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BDDC ALGORITHMS WITH DELUXE SCALING AND

ADAPTIVE SELECTION OF PRIMAL CONSTRAINTS FOR

RAVIART-THOMAS VECTOR FIELDS

DUK-SOON OH, OLOF B. WIDLUND, STEFANO ZAMPINI, AND CLARK R. DOHRMANN

Abstract. A BDDC domain decomposition preconditioner is defined by a
coarse component, expressed in terms of primal constraints, a weighted average
across the interface between the subdomains, and local components given in
terms of solvers of local subdomain problems. BDDC methods for vector field
problems discretized with Raviart-Thomas finite elements are introduced. The
methods are based on a new type of weighted average and an adaptive selection
of primal constraints developed to deal with coefficients with high contrast even
inside individual subdomains. For problems with very many subdomains, a
third level of the preconditioner is introduced.

Under the assumption that the subdomains are all built from elements of
a coarse triangulation of the given domain, and that the material parameters
are constant in each subdomain, a bound is obtained for the condition num-
ber of the preconditioned linear system which is independent of the values
and the jumps of these parameters across the interface between the subdo-
mains. Numerical experiments, using the PETSc library, are also presented
which support the theory and show the effectiveness of the algorithms even
for problems not covered by the theory. Included are also experiments with
Brezzi-Douglas-Marini finite element approximations.

TR2015-978

1. Introduction

Let Ω be a bounded Lipschitz domain in R3. We will work with the Hilbert
space H(div; Ω), which is the subspace of vector valued functions u ∈ (L2(Ω))3

with divu ∈ L2(Ω). The space H0(div; Ω) is the subspace of H(div; Ω) with a
vanishing normal component on the boundary ∂Ω.

We will consider the following problem: Find u ∈ H0(div; Ω) such that

(1.1) a(u,v) :=

∫

Ω

(α divu divv + β u · v)dx =

∫

Ω

f · v dx, ∀v ∈ H0(div; Ω).

We will assume that the coefficient α is a bounded, nonnegative function, that β is
a strictly positive, bounded function, and that the right-hand side f ∈ (L2(Ω))3.
We note that the norm of u ∈ H(div; Ω) for a domain with a unit diameter is given

by (a(u,u))
1/2

with α = 1 and β = 1.
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The bilinear form (1.1) arises from the boundary value problem:

(1.2)
Lu := −grad (α divu) + β u = f in Ω,

u · n = 0 on ∂Ω.

Here, n is the outward unit normal vector of ∂Ω. The boundary value problem (1.2)
is equivalent to a mixed formulation of a first order system least-squares problem
as in [15]. There are also other applications related to the H(div) space, e.g.,
in iterative solvers for the Reissner-Mindlin plate, the sequential regularization
method for the Navier-Stokes equations, and, possibly most importantly, mixed
formulations of flow in porous media or Brinkman equations. For more details,
see [5, 6, 46, 77].

Domain decomposition methods of iterative substructuring type for solving large
linear algebraic systems originating from elliptic partial differential equations have
been studied extensively; see [70]. Among these methods, the balancing Neumann-
Neumann (BNN) and the finite element tearing and interconnecting (FETI) al-
gorithms have proven quite successful; see, e.g., [25, 27, 28, 41, 49]. The balancing
domain decomposition by constraints (BDDC) methods, introduced in [19], are
modified BNN methods with a global component of the preconditioner determined
by a set of primal continuity constraints between the subdomains. For a pioneering
analysis for scalar elliptic problems, see [50, 51].

The BDDC methods are closely related to the dual-primal FETI (FETI-DP)
methods [26, 54] as are the earlier BNN methods to the one-level FETI methods;
see [29]. Thus, the spectra relevant to the performance of a BDDC and a FETI-
DP algorithm will be the same, except possibly for eigenvalues of 0 and 1, for the
same set of primal constraints; see [13,45,51]. Hence, we can use results for BDDC
methods to obtain results for FETI-DP methods and vice versa.

The main purpose of this paper is to construct and analyze a BDDC precon-
ditioner for vector field problems discretized with Raviart-Thomas finite elements.
Iterative substructuring methods for Raviart-Thomas problems were first consid-
ered in [80] and we will use several auxiliary results from that study in the analysis
of our method. BNN, FETI, and FETI-DP methods for these problems were de-
veloped in [65, 68, 69]. Overlapping Schwarz methods have also been introduced
for vector field problems; see [5, 30, 57, 58, 66]. Other methods such as multigrid
methods have been applied successfully in [7, 33, 40].

BDDC methods have also been widely extended to other problems such as flow in
porous media in [71, 72], incompressible Stokes equations in [44], Reissner-Mindlin
plate models in [9, 42], advection-diffusion problems in [76], and Helmholtz equa-
tions in [43]. Multilevel BDDC methods were introduced in [19,64,73–75] and other
discretization methods, e.g., spectral element methods and discontinuous Galerkin
methods, have been considered in [24,60,61]. Recently, there has also been pioneer-
ing work on isogeometric element problems, see [10,11]. We will explore the use of
three-level BDDC, which was first successfully studied in [73–75] for other elliptic
problems.

In the construction of a BDDC preconditioner, a set of primal constraints and a
weighted averaging technique have to be chosen and these choices will very directly
affect the rate of convergence. Effective primal constraints are very simple to find for
the Raviart-Thomas elements; we primarily need a no-net-flux condition across each
subdomain boundary. However, for problems with coefficients with large contrast,
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additional primal constraints are sometimes very useful. We will adaptively select
the primal constraints to deal with such coefficients as pioneered in [62]. For recent
work in this field, see also [18, 35, 36, 52, 53].

The choice of averaging proves to be intricate. We will use a new type of weighted
averaging technique, called deluxe scaling, introduced in [22] for three dimensional
H(curl) problems. The deluxe scaling technique allows us to reduce the analysis to
individual subdomains. Hence, a finite element extension theorem, which is needed
in the analysis of other averaging techniques as in [38], is no longer needed.

In several previous studies on domain decomposition methods for vector field
problems, [65,68,69,80], the bound on the condition number of the preconditioned
linear system depends on the ratio of the coefficients α and βH2 where H is the di-
ameter of the subdomain. Such results have been developed for a BDDC algorithm
for three-dimensional problems in H(curl); see [22] as well as [67]. This limita-
tion has been removed in several recent studies. Among them is a paper on an
iterative substructuring method for two-dimensional problems posed in H(curl),
see [21]. In more recent work results have been obtained for BDDC deluxe and over-
lapping Schwarz algorithms again for two-dimensional problems posed in H(curl),
see [16, 17]. An overlapping Schwarz method for three-dimensional H(div) prob-
lems has also been developed, see [58]. In that work, two sets of inequalities were
developed to handle the mass-dominated and the divergence-dominated cases, re-
spectively.

We know of no previous full analysis of BDDC or FETI-DP type methods for
three-dimensionalH(div) problems; see [59] for an announcement of some of our re-
sults. We are able to provide BDDC methods with an upper bound on the condition
number which is independent of the values and the jumps of the coefficients across
the interface and to obtain condition number bounds which are polylogarithmic in
the number of degrees of freedom of the individual subdomains or only depend on
a tolerance parameter used for an adaptive selection of primal constraints. While
we are developing and testing our algorithms for quite general subdomains and ma-
terial parameters, our proofs are restricted to subdomains which each is a union of
a finite number of coarse elements and with material parameters constant in each
subdomain.

The rest of this paper is organized as follows. In section 2, we introduce some
standard Sobolev spaces, a finite element approximation based on Raviart-Thomas
elements, and decompositions of the interface spaces. We introduce our BDDC
algorithms for an interface problem and define various operators used to describe
the algorithms in section 3; in its last subsection, we introduce adaptive 3-level
BDDC. We next provide some auxiliary results and a proof of our main result
in section 4. Finally, section 5 contains results of numerical experiments, which
extend our findings to irregular subdomains obtained by mesh partitioners. Our
algorithm is also shown to perform well for higher order Raviart-Thomas elements
and Brezzi-Douglas-Marini (BDM) elements; cf. [14].

2. Function and finite element spaces

2.1. Continuous spaces. We will use the Sobolev spaces H1(Ω) and its trace
space H1/2(∂Ω), equipped with their norms and semi-norms for bounded domains.
The domains and the subdomains into which they are partitioned are assumed to
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be Lipschitz. Let H be the diameter of Ω. Then,

‖u‖
2
1;Ω := |u|

2
1;Ω +

1

H2
‖u‖

2
0;Ω , ‖u‖

2
1/2;∂Ω := |u|

2
1/2;∂Ω +

1

H
‖u‖

2
0;∂Ω ,

where the L2-norm ‖ · ‖0;Ω and the semi-norms | · |1;Ω and | · |1/2;∂Ω are defined by

‖u‖20;Ω :=
∫
Ω
|u|2 dx, |u|21;Ω :=

∫
Ω
|∇u|2 dx, and

|u|21/2;∂Ω :=

∫

∂Ω

∫

∂Ω

|u(x)− u(y)|2

|x− y|3
dxdy,

respectively. The weights for the L2−terms result from the standard definitions of
the norms for a domain of diameter 1 and a dilation. We can also easily extend
these definitions to vector-valued cases.

The space H(div ; Ω) is defined by

H(div ; Ω) := {u ∈ (L2(Ω))3 | divu ∈ L2(Ω)}

with the scaled graph norm:

‖u‖
2
div;Ω := ‖divu‖

2
0;Ω +

1

H2
‖u‖

2
0;Ω .

The normal component on the boundary ∂Ω of any u ∈ H(div; Ω) belongs to
H−1/2(∂Ω); see [14, 55]. The norm for the space H−1/2(∂Ω) is given by

‖u · n‖−1/2;∂Ω := sup
φ∈H1/2(∂Ω),φ 6=0

〈u · n, φ〉

‖φ‖1/2;∂Ω
,

where the angle brackets stand for the duality product ofH−1/2(∂Ω) andH1/2(∂Ω).
We have the following trace theorem.

Lemma 2.1. There exists a constant C, which is independent of the diameter of
Ω, such that, for all u ∈ H(div; Ω),

‖u · n‖
2
−1/2;∂Ω ≤ C(H2 ‖divu‖

2
0;Ω + ‖u‖

2
0;Ω).

Proof. This follows directly from Green’s formula on a domain of unit diameter and
by applying a dilation; see [80, Lemma 2.1]. �

In developing our theory, we also need to work with the H(curl ; Ω) space defined
by

H(curl ; Ω) := {u ∈ (L2(Ω))3 | curlu ∈ (L2(Ω))3}

with the scaled graph norm:

‖u‖
2
curl;Ω := ‖curlu‖

2
0;Ω +

1

H2
‖u‖

2
0;Ω .

We finally introduce H1
0 (Ω), H0(div ; Ω), and H0(curl ; Ω) as the subspaces of

H1(Ω), H(div ; Ω), and H(curl ; Ω) with a vanishing boundary value, a vanishing
normal component, and a vanishing tangential component on ∂Ω, respectively.

Remark 2.2. The curl operator for two dimensions is just a simple rotation of the
divergence operator. In two dimensions, we therefore can use results for H(div ; Ω)
to obtain results for H(curl ; Ω) and vice versa.
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2.2. Finite element spaces. In this paper, we will develop our theory for tetrahe-
dral elements but we note that our results are equally valid for hexahedral elements.
We remark that there are many useful tools, developed for such elements in [80],
that can easily be modified for tetrahedral elements.

We first introduce a triangulation Th of Ω into tetrahedral elements. We then
decompose the domain Ω into N nonoverlapping subdomains Ωi of diameter Hi.
We assume that each subdomain Ωi is a union of elements of the triangulation
Th and that each Ωi is simply connected and has a connected boundary. We also
assume that the triangulation Th is shape regular with nodes matching across the
interface between the subdomains. The smallest diameter of the elements of Ωi is
denoted by hi. In our estimates, we will use the fraction H/h to denote

H/h := max
1≤i≤N

{Hi/hi} .

We also define the interface Γ by

Γ :=

(
N⋃

i=0

∂Ωi

)
\∂Ω

and the local interfaces Γi by

Γi := Γ ∩ ∂Ωi.

For our analysis, we will consider the lowest order Raviart-Thomas elements
on the mesh Th; see [14, Chapter 3] and [56]. The Raviart-Thomas elements are
conforming in H(div ; Ω) and those of lowest order are defined by

W := {u | u|K ∈ RT (K),K ∈ Th and u ∈ H(div ; Ω)},

where the shape function RT (K) is given by four scalar parameters

RT (K) :=




a1
a2
a3


 + b




x
y
z




for a tetrahedral element. The degrees of freedom for an element K in Th are given
by

λf (u) :=
1

|f |

∫

f

u · n ds, f ⊂ ∂K,

i.e., the average values of the normal components over the faces of the element.
These four values determine a1, a2, a3, and b. A basis function of the lowest or-
der Raviart-Thomas element space is supported in two elements of Th, with the
value of the normal component on a face equal to 1 for one of the elements and
−1 for the other, while vanishing on all other faces. While our analysis will be
limited to the lowest order Raviart-Thomas elements, we will consider higher order
Raviart-Thomas elements and BDM elements in our experiments; such elements
have additional degrees of freedom corresponding to moments over elements faces
of the normal component and as well as degrees of freedom of the element interiors.
For details, see [14].

The l2−norm of the vector of the coefficients λf (u) can be used to estimate the
L2−norm of u and of its divergence; the proof of the following lemma is elementary
and a simple modification of [63, Proposition 6.3.1]. See also [80, Lemma 3.1].
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Lemma 2.3. Let K ∈ Th. Then, there exist strictly positive constants, c and C,
depending only on the aspect ratio of K, such that for all u ∈W,

c
∑

f⊂∂K

h3fλf (u)
2 ≤ ‖u‖20;K ≤ C

∑

f⊂∂K

h3fλf (u)
2

and
‖divu‖20;K ≤ C

∑

f⊂∂K

hfλf (u)
2 ,

where hf is the diameter of f .

The following lemma follows directly from Lemma 2.3.

Corollary 2.4 (inverse inequality). Let K ∈ Th. Then, there exists a constant C,
depending only on the aspect ratio of K, such that for all u ∈W,

(2.1) hK ‖divu‖0;K ≤ C ‖u‖0;K ,

where hK is the diameter of K.

We also need Ŵ0, a finite element subspace of H0(div ; Ω):

Ŵ0(Ω) :=W (Ω) ∩H0(div ; Ω).

We will now consider the variational problem (1.1). We obtain the stiffness

matrix A by restricting this problem to Ŵ0; A is symmetric and positive definite.
When developing our theory, we will need several additional spaces. Let S be

the space of continuous, piecewise linear functions on the tetrahedral elements, and
let S0 be the subspace of elements of S which vanish on ∂Ω. Let Q be the space
of piecewise constant functions on the same elements. Finally, let X be the space
of the lowest order Nédélec elements. We recall that the Lagrange P1, Raviart-
Thomas, and Nédélec spaces are conforming finite element spaces in H1, H(div),
and H(curl), respectively.

Let Vh and Fh be the set of vertices and faces of Th, respectively. The interpola-
tion operators Ih, and ΠRT

h for sufficiently smooth functions u ∈ H1 and v ∈ H(div)
onto S and W , respectively, are defined as follows:

Ihu :=
∑

p∈Vh

u(p)φPp and ΠRT
h v :=

∑

f∈Fh

λf (v)φ
RT
f ,

where φPp and φRT
f are the basis functions of the P1 and Raviart-Thomas spaces

associated with the node p and the element face f , respectively. We also denote by
Πh the L2−projection operator onto Q.

We finally recall the following error estimate for the Raviart-Thomas interpola-
tion operator and a commuting property.

Lemma 2.5. For any u ∈ (H1(Ω))3, we have
∥∥u−ΠRT

h u
∥∥
0;Ω

≤ Ch |u|1;Ω .

Proof. See [12, Lemma 5.5]. �

Lemma 2.6. Let u be sufficiently regular. Then, the following commuting property
holds:

(2.2) div
(
ΠRT

h u
)
= Πh (divu) .

Proof. See [12, Property 5.3]. �
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We note that property (2.2) is a part of the discrete de Rham diagram described,
e.g., in [55, section 5.7].

2.3. The discrete problem. The description of the BDDC algorithm and its
analysis require the introduction of several spaces. Let W (i) be the space of the
lowest order Raviart-Thomas finite elements on Ωi with a zero normal component

on ∂Ω ∩ ∂Ωi. We decompose W (i) into two subspaces, an interior space W
(i)
I and

an interface spaceW
(i)
Γ . The interface spaceW

(i)
Γ is then decomposed into a primal

space W
(i)
Π and a dual space W

(i)
∆ . Hence, we have the following decompositions:

W (i) :=W
(i)
I ⊕W

(i)
Γ :=W

(i)
I ⊕W

(i)
∆ ⊕W

(i)
Π .

We will also use the following product spaces:

W0 :=

N∏

i=1

W (i), WI :=

N∏

i=1

W
(i)
I , WΓ :=

N∏

i=1

W
(i)
Γ

and

W∆ :=

N∏

i=1

W
(i)
∆ , WΠ :=

N∏

i=1

W
(i)
Π .

We then have
W0 :=WI ⊕WΓ :=WI ⊕W∆ ⊕WΠ.

In general, the functions inWΓ have discontinuous normal components across the
interface while those of the finite element solutions are continuous; the subspace

with continuous normal components will be denoted by ŴΓ. We also consider

a space W̃Γ, consisting of functions which are continuous at the primal degrees
of freedom while being discontinuous elsewhere on the interface. We can then

decompose ŴΓ and W̃Γ into Ŵ∆ ⊕ ŴΠ and W∆ ⊕ ŴΠ, respectively, where Ŵ∆ is

the continuous dual variable subspace and ŴΠ is the continuous primal variable
subspace.

We can now obtain the local stiffness matrix A(i) by restricting the bilinear form
to Ωi, i.e.

(2.3) ai(u,v) :=

∫

Ωi

(α divu divv + β u · v)dx,

and replacing H(div; Ωi) by the finite element space W (i). It is convenient to make
a change of variables by introducing a basis for the primal degrees of freedom and a

complementary basis for the dual subspaceW
(i)
∆ . The presentation of the algorithms

and the theoretical results are considerably simplified using the new basis. Here
we can follow the recipes of [45, subsection 3.3] closely. We note that there is also
some evidence that such a change of variables enhances the numerical stability of
BDDC and FETI-DP algorithms; see [37]. However, the change of variables can
come with a loss of sparsity and there are alternative ways of implementing these
algorithms, cf. [19].

After this change of variables, we find that the contributions from the subdomain
Ωi to the stiffness matrix and to the load vector can be written as


A

(i)
II A

(i)
I∆ A

(i)
IΠ

A
(i)T
I∆ A

(i)
∆∆ A

(i)
∆Π

A
(i)T
IΠ A

(i)T
∆Π A

(i)
ΠΠ


 and




f
(i)
I

f
(i)
∆

f
(i)
Π


 .
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We then obtain the global linear system of algebraic equations by sub-assembling
these local contributions:

(2.4) A




uI

u∆

uΠ


 =



AII AI∆ AIΠ

AT
I∆ A∆∆ A∆Π

AT
IΠ AT

∆Π AΠΠ






uI

u∆

uΠ


 =




fI

f∆

fΠ


 ,

where uI ∈ WI , u∆ ∈ Ŵ∆ , and uΠ ∈ ŴΠ.

3. The BDDC methods

3.1. Some useful operators. We will now define several operators which per-
form restrictions, extensions, scalings, and averaging between different spaces. We

first consider the restriction operators. R
(i)
Γ maps the space ŴΓ to the subdo-

main subspace W
(i)
Γ . Similarly, we can define R

(i)

Γ : W̃Γ → W
(i)
Γ . Moreover,

R
(i)
∆ : W∆ → W

(i)
∆ and R

(i)
Π : ŴΠ → W

(i)
Π map global interface vectors defined

on Γ to their components on Γi. R̃Γ∆ and R̃ΓΠ are the restriction operators from

the intermediate space W̃Γ to W∆ and ŴΠ, respectively. Similarly, we can define

the restriction operator R
(i)
Γ∆ from W

(i)
Γ to W

(i)
∆ . RΓ and RΓ are the direct sums of

all the R
(i)
Γ and R

(i)

Γ , respectively. Furthermore, R̃Γ : ŴΓ → W̃Γ is the direct sum

of R̂Π and all the R̂
(i)
∆ , where R̂Π represents the restriction from ŴΓ to ŴΠ and

R̂
(i)
∆ maps the space ŴΓ into W

(i)
∆ .

We next introduce scaling matrices, D(i), acting on the degrees of freedom as-
sociated with the Γi. They are combined into a block diagonal matrix and should
provide a discrete partition of unity, i.e.,

(3.1) RT
Γ




D(1)

D(2)

. . .

D(N)


RΓ = I.

We can now define scaled operators R
(i)
D,Γ := D(i)R

(i)
Γ by pre-multiplying R

(i)
Γ by

the scaling matrices D(i). Other locally scaled operators R̃
(i)
D,∆ are defined by

R̃
(i)
D,∆ := R

(i)
Γ∆R

(i)
D,Γ. We next consider a globally scaled operator R̃D,Γ defined by

the direct sum of R̂Π and all the R̃
(i)
D,∆. We note that

R̃T
Γ R̃D,Γ = R̃T

D,ΓR̃Γ = I.

This identity shows that the averaging operator ED : W̃Γ → ŴΓ given by

(3.2) ED := R̃ΓR̃
T
D,Γ.

is a projection. ED provides a weighted average of the subdomain interface values
across the interface Γ. We will provide details on our choice of scaling matrices in
subsection 3.3.

3.2. A block factorization. The following block factorization of the inverse of the
stiffness matrix is associated with the elimination of the interior degrees of freedom
of all subdomains:

(3.3) A−1 =

[
I −A−1

II AIΓ

0 I

] [
A−1

II 0

0 Ŝ−1
Γ

] [
I 0

−AT
IΓA

−1
II I

]
.
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Here AIΓ := (AI∆ AIΠ). The Schur complement ŜΓ, with respect to the interior
unknowns, is positive definite and it is obtained by sub-assembly

(3.4) ŜΓ := RT
ΓSΓRΓ =

N∑

i=1

R
(i)T
Γ S

(i)
Γ R

(i)
Γ ,

where SΓ is the direct sum of the local Schur complements defined by

S
(i)
Γ := A

(i)
ΓΓ −A

(i)T
IΓ A

(i)−1
II A

(i)
IΓ,

and where

A
(i)
ΓΓ :=

[
A

(i)
∆∆ A

(i)
∆Π

A
(i)T
∆Π A

(i)
ΠΠ

]
.

For the model problem (1.2), the local Schur complements S
(i)
Γ are always positive

definite. A preconditioner for (2.4) is then defined by using (3.3), after replac-

ing the inverse of the Schur complement ŜΓ by the action of a suitable interface
preconditioner.

3.3. The BDDC algorithm. In order to describe the BDDC algorithm, we need

to define a partially assembled Schur complement, defined on W̃Γ, by

S̃Γ := R
T

ΓSΓRΓ.

After eliminating the components of the right-hand-side corresponding to the inte-
rior unknowns, we obtain

Ã




u
(1)
I

u
(1)
∆
...

u
(N)
I

u
(N)
∆

uΠ




=




0

R
(1)
∆ R̃Γ∆S̃ΓuΓ

...
0

R
(N)
∆ R̃Γ∆S̃ΓuΓ

R̃ΓΠS̃ΓuΓ




,

where Ã is the partially assembled stiffness matrix on WI ⊕W̃Γ. We note that solv-
ing this linear system is much less expensive than working with the fully assembled
linear system since the number of primal variables is much smaller than the total
number of interface variables. We also note that the fully assembled Schur comple-

ment ŜΓ can be obtained by an additional sub-assembly step, i.e. ŜΓ = R̃T
Γ S̃ΓR̃Γ.

The BDDC preconditioner has the following form:

M−1 := R̃T
D,ΓS̃

−1
Γ R̃D,Γ.

Here, S̃−1
Γ can be obtained by using a block Cholesky factorization of Ã as in [45,

section 4]:
(3.5)

S̃−1
Γ = R̃T

Γ∆




N∑

i=1

[
0 R

(i)T
∆

] [ A
(i)
II A

(i)
I∆

A
(i)T
I∆ A

(i)
∆∆

]−1 [
0

R
(i)
∆

]
 R̃Γ∆ +ΦS−1

ΠΠΦ
T

with

Φ := R̃T
ΓΠ − R̃T

Γ∆

N∑

i=1

[
0 R

(i)T
∆

] [ A
(i)
II A

(i)
I∆

A
(i)T
I∆ A

(i)
∆∆

]−1 [
A

(i)
IΠ

A
(i)
∆Π

]
R

(i)
Π

9
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and where
(3.6)

SΠΠ :=

N∑

i=1

R
(i)T
Π


A(i)

ΠΠ −
[
A

(i)T
IΠ A

(i)T
∆Π

] [
A

(i)
II A

(i)
I∆

A
(i)T
I∆ A

(i)
∆∆

]−1 [
A

(i)
IΠ

A
(i)
∆Π

]
R

(i)
Π .

The first term of (3.5) consists of uncoupled subdomain corrections realized by
means of local Neumann solves, with solutions constrained to vanish at the primal
degrees of freedom; the second term is the coarse-level part of the preconditioner
associated with the primal space and provides the global exchange of informa-
tion which is needed to obtain a scalable preconditioner for the conjugate gradient
method. In subsection 3.7, we will also explore the option of approximating the
inverse of SΠΠ by invoking the BDDC algorithm once more, thus introducing a
three-level BDDC algorithm.

3.4. Interface equivalence classes. Equivalence classes of degrees of freedom
related to the interface between the subdomains play an important role in the
design, analysis, and parallel implementation of domain decomposition algorithms
such as BDDC. In the case of div-conforming Raviart-Thomas and BDM elements,
the situation is very simple since each interface degree of freedom is associated with
an element face common to only two elements. Thus, any equivalence class will be
given by a subset of the degrees of freedom on the intersection of the boundaries of
two neighboring subdomains. We will refer to such an interface class as a subdomain
face. In order to avoid disconnected subdomain faces in our experiments, we will
consider two degrees of freedom connected and belonging to the same subdomain
face only if there exists a path between their element faces which passes from
element to element of the subdomain face by crossing an edge between element
faces.

3.5. Deluxe scaling. In order to complete the description of the algorithm, we
need to define the weighted averaging operators D(i). Conventional weighted av-
eraging techniques, known as stiffness and ρ scalings, are described in [19, 51]. We
will show, in section 5, that there are cases for which these conventional techniques
perform poorly for (1.2), since these methods are designed for constant coefficients
or for one variable coefficient. For more than one variable coefficient, as for the
problem considered here, we need a different approach and we will use the deluxe
scaling, introduced in [22] for H(curl) problems and further considered in [23]. A
survey of other studies using deluxe scaling is given in [78].

We will work with the principal minors, associated with subdomain faces F , of
the subdomain stiffness matrices. Two local stiffness matrices associated with F
are given by principal minors of the subdomain stiffness matrices

[
A

(k)
II A

(k)
IF

A
(k)T
IF A

(k)
FF

]
, k = i, j,

and the two Schur complements associated with F by

S
(k)
FF := A

(k)
FF −A

(k)T
IF A

(k)
II

−1
A

(k)
IF , k = i, j.

10
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We will use the scaling matrices D
(i)
j :=

(
S
(i)
FF + S

(j)
FF

)−1

S
(i)
FF . The scaling oper-

ator D(i) is then given by

(3.7) D(i) :=




D
(i)
F1

D
(i)
F2

. . .

D
(i)
Fk



,

where F1, . . . , Fk are the subdomain faces of Ωi.
We remark that there are two scaling matrices for each subdomain face, and that

it is easy to show that the partition of unity condition (3.1) is satisfied, i.e., that

N∑

i=1

R
(i)
Γ

T
D(i)R

(i)
Γ = I.

Thus, a face component of the averaging operator ED is defined by

w̄F := (EDw)F := (S
(i)
FF + S

(j)
FF )

−1(S
(i)
FFw

(i)
F + S

(j)
FFw

(j)
F ).

Here w
(i)
F (resp. w

(j)
F ) is the the restriction of w(i) ∈ W

(i)
Γ (w(j) ∈ W

(j)
Γ ) to the

face F .
The action of (S

(i)
FF +S

(j)
FF )

−1 can be implemented by solving a Dirichlet problem
on Ωi ∪ F ∪ Ωj, where F is the face between the two subdomains. This can add
significantly to the cost. In the economic variant of deluxe scaling (e-deluxe), we
replace this large domain by a thin domain built from one or a few layers of elements
next to the face and this often results in very similar performance; see, e.g., [23] and
section 5. Instead of solving such a Dirichlet problem, in our experiments, we exploit
the Schur complement feature of the numerical factorization package MUMPS [2],

a package which explicitly provides the local Schur complement matrix S
(i)
Γ when

factoring the subdomain problem. Our approach has the further advantage that the
Dirichlet solver can be reused in the static condensation step in (3.3), and that the
Schur complement solver can be reused when computing the subdomain correction
in (3.5). Therefore, a single factorization step suffices to set up the preconditioner.

Differently from [23], in our experiments with the e-deluxe variant, we consider
the principal minors of the Schur complement obtained by eliminating all the inte-
rior degrees freedom in a layer of elements next to all of the subdomain interface Γi.
However, when using e-deluxe, the Dirichlet and Schur complement solvers cannot
be reused, and additional factorizations are needed to set up the preconditioner.
We note that our implementation of e-deluxe is quite similar to the one analyzed
in [36].

3.6. Basic BDDC deluxe estimates. The core of any estimate for a BDDC
algorithm is an estimate of the norm of the averaging operator ED. By an algebraic
argument, known for FETI–DP since 2002, we have

κ(M−1ŜΓ) ≤ ‖ED‖S̃Γ

,

see [39] or [45]. The analysis of any BDDC deluxe algorithm can be reduced to
bounds for individual subdomains. Arbitrary jumps in the coefficients across Γ can
then be accommodated.

11
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Instead of developing an estimate for ED, we will work with PD := I−ED. Thus,

we estimate the S
(i)
Γ −norm of RT

F (w
(i)
F −w̄F ), instead of (RT

F w̄F )
TS

(i)
Γ RT

F w̄F . Here
RF denotes the restriction to the face F. By elementary algebra, we find that

w
(i)
F − w̄F = (S

(i)
FF + S

(j)
FF )

−1S
(j)
FF (w

(i)
F −w

(j)
F ).

More algebra gives, by using that S
(i)
FF := RFS

(i)
Γ RT

F ,

(RT
F (w

(i)
F − w̄F ))

TS
(i)
Γ (RT

F (w
(i)
F − w̄F )) =

(w
(i)
F −w

(j)
F )TS

(j)
FF (S

(i)
FF + S

(j)
FF )

−1S
(i)
FF (S

(i)
FF + S

(j)
FF )

−1S
(j)
FF (w

(i)
F −w

(j)
F ).

Adding a similar contribution from Ωj , we obtain, following Pechstein and Dohrmann
[62], that the relevant expression of the energy is

(w
(i)
F −w

(j)
F )T (S

(i)−1

FF + S
(j)−1

FF )−1(w
(i)
F −w

(j)
F ).

The matrix of this quadratic form is a parallel sum, and we will use the notation

A : B := (A−1 +B−1)−1;

cf. [4]. We easily find that

(3.8) (w
(i)
F −w

(j)
F )T (S

(i)
FF : S

(j)
FF )(w

(i)
F −w

(j)
F )

≤ 2(w
(i)
F −wΠ)

T (S
(i)
FF : S

(j)
FF )(w

(i)
F −wΠ)+ 2(w

(j)
F −wΠ)

T (S
(i)
FF : S

(j)
FF )(w

(j)
F −wΠ)

where wΠ is an arbitrary element of the primal space. Since S
(i)
FF : S

(j)
FF ≤ S

(i)
FF and

S
(i)
FF : S

(j)
FF ≤ S

(j)
FF , each of these terms can be estimated by an expression which is

local to only one subdomain.

Let w
(i)
F∆ := w

(i)
F −wΠ. There now remains to estimate w

(i)T
F∆ (S

(i)
FF : S

(j)
FF )w

(i)
F∆

by the energy of w(i). For this, we will need the energy-minimizing extension of

any finite element function defined on F. The relevant matrix is S̃
(i)
FF defined by

(3.9) S̃
(i)
FF := S

(i)
FF − S

(i)T
F ′F S

(i)−1
F ′F ′ S

(i)
F ′F .

Here S
(i)
F ′F ′ is the principal minor of S

(i)
Γ with respect to Γi \ F and S

(i)
F ′F an off-

diagonal block of S
(i)
Γ . We need to establish a bound for

w
(i)T
F∆ (S

(i)
FF : S

(j)
FF )w

(i)
F∆ by w

(i)T
F∆ (S̃

(i)
FF : S̃

(j)
FF )w

(i)
F∆

and to show that

w
(i)T
F∆ (S̃

(i)
FF : S̃

(j)
FF )w

(i)
F∆ ≤ w(i)TS

(i)
Γ w(i),

where w(i) is an arbitrary extension of the values of w
(i)
F on the face F to the rest

of Γi.
In standard BDDC theory, as in section 4, the required estimates is obtained

by using a face lemma, cf. [70, subsection 4.6.3], where such a result is established
for constant coefficients in each subdomain, polyhedral subdomains, and scalar
elliptic problems. For an adaptive algorithm, this result is replaced by the use of a
generalized eigenvalue problem. For BDDC deluxe, we first generate elements for
the primal space for a face by solving a generalized eigenvalue problem

(3.10) S
(i)
FF : S

(j)
FFψ = νS̃

(i)
FF : S̃

(j)
FFψ.

The primal space are then generated by the eigenvectors for a few of the largest

eigenvalues of (3.10) and making (S̃
(i)
FF : S̃

(j)
FF )(w

(i)
F − w

(j)
F ) orthogonal to these

12
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eigenvectors. The complementary dual space is then spanned by the remaining
eigenvectors which is then orthogonal to the primal space with respect to the matrix

S̃
(i)
FF : S̃

(j)
FF . This orthogonality condition allows us to conclude that

w
(i)T
F∆ (S̃

(i)
FF : S̃

(j)
FF )w

(i)
F∆ ≤ w

(i)T
F (S̃

(i)
FF : S̃

(j)
FF )w

(i)
F .

We also have to use that S̃
(i)
FF : S̃

(j)
FF ≤ S̃

(i)
FF and S̃

(i)
FF : S̃

(j)
FF ≤ S̃

(j)
FF . We can

now bound the right-hand side of (3.8) by νFtol times the energy of w contributed
by the two subdomains Ωi and Ωj where νFtol is the largest eigenvalue associated
with the eigenvectors not used in deriving the primal constraints. Thus, we have
the following result:

Lemma 3.1. If νFtol is the largest eigenvalue of (3.10) ignored when we generate
our primal constraints from eigenvectors of that eigenvalue problem, we have

‖(PDw)|F ‖
2
S̃Γ

≤ 2 νFtol(ai(w,w) + aj(w,w)),

where ai(·, ·) is given by (2.3).

By elementary estimates, we can then obtain the following result:

Theorem 3.2. κ(M−1ŜΓ) ≤ ‖PD‖S̃Γ

≤ 4 νtolN
2
F , where νtol := maxF ν

F
tol and NF

equals the maximum number of faces of any subdomain.

We note that there is evidence that adaptive primal spaces in deluxe BDDC
methods are smaller compared to those generated using conventional point-wise
scalings [35, 36].

3.7. Three-level BDDC. Coarse problem solvers in BDDC methods, as in all
others two-level Domain Decomposition methods, can create a bottleneck for the
algorithm when there is a large number of subdomains and/or many coarse degrees
of freedom per subdomain, as could be the case when an adaptive BDDC algorithm
is used. A multilevel extension of the BDDC algorithm is readily available given the
unassembled nature of the coarse problem (3.6); for a pioneering analysis see [73,74].

In a three-level BDDC algorithm, the solution of the coarse problem is replaced
by the application of a BDDC preconditioner at a coarser level; this leads to highly
scalable BDDC preconditioners, provided a suitable coarse space for the second
level is found. In fact, as proved in [20], the use of approximate coarse solvers could
degrade the condition number of the BDDC algorithm and increase the number of
iterations of the Krylov solver. But an upper bound for the condition number of a
three-level BDDC method holds

κ(M−1
3levelŜΓ) ≤ κ(M−1

ΠΠSΠΠ)κ(M
−1ŜΓ),

where M−1
ΠΠ is the BDDC preconditioner for SΠΠ. Differently from earlier work,

we will construct an adaptive coarse problem for SΠΠ and we then will be able
to control κ(M−1

ΠΠSΠΠ) and construct highly scalable and robust three-level BDDC
preconditioners. We note that the design of effective primal spaces for coarser levels
of H(div) problems could be a subject of future development of theory.

13
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4. Technical tools and the main theoretical result

When we turn to the development of our theory, we need to impose additional
conditions on the geometry of the subdomains and the values of the two material
parameters α and β. Thus, each subdomain Ωi will be assumed to be convex and a
union of a finite number of shape-regular tetrahedral elements of a coarse triangu-
lation TH . We also assume that α and β are constant in each subdomain while we
allow arbitrarily large coefficients jumps across the interface. We will denote by αi

and βi the values of these coefficients taken on subdomain Ωi. We note that these
assumptions have been used in the development of theory for many domain decom-
position algorithms of the iterative substructuring family, see, e.g., [70, Chapters
4–6].

Our primal variables will be defined by the common average of the normal com-
ponent of the solution over the subdomain faces. This means that a no-net-flux
condition ∫

F

w
(i)
∆ · n ds = 0

is imposed for each subdomain face.
In our proofs, we also need some standard tools for the space S(Ωi), which we

can borrow from [70, subsection 4.6]. These results are related to the subdomain
faces and their boundaries. of ∂Ωi. We note that the proof of [70, Lemma 4.16] is
not satisfactory but that a correct proof is now available in [23, Section 3.].

Lemma 4.1. There are functions ϑ∂F ∈ S(Ωi) and ϑF ∈ S(Ωi) such that for all
nodes on the closure of F

ϑ∂F + ϑF = 1,

ϑF = 0 on ∂Ωi\F , and ϑ∂F = 0 at all nodes of ∂Ωi except those on ∂F. Moreover,
for any u ∈ S(Ωi), there exists a constant independent of hi and Hi, such that

|Ih (ϑ∂Fu)|
2
1;Ωi

≤ C (1 + logHi/hi) ‖u‖
2
1;Ωi

and

|Ih (ϑFu)|
2
1;Ωi

≤ C (1 + logHi/hi)
2 ‖u‖21;Ωi

.

In addition, the following estimate holds:

‖u‖
2
0;∂F ≤ C (1 + logHi/hi) ‖u‖

2
1;Ωi

.

We next introduce a stable operator, which provides a divergence-free extension.

Lemma 4.2 (divergence free extension). There exists an extension operator H̃i

from the normal trace space of W
(i)
∆ to W (i), such that, for all u ∈ W

(i)
∆ ,

(
H̃iµ

)
· n = µ, div H̃iµ = 0,

where µ := u · n. Moreover,
∥∥∥H̃iµ

∥∥∥
0;Ωi

≤ C ‖µ‖−1/2;∂Ωi
.

Proof. A proof of this result is provided for the lowest order Raviart-Thomas el-
ement defined on hexahedral meshes in [80, Lemma 4.3] and [79, Lemma 2.6]. A
proof for the case of tetrahedral elements can be obtained using exactly the same
arguments. �
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We then have the following estimate for the discrete harmonic extension, i.e.,
the extension of a given normal trace with the minimal energy. For more details,
see [70, section 10.2] and [58, section 3.1].

Corollary 4.3 (discrete harmonic extension). Let Hi be the energy minimizing

discrete harmonic extension. For all u ∈W
(i)
∆ , we have

(Hiµ) · n = µ := u · n.

Furthermore,

αi ‖divHiµ‖
2
0;Ωi

+ βi ‖Hiµ‖
2
0;Ωi

≤ Cβi ‖µ‖
2
−1/2;∂Ωi

.

Proof. Hi is the minimal-energy extension operator for a given subdomain interface.
Therefore, we have

αi ‖divHiµ‖
2
0;Ωi

+ βi ‖Hiµ‖
2
0;Ωi

≤ αi

∥∥∥div H̃iµ
∥∥∥
2

0;Ωi

+ βi

∥∥∥H̃iµ
∥∥∥
2

0;Ωi

.

Since div H̃iµ = 0, we have, by using Lemma 4.2,

αi ‖divHiµ‖
2
0;Ωi

+ βi ‖Hiµ‖
2
0;Ωi

≤ Cβi ‖µ‖
2
−1/2;∂Ωi

.

�

We next consider a coarse interpolation operator ΠRT
H onto the Raviart-Thomas

space on the coarse mesh TH .

Lemma 4.4 (stability of the coarse interpolant). Let K ∈ TH . For all u ∈ W , we
have the following estimates:

∥∥div
(
ΠRT

H u
)∥∥2

0;K
≤ ‖divu‖20;K

and ∥∥ΠRT
H u

∥∥2
0;K

≤ C
(
(1 + logH/h) ‖u‖20;K +H2

K ‖divui‖
2
0;K

)
,

where HK is the diameter of K. Here, the constant C depends only on the aspect
ratio of K and the elements of Th.

Proof. Full proofs of this result are given in [79, Lemma 2.4] and [80, Lemma 4.1]
for hexahedral meshes. These proofs can be translated line by line to also hold for
tetrahedral meshes. �

We then have the following:

Lemma 4.5. Let uF ∈ W (i) with λf (uF ) = 0, ∀f ⊂ ∂Ωi\F . Furthermore, let
uH
F := Hi

(
ΠRT

H uF · n
)
and assume that αi ≤ βiH

2
i . We then have for the bilinear

form (2.3)

(4.1) ai
(
uH
F ,u

H
F

)
≤ Cai (uF ,uF ) ,

where C is independent of Hi, hi, αi, and βi.

Proof. We will modify the proof of [58, Lemma 5.6]. We first assume that F consists

of only one face of a coarse element K ∈ TH ⊂ Ωi. Let Ωdi

i,F ⊂ Ωi be the set of
all points which are within a distance di of F . Let χF be a piecewise linear scalar
cut-off function, which has the value 1 on F and vanishes in Ωi\Ω

di

i,F for some

hi ≤ di ≤ Hi. Moreover, ‖χF ‖∞ ≤ 1 and ‖∇χF ‖∞ ≤ C/di.
We next consider a coarse basis function related to a discrete harmonic exten-

sion. This basis function φ̃RT
F is obtained from the standard basis function φRT

F

15



Duk-Soon Oh, Olof B. Widlund, Stefano Zampini, and Clark R. Dohrmann

and is given by φ̃RT
F := Hi

(
χFφ

RT
F · n

)
. We note that

∥∥φRT
F

∥∥2
0;Ωi

≤ CH3
i and

∥∥divφRT
F

∥∥2
0;Ωi

≤ CHi.

We then define the function ũH
F as follows:

(4.2) ũH
F := λF (uF ) φ̃

RT
F .

In order to estimate the energy of ũH
F , we will estimate the coefficient λF (uF ) and

the energy of φ̃RT
F , separately.

We first estimate the coefficient. By the divergence theorem, and the fact that
(χFuF ) · n vanishes on ∂Ωdi

i,F \F ,

|F |λF (uF ) = |F |λF (χFuF ) =

∫

F

(χFuF ) · n ds

=

∫

Ω
di
i,F

div (χFuF ) dx−

∫

∂Ω
di
i,F \F

(χFuF ) · n ds

=

∫

Ω
di
i,F

div (χFuF ) dx.

By using the Cauchy-Schwarz inequality and the shape-regularity of the elements
of TH , we obtain

|λF (uF )|
2
≤ C

di
H2

i

‖div (χFuF )‖
2

0;Ω
di
i,F

≤ C
di
H2

i

(
‖χF ‖

2
∞ ‖divuF‖

2
0;Ωi

+ ‖∇χF ‖
2
∞ ‖uF ‖

2
0;Ωi

)

≤ C
di
H2

i

‖divuF‖
2
0;Ωi

+ C
1

H2
i di

‖uF ‖
2
0;Ωi

.

We can now obtain our estimate of the basis function. From the minimal energy
property, we find

αi

∥∥∥div φ̃RT
F

∥∥∥
2

0;Ωi

+ βi

∥∥∥φ̃RT
F

∥∥∥
2

0;Ωi

≤ αi

∥∥div
(
ΠRT

h

(
χFφ

RT
F

))∥∥2
0;Ωi

+ βi
∥∥(ΠRT

h

(
χFφ

RT
F

))∥∥2
0;Ωi

≤ Cαi

(
di +H2

i /di
)
+ CβiH

2
i di ≤ CαiH

2
i /di + CβiH

2
i di.

Hence, we have

(4.3)
ai
(
ũH
F , ũ

H
F

)
= αi

∥∥∥λF (uF )
(
div φ̃RT

F

)∥∥∥
2

0;Ωi

+ βi

∥∥∥λF (uF )
(
φ̃RT

F

)∥∥∥
2

0;Ωi

≤ C
(
αi + βid

2
i

)
‖divuF ‖

2
0;Ωi

+ C
(
αi/d

2
i + βi

)
‖uF ‖

2
0;Ωi

.

Let di = max{
√
αi/βi, hi} and recall that hi ≤ di ≤ Hi. By using (4.3) and

Lemma 2.4, we obtain

ai
(
uH
F ,u

H
F

)
≤ ai

(
ũH
F , ũ

H
F

)
≤ Cai (uF ,uF ) .

If F is the union of faces of several elements of TH , we should replace the basis
function in formula (4.2) by a sum of such functions associated with the relevant
faces of the coarse elements. �
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We next introduce a partition of unity associated with the faces of an individual
subdomain Ωi as in [70, Chapter 10.2.1],

∑

F⊂∂Ωi

ζF = 1, a.e. on ∂Ωi\∂Ω,

where

(4.4) ζF (x) :=

{
1, x ∈ F
0, x ∈ ∂Ωi\F.

We then have the following estimates for the subdomain face components; we recall

that for ui ∈W
(i)
∆ ,

∫
F ui · n ds = 0 for each subdomain face F ⊂ ∂Ωi.

Lemma 4.6. For any ui ∈ W
(i)
∆ and for any uH

i ∈ W
(i)
Π , let µi := ui · n, µF :=

ζFµi, and µ
H
i := uH

i · n. Then, the following estimate holds:

‖µF ‖
2
−1/2;∂Ωi

≤ C (1 + logHi/hi)
(
(1 + logHi/hi)

∥∥µi + µH
i

∥∥2
−1/2;∂Ωi

+ ‖µi‖
2
−1/2;∂Ωi

)

holds, where C is independent of µH
i , Hi, and hi.

Proof. This result is closely related to [80, Lemma 4.4] and [79, Lemma 2.7], which
are results for hexahedral meshes. Carefully checking all the arguments, we find
that the same results are also valid for tetrahedral meshes. �

Unlike for the gradient operator, it is quite complicated to classify the kernel and
the range of the curl and divergence operators. The discrete regular decompositions
given in [32] provide useful tools to analyze problems posed in H(curl) and H(div).
We can then apply techniques developed for H1-functions by using the following
result.

Lemma 4.7 (Hiptmair-Xu decomposition). Let D ⊂ Ω be a convex polyhedron.
Then, for all vh ∈ W (D), there exist Ψh ∈ S(D), qh ∈ X(D), and ṽh ∈ W (D)
such that

vh = ṽh +ΠRT
h (Ψh) + curl qh,

and ∥∥h−1
i ṽh

∥∥2
0;D

+ ‖Ψh‖
2
1;D ≤ C ‖div vh‖

2
0;D ,(4.5)

‖curl qh‖
2
0;D + ‖Ψh‖

2
0;D ≤ C ‖vh‖

2
0;D .(4.6)

Proof. See [32, Lemmas 5.1 and 5.2]. �

We note that this important paper, [32], was preceded by [31], which concerns
another application of the same decomposition.

Lemma 4.8. For any ui ∈ W (i), there exist vi,F ∈ W (i) and vH
i,F ∈ W

(i)
Π such

that

(4.7)

{
λf (vi,F ) = λf (ui) if f ⊂ F ;
λf (vi,F ) = 0 if f ⊂ ∂Ωi\F

and

(4.8)

{
λf
(
vH
i,F

)
= λf

(
ΠRT

H ui

)
if f ⊂ F ;

λf
(
vH
i,F

)
= 0 if f ⊂ ∂Ωi\F.

Furthermore,

ai
(
vi,F − vH

i,F ,vi,F − vH
i,F

)
≤ C (1 + logHi/hi)

2
ai (ui,ui) ,
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where C is independent of αi, βi, Hi, and hi.

Proof. We will only consider the case where αi ≤ βiH
2
i since for βiH

2
i ≤ αi, the

proof is straightforward by using Corollary 4.3 and Lemmas 4.6, 2.1, and 4.4; for
more details, see [80, Section 5].

By using Lemma 4.7, we can find ũi, Ψi, and qi such that

(4.9) ui = ũi + ΠRT
h (Ψi) + curl qi.

We note that div (curl qi) = 0 and that (4.5) and (4.6) provide bounds for the
different terms.

We first consider ũi. We define ũi,F :=
∑

f⊂F λf (ũi)φ
RT
f , where φRT

f is the
Raviart-Thomas basis function associated with the face f . By using Lemmas 2.3,
2.4, and 4.7, we have

(4.10)

‖ũi,F ‖
2
0;Ωi

≤ C
∑

f⊂F

h3iλf (ũi)
2
≤ C ‖ũi‖

2
0;Ωi

≤ Ch2i ‖divui‖
2
0;Ωi

≤ C ‖ui‖
2
0;Ωi

and

(4.11)

‖div ũi,F ‖
2
0;Ωi

≤ C
∑

f⊂F

hiλf (ũi)
2

≤ C
∥∥h−1

i ũi

∥∥2
0;Ωi

≤ C ‖divui‖
2
0;Ωi

.

Hence, from (4.10) and (4.11),

(4.12) ai (ũi,F , ũi,F ) ≤ Cai (ui,ui) .

We also define ũH
i,F := Hi

(
ΠRT

H ũi,F · n
)
. By using Lemma 4.5 and (4.12), we

obtain

(4.13) ai
(
ũH
i,F , ũ

H
i,F

)
≤ Cai(ũi,F , ũi,F ) ≤ Cai (ui,ui) .

We note that by construction, ũi,F − ũH
i,F satisfies the no-net-flux condition. We

will similarly construct pairs of functions originating from the other terms of the
right-hand side of (4.9) such that the differences satisfy the no-net-flux condition.

We next consider the second term ΠRT
h (Ψi) of (4.9). Let Ψi,F := Ih (ϑFΨi).

By using Lemmas 4.1 and 4.7, we obtain

‖Ψi,F ‖
2
0;Ωi

≤ C ‖Ψi‖
2
0;Ωi

≤ C ‖ui‖
2
0;Ωi

and
‖divΨi,F ‖

2
0;Ωi

≤ C |Ψi,F |
2
1;Ωi

≤ C (1 + logHi/hi)
2 ‖Ψi‖

2
1;Ωi

≤ C (1 + logHi/hi)
2
‖divui‖

2
0;Ωi

.

Moreover, by using Lemma 2.5, an inverse estimate, and Lemma 2.6, we obtain
∥∥ΠRT

h (Ψi,F )
∥∥2
0;Ωi

≤ 2 ‖Ψi,F ‖
2
0;Ωi

+ 2
∥∥Ψi,F −ΠRT

h (Ψi,F )
∥∥2
0;Ωi

≤ 2 ‖Ψi,F ‖
2
0;Ωi

+ Ch2i |Ψi,F |
2
1;Ωi

≤ C ‖Ψi,F ‖
2
0;Ωi

,

and ∥∥div ΠRT
h (Ψi,F )

∥∥2
0;Ωi

= ‖Πh (divΨi,F )‖
2
0;Ωi

≤ ‖divΨi,F ‖
2
0;Ωi

.

Therefore,

(4.14)
∥∥ΠRT

h (Ψi,F )
∥∥2
0;Ωi

≤ C ‖ui‖
2
0;Ωi
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and

(4.15)
∥∥div ΠRT

h (Ψi,F )
∥∥2
0;Ωi

≤ C (1 + logHi/hi)
2
‖divui‖

2
0;Ωi

.

Hence, from (4.14) and (4.15), we obtain

(4.16) ai
(
ΠRT

h (Ψi,F ) ,Π
RT
h (Ψi,F )

)
≤ C (1 + logHi/hi)

2
ai (ui,ui) .

Let ΨH
i,F := Hi

(
ΠRT

H

(
ΠRT

h Ψi,F

)
· n
)
. By using Lemma 4.5 and (4.16), we have

(4.17)
ai
(
ΨH

i,F ,Ψ
H
i,F

)
≤ Cai

(
ΠRT

h (Ψi,F ) ,Π
RT
h (Ψi,F )

)

≤ C (1 + logHi/hi)
2
ai (ui,ui) .

Let gi,∂F := ΠRT
h (Ih (ϑ∂FΨi)) and Ψi,∂F :=

∑
f⊂F λf (gi,∂F )φ

RT
f . By using

Lemmas 2.3, 2.5, 4.1, and 4.7, an inverse estimate, and an estimate for the P1 basis
functions of S(Ωi), we obtain

(4.18)

‖Ψi,∂F ‖
2
0;Ωi

≤ C
∑

f⊂F

h3iλf (gi,∂F )
2 ≤ C ‖gi,∂F ‖

2
0;Ωi

≤ C ‖Ih (ϑ∂FΨi)‖
2
0;Ωi

≤ C ‖Ψi‖
2
0;Ωi

≤ C ‖ui‖
2
0;Ωi

and

(4.19)

‖divΨi,∂F ‖
2
0;Ωi

≤ C
∑

f⊂F

hiλf (gi,∂F )
2
≤ C

1

h2i
‖gi,∂F ‖

2
0;Ωi

≤ C
1

h2i
‖Ih (ϑ∂FΨi)‖

2
0;Ωi

≤ C ‖Ψi‖
2
0;∂F

≤ C (1 + logHi/hi) ‖Ψi‖
2
1;Ωi

≤ C (1 + logHi/hi) ‖divui‖
2
0;Ωi

.

Hence, combining (4.18) and (4.19), we obtain

(4.20) ai (Ψi,∂F ,Ψi,∂F ) ≤ C (1 + logHi/hi) ai (ui,ui) .

Let ΨH
i,∂F := Hi

(
ΠRT

H Ψi,∂F · n
)
. From Lemma 4.5 and (4.20), we obtain

ai
(
ΨH

i,∂F ,Ψ
H
i,∂F

)
≤ Cai (Ψi,∂F ,Ψi,∂F )

≤ C (1 + logHi/hi) ai (ui,ui) .

We finally consider the curl qi term of (4.9). Let rH
i := ΠRT

H (curl qi), ri :=
(curl qi) · n, and rHi := rH

i · n. Moreover, let rH
i,F := Hi

(
ζF r

H
i

)
and ri,F :=

Hi

(
ζF
(
ri − rHi

))
. From Corollary 4.3 and Lemma 4.6, we obtain

(4.21)

ai (ri,F , ri,F )

≤ Cβi
∥∥ζF

(
ri − rHi

)∥∥2
−1/2;∂Ωi

≤ Cβi (1 + logHi/hi)
(
(1 + logHi/hi) ‖ri‖

2
−1/2;∂Ωi

+
∥∥ri − rHi

∥∥2
−1/2;∂Ωi

)

≤ Cβi (1 + logHi/hi)
(
(1 + logHi/hi) ‖ri‖

2
−1/2;∂Ωi

+
∥∥rHi

∥∥2
−1/2;∂Ωi

)

≤ Cβi (1 + logHi/hi)
2 ‖ri‖

2
−1/2;∂Ωi

+ Cβi (1 + logHi/hi)
∥∥rHi

∥∥2
−1/2;∂Ωi

.
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We note that
∥∥div rH

i

∥∥
0;Ωi

≤ ‖div (curl qi)‖0;Ωi
= 0 from Lemma 4.4. Hence, by

using Lemmas 2.1 and 4.4, we obtain

(4.22)

∥∥rHi
∥∥2
−1/2;∂Ωi

≤ C
(
H2

i

∥∥div rH
i

∥∥2
0;Ωi

+
∥∥rH

i

∥∥2
0;Ωi

)
= C

∥∥rH
i

∥∥2
0;Ωi

≤ C
(
(1 + logHi/hi) ‖curl qi‖

2
0;Ωi

+H2
i ‖div (curl qi)‖

2
0;Ωi

)

= C (1 + logHi/hi) ‖curl qi‖
2
0;Ωi

and
(4.23)

‖ri‖
2
−1/2;∂Ωi

≤ C
(
H2

i ‖div (curl qi)‖
2
0;Ωi

+ ‖curl qi‖
2
0;Ωi

)
= C ‖curl qi‖

2
0;Ωi

.

Therefore, by combining (4.21), (4.22), (4.23), and Lemma 4.7, we obtain

(4.24)

ai (ri,F , ri,F ) ≤ C (1 + logHi/hi)
2
βi ‖curl qi‖

2
0;Ωi

≤ C (1 + logHi/hi)
2 βi ‖ui‖

2
0;Ωi

≤ C (1 + logHi/hi)
2
ai (ui,ui) .

We can now define vi,F as follows:

vi,F := ũi,F +ΠRT
h (Ψi,F ) +Ψi,∂F + rH

i,F + ri,F

and vH
i,F by

vH
i,F := ũH

i,F +ΨH
i,F +ΨH

i,∂F + rH
i,F .

Then, vi,F and vH
i,F satisfy the conditions (4.7) and (4.8), respectively. Further-

more, we obtain the following estimate by using (4.12), (4.13), (4.16), (4.20), (4.17),
(4.21), and (4.24):

ai
(
vi,F − vH

i,F ,vi,F − vH
i,F

)
≤ C (1 + logHi/hi)

2
ai (ui,ui) .

�

We are now ready to prove our main result.

Theorem 4.9 (condition number estimate). The condition number of the precon-

ditioned operator M−1ŜΓ satisfies

(4.25) κ
(
M−1ŜΓ

)
≤ C (1 + logH/h)2 .

Proof. We first recall that the left hand side of (3.8) provides an upper bound
of the square of the S(i)−norm of a face component of PDw. We again note that

S
(i)
FF : S

(j)
FF ≤ S

(i)
FF and that Lemma 4.8 provides us with a bound for the right-hand

side of (3.8). �

5. Numerical results

All results in this section, except when otherwise stated, are for problems on
the domain Ω = [0, 1]3. The triangulation of Ω and the assembly of the subdo-
main matrices are performed using the C++ library DOLFIN, [48], which is part
of the FENICS project, [47]. ParMETIS, [34], is used to decompose the meshes
and always results in irregular subdomains. The linear system (2.4) is solved us-
ing the Preconditioned Conjugate Gradient (PCG) method as implemented in the
Portable and Extensible Toolbox for Scientific Computing (PETSc), [8], with the
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BDDC preconditioner implemented in PETSc by the third author, see [81], for
which each subdomain is assigned to a different MPI process. The right-hand sides
are always chosen randomly and a relative residual reduction of 10−8 is used as a
stopping criterion. The MUMPS, [2], Cholesky factorizations are used for the sub-
domain solvers and to compute the local Schur complements. The current PETSc
implementation, which uses dense linear algebra kernels, see [3], is employed for

solving (3.10) for each subdomain face and the small dense blocks S
(i)
FF are inverted

explicitly. Formula (3.9) is not used in practice; instead, each S
(i)
Γ is first explic-

itly inverted, and the principal minors S̃
(i)−1
FF are then extracted. Unless otherwise

stated, we use the averages of the normal component over each subdomain face
as our primal constraints as provided by the no-net-flux condition. The quadra-
ture weights for these constraints can easily be obtained by using the divergence
theorem, i.e., ∫

Γi

u · n =

∫

Ωi

div u.

For further details on the BDDC implementation and for additional numerical
results for our H(div) model problem, see [81]. Our large scale numerical results
have been obtained on the Cray XC40 Shaheen of KAUST, ranked 9th in the Top500
list as of November 2015, and which features 6192 dual 16-core Haswell processors
clocked at 2.3 Ghz and equipped with 128GB of DRAM per node, for a total of
198,144 cores.

5.1. Example 1 (Common average constraints). We decompose the unit cube
Ω into 64 irregular subdomains using ParMETIS and assume that the coefficients
α and β have jumps only across the interface between the subdomains. We have
conducted two different sets of experiments for the lowest order Raviart-Thomas
and BDM elements. For the first set of experiments, we report on the condition
numbers and the number of iterations for different values of H/h, with a constant
value of β while varying α between the subdomains. Here and in what follows,
H/h is defined as the maximum of the ratio of the diameter of a subdomain and
the smallest diameter of any of its elements. The subdomains are subdivided into
even and odd subdomains according to their MPI rank. In the second set of exper-
iments, the value of α is constant while β varies. As predicted by the theory, the
experimental results in Tables 1 and 2 confirm that the condition number of deluxe
BDDC is insensitive to the jumps of the coefficients for the lowest order Raviart-
Thomas elements. As indicated by the results in Tables 3 and 4, the no-net-flux
condition is also sufficient to obtain condition number independence for the lowest
order BDM elements.

5.2. Example 2 (The effect of using conventional averaging techniques).
In this subsection, we report on some numerical experiments comparing deluxe
BDDC and conventional scaling techniques. We have performed four different types
of experiments with the same set of coefficient distributions using the lowest order
Raviart-Thomas and BDM elements. The first set of experiments, named “deluxe”,
is based on the weighted averaging techniques as described in (3.7). In the second,
the economic variant of the deluxe scaling (“e-deluxe”) is used with one layer of
elements next to Γ. The results in the third and fourth columns of Tables 5 and 6 are
obtained by using conventional methods as described in [19, 51]. In the “stiffness”
case, the scaling is based on the diagonal entries of the subdomain matrices, whereas
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Table 1. Condition numbers (κ2) and iteration counts (it) for the
lowest order Raviart-Thomas elements with different mesh sizes.
αi = αo = 1 for odd subdomains and αi = αe for even subdomains,
βi ≡ 1; there are 64 irregular subdomains.

H/h = 4.3 H/h = 7.3 H/h = 11.1 H/h = 13.5
κ2 it κ2 it κ2 it κ2 it

αe = 10−2 3.15 13 3.67 14 4.38 15 5.17 16

αe = 10−1 3.53 14 4.31 15 4.92 16 5.21 16

αe = 100 3.84 15 4.52 15 5.69 17 5.57 16

αe = 101 3.90 14 4.56 14 5.87 16 5.68 16

αe = 102 3.91 13 4.57 13 5.89 15 5.70 16

Table 2. Condition numbers (κ2) and iteration counts (it) for the
lowest order Raviart-Thomas elements with different mesh sizes.
βi = βo = 1 for odd subdomains and βi = βe for even subdomains,
αi ≡ 1; there are 64 irregular subdomains.

H/h = 4.3 H/h = 7.3 H/h = 11.1 H/h = 13.5
κ2 it κ2 it κ2 it κ2 it

βe = 10−2 4.77 14 5.10 15 6.05 17 6.66 17

βe = 10−1 4.62 14 4.91 15 5.74 16 5.96 17

βe = 100 3.84 15 4.52 15 5.69 17 5.57 16

βe = 101 4.67 15 5.09 15 5.29 17 5.02 16

βe = 102 5.02 15 5.68 16 5.96 18 5.56 17

Table 3. Condition numbers (κ2) and iteration counts (it) for the
lowest order BDM elements with different mesh sizes. αi = αo = 1
for odd subdomains and αi = αe for even subdomains, βi ≡ 1;
there are 64 irregular subdomains.

H/h = 4.3 H/h = 7.3 H/h = 11.1 H/h = 13.5
κ2 it κ2 it κ2 it κ2 it

αe = 10−2 5.04 17 6.38 19 6.59 19 7.91 20

αe = 10−1 5.99 19 6.84 20 7.59 21 7.97 21

αe = 100 6.49 20 7.18 20 8.69 21 8.44 21

αe = 101 6.59 19 7.24 19 8.96 21 8.59 20

αe = 102 6.60 18 7.25 18 9.00 19 8.62 19

Table 4. Condition numbers (κ2) and iteration counts (it) for the
lowest order BDM elements with different mesh sizes. βi = βo = 1
for odd subdomains and βi = βe for even subdomains, αi ≡ 1;
there are 64 irregular subdomains.

H/h = 4.3 H/h = 7.3 H/h = 11.1 H/h = 13.5
κ2 it κ2 it κ2 it κ2 it

βe = 10−2 7.99 19 8.61 20 10.25 22 11.80 23

βe = 10−1 7.39 20 7.75 19 9.04 21 9.11 22

βe = 100 6.49 20 7.18 20 8.69 21 8.44 21

βe = 101 6.96 21 7.85 20 8.13 22 8.26 21

βe = 102 8.51 21 8.87 22 9.45 24 10.32 23
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in the “card” case, we use the usual cardinality scaling, which for Raviart-Thomas
elements and BDM elements results in using 1/2 as the scaling factor for each
interface degree of freedom. For other general settings, we follow subsection 5.1.
As we see in Tables 5 and 6, our weighted averaging technique, even in its economic
version, works well for both Raviart-Thomas elements and BDM elements, while
the other scaling choices are sensitive to discontinuities across the interface.

Table 5. Condition numbers (κ2) and iteration counts (it) for
the lowest order Raviart-Thomas elements with different scalings.
αi = αo = 1 and βi = βo = 1 for the odd subdomains and αi = αe

and βi = βe for even subdomains, 64 irregular subdomains, and
H/h = 7.3.

deluxe e-deluxe stiffness card
κ2 it κ2 it κ2 it κ2 it

αe = 10−2, βe = 102 4.71 15 4.67 15 1.8e2 97 5.1e1 57

αe = 10−1, βe = 101 4.05 15 4.02 15 7.3e1 63 2.2e1 35

αe = 100, βe = 100 4.52 15 4.48 15 5.26 17 5.25 16

αe = 101, βe = 10−1 4.52 14 4.24 14 1.1e2 64 3.4e1 36

αe = 102, βe = 10−2 5.11 14 4.52 14 1.2e3 158 3.2e2 101

Table 6. Condition numbers (κ2) and iteration counts (it) for the
lowest order BDM elements with different scalings. αi = αo = 1
and βi = βo = 1 for the odd subdomains and αi = αe and βi = βe
for even subdomains, 64 irregular subdomains, and H/h = 7.3.

deluxe e-deluxe stiffness card
κ2 it κ2 it κ2 it κ2 it

αe = 10−2, βe = 102 8.66 21 8.30 21 2.1e2 119 1.6e2 95

αe = 10−1, βe = 101 6.89 20 6.60 20 1.1e2 81 3.8e1 48

αe = 100, βe = 100 7.18 20 7.15 20 7.82 21 7.82 21

αe = 101, βe = 10−1 7.41 20 6.85 20 1.6e2 83 5.1e1 47

αe = 102, βe = 10−2 8.61 20 7.81 20 1.8e3 235 4.8e2 131

5.3. Example 3 (Using higher-order elements). In this subsection, we report
on the dependence of the rate of convergence of the deluxe BDDC algorithm on
the polynomial order of the finite element spaces. We recall that our theory does
not cover such cases. We consider a constant coefficient case, i.e. α = β = 1,
and fix the fine triangulation of Ω. We then increase the polynomial order for
the Raviart-Thomas elements and BDM elements; the order of the lowest order
elements is equal to 1. The experimental condition numbers for Raviart-Thomas
(continuous line) and for BDM (dashed line), as reported in Figure 1, indicate a
polylogarithmic bound in the the polynomial order of the finite element spaces as
observed and theoretically justified for a spectral element case in [60].

5.4. Example 4 (Adaptive BDDC deluxe). In this subsection, we report on
the efficiency of adaptive BDDC deluxe, and its economic variant, with randomly
distributed material coefficients α and β, using νtol = 10 for the eigenvalue problem
(3.10). We consider different refinements of Ω = [0, 1]3 which is always decomposed
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Figure 1. Square root of condition numbers as a function of log-
arithm of the polynomial order for Raviart-Thomas (continuous
line) and BDM (dashed line) elements. α = β = 1, with 64 irreg-
ular subdomains and H/h = 4.3.
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into 64 irregular subdomains. For the material coefficient α (resp. β), we first draw
a set of random real numbers xα ∈ [−q, q] (xβ ∈ [−q, q]) and then set α = 10xα

(β = 10xβ). Results for the lowest order Raviart-Thomas discretization are given
in Table 7; as the mesh is refined, the number of degrees of freedom increases from
50 thousand (H/h = 8.1) to 10 million (H/h = 40.8). Similar results for the lowest
order BDM elements are provided in Table 8; the number of degrees of freedom
varies from 152 thousand (H/h = 8.1) to 9 million (H/h = 30.5). Larger values
of H/h for BDM discretization were not possible because of memory issues. The
condition numbers, the number of iterations, and the size of the adaptive primal
spaces, given as a percentage of the number of degrees of freedom on the interface,
are provided. H/h is increased from top to bottom, whereas the contrast in the
coefficients is increased from left to right. We stress that the random distributions
considered for α and β are different.

Experimental condition numbers are very close to the adaptive threshold used in
all the deluxe and e-deluxe adaptive BDDC runs; the size of the adaptively gener-
ated coarse problems are very similar, with the e-deluxe version always producing
slightly larger primal spaces. We note that the relative size of the primal spaces
always decreases as H/h is increased. It is also interesting to note that the relative
size of the adaptively generated primal spaces for BDM discretization is smaller,
being roughly a third of that generated with Raviart-Thomas elements.

Figure 2 shows the timings for the setup and the application of the adaptive
BDDC preconditioner for the lowest order Raviart-Thomas elements. We compare
deluxe (continuous line) and e-deluxe (dashed line) for the cases q = 1 and q = 4.
Setup times are comparable for deluxe and e-deluxe, with the former being slightly
faster. On the other hand, e-deluxe is asymptotically faster than standard deluxe
for larger values of H/h with respect to the solve times.

In the e-deluxe case, the Dirichlet and Neumann solvers are factored separately.
These matrices are quite sparse with at most 7 non-zeros per row and in our expe-
rience the factorization and the backward and forward substitutions are very fast.
Instead, in the deluxe case, one single factorization step with the Schur complement
computation is performed. This results in a different ordering of the unknowns
(provided by MUMPS) and a larger number of non-zeros in the sparse factors for
the Dirichlet solver. The local Neumann problems are instead solved with a dense
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Table 7. Condition numbers (κ2), iteration counts (it), and rel-
ative size, in percent, of primal spaces (Π) for the lowest or-
der Raviart-Thomas elements with randomly chosen coefficients
α, β ∈ [10−q, 10q], with 64 irregular subdomains. Adaptive BDDC
with νtol = 10. Results given for deluxe and e-deluxe versions.

q = 1 q = 2 q = 3 q = 4
κ2 it Π κ2 it Π κ2 it Π κ2 it Π

H/h deluxe

8.1 10.9 22 6.1 8.1 20 11.9 10.6 21 14.9 10.5 20 15.0

16.2 11.2 23 1.6 9.2 21 4.9 12.1 21 7.3 11.6 20 7.9

22.4 11.3 23 0.8 11.5 21 3.3 9.9 19 5.2 10.9 19 5.9

30.5 11.1 23 0.5 11.9 21 2.4 11.5 20 3.8 13.1 20 4.4

34.9 10.5 22 0.3 11.6 20 1.9 13.9 20 3.2 11.8 18 3.7

40.8 11.7 22 0.2 10.0 19 1.6 12.4 21 2.6 11.2 18 3.1

H/h e-deluxe

8.1 10.9 22 6.2 8.2 20 11.9 10.6 21 15.0 10.5 20 15.1

16.2 11.2 23 1.7 9.2 21 5.0 12.1 21 7.3 11.7 20 8.0

22.4 11.3 23 0.9 11.3 21 3.4 9.7 19 5.3 10.9 19 6.0

30.5 11.1 20 0.6 11.7 20 2.5 11.3 20 3.9 13.1 20 4.5

34.9 9.5 21 0.4 9.7 19 2.0 13.5 20 3.3 11.5 18 3.8

40.8 11.6 22 0.3 9.8 19 1.7 12.1 20 2.7 11.1 18 3.2

Table 8. Condition numbers (κ2), iteration counts (it), and rela-
tive size, in percent, of primal spaces (Π) for the lowest order BDM
elements with randomly chosen coefficients α, β ∈ [10−q, 10q], with
64 irregular subdomains. Adaptive BDDC with νtol = 10. Results
given for deluxe and e-deluxe versions.

q = 1 q = 2 q = 3 q = 4
κ2 it Π κ2 it Π κ2 it Π κ2 it Π

H/h deluxe

8.1 9.0 23 2.3 7.1 20 4.3 11.2 21 4.4 10.3 21 5.3

16.2 10.9 23 0.7 9.3 21 1.8 13.0 22 1.8 9.3 19 2.5

22.4 10.6 22 0.4 11.4 20 1.2 10.8 20 1.2 9.7 19 1.8

30.5 10.4 22 0.2 10.5 21 0.9 11.4 21 0.9 11.9 20 1.3

H/h e-deluxe

8.1 9.1 23 2.3 7.1 20 4.3 11.1 21 4.4 10.3 21 5.3

16.2 10.9 23 0.7 9.3 21 1.8 13.0 22 1.8 9.3 19 2.6

22.4 10.5 22 0.4 11.2 20 1.2 10.7 20 1.2 9.7 19 1.8

30.5 9.8 21 0.3 10.4 21 0.9 11.4 20 0.9 11.7 20 1.3

matrix-vector multiplication, reusing the Schur complement inverted during the
setup phase. Such a step has O(n2

Γ) complexity, where nΓ is the number of degrees
of freedom of the subdomain interface. A poor load balance of the unknowns of
the local interfaces impacts the timings of this application negatively. We have ob-
served similar results for the lowest order BDM elements, with about 21 non-zeros
per row (data not shown).

5.5. Example 5 (Strong scalability with a SPE10 test case). In this sub-
section, we report on the strong scaling for adaptive deluxe BDDC for a slightly
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Figure 2. Setup times (left) and times for the application of
the adaptive BDDC preconditioner (right) as a function of H/h.
Deluxe scaling compared against e-deluxe for different values of q,
with α and β randomly chosen in [10−q, 10q].
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different variational problem given by

(5.1) a(u,v) :=

∫

Ω

(P divu div v + u K−1 v)dx,

where P is a non-negative scalar and K a symmetric positive definite tensor. The
porosity and the tensor permeability coefficients are given by the second data set
of the well-known SPE10 benchmark; cf. [1]. The domain considered is 1200ft ×
2200ft× 170ft, regularly decomposed by a hexahedral grid of 60 × 220× 85, with
each resulting hexahedron further subdivided into 6 tetrahedra. We use the lowest
order Raviart-Thomas elements, for a total of 15M degrees of freedom, and consider
the effect of increasing the number of subdomains N . We stress that the aspect
ratio of the elements is very high for the test case considered.

The porosity field is strongly correlated with the permeability coefficients, which
have very large variations (8 to 12 orders of magnitude). About 3% of the elements
have zero porosity. We note that we are not working with a discretization of the
original reservoir Darcy problem. Instead, we use this variational problem in order
to test our adaptive BDDC method on problems with highly irregular coefficients.
Adaptive deluxe BDDC is used with a threshold of 10 for the eigenvalues of (3.10);
the resulting coarse problem is solved using the parallel Cholesky solver provided by
the MUMPS library, [2]. Table 9 shows the results; experimental condition numbers
are very close to the eigenvalue threshold used, and the number of iterations is
scalable with an increasing number of subdomains. A superlinear speed-up can
be observed by inspecting the timings for the setup of the preconditioner (setup
column) and the total time for the Krylov solver, indicating that in the regimes
considered the computational times are dominated by the local Cholesky solvers
used for the sparse subdomain problems and for the dense Schur complement, while
the size of the coarse problem does not impact the scalability.
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Table 9. Condition numbers (κ2) and iteration counts (it) for
SPE10 test case for different number N of subdomains. Setup time
for adaptive BDDC and total time for Krylov solver are shown (in
seconds); in parenthesis, the speed-up in relation to the case of 128
subdomains.

N κ2 it setup solve ideal

128 12.6 20 26.5 (1.0) 6.51 (1.0) 1

256 13.1 21 8.91 (2.9) 2.92 (2.23) 2

512 14.0 22 3.83 (6.9) 1.27 (5.12) 4

1024 14.9 22 1.73 (15.3) 0.61 (10.67) 8

5.6. Example 6 (Strong scalability test with adaptive three-level BDDC).
In this last subsection, we demonstrate the effectiveness of adaptive three-level
BDDC for the model problem (1.1) in a strong scaling setting. For weak scal-
ing results with up to 32,768 processes, see [81]. We consider a uniform mesh of
the unit cube which results in about 25 million degrees of freedom for the lowest
order Raviart-Thomas discretization, and increase the number of subdomains N ,
from 1,024 to 16,384. The material parameters are randomly chosen in the range
[10−3, 103] and we set νtol = 10 for (3.10). Results in Figure 3 compare setup times
and Krylov solving times using adaptive BDDC deluxe with a parallel Cholesky
solver (exact in the legend) against its three-level variants (CR64 and CR128),
where the parallel Cholesky solver is replaced by a second step of adaptive BDDC
deluxe. In the CR64 (resp. CR128) case, 64 (128) fine subdomains are aggregated,
using ParMETIS, into single coarse subdomains. The threshold for the selection of
the primal functions at the coarser level is set to 5.

Compared with the SPE10 case studied in the previous subsection, the primal
spaces generated in this case are larger (data not shown); the costs for the setup
and the application of the parallel coarse solver are no longer negligible, and domi-
nate the simulations for large numbers of subdomains. On the other hand, adaptive
three-level BDDC algorithms are still scalable in the number of Krylov iterations,
requiring a few more iterations to converge than the standard two-levels BDDC;
setup and the solve times for the three-level results are scalable up to 16,384 sub-
domains.
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Figure 3. Setup (left) and Krylov solver (right) times (in seconds)
as a function of N . Adaptive BDDC with eigenvalue threshold
νtol = 10; two-level BDDC with parallel direct coarse solver (ex-
act) compared against three-level BDDC algorithms (CR64 and
CR128), with the coarse eigenvalue threshold νtol = 5. Material
coefficients α and β randomly chosen in [10−3, 103].
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