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Abstract
Developers increasingly use stream processing languages
to write applications that process large volumes of data
with high throughput. Unfortunately, when choosing which
stream processing language to use, they face a difficult
choice. On the one hand, dynamically scheduled languages
allow developers to write a wider range of applications, but
cannot take advantage of many crucial optimizations. On
the other hand, statically scheduled languages are extremely
performant, but cannot express many important streaming
applications.

This paper presents the design of a hybrid scheduler for
stream processing languages. The compiler partitions the
streaming application into coarse-grained subgraphs sepa-
rated by dynamic rate boundaries. It then applies static op-
timizations to those subgraphs. We have implemented this
scheduler as an extension to the StreamIt compiler, and eval-
uated its performance against three scheduling techniques
used by dynamic systems: OS thread, demand, and no-op.
Our scheduler not only allows the previously static version
of StreamIt to run dynamic rate applications, but it outper-
forms the three dynamic alternatives. This demonstrates that
our scheduler strikes the right balance between expressivity
and performance for stream processing languages.

1. Introduction
The greater availability of data from audio/video streams,
sensors, and financial exchanges has led to an increased de-
mand for applications that process large volumes of data
with high throughput. More and more, developers are us-
ing stream processing languages to write these programs.
Indeed, streaming applications have become ubiquitous in
government, finance, and entertainment.

A streaming application is, in essence, a data-flow graph
of streams and operators. A stream is an infinite sequence
of data items, and an operator transforms the data. The data
transfer rate of an operator is the number of data items that
it consumes and produces each time it fires. In statically

scheduled stream processing languages, every operator must
have a fixed data transfer rate at compile time. In contrast,
dynamically scheduled languages place no restriction on the
data transfer rate, which is determined at runtime.

Without the restriction of a fixed data transfer rate,
dynamic streaming systems, such as STREAM [2], Au-
rora [1] and SEDA [15], can be used to write a broader
range of applications. Unfortunately, many optimizations
cannot be applied dynamically without incurring large run-
time costs [10]. As a result, while dynamic languages are
more expressive, they are fundamentally less performant.
Using fixed data transfer rates, compilers for static languages
such as StreamIt [13], Esterel [4], Brook [5], and Lime [3]
can create a fully static schedule for the streaming appli-
cation that minimizes data copies, memory allocations, and
scheduling overhead. They can take advantage of data lo-
cality to reduce communication costs between operators [7],
and they can automatically replicate operators to process
data in parallel with minimal synchronization [6]. This pa-
per addresses the problem of how to balance the tradeoffs be-
tween expressivity and performance with a hybrid approach.

In an ideal world, all applications could be expressed
statically, and thus benefit from static optimization. In the
real world, that is not the case, as there are many important
applications that need dynamism. We identify four major
classes of such applications:

• Compression/Decompression. MPEG, JPEG, H264, gzip,
and similar programs have data-dependent transfer rates.

• Event monitoring. Applications for automated financial
trading, surveillance, and anomaly detection for natural
disasters critically rely on the ability to filter (e.g. drop
data based on a predicate) and aggregate (e.g. time-based
or attribute-delta based windows).

• Networking. Software routers and network monitors such
as Snort [11] require data-dependent routing.

• Parsing/Extraction. Examples include tokenization (e.g.
input string, output words), twitter analysis (e.g. input
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tweet, output hashtags), and regular expression pattern
matching (e.g. input string, output all matches).

While these applications fundamentally need dynamism,
only few streams in the data-flow graph are fully dynamic.
For instance, an MPEG decoder uses dynamism to route i-
frames and p-frames along different paths, but the operators
on those paths that process the frames all have static rates.
Events arriving from a financial exchange occur at irregu-
lar time intervals, but the static rate operators process those
events. A network monitor recognizes network protocols dy-
namically, but then identifies security violations by applying
a static rate pattern matcher.

Based on this observation, we developed our hybrid
scheduling scheme. The compiler partitions the streaming
application into coarse-grained subgraphs separated by dy-
namic rate boundaries. It then applies static optimizations to
those subgraphs, which reduce the communication overhead,
exploit automatic parallelization, and apply inter-operator
improvements such as scalarization and cache optimization.
Each static subgraph is assigned its own thread, and our
scheduler executes the threads such that upstream compo-
nents execute before downstream components, maximizing
throughput [1].

We have implemented this hybrid scheduling scheme for
the StreamIt language. To evaluate its performance, we com-
pared it to three scheduling techniques used by dynamic sys-
tems: OS thread, demand, and no-op. In all three cases, our
hybrid scheduler outperformed the alternative, demonstrat-
ing up to 10x, 1.2x, and 5.1x speedups, respectively. In sum-
mary, this paper makes the following contributions:

• An exploration of the tradeoffs between static and dy-
namic scheduling.

• The design of a hybrid static-dynamic scheduler for
stream processing languages that balances expressivity
and performance.

• An implementation of our hybrid scheduler for the
StreamIt language that outperforms three fully dynamic
schedulers.

Overall, our approach show significant speedup over fully
dynamic scheduling, while allowing stream developers to
write a larger set of applications. We believe our scheduler
occupies the sweet spot between expressivity and perfor-
mance for streaming languages.

2. Related Work
Table 1 presents an overview of various approaches for
scheduling stream processing languages. The simplest ap-
proach is sequential scheduling. All operators are placed
into a single thread, with no support for parallel execution.
The StreamIt Library [13] uses this approach, and imple-
ments dynamism by having downstream operators directly
call upstream operators when they need more data.

In OS thread scheduling, each operator is placed in its
own thread, and the scheduling is left to the underlying op-
erating system. This approach is used by some database im-
plementations [1], and is similar to the approach used by
the SEDA [15] framework for providing event-driven Inter-
net services. To improve performance, SEDA increases the
number of times each operator on the thread executes. This
optimization, called batching [8], increases the throughput
of the application, at the expense of latency. This form of dy-
namic scheduling is easy to use, since all scheduling is left to
the operating system. However, without application knowl-
edge, the operating system cannot schedule the threads in an
optimal order, so there are frequent cache-misses, unneces-
sary thread switching, and increased lock contention.

In demand scheduling the scheduler determines which
operators are eligible to execute by monitoring the size of
their input queues. When an operator is scheduled, it is as-
signed to a thread from a thread pool. One example of a
system using this technique is Aurora [1]. Aurora does not
map threads and operators to cores with consideration to
their data requirements, i.e., it is not spatially aware. How-
ever, it does provide two optimizations that improve on basic
demand scheduling. First, like SEDA, it implements batch-
ing. Second, it implements a form of operator fusion [8],
by placing multiple operators on the same thread to exe-
cute. Fusion reduces communication overhead, and the fre-
quency of thread switching. Like Aurora, our scheduler im-
plements both the fusion and batching optimizations. Un-
like Aurora, our scheduler data-parallelizes operators. With
data-parallelization replicas of the same operator on differ-
ent cores process different portions of the data concurrently.
Additionally, our scheduler and can optimize across fused
operators, such as by performing scalarization to further re-
duce inter-operator communication costs.

One common approach that static languages use to im-
plement dynamic scheduling is no-op scheduling. With this
approach, special messages are reserved to indicate that an
operator should perform a no-operation. Therefore, an op-
erator always produces a fixed number of outputs, but some
of those outputs are not used for computation. CQL [2] im-
plements a variation of this approach. In CQL, each operator
always produces a bag (i.e. a set with duplicates) of tuples.
The size of the bag, however, can vary. Therefore, an oper-
ator can send an empty bag to indicate that no computation
should be performed by downstream operators. As a result,
it suffers from increased costs associated with sending no-
op values. In contrast to our scheduler, CQL does not data-
parallelize operators.

In the hardware pipelining strategy, neighboring oper-
ators are fused until there are fewer or equal operators as
cores. Each fused operator is then assigned to a single core
for the life of the program. This allows upstream and down-
stream operators to execute in parallel. The StreamIt infras-
tructure includes a compilation path that mainly exploits
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Scheduling Scheme Approach Benefits and Drawbacks

Sequential
Operators are placed in a single thread and execute
sequentially.

No parallelism, but low latency.

OS Thread
Each operator gets its own thread. The operating
system handles the scheduling.

Easy to implement. Suffers from lock contention,
cache misses, and frequent thread switching.

Demand
Fused operators are scheduled to run when data is
available.

Uses fusion to reduce the number of threads and
batching to improve throughput. It is not spatially-
aware, does not optimize across operators, and has
no data parallelization.

No-op
Implements dynamism by varying the size of the
data. Always sends a data item, but the data item
can be a nonce.

Does not implement data-parallelization. In-
creased costs associated with sending no-op data
values.

Hardware Pipelining
Stream graph is partitioned into contiguous, load-
balanced regions, and each region is assigned to a
different core.

Low latency, but load-balancing is very difficult,
leading to low utilizations.

Static Data-Parallelism
Data-parallelism applied to coarse-grained state-
less operators. Double buffering alleviates stateful
operator bottlenecks.

No dynamic applications. Latency at the expense
of throughput.

Hybrid Static/Dynamic
Partition into coarse-grained components with dy-
namic boundaries. Apply static optimizations to
the components.

Allows for dynamic data transfer rates, is
spatially-aware, implements fusion, batching,
cross-operator, and data-parallel optimizations.

Table 1: Overview of scheduling approaches.

this approach [7] for several different target platforms, in-
cluding clusters of workstations [12], the MIT Raw micro-
processor [14], and Tilera’s line of microprocessors [16].
The hardware pipelining path supports dynamic rates, but
it cannot fuse operators if they have dynamic data transfer
rates. The challenge for hardware pipelining is to ensure that
each fused set of operators performs approximately the same
amount of work, so that the application is properly load bal-
anced. For real-world applications, this is difficult. Dynamic
data transfer rates make the problem even harder, because
there is no way to statically estimate how much work an op-
erator with a dynamic data transfer rate will perform. Con-
sequently, hardware pipelining was largely abandoned as a
compilation strategy by StreamIt, except when targeting FP-
GAs.

With static data-parallelism, the compiler tries to ag-
gressively fuse all operators, and then data-parallelize the
fused operators so that they occupy all cores. One compli-
cation for this strategy is that operators with stateful compu-
tations cannot be parallelized, and therefore introduce bot-
tlenecks. There are compilation path of the StreamIt com-
piler [6] that target commodity SMP multicores and Tilera
multicore processors using the static data-parallelism ap-
proach. The StreamIt compiler offsets the effects of state-
ful operator bottlenecks by introducing double buffering be-
tween operators. With double buffering, non-parallelized op-
erators can execute concurrently, because the buffer that a
producer writes to is different from the buffer from which
the consumer reads.

Our hybrid scheduler implementation extends the static
data-parallelism path of the StreamIt compiler. Throughout
the rest of this paper, the term StreamIt refers to the static
data-parallel version of the StreamIt compiler that targets
SMP multicores. The static data-parallelism strategy is scal-
able and performant across varying multicore architectures
(both shared memory and distributed memory) for real world
static streaming applications [6], but does not include the
expressiveness of dynamic data transfer rates. In this work
we achieve scalable parallelism with minimal communica-
tion for a wider set of streaming applications. Our strategy
partitions the application into static subgraphs separated by
dynamic rates, and applies the static data-parallelism opti-
mizations to the subgraphs.

3. Compiler Techniques
In practice, many streaming applications contain only a
small number of operators with dynamic data transfer rates,
while the rest of the application is static. This observation
motivates our design. The high-level intuition is that the
compiler can partition the operators into subgraphs sepa-
rated by dynamic rate boundaries. The compiler can then
treat each subgraph as if it were a separate static application.
This means that within a subgraph, operators communicate
though static buffers, and the compiler can statically opti-
mize each subgraph independently of the rest of the applica-
tion. The compiler is also responsible for placing subgraphs
onto threads and cores. This section discusses the techniques
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Figure 1: The data-flow graph is first partitioned into static
subgraphs. Solid edges are streams from producers to con-
sumers. The asterisk indicates a dynamic communication
channel, and the dashed line indicates the static subgraphs.
Each static subgraph is optimized by fusing and then paral-
lelizing.

used by the compiler to support our hybrid scheduler, while
Section 4 presents the runtime techniques.

3.1 Partitioning
To partition the application, the compiler cuts the data-flow
graph so that each subgraph can be treated as a separate static
application. This allows us to leverage the static compiler
and optimizer almost as-is by running them on each sub-
graph independently. A dynamic communication channel is
an edge between two operators where either the producer,
the consumer, or both have dynamic rate communication.
The partitioning algorithm is simply a breadth-first search of
the data-flow graph that cuts an edge if it is a dynamic com-
munication channel. If there is a branch in the graph, such
as after a split operator, then there must be a cut on every
branch. The criterion is that a cut must completely bisect the
graph. Cuts that do not bisect the graph are illegal, because
they do not produce independent static subgraphs.

Using StreamIt as a source language has two implica-
tions for the partitioning algorithm. First, because the data-
flow graphs in StreamIt are hierarchical, the compiler must
first flatten the data-flow graph to remove the hierarchy be-
fore performing partitioning. Second, partitioning must re-
spect the topological constraints enforced by the StreamIt
language. In StreamIt, the operator-graph must be a pipeline,
split-join, or feedback-loop topology. Our current implemen-
tation only permits cuts in pipeline topologies. Although
the partitioning algorithm works for other topologies, the
StreamIt language would need to add split and join operators
that can process tuples out-of-order. A static round-robin
join operator, for example, would interleave the outputs of
dynamic rate operators on its input branches, resulting in
errors. Dynamic split-join topologies are necessary for ap-
plications such as an MPEG decoder, which routes i-frames
and p-frames along different paths for separate processing.

core
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thread
placement
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Figure 2: Operators are first mapped to cores and then as-
signed to threads. Operators on the same thread appear in
the same shaded oval.

3.2 Optimization
Once the graph is partitioned, the compiler can optimize
each subgraph independently. The StreamIt compiler first
aggressively fuses operators to remove the communication
overhead between them, and then data-parallelizes (or per-
forms fission on) the fused operators. Figure 1 illustrates the
changes to the operator data-flow graph during the partition-
ing and optimization stages of our compiler.

Ideally, our modified compiler could treat the static opti-
mizer as a black-box. However, adding dynamic rates mod-
ifies the standard fusion and fission optimizations. Opera-
tors with dynamic communication channels are not data-
parallelized. In general, they could be, as long as there were
some way to preserve the order of their outputs. We plan to
address this in future work. This restriction impacts the fu-
sion optimizations. Operators with dynamic input rates but
static output rates are not fused with downstream operators.
Although such a transformation would be safe, it would not
be profitable because the fusion would inhibit paralleliza-
tion.

3.3 Placement
The StreamIt compiler assigns operators to cores using
a greedy bin-packing algorithm that respects spatial con-
straints. That is, the mapping algorithm tries to place pro-
ducers and consumers on the same core, while at the same
time balancing the workload across available cores.

We extend the compiler to not only map operators to
cores, but additionally assigns operators to threads. In Fig-
ure 2, the partitioned operators are first mapped to cores
and then assigned to threads. As will be explained in Sec-
tion 4.1, each static subgraph is placed on its own thread.
Data-parallelized static rate operators on the same core as
their producer are placed in the same thread as their pro-
ducer. Data-parallelized static rate operators not on the same
core as their producer are assigned their own thread. In
Figure 2, operators 1 and 2 are each assigned to separate
threads, because they are in separate static subgraphs. The
data-parallelized 3+4 operator on core 1 is in its own thread.

4 2012/4/17



The data-parallelized 3+4 operator on core 2 is placed on the
same thread as its producer.

4. Runtime Techniques
Section 3 discusses the compiler techniques used to support
our hybrid scheduler. This section presents the runtime tech-
niques. At runtime, operators in different subgraphs commu-
nicate through dynamically-sized queues, adding the flexi-
bility for dynamic rate communication. Within a subgraph,
communication is unchanged from the completely static ver-
sion. Operators communicate through static buffers, even
across cores. Each subgraph runs in its own thread, which
allows operators to suspend execution midway through a
computation if there is no data available on its input queues.
Threads run according to the data-flow order of the operators
they contain, meaning that upstream subgraphs run before
downstream subgraphs. This ordering makes it more likely
that downstream subgraphs have data available on their in-
put queues when they execute. If data is not available for an
operator, the thread blocks, and the next thread runs. Finally,
batching is used to reduce the overhead of thread switching.

4.1 Coroutines
To support dynamic rate communication between operators,
we need to consider two questions: (1) what happens if a
producer needs to write more data than will fit into an output
buffer, and (2) what happens if a consumer needs to read
more data than is available on the input buffer?

To support the producers, we use dynamically-sized
queues for communication between the subgraphs. If a pro-
ducer needs to write more data than will fit into the queue,
the queue size is doubled. This means that a producer can
always write to its output communication channel. There is a
small performance hit each time a queue needs to be resized.
The total number of resizing is logarithmic in the maximum
queue size experienced by the application. For most applica-
tions, resizing only happens during program startup, as the
queues quickly grow to a suitable size.

Supporting dynamic consumers is more difficult. A state-
ful operator may run out of data to read partway through a
computation. For example, an operator that performs a run-
length encoding needs to count the number of consecutive
characters in an input sequence. If the data is unavailable
for the encoder to read, it needs to store its current character
count until it can resume execution. The challenge for dy-
namic consumers is how to suspend execution, and save any
partial state, until more input data becomes available.

To support this behavior, we need coroutines. We con-
sidered several approaches in search of a lightweight solu-
tion. Closures, such as provided by Objective-C blocks or
C++0x lambdas are not sufficient, as they cannot preserve
state through a partial execution. We considered adding ex-
plicit code to the operators to save the stack and registers, but
that code would be brittle (since it is low-level, and breaks

abstractions usually hidden by the compiler and runtime sys-
tem), and not portable across different architectures. A dy-
namic consumer could invoke an upstream operator directly
to produce more data, but the scheduling logic would get
complicated as each upstream operator would have to call
its predecessor in a chain. On Stack Replacement [9], which
stores stack frames on the heap, would work, but there was
no readily available implementation to use.

Ultimately, we chose to use user-level threads. Threads
are, after all, the standard abstraction for saving the stack and
registers. However, using threads had several implications
for our design. First, prior versions of StreamIt use one
thread per core. We needed to modify the runtime to support
running multiple threads per core. Second, we needed to add
infrastructure for scheduling multiple threads. And finally,
we needed to offset the performance impact that results from
thread switching.

4.2 Scheduling
StreamIt uses only one thread per core. Each operator in
the thread executes sequentially in a loop. At the end of
each loop iteration, the thread reaches a barrier. The barrier
guarantees that all operators are in synch at the beginning of
each global iteration of the schedule.

To support dynamic rate communication, we extend the
StreamIt compiler to use multiple threads per core. This
complicates the scheduler, as it has to coordinate between
the various threads. To prevent multiple threads on a core
from running at the same time, each thread is guarded by a
condition variable. A thread will not run until it is signalled.
Our original design had a master thread for each core that
signalled each thread when they were scheduled to run.
However, we found that the biggest performance overhead
for our dynamic applications comes from switching threads.
To reduce the number of thread switches, we altered our
design so that each thread is responsible for signaling the
subsequent thread directly. The solid arrows in Figure 3
indicate the transfer of control between threads. Switching
from the master thread approach to our direct call approach
resulted in an 27% increase in throughput for an application
with 32 threads.

The first operator assigned to a thread is the leader of that
thread. In Figure 3, operator 2 is the leader of the first thread
on core 2. Threads run according to the data-flow order of
the leaders. Running in data-flow order makes it more likely
that downstream subgraphs have data available on their input
queues when they execute.

At program startup, all dynamic queues are empty. As ex-
ecution proceeds, though, the queues fill up as data travels
downstream. This allows for pipelining, meaning that down-
stream operators can execute at the same time as upstream
operators. In Figure 3, operator 2 executes on the data that
operator 1 processed in the previous iteration. Sometimes, an
upstream operator might not produce data. This might occur,
for example, with a selection operator that filters data. When
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Figure 3: Each thread executes in data-flow order on its
assigned core. Each thread is responsible for scheduling the
next thread on its core. The solid arrow indicate control
transfer.

this occurs, there is a slight hiccup in the pipelining that re-
solves when more data travels downstream.

To guard against concurrent accesses to a dynamic queue
by producers and consumers, the push and pop operations
are guarded by locks. A lock-free queue implementation
would be an attractive choice to use here, as it could allow
for greater concurrent execution, but unfortunately, we are
not aware of any lock-free queues that support a lock-free
resize operation.

4.3 Batching
As mentioned in Section 4.2, the abandoned master thread
approach taught us that the biggest performance overhead
for our dynamic applications comes from switching threads.
This insight led us to implement the batching optimization.
With batching, each thread runs for batch size iterations
before transferring control to the next thread. When the batch
size is increased, more data items are stored on each dynamic
queue. Batching increases the throughput of the application
and reduces thread switching at the expense of increased
memory usage and latency. As we will show in Section 5.1.3,
running an application with the batch size set to 100 can
triple the performance.

5. Evaluation
Overall, our design strikes a balance between static and
dynamic scheduling. It allows for dynamic communication
between static components, and for aggressive optimization
within the static components. To evaluate our system, we
explore two issues:

• Section 5.1 evaluates the overhead we can expect for our
hybrid scheduler as compared to fully static scheduling.

• Section 5.2 evaluates what performance improvement we
can expect compared to completely dynamic schedulers.

For each question, we ran a set of micro-benchmarks. Be-
cause there are a lot of experiments, we have grouped the

results together in Figures 4, 5, 6, and 7 to make the material
more accessible. Each experiment has two figures associated
with it. On the left is a topology diagram that illustrates the
application that was run in the experiment. On the right is a
chart that shows the result. In all topology diagrams, a num-
ber to the left of an operator declares its static input data rate.
A number to the right indicates is static output data rate. An
asterisk indicates that the rate is dynamic.

In many of the experiments, we vary the amount of work
performed by an operator. One work unit, or one computa-
tion, is defined as one iteration of the following loop:

1 x = pop();
2 for (i = 0; i < WORK; i++) {
3 x += i * 3.0 - 1.0;
4 }
5 push(x);

Each subsection below discusses an experiment in detail. All
experiments were run on a 64 bit Intel Xeon (X7550) proces-
sor with 32 cores running at 3.00GHz, and an L3 cache size
of 18MB. Each section starts with the intuition or question
that motivates the experiment, followed by a discussion of
the setup and results. Overall, the results are encouraging.
Our hybrid scheduler outperforms three alternative dynamic
schedulers: OS thread, demand, and no-op.

5.1 Comparing Dynamic to Static
We expect that our hybrid compiler will be less performant
than a fully static compiler. This is the tradeoff that the com-
piler makes in order to get better expressivity. The follow-
ing set of experiments quantify the overhead of our hybrid
scheduler when compared to fully static scheduling.

5.1.1 Worst-Case Overhead without Batching

How does the communication overhead from dynamism
compare to that of the static scheduling?

The worst-case scenario for our scheduler is if the opera-
tors do not perform any computation, so the communica-
tion overheads cannot be amortized. The experiment in Fig-
ure 4 (a) shows shows the worst-case overhead for dynamic
scheduling as compared to static scheduling. The application
is a pipeline of n operators communicating through dynamic
queues. Each operator simply forwards any data it receives
without performing any computation. The results are nor-
malized to a static application, also of n operators, where all
operators are fused. The experiment is run on a single core.

In the figure, the y-axis is the inverse throughput and
the x-axis has increasing values of n. As expected, there is
significant overhead for adding dynamism. For the simple
case of a single dynamic queue, there is a a 5x decrease
in throughput. The throughput decreases linearly as we add
more queues. When there are 31 queues, there is a 10x
performance hit.

The biggest detriment to performance comes from switch-
ing threads. In the experiment in Section 5.1.3, we show that
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the overhead from thread switching can be ameliorated by
increasing the batch size.

5.1.2 Operator Workload

How does the operator workload affect the performance?

Operators for most applications perform more work than in
Section 5.1.1. The experiment in Figure 4 (b) explores the
effect of operator workload on for our scheduler. The appli-
cation is a pipeline of two operators communicating through
a dynamic queue, running on a single core. We define the
total workload for the application to be W , where each op-
erator performs W/2 computations. and ran the application
with increasing workloads.

The results are shown normalized to a static applica-
tion with two fused operators. The y-axis shows the inverse
throughput and the x-axis shows workload. As the the opera-
tor workload increases, communication overheads are amor-
tized. The 5x overhead with the identity filter improves to
1.48x overhead when the two operators perform 1,000 com-
putations combined. Performance can be further improved
with the batching optimization.

5.1.3 Batching

How does batching affect the performance?

In contrast to operator workload, the batch size is fully under
control of the system. That is fortunate, because it means we
can ameliorate the worst-case behavior from Section 5.1.1.
The experiment in Figure 4 (c) demonstrates that batching
improves the performance of a dynamic application. It re-
peats the experiment from Section 5.1.1, with increasing
batch sizes. In the chart, each line is the dynamic applica-
tion run with a different amount of batching.

The graph shows that increasing the batch size can sig-
nificantly improve the throughput. The 5x overhead with the
identity filter improves to 1.64x overhead when the batch
size is set to 100. As the batch size increases, so does the
throughput. However, as the next experiment shows, there is
a limit.

5.1.4 Batching vs. Cache Size

Does batching too much negatively affect the performance?

Batching causes more data to be stored on the dynamic
queues. The experiment in Figure 4 (d) tests if increasing
the batch size beyond the cache size hurts performance. The
application consists of two identity operators in a pipeline.

We ran the experiment with increasing batch sizes, shown
in the x-axis. Although there is a lot of variance in the data
points, we see that the performance does start to degrade
as the batch size outgrows the cache size at 18MB. The
performance degradation is not excessive, though, because
streaming workloads mostly access memory sequentially,
and can therefore benefit from hardware pre-fetching.

5.1.5 Dynamism with Parallelism

How does dynamism affect parallelism?

Adding dynamism to StreamIt applications introduces bot-
tlenecks into the operator graph, since operators that have
dynamic communication rates are not parallelized. The ex-
periment in Figure 5 (a) explores how this bottleneck affects
performance.

We compare two version of an application: one static
and one dynamic. Both version consist of three operators
in a pipeline. In the dynamic version, the first and second
operators communicate through a dynamic queue. For each
data item, the first operator does 100 computations, and the
third operator does 900 computations. The second operator
simply forwards data.

We ran both applications with increasing degrees of par-
allelism. In the static case, all operator are fused, and then
parallelized. In the dynamic case, only the third operator is
parallelized.

The effects of the bottleneck introduced by the dynamic
rate are apparent, as the static case outperforms the dy-
namic case. However, neither case sees dramatic improve-
ments when parallelized, and indeed the static case sees a
drop in performance after 16 cores. There was not sufficient
parallelized work to offset the extra communication costs. In
the next experiment, we increase the operator workload.

5.1.6 Dynamism with Parallelism and Increased
Workload

How does the operator workload affect the performance of
fission?

Figure 5 (b) repeats the experiment in Figure 5 (a), but
with an increased operator workload. For each data item,
the first operator does 1000 computations, and the third op-
erator does 9000 computations. The static version of the
application effectively parallelizes the work, getting a 17x
speedup over the non-parallelized version. The dynamic ver-
sion also sees a performance improvement, despite the bot-
tleneck, achieving 6.8x increase in throughput.

5.2 Alternative Dynamic Scheduling techniques
Our hybrid scheduler makes a tradeoff between performance
and expressivity, trying to balance both demands. The last
section demonstrates that, as expected, adding support for
dynamic rate communication hurts performance. The real
test of our scheduler, though, is to see if adding the static
optimizations yields an increase in performance when com-
pared to other dynamic schedulers. In the following experi-
ments, we compare our hybrid scheduler to OS thread, de-
mand, and no-op schedulers. In all three cases, our hybrid
scheduler outperforms the alternative.
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(b) Larger operator workloads offset the impact of the bottleneck.

Figure 5: Experiments with parallelized operators.

5.2.1 Thread O.S. Scheduling

How does our implementation compare to OS thread
scheduling?

The experiment in Figure 6 (a) compares our hybrid
scheduler to an OS thread scheduler. The application con-
sists of n operators arranged in a pipeline. We ran the appli-
cation with both schedulers on one core with an increasing
number of operators.

All communication between operators is through dy-
namic queues, and in both the hybrid and OS thread version,
each operator executes in its own thread. In the hybrid ver-
sion, our scheduler controls the scheduling of the threads, so
that each thread executes in upstream to downstream order
of the operators. In the OS thread scheduler version, the op-
erating system schedules the threads. The results show that
the hybrid version significantly outperforms the OS thread
approach. In an application with 8 operators, it is 3.1x faster.
When there are 32 operators, it is 10.5x faster.

5.2.2 Demand Scheduling

How does our implementation compare to demand
scheduling?

As discussed in the Section 2, the demand scheduler im-
plemented by Aurora uses fusion and batching to increase
performance, but does not support data-parallelization. To
compare our hybrid scheduler to a demand scheduler, we
ran the experiment in Figure 6 (b). The application consists
of three operators arranged in a pipeline. The first does 1000
computations of work, the second is the identity filter, and
the third does 1000 computations. Since both the hybrid and
demand schedulers perform fusion, it does not matter how
many operators are downstream from the second operator, as
they would be fused into a single operator during optimiza-
tion. The same application was run in both experiments, but
for the demand scheduler, data-parallelization was disabled.
Since both the demand scheduler and the hybrid scheduler
implement batching, we increased the batch size for differ-
ent runs of the experiment. We ran both versions of the pro-
gram on 1, 4, and 8 cores. The hybrid version on 4 and 8
cores outperforms the demand scheduler by 1.2x on 4 cores,
and 1.3x on 8 cores. Although these improvements are mod-
est, Section 5.1.6 showed that increasing the workload in the
parallelized operators would increase the performance gains
of the hybrid scheduler.
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Figure 6: Comparing the hybrid scheduler to OS thread and demand scheduling.

5.2.3 No-op Scheduling

How does our implementation compare to No-op
scheduling?

In no-op scheduling, special messages are reserved to in-
dicate that an operator should perform a no-operation. Us-
ing this approach, a statically scheduled streaming language
can simulate the behavior of a dynamically scheduled lan-
guage. Because the no-op scheduler is static, it can be opti-
mized with the static optimizer to take advantage of fusion
and data-parallelization. However, because replicas receive
no-op messages instead of actual work, the workload among
replicas is often imbalanced.

To see how our hybrid scheduler compares to no-op
scheduling, we implemented no-op versions of two dynamic
operators. The first is a selection, which filters values by a
predicate. The second operator is a volume weighted aver-
age price, or VWAP. VWAP is a computation often used in
financial applications. It keeps a sum of both the price of
trades and the volume of trades that occur during a given
time window. At the end of that window, it sends the aver-
age.

Both the VWAP and selection operator we placed in an
application consisting of three operators in a pipeline. The
VWAP or selection was first, followed by the identity oper-

ator, followed by an operator that processed the data by per-
forming 1000 computations. Both the no-op scheduler and
the hybrid scheduler parallelize the third operator.

For the selection experiment, we varied the selectivity
of the input data. In the graphs in Figure 7 (a) and (c), a
selectivity of 10 means that for every 10 inputs, the selection
filters 9. Put another way, 1 in 10 inputs would result in
meaningful downstream computation.

For the vwap experiment, we varied the frequency of the
input data. In the graphs in Figure 7 (b) and (d), a frequency
of 10 means the 10th input data item would results in the
next window. That is, a total of 10 trades appear in the time
window.

Figure 7 (a) and (b) show the first version of this experi-
ment. In this version, the no-op scheduler and hybrid sched-
uler have fairly comparable performance. The hybrid sched-
uler performs better when the selectivity and frequency is
set to 10. However, when the selectivity and frequency are
higher, the no-op scheduler on one core performs the best.
The no-op scheduler on 8 cores does not perform well, be-
cause of the load imbalance. The hybrid scheduler does not
perform well, because there are frequent thread switches that
do not produce meaningful work.

However, because the hybrid scheduler offers true dy-
namism, as opposed to simulated dynamism, it has a signif-
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Figure 7: Comparing the hybrid scheduler to no-op scheduling.

11 2012/4/17



icant advantage over the no-op scheduler. Both the selection
and VWAP operator can be re-written to add dynamism at
the operators input. For example, the selection operator can
be re-written like this:

1 while (peek(0) > THRESHOLD) {
2 pop();
3 }
4 push(pop());

When the operators are written this way, they will read from
their input queue until there is no data available, reducing
the number of thread switches. The experiments in Figure 7
(c) and (d) answer the question:

How does our implementation with dynamic input compare
to no-op scheduling?

The dynamic input versions of the operators show significant
performance improvements over the no-op versions. When
the selectivity is 10, the hybrid VWAP operator shows a
4.9x performance compared to the best no-op version (1
core). They hybrid selection operator on 8 cores shows a
5.1x performance over the best no-op version (1 core) when
the selectivity is 10.

6. Conclusion
This paper presents the design of a hybrid static/dynamic
scheduler for stream processing languages. Stream process-
ing has become an essential programming paradigm for
applications that process large-volumes of data with high
throughput. Stream processing languages are widely used
for applications in government, finance, and entertainment.

The first contribution of this paper is to explore the trade-
offs between dynamically scheduled and statically scheduled
languages. While statically scheduled languages allow for
more aggressive optimization, dynamically scheduled lan-
guages are more expressive, and can be used to write a
wider range of applications, including applications for com-
pression/decompression, event monitoring, networking, and
parsing.

The second contribution of this paper is the design of a
hybrid static-dynamic scheduler for stream processing lan-
guages. The scheduler partitions the streaming application
into static subgraphs separated by dynamic rate boundaries,
and then applies static optimizations to those subgraphs.
Each static subgraphs is assigned its own thread, and the
scheduler executes the threads such that upstream operators
execute before downstream operators.

The third contribution of this paper is an implementation
of our hybrid scheduler for the StreamIt language. To eval-
uate our system, we compared it with three alternative dy-
namic scheduling techniques: OS thread, demand, and no-
op. In all three cases, our hybrid scheduler outperformed the
alternative.

In summary, our approach show significant speedup over
fully dynamic scheduling, while allowing developers to

write a larger set of applications. We believe that our sched-
uler strikes the right balance between expressivity and per-
formance for stream processing languages.
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