

⋃
σ∈S h

′
σ is an isomorphism from B to B′:

B′σ =

{
Aσ if σ ∈ S
Bσ if σ ∈ ΣS

2 \ S

vB
′

= h′(vB)

fB
′
(b1, . . . , bn) = h′(fB(h′−1(b1), . . . , h′−1(bn))), and

〈b1, . . . , bn〉 ∈ pB
′

iff
〈
h′−1(b1), . . . , h′−1(bn)

〉
∈ pB.

Because h′ is an isomorphism, we have B′ |= Γ2 ∪ δV . We can now define the Σ-interpretation C as
follows:

Cσ =


Aσ if σ ∈ ΣS

1 \ S
Aσ = B′σ if σ ∈ S
B′σ = Bσ if σ ∈ ΣS

2 \ S
vC =


vA if v is of sort σ ∈ ΣS

1 \ S
vA = vB

′
if v is of sort σ ∈ S

vB
′

if v is of sort σ ∈ ΣS
2 \ S

fC =

{
fA if f ∈ ΣF

1

fB
′

if f ∈ ΣF
2

pC =

{
pA if p ∈ ΣP

1

pB
′

if p ∈ ΣP
2

Clearly, Cσ = Aσ for all σ ∈ ΣS
1 and Cσ = Bσ for all σ ∈ ΣS

2 \ S. It is also easy to see from the
definition above that CΣ1,vars(Γ1) = A and CΣ2,vars(Γ2) = B′, and thus C |= Γ1 ∪ Γ2 ∪ δV .
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Now we show that stable-infiniteness is preserved when combining theories.

Proposition 2.6. Let Σ1 and Σ2 be signatures. If

• T1 is a Σ1-theory stably-infinite with respect to S1 ⊆ ΣS
1,

• T2 is a Σ2-theory stably-infinite with respect to S2 ⊆ ΣS
2,

• ΣS
1 ∩ ΣS

2 = S1 ∩ S2,

then T1 ⊕ T2 is a (Σ1 ∪ Σ2)-theory and is stably-infinite with respect to S1 ∪ S2.

Proof. Let Σ = Σ1 ∪ Σ2, T = T1 ⊕ T2, S = S1 ∩ S2. Assume φ is a Σ-formula satisfied in a T -
interpretation A. As in the Nelson-Oppen algorithm, we can separate φ into the Σ1-part φ1 and the
Σ2-part φ2. We can assume wlog that A is an interpretation over the variables vars(φ1) ∪ vars(φ2)
and that A |= φ1 ∧ φ2. Let V = varsS(φ1) ∩ varsS(φ2). Let δV be the arrangement over these
variables that agrees with A. We have that AΣ1,vars(φ1) � φ1 ∪ δV and AΣ2,vars(φ2) � φ2 ∪ δV .

Since T1 is stably-infinite with respect to S1, we can conclude that there is a T1-interpretation
B such that the cardinalities |Bσ| are infinite for σ ∈ S1 and B � φ1 ∪ δV . Similarly, there is a
T2-interpretation C with infinite cardinalities |Cσ|, σ ∈ S2 and C � φ2 ∪ δV . By the downward
Löwenheim-Skolem theorem in the many-sorted setting,3 we can assume that the cardinalities |Bσ|
and |Cσ| are the same for σ ∈ S.

It is easy to see that B and C satisfy all the conditions of Theorem 2.5, so we can conclude that
there is a T -interpretation D that satisfies φ1 ∧ φ2 (and hence φ) such that the cardinalities |Dσ|
are infinite for σ ∈ S1 ∪ S2.

Although many interesting theories are stably-infinite, some important theories are not. For
example, the theory of fixed-size bit-vectors contains sorts whose domains are all finite. Hence, this
theory cannot be stably-infinite. The Nelson-Oppen method may be incomplete for combinations
involving this theory as shown by the following example.

Example 2.7. Consider the theory of arrays Tarray where both indices and elements are of the
same sort bv, so that the sorts of Tarray are {array, bv}, and a theory Tbv that requires the sort bv
to be interpreted as bit-vectors of size 1. Both theories are decidable and we would like to decide
the combination theory in a Nelson-Oppen-like framework. Let a1, . . . , a5 be array variables and
consider the following constraints:

ai 6= aj, for 1 ≤ i < j ≤ 5 .

These constraints are entirely within the language of Tarray (i.e. no purification is necessary), there
are no shared variables, and there are no constraints over bit-vectors. Thus, the array theory decision
procedure is given all of the constraints and the bit-vector decision procedure is given an empty set
of constraints. Any decision procedure for the theory of arrays will tell us that these constraints
are satisfiable. But, there are only four possible different arrays with elements and indices over
bit-vectors of size 1, so this set of constraints is unsatisfiable.

The notion of politeness, which we define in the following section allows us to overcome this
problem.

3See Theorem 9 in [9] for the statement, or [10] for a full proof. The theorem there is in the more general setting
of order-sorted logic, of which ordinary many-sorted logic is a simple instance.
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3 Polite Theories

Polite theories were introduced in [7] to extend the Nelson-Oppen method to allow combinations
with non-stably-infinite theories. A theory can be combined with any other theory (with no common
function or predicate symbols) if it is polite with respect to the set of shared sorts. The notion of
politeness depends on two other important properties: smoothness and finite witnessability. In this
section, we define these terms, noting that our definition of finite witnessability differs slightly from
that given in [7] in order to fix a correctness problem in that paper (as we explain below). We then
give a new theorem showing that the combination of two theories preserves politeness with respect
to some of the sorts.

3.1 Definitions

First we define the smoothness property of a theory (Definition 7 from [7]).

Definition 3.1 (Smoothness). Let Σ be a signature, let S ⊆ ΣS be a set of sorts, and let T be a
Σ-theory. We say that T is smooth with respect to S if:

• for every T -satisfiable quantifier-free Σ-formula φ,

• for every T -interpretation A satisfying φ,

• for all choices of cardinal numbers κσ, such that κσ ≥ |Aσ| for all σ ∈ S,

there exists a T -interpretation B satisfying φ such that |Bσ| = κσ, for all σ ∈ S.

Recall that when a theory T is stably-infinite with respect to a sort σ and a T -interpretation
exists, we can always find another T -interpretation in which the domain of σ is infinite. On the
other hand, if T is smooth with respect to σ and we have a T -interpretation, then there exist
interpretations in which the domain of σ can be chosen to be any larger size. Hence every theory
that is smooth with respect to a set of sorts S is also stably-infinite with respect to S.

Being able to combine two interpretations from different theories mainly depends on the ability
to bring the domains of the shared sorts to the same size. This is where stable-infiniteness helps
in the Nelson-Oppen framework: it ensures that the domains of the shared sorts can have the
same infinite cardinalities. Since we are interested in combining theories that may require finite
domains, we need more flexibility than that afforded by stable-infiniteness. Smoothness gives us
more flexibility in resizing structures upwards. This is not quite enough as we also need to ensure
that the structures are small enough. Rather than attempting to resize structures downwards, we
rely on the notion of finite witnessability which allows us to find a kind of “minimal” structure for
a theory.

Definition 3.2 (Finite Witnessability). Let Σ be a signature, let S ⊆ ΣS be a set of sorts, and let
T be a Σ-theory. We say that T is finitely witnessable with respect to S if there exists a computable
function, witness, which, for every quantifier-free Σ-formula φ, returns a quantifier-free Σ-formula
ψ = witness(φ) such that

• φ and (∃−→w )ψ are T -equivalent, where −→w = vars(ψ) \ vars(φ) are fresh variables;

• if ψ ∧ δV is T -satisfiable, for an arrangement δV , where V is a set of variables of sorts in S,
then there exists a T -interpretation A satisfying ψ ∧ δV such that Aσ = [varsσ(ψ ∧ δV )]A, for
all σ ∈ S,
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where the notation [U ]A indicates the set { vA | v ∈ U }.

Both of the definitions above use an arbitrary quantifier-free formula φ in the definition. As
shown by Proposition 11 and Proposition 12 in [6] (see Lemmas A.1, A.2 in Appendix A), it is
enough to restrict ourselves to conjunctions of flat literals in the definitions. This follows in a
straightforward fashion from the fact that we can always construct an equisatisfiable formula in
disjunctive normal form over flat literals.

It is important to note that our definition of finite witnessability differs from the definition given
in [7]. Their definition is equivalent to ours except that there is no mention of an arrangement (i.e.
the formula ψ appears alone everywhere ψ ∧ δV appears in the definition above).4 The reason for
this is explained and illustrated in Section 3.2 below.

Finally, a theory that is both smooth and finitely witnessable is polite (Definition 9 in [7]).

Definition 3.3 (Politeness). Let Σ be a signature, let S ⊆ ΣS be a set of sorts, and let T be a
Σ-theory. We say that T is polite with respect to S if it is both smooth and finitely witnessable with
respect to S.

Note that any theory is polite (stably-infinite, smooth, finitely witnessable) with respect to an
empty set of sorts.

Example 3.4. The extensional theory of arrays Tarray has a signature Σarray that contains a sort
elem for elements, a sort index for indices, and a sort array for arrays, as well as the following two
function symbols.

read : array × index 7→ elem

write : array × index× elem 7→ array

The theory Tarray is axiomatized by

(∀a : array)(∀i : index)(∀e : elem)(read(write(a, i, e), i) = e) (1)
(∀a : array)(∀i, j : index)(∀e : elem)(i 6= j → read(write(a, i, e), j) = read(a, j)) (2)

(∀a, b : array) [a 6= b→ (∃i : index)(read(a, i) 6= read(b, i))] (3)

It is not hard to see that Tarray is smooth with respect to the sorts {index, elem} – any interpre-
tation satisfying a quantifier-free formula φ can be extended to arbitrary cardinalities over indices
and elements by adding as many additional indices and elements as we need while keeping the
satisfiability of φ.

As for finite witnessability, it is enough to use a witness transformation that works over con-
junctions of flat literals and replaces each array disequality a 6= b with the conjunction of literals

e1 = read(a, i) ∧ e2 = read(b, i) ∧ e1 6= e2 ,

where i is a fresh variable of sort index and e1, e2 are fresh variables of sort elem. The witness
function creates a fresh witness index i, to witness the position where a and b are different, and
names those different elements e1 and e2.

For the detailed proof of politeness for the theory Tarray we refer the reader to [7].

4It is worth noting that in order to prove Proposition 3.5 and Theorem 5.5, below, it is sufficient to require V to be
equal to varsS(ψ2) rather than letting it be an arbitrary set of variables with sorts in S. However, this more general
flexibility is needed for the proofs of Lemma A.2 and Theorem 3.7.
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3.2 Finite Witnessability Revisited

A main result of [7] is a combination method for two theories, one of which is polite over the shared
sorts.

Proposition 3.5 (Proposition 12 of [7]). Let Ti be a Σi-theory for i = 1, 2 such that the two
theories have no function or predicate symbols in common. Assume that T2 is polite with respect to
S = ΣS

1 ∩ΣS
2. Also, let Γi be a set of Σi literals for i = 1, 2, and let ψ2 = witnessT2(Γ2). Finally, let

Vσ = varsσ(ψ2), for each σ ∈ S, and let V =
⋃
σ∈S Vσ. Then the following are equivalent:

1. Γ1 ∪ Γ2 is (T1 ⊕ T2)-satisfiable;

2. There exists an arrangement δV such that Γ1 ∪ δV is T1-satisfiable and {ψ2} ∪ δV is T2-
satisfiable.

Proposition 3.5 differs from the standard Nelson-Oppen theorem in its application of the witness
function to Γ2 and in that the arrangement is over all the variables with shared sorts in ψ2 rather
than just over the shared variables.

As mentioned above, our definition of finite witnessability (Definition 3.2 above) differs from the
definition given in [7]. Without the change, Proposition 3.5 does not hold, as demonstrated by the
following example.

Example 3.6. Let Σ be a signature containing no function or predicate symbols and a single sort
σ. Let T1 be a Σ-theory containing all structures such that the domain of σ has exactly one element
(i.e. the structures of T1 are those satisfying ∀x y. x = y). Similarly, let T2 be a Σ-theory over
the same sort σ containing all structures such that the domain of σ has at least two elements (i.e.
axiomatized by ∃x y.x 6= y). Note that the combination of these two theories contains no structures,
and hence no formula is satisfiable in T1 ⊕ T2.

Theory T2 is clearly smooth with respect to σ. To be polite, T2 must also be finitely witnessable
with respect to σ. Consider the following candidate witness function:

witness(φ) , φ ∧ w1 = w1 ∧ w2 = w2 ,

where w1 and w2 are fresh variables of sort σ not appearing in φ.
Let φ be a conjunction of flat Σ-literals, let ψ = witness(φ), and let V = vars(ψ). It is easy to

see that the first condition for finite witnessability holds: φ is satisfied in a T2 model iff ∃w1w2. ψ
is. Now, consider the second condition according to [7] (i.e. without the arrangement). We must
show that if ψ is T2-satisfiable (in interpretation B, say), then there exists a T2-interpretation A
satisfying ψ such that Aσ = [V ]A. The obvious candidate for A is obtained by setting Aσ = [V ]B

and by letting A interpret only those variables in V (interpreting them as in B). Clearly A satisfies
ψ. However, if [V ]B contains only one element, then A is not a T2-interpretation. But in this case,
we can always first modify the way variables are interpreted in B to ensure that wB2 is different from
wB1 (B is a T2-interpretation, so Bσ must contain at least two different elements). Since w2 does not
appear in φ, this change cannot affect the satisfiability of ψ in B. After making this change, [V ]B

is guaranteed to contain at least two elements, so we can always construct A as described above.
Thus, the second condition for finite witnessability is satisfied and the candidate witness function is
indeed a witness function according to [7].

As we will see below, however, this witness function leads to problems. Notice that according to
the definition of finite witnessability in this paper, the candidate witness function is not acceptable.
To see why, consider again the second condition. Let δV be an arrangement of V . According to
our definition, we must show that if ψ ∧ δV is satisfied by T2-interpretation B, then there exists a
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T2-interpretation A satisfying ψ ∧ δV such that Aσ = [V ]A. We can consider the same construction
as above, but this time, the case when [V ]B contains only one element cannot be handled as before.
This is because δV requires A to preserve equalities and disequalities in V . In particular, δV may
include w1 = w2. In this case, there is no way to construct an appropriate interpretation A.

Now, we show what happens if the candidate witness function given above is allowed. Consider
using Proposition 3.5 to check the satisfiability of x = x (where x is a variable of sort σ). Although
this is trivially satisfiable in any theory that has at least one structure, it is not satisfiable in T1⊕T2

since there are no structures to satisfy it. To apply the proposition we let

• Γ1 = ∅,Γ2 = {x = x},

• ψ2 = witness(Γ2) = (x = x ∧ w1 = w1 ∧ w2 = w2), and

• V = vars(ψ2) = {x,w1, w2}.

Proposition 3.5 allows us to choose an arrangement over the variables of V . Let

δV = {x = w1, x = w2, w1 = w2}

be an arrangement over the variables in V . It is easy to see that Γ1 ∪ δV is satisfiable in a T1-
interpretation A and ψ2 ∪ δV is satisfiable in a T2-interpretation B, where A and B interpret the
domains and variables as follows:

σA = {a1}, σB = {b1, b2}, xA = wA1 = wA2 = a1, x
B = wB1 = wB2 = b1 .

Thus, according to Proposition 3.5, Γ1 ∪ Γ2 should be T1 ⊕ T2-satisfiable, but we know that this is
impossible.

Finally, consider what happens if we use a witness function for T2 that is acceptable according
to our new definition:

witness(φ) , φ ∧ w1 6= w2 .

If we look at the same example using this witness function, we can verify that for every arrangement
δV , either w1 6= w2 ∈ δV , in which case Γ1∪ δV is not T1-satisfiable, or else w1 = w2 ∈ δV , in which
case witness(Γ2) ∪ δV is not T2-satisfiable.

As shown by the example above, the definition of finite witnessability in [7] is not strong enough.
It allows witness functions that can falsify Proposition 3.5. The changes in Definition 3.2 remedy
the problem. For completeness, we include the proof of Proposition 3.5 below, adapted from [7],
indicating where the proof fails if the weaker definition of finite witnessability is used.

Proof. (1⇒ 2): Assume that Γ1 ∪Γ2 is (T1⊕T2)-satisfiable and let −→v = vars(ψ2) \ vars(Γ2). Since
Γ2 and (∃−→v )ψ2 are T2-equivalent, it follows that Γ1 ∪ {ψ2} is also (T1 ⊕ T2)-satisfiable. We can
therefore fix a (T1⊕T2)-interpretation A satisfying Γ1∪{ψ2}. Next, let δV be the arrangement of V
induced by A, that is the arrangement determined by the equivalence classes Eσ = {(x, y) | x, y ∈
Vσ and xA = yA}, for σ ∈ S. By construction we have an interpretation A such that both Γ1 ∪ δV
is T1 satisfied and {ψ2} ∪ δV is T2-satisfied.

(2 ⇒ 1): Let A be a T1-interpretation satisfying Γ1 ∪ δV , and let B be a T2-interpretation
satisfying {ψ2} ∪ δV . Since T2 is finitely witnessable, we can assume without loss of generality that

10



Bσ = V Bσ .5 For each σ ∈ S we now have that

|Bσ| = |V Bσ | since Bσ = V Bσ ,

= |V Aσ | since both A and B satisfy δV ,

≤ |Aσ| since V Aσ ⊆ Aσ .

Now we can use the smoothness of T2 to obtain a T2-interpretation C that satisfies {ψ2} ∪ δV
such that |Cσ| = |Aσ|, for each σ ∈ S. Now we have all the conditions necessary to combine
T1-interpretation A and T2-interpretation C into a (T1 ⊕ T2)-interpretation D, via Theorem 2.5,6

D satisfies Γ1 ∪ {ψ2} ∪ δV . Since Γ2 and (∃−→v )ψ2 are T2-equivalent, it follows that D also satisfies
Γ1 ∪ Γ2.

In the same paper, the authors also prove that a number of theories are polite. We are confident
that the proofs of politeness for the theories of equality, arrays, sets, and multi-sets are still correct,
given the new definition. Other results in the paper (in particular the proof of politeness for the
theory of lists and the proof that shiny theories are polite) have some problems in their current
form. We hope to address these in future work.

3.3 A New Combination Theorem for Polite Theories

Proposition 3.5 shows how to combine two theories, one of which is polite. However, the theorem
tells us nothing about the politeness of the resulting (combined) theory. In particular, if we want
to combine more than two theories by iterating the combination method, we cannot assume that
the result of applying Proposition 3.5 is a theory that is polite with respect to any (non-empty) set
of sorts.

In this section, we show that the combination described in Proposition 3.5 does preserve polite-
ness over some of the sorts. This lays the foundation for the more general combination theorem
described in Section 4.

S2

Σ1
S Σ2

S∩

S1

S*

Σ2
SΣ1

S

Figure 1: Diagram for Theorem 3.7.

Theorem 3.7. Let Σ1 and Σ2 be signatures and let S = ΣS
1 ∩ ΣS

2. If

1. T1 is a Σ1-theory polite with respect to S1 ⊆ ΣS
1,

5This is where the proof breaks with the original definition of finite witnessability–it is clear that in order to make
this assumption and keep the satisfiability of {ψ2}∪ δV we need to include δV in the definition of finite witnessability.

6Note that δV may contain more variables than those shared between Γ1 and ψ2, but we can still apply the theorem
simply by assuming that δV is included among the literals of both theories.
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2. T2 is a Σ2-theory polite with respect to S2 ⊆ ΣS
2,

3. S ⊆ S2,

then T1 ⊕ T2 is polite with respect to S∗ = S1 ∪
(
S2 \ ΣS

1

)
.

Proof. First we prove that the combined theory is smooth with respect to S∗. Let T = T1 ⊕ T2,
Σ = Σ1∪Σ2, and assume that φ is a conjunction of flat Σ-literals satisfiable in a T -interpretation A.
We are given cardinalities κσ ≥ |Aσ|, for all σ ∈ S∗, and we must construct a new T -interpretation
satisfying φ that obeys the given cardinalities.

We can separate φ into a Σ1-part φ1 and a Σ2-part φ2 such that φ = φ1 ∧φ2. Let Vi = vars(φi).
We know that:

AΣ1,V1 �T1 φ1 ,

AΣ2,V2 �T2 φ2 .

Since T2 is finitely witnessable, we know there is a witness function witness2 such that φ2 is T2-
equivalent to (∃−→w )ψ2 for ψ2 = witness2(φ2). Since the variables in −→w are fresh, we can assume
without loss of generality that A |= ψ2. If we then let V ′2 = V2 ∪ vars(−→w ), we have:

AΣ1,V1 �T1 φ1 ,

AΣ2,V ′2 �T2 ψ2 .

Now, let VS = varsS(ψ2) and VS = varsS2\S(ψ2) and let δVS and δVS be the (unique) arrangements
of these sets of variables that are satisfied by A. We can add these arrangements (letting V ′1 =
V1 ∪ varsS(ψ2)) to obtain:

AΣ1,V ′1 �T1 φ1 ∧ δVS ,

AΣ2,V ′2 �T2 ψ2 ∧ δVS ∧ δVS .

Because T1 is smooth with respect to S1, we can lift the domains of sorts σ ∈ S1 to cardinalities
κσ, i.e. there is a T1-interpretation B that satisfies φ1 ∧ δVS with |Bσ| = κσ for κ ∈ S1. We can’t
assume anything about the rest of the sorts, so let κ′σ = |Bσ| for σ ∈ S \ S1.

Next, because T2 is finitely witnessable with respect to S2, we know that there is a T2-interpretation
C that satisfies ψ2 ∧ δVS ∧ δVS such that for σ ∈ S2 we have

Cσ =
[
varsσ(ψ2 ∧ δVS ∧ δVS )

]C =
[
varsσ(VS ∪ VS)

]C
.

Consider the sizes of the domains in C:

• for σ ∈ S ∩ S1, we have that |Cσ| ≤ |Bσ| = κσ, since both C and B agree on δVS ;

• for σ ∈ S \ S1, we have that |Cσ| ≤ |Bσ| = κ′σ, since both C and B agree on δVS ;

• for σ ∈ S2 \ S, we have that |Cσ| ≤ |Aσ| ≤ κσ, since both C and A agree on δVS .

Finally, because T2 is smooth with respect to S2, we know there is a T2-structure D that satisfies
ψ2 ∧ δVS ∧ δVS such that:

• for σ ∈ S ∩ S1, we have that |Dσ| = |Bσ| = κσ;

• for σ ∈ S \ S1, we have that |Dσ| = |Bσ| = κ′σ;
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• for σ ∈ S2 \ S, we have |Dσ| = κσ.

Since the structures B and D agree on the sizes of the shared sorts, and they agree on the ar-
rangement of the common variables, we know from Theorem 2.5 that we can combine them into a
T -interpretation F that satisfies φ1∧ψ2 and has the required cardinalities. This interpretation also
satisfies φ, so T is smooth with respect to S∗.

The second part of the proof requires showing that T is finitely witnessable with respect to S∗.
Let φ be a conjunction of flat Σ-literals. Again, we can separate φ into φ1 ∧ φ2 such that φ1 is a
Σ1-formula and φ2 is a Σ2-formula. Since T1 and T2 are both finitely witnessable (with respect to
S1 and S2 respectively), there are computable witness functions witness1 and witness2. We define
the witness function witness for T using the following steps:

1. compute the T2 witness function ψ2 = witness2(φ2);

2. let E be the set of all equivalence relations over VS = varsS(ψ2);

3. compute the T1-part of the witness function

ψ1 =
∨
E∈E

witness1(φ1 ∧ δ(E)) ;

4. let ψ = witness(φ) = ψ1 ∧ ψ2.

To show the first requirement of Definition 3.2, suppose we have a T -interpretation A such that

A � φ1 ∧ φ2 .

We can use the T2-equivalence of applying witness2 to obtain

A � φ1 ∧ ∃−→w 2.ψ2 ,

where −→w 2 = vars(ψ2) \ vars(φ2). It follows that we can find a suitable vector of elements −→a 2 such
that

A{−→w 2 ← −→a 2} � φ1 ∧ ψ2 .

Now, let ES be the unique equivalence relation over VS = varsS(ψ2) compatible with A{−→w 2 ← −→a 2}.
Adding the arrangement δ(ES) and using the T1-equivalence of applying witness1 we further obtain

A{−→w 2 ← −→a 2} � φ1 ∧ δ(ES) ∧ ψ2 ,

A{−→w 2 ← −→a 2} � ∃−→w 1.witness1(φ1 ∧ δ(ES)) ∧ ψ2 ,

where −→w 1 = vars(witness1(φ1 ∧ δ(ES))) \ vars(φ1 ∧ δ(ES)). Since we always assume that variables
introduced by witness functions are fresh, we can safely conclude that −→w 1 and −→w 2 are disjoint and
thus there is a suitable −→a 1 such that

A{−→w 1 ← −→a 1,
−→w 2 ← −→a 2} � witness1(φ1 ∧ δ(ES)) ∧ ψ2 .

Let −→w 3 be the variables from vars(ψ) \ vars(φ) not already in −→w 1 or −→w 2. Clearly there is an −→a 3

such that
A{−→w 1 ← −→a 1,

−→w 2 ← −→a 2,
−→w 3 ← −→a 3} � witness1(φ1 ∧ δ(ES)) ∧ ψ2 . (4)

Finally, since witness1(φ1 ∧ δ(ES)) entails ψ1, we can conclude

A{−→w 1 ← −→a 1,
−→w 2 ← −→a 2,

−→w 3 ← −→a 3} �
∨
E∈E

witness1(φ1 ∧ δ(E)) ∧ ψ2 , (5)
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and thus
A � ∃−→w 1∃−→w 2∃−→w 3.ψ .

To show the implication in the other direction, each step is straightforward except the step from
equation 5 to equation 4. Notice however, that because of the first property of witness functions, if
a T1 interpretation satisfies witness1(φ1 ∧ δ(E)), then it also satisfies δ(E). Now, since exactly one
arrangement δ(E) is true in a particular interpretation, this means that exactly one of the disjuncts
holds.

To see that the second requirement of Definition 3.2 is also satisfied, let A be a T -interpretation
satisfying ψ ∧ δS∗ , where δS∗ is an arrangement over a set V of variables with sorts in S∗. We will
assume that varsS∗(ψ) ⊆ V , as we can always add the extra variables from ψ to the arrangement
while keeping compatibility with A. This does not affect the correctness of our argument: we will
show that there is an interpretation E such that E |=T ψ ∧ δS∗ and Eσ = [varsσ(ψ ∧ δS∗)]E ; notice
that if extra variables from ψ were included in δS∗ , we can remove them and the same interpretation
E still has the desired properties.

In the following, for any set U of sorts, we will abbreviate δvarsU (V ) as δU . Note that δS∗ can
be decomposed into:

δS∗ = δS1\S ∧ δS1∩S ∧ δS2\S .

We can construct an additional variable arrangement δS\S1
over the variables varsS\S1

(ψ2) that is
compatible with A. These arrangements are all true in A, so letting Vi = varsΣS

i
(ψ ∧ δS∗) we have:

AΣ1,V1 �T1

(
ψ1 ∧ δS1\S ∧ δS1∩S ∧ δS\S1

)
= Ψ1 ,

AΣ2,V2 �T2

(
ψ2 ∧ δS2\S ∧ δS1∩S ∧ δS\S1

)
= Ψ2 .

Expanding the first equation (and dropping the last arrangement) we get that

AΣ1,V1 �T1

∨
E∈E

witness1(φ1 ∧ δ(E)) ∧ δS1\S ∧ δS1∩S .

Note that exactly one of the arrangements δ(E) is satisfied by AΣ1,V1 . Call this arrangement δ(ES).
Because of the T1-equivalence of applying witness1, we have

AΣ1,V1 �T1 witness1(φ1 ∧ δ(ES)) ∧ δS1\S ∧ δS1∩S = Ψ′1 .

Now, because T1 is finitely witnessable over S1, we can obtain a T1-interpretation B such that

B �T1 Ψ′1 ,

and for all σ ∈ S1 we have Bσ = [varsσ(Ψ′1)]B. Note that though Ψ′1 and Ψ1 differ, we have that
vars(Ψ′1) ⊆ vars(Ψ1). We can thus extend B arbitrarily to interpret all of the variables in vars(Ψ1)
so that Bσ = [varsσ(Ψ1)]B for σ ∈ S1.

Because B |= Ψ′1, we know that B will also satisfy δ(ES) (by the first property of witness1). Now,
since δ(ES) includes all the variables in δS\S1

by definition (they both only arrange the variables
from ψ2), and because both δ(ES) and δS\S1

are satisfied by the same interpretation A, we know
that B also satisfies δS\S1

:

B �T1 witness1(φ1 ∧ δ(ES)) ∧ δS1\S ∧ δS1∩S ∧ δS\S1
.

Since one disjunct of ψ1 is satisfied, we can conclude that

B �T1 Ψ1 .

14



Now, let’s consider Ψ2. Because T2 is finitely witnessable over S2, we can obtain a T2-interpretation
C satisfying Ψ2 such that for σ ∈ S2, we have Cσ = [varsσ(Ψ2)]C .

Since both B and C satisfy the arrangement δS1∩S and this arrangement contains all the variables
of sorts S1 ∩ S from ψ1 and ψ2, it follows that for σ ∈ S1 ∩ S, we have |Bσ| = |Cσ|. For the other
shared sorts σ ∈ S \ S1, we have that |Cσ| ≤ |Bσ| because Ψ1 and Ψ2 agree on δ{σ}, and we know
that Cσ does not interpret any elements beyond those named by variables in δ{σ} (since we chose
δS\S1

to include varsS\S1
(ψ2)).

As in the proof of smoothness, we now proceed to combine the two structures. By smoothness
of T2 with respect to S2 we can lift the structure C to a structure D that satisfies Ψ2, such that

• |Dσ| = |Bσ| = |Cσ| for σ ∈ S1 ∩ S2,

• |Dσ| = |Bσ| ≥ |Cσ| for σ ∈ S \ S1,

• |Dσ| = |Cσ| for σ ∈ S2 \ S.

Interpretations B and D agree on the arrangements δS∩S1 ∧ δS\S1
. These arrangements include all

of the shared variables of Ψ1 and Ψ2. For sorts in S ∩ S1, this follows by our assumption that δS∗
includes all the variables in ψ of sorts in S∗. For sorts in S \S1, this follows from the fact that δS\S1

includes all the variables in varsS\S1
(ψ2).

Finally, by Theorem 2.5, given interpretations B and D, we can find an interpretation E satisfying
Ψ1 ∧Ψ2, because they agree on the arrangement over the shared variables of Ψ1 and Ψ2, and have
the same cardinalities over the shared sorts. Moreover, since we are keeping the cardinalities of
B over S1 and C over S2 \ S, and these cardinalities are determined by the arrangements in δ∗S ,
and varsS∗(Ψ1 ∧ Ψ2) = vars(δS∗), we will also have that for all σ ∈ S∗, Eσ = [varsσ(Ψ1 ∧Ψ2)]E =
[varsσ(ψ ∧ δS∗)]E , as required. This concludes the proof of finite witnessability and shows that
T1 ⊕ T2 is polite with respect to S∗.

We illustrate the application of the theorem with an example using two theories of arrays.

Example 3.8. Let Tarray,1 and Tarray,2 be two theories of arrays over the following sets of sorts
respectively

S1 = {array1, index1, elem1} ,
S2 = {array2, index2, array1} .

These two theories together model two-dimensional arrays with indices in index1 and index2, and
elements in elem1.

We know that the theory Tarray,1 is polite with respect to S∗1 = {index1, elem1}, and the theory
Tarray,2 is polite with respect to S∗2 = {index2, array1}. Using Theorem 3.7, we know that we can
combine them into a theory Tarray that is polite with respect to the set

S∗1 ∪ (S∗2 \ {array1}) = {index1, index2, elem1} .

This means that we can combine the theory of two-dimensional arrays with any other theories that
operate over the elements and indices, even if they are not stably-infinite (such as bit-vectors for
example).

An interesting corollary of Theorem 3.7 is that, if both theories are polite with respect to the
shared sorts then, analogously to Proposition 2.6, we get a theory that is polite with respect to the
union of the sorts.
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Corollary 3.9. Let Σ1 and Σ2 be signatures. If

• T1 is a Σ1-theory polite with respect to S1 ⊆ ΣS
1,

• T2 is a Σ2-theory polite with respect to S2 ⊆ ΣS
2,

• ΣS
1 ∩ ΣS

2 = S1 ∩ S2,

then T1 ⊕ T2 is polite with respect to S1 ∪ S2.

4 Combining Multiple Polite Theories

Given a Σ1-theory T1, polite with respect to sorts S1, and a Σ2-theory T2, polite with respect to
sorts S2, we will denote their combination using the combination framework for polite theories as
T1⊕p T2. Here, ⊕p is a partial, asymmetric operator: T1⊕p T2 is defined as T1⊕T2 if ΣS

1 ∩ΣS
2 ⊆ S2

and is undefined otherwise. Note that if defined, T1 ⊕p T2 is polite with respect to S1 ∪ (S2 \ ΣS
1)

by Theorem 3.7.
Because of the asymmetry in its definition, it is not obvious whether ⊕p is associative or com-

mutative. When dealing with several theories there might be several ways we could try to combine
them: given theories T1, T2 and T3, we could first combine T1 and T2 into T1⊕pT2 and then combine
the result with T3 to obtain (T1⊕p T2)⊕p T3. Or we might opt to combine T2 and T3 first and then
combine T1 with T2 ⊕p T3 to get the same theory T1 ⊕p (T2 ⊕p T3). Some of these operations might
not be defined, and if they are, it is not obvious whether Theorem 3.7 ensures that the resulting
theories are polite with respect to the same set of sorts.

Since, as explained above, there are several ways of obtaining a combined theory using the
combination framework, we will write T1 ↔p T2 to denote that T1 and T2 are either both undefined
or both defined, and in the latter case that T1 and T2 are polite with respect to the same sets of
sorts.

S2

S1

Σ2
SΣ1

S

Σ3
S

S3

Figure 2: Diagram for Lemma 4.1.

Lemma 4.1. Let Ti be a Σi-theory, polite with respect to sorts Si, for i = 1, 2, 3. Then

T1 ⊕p (T2 ⊕p T3)↔p (T1 ⊕p T2)⊕p T3 . (6)

Proof. The proof of this statement primarily relies on simple manipulations in basic set theory. For
convenience, it might be easier to understand the result by looking at Figure 2.
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We first note that the theory combination operator ⊕ is clearly associative. Thus, it suffices to
show that if one side of (6) is defined, then the other is also, and that they are polite with respect
to the same sets of sorts.

Assume that the right-associative combination T1⊕p (T2⊕p T3) is defined. This implies that we
have

ΣS
2 ∩ ΣS

3 ⊆ S3 . (7)

Using Theorem 3.7 we know that T2 ⊕ T3 is polite with respect to S2 ∪ (S3 \ ΣS
2). Then, since we

can combine T1 with T2 ⊕ T3, we must have ΣS
1 ∩ (ΣS

2 ∪ΣS
3) ⊂ S2 ∪ (S3 \ΣS

2) which is equivalent to
the following

ΣS
1 ∩ ΣS

2 ⊂ S2 ∪ (S3 \ ΣS
2) , (8)

ΣS
1 ∩ ΣS

3 ⊂ S2 ∪ (S3 \ ΣS
2) . (9)

It follows from (8) (intersecting both sides with ΣS
2) that

ΣS
1 ∩ ΣS

2 ⊆ S2 ,

which is enough to conclude that we can combine T1 and T2 into T1 ⊕ T2. To be able to combine
T1 ⊕ T2 with T3 we must show that

(ΣS
1 ∪ ΣS

2) ∩ ΣS
3 ⊆ S3,

which is equivalent to

ΣS
1 ∩ ΣS

3 ⊆ S3 , (10)
ΣS

2 ∩ ΣS
3 ⊆ S3 . (11)

We have that (7) and (11) are the same. To show (10), it is sufficient to show both of the following

(ΣS
1 ∩ ΣS

3) ∩ ΣS
2 ⊆ S3 ∩ ΣS

2 , (12)
(ΣS

1 ∩ ΣS
3) \ ΣS

2 ⊆ S3 \ ΣS
2 . (13)

Equation (12) follows directly from (11) (intersect both sides with ΣS
2 and then intersect just the

left side with ΣS
1). Equation (13) is obtained by subtracting ΣS

2 from both sides of (9). This shows
that the left-associative combination (T1 ⊕p T2)⊕p T3 is defined.

In the opposite direction, assume that the left-associative combination (T1⊕pT2)⊕pT3 is defined.
For this to be possible we need to combine T1 and T2 first, so it must be the case that

ΣS
1 ∩ ΣS

2 ⊆ S2 . (14)

Next, to combine T1 ⊕ T2 with T3, we must have

(ΣS
1 ∪ ΣS

2) ∩ ΣS
3 ⊆ S3 . (15)

This is equivalent to

ΣS
1 ∩ ΣS

3 ⊆ S3 , (16)
ΣS

2 ∩ ΣS
3 ⊆ S3 . (17)

From (17) we immediately get that we can combine theories T2 and T3 into T2 ⊕ T3 which is polite
with respect to S2 ∪ (S3 \ ΣS

2). To be able to combine T1 with T2 ⊕ T3 we need to show that

ΣS
1 ∩ (ΣS

2 ∪ ΣS
3) ⊆ S2 ∪ (S3 \ ΣS

2) .
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This is in turn equivalent to

ΣS
1 ∩ ΣS

2 ⊆ S2 ∪ (S3 \ ΣS
2) , (18)

ΣS
1 ∩ ΣS

3 ⊆ S2 ∪ (S3 \ ΣS
2) . (19)

From (14) we immediately get (18). To show (19), it is sufficient to show both of the following

(ΣS
1 ∩ ΣS

3) ∩ ΣS
2 ⊆ S2 , (20)

(ΣS
1 ∩ ΣS

3) \ ΣS
2 ⊆ S3 \ ΣS

2 . (21)

Equation (20) follows directly from (14). Equation (21) is obtained by subtracting ΣS
2 from both

sides of (16). This proves that the right-associative combination T1 ⊕p (T2 ⊕p T3) is defined.
To show that the order of combination has no impact on the resulting sets of polite sorts, we

compute the sets for both cases. If we consider the combination T1 ⊕p (T2 ⊕p T3), we would first
get that T2 ⊕ T3 is polite with respect to S2 ∪ (S3 \ ΣS

2). Combining the resulting theory with T1

gives the final set of polite sorts

S1 ∪ (S2 ∪ (S3 \ ΣS
2)) \ ΣS

1 = S1 ∪ (S2 \ ΣS
1) ∪ (S3 \ (ΣS

1 ∪ ΣS
2)) . (22)

Combining in the other direction, we first get that T1 ⊕ T2 is polite with respect to S1 ∪ S2 \ ΣS
1.

Combining the result with T3 gives the set of sorts (22).

Lemma 4.1 gives us the associativity of ⊕p. The next lemma shows that we can also achieve
commutativity if both theories are polite with respect to at least the shared sorts.

Lemma 4.2. Let Ti be a Σi-theory polite with respect to the set of sorts Si ⊆ ΣS
i , for i = 1, 2. Then

the following are equivalent

1. T1 ⊕p T2 ↔p T2 ⊕p T1;

2. ΣS
1 ∩ ΣS

2 = S1 ∩ S2.

Proof. If both T1 ⊕p T2 and T2 ⊕p T1 are defined, then we can use either T1 or T2 as the polite
theory in the combination framework. This means that both ΣS

1∩ΣS
2 ⊆ S1 and ΣS

1∩ΣS
2 ⊆ S2, which

implies that ΣS
1 ∩ ΣS

2 = S1 ∩ S2. In the other direction, if ΣS
1 ∩ ΣS

2 = S1 ∩ S2 holds, then (1) is a
consequence of Corollary 3.9.

Now we give a general theorem for combining multiple theories in a sequential manner.

Theorem 4.3. Let Ti be a Σi-theory, for 1 ≤ i ≤ n. Assume that

• theories Ti have no function or predicate symbols in common;

• the quantifier-free satisfiability problem of Ti is decidable, for 1 ≤ i ≤ n;

• Ti is polite with respect to Si, for 1 ≤ i ≤ n;

• ΣS
i ∩ ΣS

j ⊆ Sj, for 1 ≤ i < j ≤ n.

Then the quantifier-free satisfiability problem for T = T1 ⊕ · · · ⊕ Tn is decidable. Moreover, the
resulting theory T is polite with respect to the set of sorts

S =
n⋃
j=1

Sj \ (
⋃
i<j

ΣS
i )

 .
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Proof. We prove the statement by induction on the number of theories n. In the base case, when
n = 2, this directly follows from Proposition 3.5 and Theorem 3.7, i.e. if we have that ΣS

1∩ΣS
2 ⊆ S2,

then we know how to devise the decision procedure for T1 ⊕ T2 using the algorithm from [7].
Moreover, the resulting theory is polite with respect to S1 ∪ (S2 \ ΣS

1).
Assume that the statement holds for n > 1 and consider the case for n + 1. By the inductive

hypothesis, we have that the theory T = T1 ⊕ · · · ⊕ Tn over the signature Σ = Σ1 ∪ . . . ∪ Σn is
decidable and polite with respect to

S =
n⋃
j=1

Sj \ (
⋃
i<j

ΣS
i )

 .

We have that ΣS
i ∩ ΣS

n+1 ⊆ Sn+1, for 1 ≤ i ≤ n. Taking the union of these we get that

(ΣS
1 ∪ . . . ∪ ΣS

n) ∩ ΣS
n+1 = ΣS ∩ ΣS

n+1 ⊆ Sn+1

Since quantifier-free satisfiability in both T and Tn+1 are decidable and the theories satisfy the
conditions of Proposition 3.5 and Theorem 3.7, we know that quantifier-free satisfiability is decidable
in the combination T ⊕Tn+1 = T1⊕· · ·⊕Tn+1. Furthermore, the combination is polite with respect
to the set

S =
n⋃
j=1

Sj \ (
⋃
i<j

ΣS
i )

 ∪ (Sn+1 \
n⋃
k=1

ΣS
k)

=
n+1⋃
j=1

Sj \ (
⋃
i<j

ΣS
i )

 .

This concludes the proof.

Example 4.4. Assume we have a theory of arrays Tarray,1 over the sorts

ΣS
array,1 = {array1, index1, elem} ,

as well as theories of arrays Tarray,k over the sorts

ΣS
array,k = {arrayk, indexk, arrayk−1} ,

for k ≥ 2. These theories represent different layers in the theory of n-dimensional arrays. The
theories satisfy the assumption of Theorem 4.3 and thus we can combine them into the full theory

Tarray = Tarray,1 ⊕ Tarray,2 ⊕ · · · ⊕ Tarray,n .

This theory is polite with respect to the union of all indices and elements

S = {index1, index2, . . . , indexn, elem} .

Note that, although we are combining theories in a straightforward fashion, we could not have
used Theorem 14 from [6] to achieve this combination, since the common intersection of the polite
sets of sorts is empty, and the pairwise intersection of sorts is not. More importantly, we are able
to easily deduce the politeness of the resulting theory.

We finish this section with a theorem that gives an easy complete method for checking whether
we can combine a set of theories in the framework of multiple polite theories.
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Theorem 4.5. Let T1, T2, . . . , Tn be pairwise signature-disjoint theories such that individual
quantifier-free Ti-satisfiability problems are decidable. The quantifier-free satisfiability problem of
T = T1 ⊕ · · · ⊕ Tn is decidable by iterating the polite combination method for two theories if and
only if there is a reordering of the theories Ti that satisfies the conditions of Theorem 4.3.

Proof. The if direction is obvious. In the other direction, assume there is a way to combine the
theories Ti using the framework. Then there exists some expression combining the Ti’s using ⊕p that
is defined. Using the associativity of ⊕p (from Lemma 4.1), we can transform the expression into a
sequential combination (· · · (Tp1 ⊕p Tp2)⊕p Tp3)⊕p · · ·⊕p Tn−1)⊕p Tn that satisfies the requirements
of Theorem 4.3.

5 Theory Instantiations

The way theories are defined in Definition 2.1 is meant to be general, i.e. the sorts can be interpreted
in any domain. But, sometimes we are interested in a variant of a theory obtained by identifying
some of the sorts. For example, consider a theory of arrays with elements and indices, i.e. ΣS

array =
{array, elem, index}. In practice, we often deal with a closely related theory of arrays in which the
indices and the elements are from the same sort. Note that these two theories are indeed different –
in the general theory of arrays, the well-sortedness prevents us from comparing indices with elements
(the term read(a, i) 6= i is not well-sorted, for example). We will call this merging of sorts theory
instantiation by sort equality.

Definition 5.1 (Signature Instantiation). Let Σ = (S, F, P ) be a signature. We call Σσ1=σ2
s =

(S′, F ′, P ′) a signature instantiation by sort equality σ1 = σ2, for sorts σ1, σ2 ∈ S and s /∈ S, if the
following holds:

• S′ = (S \ {σ1, σ2}) ∪ {s};

• F ′ contains the same function symbols as F except that we replace σ1 and σ2 with s in every
arity;

• P ′ contains the same predicate symbols as P except that we replace σ1 and σ2 with s in every
arity.

To enable the translation of formulas from the instantiated signature to the original signature and
vice versa, we will use the satisfiability-preserving (see Lemma 5.4) syntactic formula transformation
α that maps conjunctions of flat Σσ1=σ2

s -literals into formulas from the signature Σ. Given such a
conjunction φ =

∧
1≤k≤m lk, with varss(φ) = {v1, v2, . . . , vn}, we first introduce fresh variables vσ1

i

of sort σ1, and vσ2
i of sort σ2, for i = 1, . . . , n. The function α transforms the formula φ into

α(φ) ,
∧

1≤k≤m
αl(lk) ∧

∧
1≤i<j≤n

(
vσ1
i =σ1 v

σ1
j ↔ vσ2

i =σ2 v
σ2
j

)
,

The transformation αl acts on the individual literals as follows:

• Literals of the form x =σ y and x 6=σ y, where σ 6= s, are left unchanged.

• Literals of the form x =s y and x 6=s y are transformed into xσ1 =σ1 y
σ1 and xσ1 6=σ1 y

σ1

respectively.7

7The choice of σ1 over σ2 is arbitrary, as the right part of α(φ) will force the same on the dual variables.
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• Literals of the form x =σ f(y1, . . . , yn), where σ 6= s, are transformed into x =σ f(y∗1, . . . , y
∗
n).

The variables y∗i are taken to comply with the original arity of f in Σ, i.e.

y∗i =


yσ1
i if yi should be of sort σ1 in the arity of f in Σ,
yσ2
i if yi should be of sort σ2 in the arity of f in Σ,
yi otherwise.

• Literals of the form x =s f(y1, . . . , yn) are transformed into either xσ1 =σ1 f(y∗1, . . . , y
∗
n) or

xσ2 =σ2 f(y∗1, . . . , y
∗
n), depending on the sort of the co-domain of f in Σ.

• Literals of the form p(y1, . . . , yn) and ¬p(y1, . . . , yn) are transformed in a similar manner.

In the other direction, we define a transformation γV , where V is a set of variables of sort s,
from Σ-formulas to Σσ1=σ2

s -formulas, as follows

γV (φ) = φ ∧
∧
v∈V

(vσ1 = v ∧ vσ2 = v) .

In the new formula variables formerly of sort σ1 or σ2 are now of sort s.

Definition 5.2 (Theory Instantiation). Let Σ be a signature and T = (Σ,A) be a Σ-theory. We call
a theory T σ1=σ2

s = (Σσ1=σ2
s ,B) the theory instantiated by sort equality σ1 = σ2, for sorts σ1, σ2 ∈ ΣS

and s /∈ ΣS, when B ∈ B iff

• there exists an A ∈ A such that Bs = Aσ1 = Aσ2, and Bσ = Aσ for σ 6= s; and

• all the predicate and function symbols in Σσ1=σ2
s are interpreted in B exactly the same as they

are interpreted in A.

The above definition simply restricts the original theory structures to those in which the sorts
σ1 and σ2 are interpreted by the same domain. The lemma below shows that the result, T σ1=σ2

s , is
indeed a theory.

As we did with formulas, we define a transformation on structures (which we will also call α) that
maps Σσ1=σ2

s -interpretations into Σ-interpretations. Given a Σσ1=σ2
s -interpretation A, we construct

the transformed structure B = α(A) as follows. For sorts σ ∈ ΣS \ {σ1, σ2}, we define Bσ = Aσ.
For the sorts σ1 and σ2, we define Bσ1 = Bσ2 = As. The set of variables interpreted by B includes
all of those interpreted by A, without the variables of sort s, and we define vB = vA. Finally, since
Bσ1 = Bσ2 = As, we can simply define fB = fA and pB = pA for each function symbol f and
predicate symbol p. Additionally, it is clear that if A is a T σ1=σ2

s -interpretation, then α(A) will be
a T -interpretation.

Lemma 5.3. Let T and B be as in Definition 5.2, and let Ax be the set of closed Σ-formulas
that defines T . The class B is exactly the set of Σσ1=σ2

s -structures that satisfies the set of formulas
γ∅(Ax) = {γ∅(φ) | φ ∈ Ax}.

Proof. First, for every B ∈ B there is a Σ-structure A ∈ A such that A � Ax. By the definition of
γ, we also have B � γ∅(Ax). In the other direction, let B be a Σσ1=σ2

s -structure satisfying γ∅(Ax).
We define a Σ-structure A = α(B). It follows that A � Ax. This implies that A ∈ A and hence
B ∈ B.
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Our motivating example is the theory of arrays where we restrict the sorts elem and index to
be equal to each other and to bv, i.e. we are interested in the theory T bv

array = (Tarray)elem=index
bv . We

know that Tarray is polite with respect to the sorts elem and index. We want to know whether it is
also the case that T bv

array is polite with respect to the sort bv.
The main result of this section is to show that by merging two sorts σ1 and σ2 in a theory, we

preserve the politeness of the theory: the new theory will be polite with respect to the same set of
sorts as the original theory, modulo renaming of the instantiated sorts σ1 and σ2. Before proving
this, we need the following lemma.

Lemma 5.4. Let Σ be a signature such that σ1, σ2 ∈ ΣS and s /∈ ΣS, and φ be a conjunction of flat
Σσ1=σ2
s -literals. Furthermore, let S ⊆ ΣS be such that σ1, σ2 ∈ S and S′ = S \ {σ1, σ2} ∪ {s}. Then

the following are equivalent:

1. φ is satisfiable in a T σ1=σ2
s -interpretation A with |Aσ| = κσ for σ ∈ S′;

2. α(φ) is satisfiable in a T -interpretation B with |Bσ1 | = |Bσ2 | = κs, and |Bσ| = κσ for
σ ∈ S \ {σ1, σ2}.

Proof. Assume that φ is satisfiable in a T σ1=σ2
s -interpretation A with |Aσ| = κσ for σ ∈ S′. Let

B = α(A). Then it is easy to see that the domains of B have the required sizes and ∃−→v .α(φ)
will be satisfied by B, where v is the vector of fresh variables introduced by α. Hence there is an
interpretation B′ that satisfies α(φ) such that |B′σ1

| = |B′σ2
| = κs and |Bsigma| = κσ, σ ∈ S\{σ1, σ2}.

In the other direction, assume that α(φ) is satisfiable in a T -interpretation B with |Bσ| = κσ,
for σ ∈ S \ {σ1, σ2}, and |Bσ1 | = |Bσ2 | = κs. The domains Bσ1 and Bσ2 are of the same size κs.
They also agree on the arrangement of the dual variables of sorts σ1 and σ2 as α(φ) enforces it. Let
Vσ1 = varsσ1(α(φ)) and Vσ2 = varsσ2(α(φ)). Because α introduced these variables, and because α
enforces the same arrangement on on the dual variables, we have that [Vσ1 ]B = [Vσ2 ]B.

Now, let h : V Bσ1
7→ V Bσ2

be defined as follows

h((vσ1)B) , (vσ2)B .

This function is a bijection and is well-defined since B satisfies α(φ). Because |Bσ1 | = |Bσ2 |, we can
extend h to a full bijection hσ1 : Bσ1 7→ Bσ2 . Let hσ be the identity function for σ 6= σ1.

We use this family of functions to define an interpretation B′ isomorphic to B as follows. B′
interprets all the domains of the sorts σ 6= σ1, as B′σ = Bσ, and the domain of the sort σ1 as
B′σ1

= Bσ2 . For each variable v of sort σ, vB
′
, hσ(vB). For each function symbol f , we define

fB
′
(b1, . . . , bn) , hτn+1(fB(h−1

τ1 (b1), . . . , h−1
τn (bn))) where τi is chosen to match the ith sort in the

arity of f . Similarly, we define pB
′
(b1, . . . , bn) iff pB(h−1

τ1 (b1), . . . , h−1
τn (bn)). It is easy to see that the

resulting interpretation B′ is indeed isomorphic to B, and as a result, B′ is also a T -interpretation
and satisfies α(φ).

Finally, let A be a T σ1=σ2
s -interpretation obtained from B′ as in Definition 5.2 (i.e. Aσ = B′σ for

σ ∈ S′ \ {s}, As = B′σ1
= B′σ2

, and the function and predicate symbols are interpreted the same in
A as in B). It is easy to see that we have |Aσ| = κσ for σ ∈ S′. It remains to say how variables are
interpreted in A. For variables v of sort σ ∈ S′ \ {s}, we let vA = vB

′
. In addition, for each variable

v ∈ varss(φ), we let vA = (vσ1)B
′
. Note that because of the way B′ was constructed, we also have

vA = (vσ2)B
′
. Because A interprets the variables v of sort s in φ the same as both vσ1 and vσ2 in

B′ , A interprets everything else exactly the same as in B′, and because B′ satisfies α(φ), it follows
that A satisfies φ.

Now we can prove the main theorem.

22



Theorem 5.5. Let Σ be a signature, σ1, σ2 ∈ ΣS, and s /∈ ΣS. If Σ-theory T is polite with respect
to S, where σ1, σ2 ∈ S and s /∈ S, then T σ1=σ2

s is polite with respect to S′ = S \ {σ1, σ2} ∪ {s}.
Furthermore, if witness is a witness function for theory T , then an acceptable witness function for
T σ1=σ2
s is

witnessσ1=σ2
s (φ) = (γvarss(φ) ◦ witness ◦ α)(φ) .

Proof. First we show that T σ1=σ2
s is smooth with respect to S′. Let φ be a conjunction of flat

Σσ1=σ2
s -literals satisfiable in a T σ1=σ2

s -structure A. We are given cardinalities κσ ≥ |Aσ|, for σ ∈ S′.
By Lemma 5.4 we know that α(φ) is satisfiable in a T -interpretation B such that |Bσ| = |Aσ|, σ ∈
S′ \ {s}, and |Bσ1 | = |Bσ2 | = |As|. By smoothness of T there is a T -interpretation B′ that satisfies
α(φ), such that |B′σ| = κσ, for σ ∈ S′ \ {s}, and |B′σ1

| = |B′σ2
| = κs. Then, applying Lemma 5.4 one

more time (in the other direction), we get that φ is satisfiable in a T σ1=σ2
s -interpretation A′ such

that |A′σ| = κσ, for σ ∈ S′, which proves smoothness.
Next, we need to show that T σ1=σ2

s is also finitely witnessable. Let φ be a conjunction of flat
T σ1=σ2
s -literals. Because T is finitely witnessable with respect to S, it has a witness function witness.

We define the witness function of the instantiated theory as

witnessσ1=σ2
s (φ) = (γvarss(φ) ◦ witness ◦ α)(φ) .

Among the fresh variables introduced by witnessσ1=σ2
s we will distinguish −→w , the fresh variables

introduced by witness, and −→v σ1 and −→v σ2 , the fresh variables introduced by transformation α (i.e.
the variables vσ1 and vσ2 , corresponding to variables v ∈ varss(φ)).

First we need to show that if ψ = witnessσ1=σ2
s (φ), then ∃−→v σ1∃−→v σ2∃−→w .ψ and φ are T σ1=σ2

s -
equivalent. This follows from the equivalence of the following statements:

A � φ
α(A){−→v σ1 ← −→v A,−→v σ2 ← −→v A} � α(φ) (definition of α)

α(A){−→v σ1 ← −→v A,−→v σ2 ← −→v A} � ∃−→w .witness(α(φ)) (T finitely witnessable)

α(A){−→v σ1 ← −→v A,−→v σ2 ← −→v A,−→w ← −→a } � witness(α(φ))

A{−→v σ1 ← −→v A,−→v σ2 ← −→v A,−→w ← −→a } � γvarss(φ)(witness(α(φ))) (definition of γ)

A � ∃−→v σ1∃−→v σ2∃−→w .ψ

To show that the defined witness function satisfies the second requirement of Definition 3.2, let

E = { Eσ | σ ∈ S′ }

be a family of equivalence relations over a set V of variables with sorts in S′, and δV (E) be the
arrangement induced by E . Now, assume that there is a T σ1=σ2

s -interpretation A such that

A �
ψ︷ ︸︸ ︷

(γvarss(φ) ◦ witness ◦ α)(φ) ∧ δV (E) .

For convenience, we will let ψ′ = (witness ◦ α)(φ) (so that ψ = γvarss(φ)(ψ′)). As in the proof of
Theorem 3.7 (page 14), we can assume wlog that varsS′(ψ) ⊆ V , i.e. the arrangement δV (E) covers
all the variables of ψ with sorts in S′ . We will make use of the following sets of variables:

• Vs = varss(V )

• Vφ = varss(φ)
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• Vα = superscripted variables in α(φ) introduced by α (i.e. vσ1 and vσ2 for each v ∈ Vφ).

• Ws = variables of sort σ1 or σ2 in ψ′ introduced by the witness function for T .

• ∆s = Vs \ (Vφ ∪ Vα ∪Ws)

Note that because γ reinterprets variables of sorts σ1 and σ2 as variables of sort s, all of the
variables in the above sets are of sort s in the formula ψ ∧ δV .

The definition of γ also guarantees that, for all v ∈ Vφ, the variables v, vσ1 , and vσ2 must be
equal in A and (since A also satisfies δV ) belong to the same equivalence class in Es. We can thus
construct a new family of equivalence relations E ′ in which the variables from Vα do not appear,
while keeping the same number of equivalence classes for each sort. Concretely, let

V ′s = Vs \ Vα ,

E′σ =

{
Eσ for σ 6= s ,

Es ∩ V ′s × V ′s for σ = s ,

E ′ = { E′σ | σ ∈ S′ } .

Also, let V ′ = V \Vα, and for an equivalence relation E, let Q(E) denote the quotient set of E (i.e.
the set of all equivalence classes in E). It is clear that A � ψ ∧ δV ′(E ′) and |Q(Eσ)| = |Q(E′σ)| for
each σ ∈ S′.

In order to switch to reasoning in the signature Σ (as opposed to Σσ1=σ2
s ), we need to modify

the equivalence relations so that variables of different sorts (when considered in the signature Σ)
are not in the same equivalence class (so that the induced arrangement is well-sorted). To this end,
we define the variable mappings βσ1 and βσ2 as follows. For v ∈ V ′s ,

βσ1(v) =


vσ1 if v ∈ Vφ ,

v if v ∈Ws and v is of sort σ1 ,

v′ if v ∈Ws and v is of sort σ2 ,

v if v ∈ ∆s

βσ2(v) =


vσ2 if v ∈ Vφ ,

v′ if v ∈Ws and v is of sort σ1 ,

v if v ∈Ws and v is of sort σ2 ,

v′ if v ∈ ∆s

In the above, the primed variables v′ are to be understood as fresh variables of the appropriate sort.
In addition, we (arbitrarily) choose to interpret variables in ∆s to be of sort σ1 when working in
Σ. Note that both functions are injective. The purpose of these mappings is to ensure that every
variable in V ′ has some corresponding variable of sorts σ1 and σ2 when working in Σ. We can now
construct a new family of equivalence relations as follows. First, let

E′′σ1
= { (βσ1(v1), βσ1(v2)) | (v1, v2) ∈ E′s } ,

E′′σ2
= { (βσ2(v1), βσ2(v2)) | (v1, v2) ∈ E′s } ,

For the other sorts σ ∈ S\{σ1, σ2}, we simply let E′′σ = E′σ = Eσ. We then set E ′′ = { E′′σ | σ ∈ S }.
Let V ′′ be the set of variables appearing in E ′′. Note that as desired, variables in the same equivalence
class have the same sort. In addition, with the exception of the variables in Vφ, all variables
appearing in E ′ also appear in E ′′. The fresh primed variables are used just as temporary place-
holders of the appropriate sort. It is easy to see that the number of equivalence classes is preserved,
i.e. |Q(E′′σ1

)| = |Q(E′′σ2
)| = |Q(E′s)| = |Q(Es)|.

Now, it is not hard to construct a T -interpretation B starting from A such that

B � ψ′ ∧ δV ′′(E ′′) .
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We do this as follows. The domains of the Σ-structure B will mimic those in A, except that
Bσ1 = Bσ2 = As. We also keep the same interpretations of all function and predicate symbols,
while moving back to the original signature, and hence use the new domains where necessary. It
follows that B is a T -structure. We interpret the variables of sorts in S \ {σ1, σ2} as they were, and
the variables of sorts σ1 and σ2 as (βσ1(v))B = (βσ2(v))B = (v)A. By the definition of γ and due to
the way we constructed E ′′, it is clear that ψ′ ∧ δV ′′(E ′′) is indeed satisfied by B.

Now we can apply the finite witnessability of T to obtain a T -interpretation C satisfying ψ′ ∧
δV ′′(E ′′) such that for all σ ∈ S we have

Cσ =
[
varsσ(ψ′ ∧ δV ′′(E ′′))

]C
.

Since all of the variables in ψ′ are also in V ′′, we have that

|Cσ1 | = |Cσ2 | = |Q(E′′σ1
)| = |Q(E′′σ2

)| = |Q(E′s)| = |Q(Es)| .

Similarly, for σ ∈ S \ {σ1, σ2}, |Cσ| = |Q(Eσ)|. Now, define gσ1 : Q(E′s) 7→ Cσ1 as gσ1([v]) =
(βσ1(v))C . This is well-defined since C satisfies δV ′′(E ′′). For the same reason, gσ1 is injective.
Finally, it must be surjective because |Q(E′s)| = |Cσ1 |. Define the bijection gσ2 similarly.

Now, let h : Cσ1 7→ Cσ2 = gσ2 ◦ g−1
σ1

. Clearly, h is a bijection. As in the proof of Lemma 5.4, we
can extend h to a family of bijections that forms an isomorphism into a T -interpretation D such
that:

• for σ ∈ S \ {σ1, σ2}, Dσ = Cσ ,

• Dσ1 = Dσ2 = Cσ2 ,

• for v ∈ varsσ1(V ′′), vD = h(vC) ,

• for v ∈ V ′′ \ varsσ1(V ′′), vD = vC ,

• D � ψ′ ∧ δV ′′(E ′′) .

Note that for v ∈ V ′s , we have:

(βσ1(v))D = h((βσ1(v))C) = (βσ2(v))C = (βσ2(v))D (23)

Finally, we construct a T σ1=σ2
s -structure F from D by using the construction of Definition 5.2.

We interpret in F only the variables v ∈ V as follows:

vF =

{
(vσ2)D if v ∈ Vφ ,

vD otherwise .

We also claim that for v ∈ V ′s ,
vF = (βσ2(v))D . (24)

This follows easily from the definition for v ∈ Vφ. Otherwise, we have vF = vD with v ∈ Ws ∪∆s.
But notice that in this case we know that either βσ1 or βσ2 is the identity function. The claim (24)
then follows from (23).

Since interpretations in F follow those in D except for variables in Vφ, and since no variables
from Vφ appear in ψ′ ∧ δV ′′(E ′′), it should be clear that F � γ∅(ψ′ ∧ δV ′′(E ′′)). Furthermore, for
v ∈ Vφ, we have

vF = (vσ2)D ,

(vσ2)F = (vσ2)D ,

(vσ1)F = (vσ1)D = (βσ1(v))D = (βσ2(v))D = (vσ2)D,
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and thus
F � vσ1 = v ∧ vσ2 = v . (25)

It follows that F � ψ. It remains to show that F � δV (E). Recall that for each v ∈ Vφ, we know
that v, vσ1 , and vσ2 must all be in the same equivalence class in E . It follows that if F � δV ′(E ′),
then by (25), we will have F � δV (E).

To show F � δV ′(E ′), consider a pair of variables v1, v2 ∈ V ′. Suppose the sorts of v1 and
v2 are σ 6= s. We know that E′σ = E′′σ, so (v1, v2) ∈ E ′ iff (v1, v2) ∈ E ′′ iff F � v1 = v2 (since
F � γ∅(δV ′′(E ′′)) and γ has no effect in this case).

Finally, suppose that v1, v2 have sort s, so that v1, v2 ∈ V ′s . We have

(v1, v2) ∈ E ′ iff (βσ2(v1), βσ2(v2)) ∈ E ′′ by def of E ′′ and since βσ2 is injective
iff ((βσ2(v1))D = (βσ2(v2))D since D � δV ′′(E ′′)
iff vF1 = vF2 by (24)

Thus, F � ψ ∧ δV (E).
The last step is to show that Fσ = [varsσ(ψ ∧ δV (E))]F , for σ ∈ S′. Since varsS′(ψ) ⊆ V , it

suffices to show that Fσ = [varsσ(δV (E))]F . For this to hold, it suffices to know that |Fσ| = |Q(Eσ)|.
For σ 6= s, we have that |Fσ| = |Dσ| = |Cσ| = |Q(Eσ)|. Similarly, we have |Fs| = |Dσ2 | = |Cσ2 | =
|Q(Es)|. This concludes the proof.

Example 5.6. Consider again example 4.4, i.e. we have a theory of arrays Tarray that operates over
the sorts

ΣS = {array1, . . . , arrayn, index1, . . . indexn, elem1}

and is polite with respect to the index and element sorts

ΣS = {index1, . . . indexn, elem1} .

Using Theorem 5.5, we can now safely replace the sorts index1, index2 and elem1 with the sort of bit-
vectors bv, obtaining a theory Tarray(bv) of n-dimensional arrays where the elements and the indices
are of the same bit-vector sort. This theory Tarray(bv) of arrays over bit-vectors is polite with respect
to the sort bv, and therefore we can safely combine it with the theory of bit-vectors Tbv.

Using the combination method for polite theories, we can therefore get a sound and complete
decision procedure for deciding the the theory of n-dimensional arrays over bit-vectors, given a
decision procedure and witness function for the theory of arrays Tarray and a decision procedure for
the theory of bit-vectors Tbv.

Theorem 4.5 together with Theorem 5.5 give a practical modular approach for reasoning about
and deciding combinations of polite theories.

6 Conclusion

One of the crucial issues in the development of verification systems is the problem of combining
decision procedures. Nelson and Oppen laid the foundation for the most commonly used framework,
but their approach is limited by the requirement that the theories involved be stably-infinite. In
this paper we revisited the problem of modular combination of non-stably-infinite theories in a
many-sorted setting, using the previously introduced [7] notion of polite theories.

We corrected the definition of polite theories that made the combination method incomplete.
Then we gave several new results that can be used to construct new polite theories from existing
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ones. These results led to a general combination result for multiple polite theories. Our result is
not only applicable to a broader class of theories, but also precisely describes the politeness of the
resulting theory.

In future work, we plan to investigate the politeness of other common theories including general
theories of inductive data-types [1]. We also are interested in finding efficient witness functions
that minimize the number of variables that need to be considered in the arrangement shared by all
theories.
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A Flat Literals

When proving that a Σ-theory is smooth or finitely witnessable with respect to a set of sorts S,
we can restrict ourselves to conjunctions of flat Σ-literals. The following two lemmas show that
this can indeed be done without loss of generality. The proofs are simple and already presented
in [7], but we reiterate them here since they are affected by the change in the definition of finite
witnessability.

Lemma A.1. Let Σ be a signature, let S ⊆ ΣS be a set of sorts, and let T be a Σ-theory. Assume
that:

• for every T -satisfiable conjunction of flat Σ-literals ψ,

• for every T -interpretation A satisfying ψ,

• for all choices of cardinal numbers κσ, such that κσ ≥ |Aσ| for all σ ∈ S,

there exists a T -interpretation B satisfying ψ such that |Bσ| = κσ, for all σ ∈ S. Then T is smooth
with respect to S.

Proof. Assume that a quantifier-free Σ-formula φ is satisfiable in a T -interpretation A and we are
given cardinal numbers κσ, such that κσ ≥ |Aσ| for all σ ∈ S. We can transform φ into its disjunctive
normal form DNF (φ) = ψ1 ∨ . . . ∨ ψm. Since φ and DNF (φ) are equivalent, T -interpretation A
will satisfy one of the disjuncts ψk, for some 1 ≤ k ≤ m. We can transform ψk into a conjunction
of flat literals ψ by introducing fresh variables −→v , such that ψk is logically equivalent to ∃−→v .ψ. It
follows that there exists a T -interpretation A′ equivalent to A except in its interpretation of −→v such
that A′ satisfies ψ.

From here, we use the assumptions to obtain a new T -interpretation B satisfying ψ such that
|Bσ| = κσ, for all σ ∈ S. B will also satisfy ∃−→v .ψ and, by equivalence, also ψk, DNF (φ) and φ.
This shows that T is smooth with to respect to S.

Lemma A.2. Let Σ be a signature, let S ⊆ ΣS be a set of sorts, and let T be a Σ-theory. Assume
there exists a computable function, witnessF , which, for every conjunction of flat Σ-literals φ, returns
a quantifier-free Σ-formula ψ = witnessF (φ) such that

• φ and (∃−→w )ψ are T -equivalent, where −→w = vars(ψ) \ vars(φ) are fresh variables;

• if ψ ∧ δV is T -satisfiable, for an arrangement δV , where V is a set of variables of sorts in S,
then there exists a T -interpretation A satisfying ψ ∧ δV such that Aσ = [varsσ(ψ ∧ δV )]A, for
all σ ∈ S.

Then T is finitely witnessable with respect to S.

Proof. We want to define a witness function witness on all quantifier-free Σ-formulas by using the
function witnessF as a black box. Let φ be a quantifier-free Σ-formula, we compute witness using
the following steps
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1. convert φ into a T -equivalent disjunctive normal form DNF (φ) = ψ1 ∨ . . . ψm;

2. transform each disjunct ψi into a conjunction of flat Σ-literals ψ′i by introducing fresh variables;

3. let witness(φ) = witnessF (ψ′1) ∨ . . . ∨ witnessF (ψ′m).

If −→v i are the fresh variables introduced by flattening ψi, we know that ψi and ∃−→v i.ψ′i are
logically equivalent. Since ψ′i is T -equivalent to ∃−→w i.witnessF (ψ′i), where −→w i are the fresh variables
introduced by applying the witness function, we can conclude that ∃−→v i∃−→w i.witnessF (ψ′i) is T -
equivalent to ∃−→v i.ψ′i, and hence also T -equivalent to ψi. Since we can move existential quantifiers
over disjunctions (maintaining logical equivalence), we can also conclude that φ is T -equivalent to
∃−→v 1∃−→w 1 . . . ∃−→v m∃−→wm.witness(φ). This proves the first requirement of the witness function.

For the second requirement, let ψ = witness(φ) and assume that ψ ∧ δV is T -satisfiable in a
T -interpretation A, for an arrangement δV , where V is a set of variables of sorts in S. This implies
that one of the disjuncts, say witnessF (ψ′k), together with δV , is satisfied in A, for some 1 ≤ k ≤ m.
Of course, it is likely the case that varsS(witnessF (ψ′k) ∧ δV ) does not include all the variables
present in varsS(ψ ∧ δV ), but we can add the missing variables to our arrangement δV 8, while
keeping compatibility with A, thus obtaining a stronger arrangement δ′.

Using the assumptions we can therefore get a T -interpretation B that satisfies witnessF (ψ′k)∧ δ′
such that

Bσ =
[
varsσ(witnessF (ψ′k) ∧ δ′)

]B = [varsσ(witness(φ) ∧ δV )]B ,

for all σ ∈ S. Since δ′ includes δV , B will also satisfy witnessF (ψ′k)∧δV , and hence also witness(φ)∧
δV . This proves that T is indeed finitely witnessable.

8This is the reason why the definition of finite witnessability includes the arrangement over an arbitrary set of
variables V instead of just an arrangement over varsS(ψ2).
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