
Circuit Complexity: New Techniques and
Their Limitations

by

Aleksandr Golovnev

a dissertation submitted in partial fulfillment

of the requirements for the degree of

Doctor of Philosophy

Department of Computer Science

New York University

May, 2017

Yevgeniy Dodis

Oded Regev

© Aleksandr Golovnev

all rights reserved, 2017

to Ludmila Golovneva

iv

Acknowledgments

I would like to express my sincere gratitude to my advisors, Yevgeniy Dodis and

Oded Regev, who introduced me to the beautiful world of theoretical computer

science. I thank them for their immense knowledge, continuous support, encour-

agement and motivation. Most of what I know I learned from long discussions

with Oded and from his great and insightful advice. I thank my committee,

Subhash Khot, Rocco Servedio, and Ryan Williams for their kind help and com-

ments which greatly improved this work.

I am grateful to all my co-authors, with whom working was extremely pleas-

ant and informative: Magnus Gausdal Find, Edward A. Hirsch, Alexander

Knop, Alexander S. Kulikov, Alexander Smal, and Suguru Tamaki.

I thank Alexander S. Kulikov for his endless encouragement, optimism, and

very patient mentoring over many years. Without him no part of this work

would have been possible. I am extremely grateful to my teacher of mathemat-

ics, Boris Komrakov, for his illuminating lectures years ago, and for his still con-

stant support. I owe many thanks to Ryan Williams whose brilliant work on

circuits and algorithms inspired and determined my research interests.

I would like to thank the computer science department for their help, espe-

cially Rosemary Amico and Santiago Pizzini, who were always very friendly and

v

helped me on many occasions.

I owe many thanks to my friends from Courant for creating an encouraging,

enjoyable (and sometimes) working environment. Our student seminars, discus-

sions and more importantly bets were always fun. I thank them for their con-

tinuous support, cheer and pi-jaws: Azam Asl, Huck Bennett, Sandro Coretti,

Laura Florescu, Chaya Ganesh, Sid Krishna, Shravas Rao, Noah Stephens-

Davidowitz, and Deva Thiruvenkatachari.

Finally, I would like to thank my wife Olya, my mother Alla, and my brother

Arseniy for inspiring me to study mathematics, and for their continuous love

and encouragement.

vi

Abstract

We study the problem of proving circuit lower bounds. Although it can be eas-

ily shown by counting that almost all Boolean predicates of n variables have

circuit size Ω(2n/n), we have no example of a function from NP requiring even

a superlinear number of gates. Moreover, only modest linear lower bounds are

known. Until this work, the strongest known lower bound was 3n − o(n) (Blum

1984).

Essentially, the only known method for proving lower bounds on general

Boolean circuits is gate elimination. We extend and generalize this method in

order to get stronger circuit lower bounds, and we get better algorithms for the

Circuit SAT problem. We also study the limitations of gate elimination.

• We extend gate elimination to prove a lower bound of
(
3 + 1

86

)
n − o(n)

for the circuit size of an affine disperser for sublinear dimension. There are

known explicit constructions of such functions.

• We introduce the weighted gate elimination method, which runs a more

sophisticated induction than gate elimination. This method gives a much

simpler proof of a stronger lower bound of 3.11n for quadratic dispersers.

Currently, there is no known example of a quadratic disperser in NP (al-

vii

though there are constructions that work for parameters different than the

ones that we need).

• The most technical part of gate elimination proofs is the case analysis. We

develop a general framework which allows us to reuse the same case anal-

ysis for proving worst-case and average-case circuit lower bounds, and up-

per bounds for Circuit SAT algorithms. Using this framework we improve

known upper bounds for Circuit SAT, and prove a stronger average-case

lower bound for the circuit basis U2.

• We study the limits of gate elimination proofs. We show that there exists

an explicit constant c, such that the current techniques used in gate elimi-

nation cannot prove a linear lower bound of cn.

viii

Contents

Dedication iv

Acknowledgments v

Abstract vii

List of Figures xiii

1 Introduction 1

1.1 Overview . 1

1.2 Computational models . 4

1.3 Circuit SAT algorithms . 6

1.4 Known limitations for proving lower bounds 8

1.4.1 Circuit lower bounds . 8

1.4.2 Formula lower bounds . 10

1.4.3 Gate elimination . 11

1.5 Outline . 12

2 Preliminaries 13

2.1 Circuits . 13

ix

2.1.1 Circuit normalization . 15

2.2 Dispersers and extractors . 16

2.3 Circuit complexity measures . 20

2.4 Splitting numbers and splitting vectors 23

3 Gate elimination 26

3.1 Overview . 26

3.2 A 3n− o(n) lower bound . 28

3.3 A 3.01n lower bound for affine dispersers 30

3.4 A 3.11n lower bound for quadratic dispersers 32

4 Lower bound of 3.01n for affine dispersers 35

4.1 Overview . 35

4.2 Cyclic circuits . 38

4.2.1 Relations between xor-circuits 39

4.2.2 Semicircuits . 41

4.3 Cyclic circuit transformations . 41

4.3.1 Basic substitutions . 41

4.3.2 Normalization and troubled gates 43

4.3.3 Affine substitutions . 46

4.4 Read-once depth-2 quadratic sources 51

4.5 Circuit complexity measure . 54

4.6 Gate elimination . 59

4.6.1 Proof outline . 60

x

4.6.2 Full proof . 64

4.6.3 Cases: . 67

5 Lower bound of 3.11n for quadratic dispersers 83

5.1 Overview . 83

5.2 Preliminaries . 84

5.3 Weighted Gate Elimination . 86

6 Circuit SAT Algorithms 96

6.1 Overview . 96

6.1.1 New results . 98

6.1.2 Framework . 99

6.2 Preliminaries . 101

6.3 Main theorem . 103

6.4 Bounds for the basis U2 . 108

6.4.1 Bit fixing substitutions . 109

6.4.2 Projection substitutions 111

6.5 Bounds for the basis B2 . 116

6.5.1 Affine substitutions . 116

6.5.2 Quadratic substitutions 119

7 Limitations of Gate Elimination 128

7.1 Overview . 128

7.2 Preliminaries . 130

7.3 Introductory example . 132

xi

7.4 Subadditive measures . 134

7.5 Measures that count inputs . 138

8 Conclusions 146

References 164

xii

List of Figures

2.1 An example of a circuit and the program it computes. 15

4.1 A simple example of a cyclic xor-circuit. In this case all the gates

are labeled with ⊕. The affine functions computed by the gates

are shown on the right of the circuit. The bottom row shows the

program computed by the circuit as well as the corresponding

linear system. 40

4.2 This figure illustrates the transformation from Lemma 5. We use

⊕ as a generic label for xor-type gates. That is, in the picture,

gates labelled ⊕ may compute the function ≡. 50

4.3 An example of an rdq-source. Note that a variable can be read

just once by an and-type gate while it can be read many times by

xor-type gates. 52

4.4 The gate elimination process in Proof Outline of Theorem 5. . . . 62

5.1 An example of a transformation from a regular circuit to an

xor-layered circuit. 85

7.1 (a) A circuit for f . (b) A circuit for f ⋄MAJ3. 133

xiii

7.2 (a) A circuit computing the majority of three bits x1, x2, x3.

(b) A circuit resulting from substitution x1 ← ρ. (c) By adding

another gadget to a circuit with x1 substituted, we force it to

compute the majority of x1, x2, x3. 133

xiv

1
Introduction

1.1 Overview

Let us consider a Boolean function of n arguments f : Fn
2 → F2. A natural ques-

tion studied in theoretical computer science is: what is the minimal number of

binary Boolean operations needed to compute f? The corresponding compu-

tational model is Boolean circuits. A circuit is a directed acyclic graph with

source vertices (called inputs) x1, . . . , xn, whose intermediate vertices (called

gates) have indegree 2 and are labeled with arbitrary binary Boolean operations.

The size of a circuit is its number of gates. Note that we do not impose any re-

1

strictions on the depth or outdegree.

Counting shows that the number of circuits with small size is much smaller

than the total number 22
n of Boolean functions of n arguments. Using this idea

it was shown by Shannon 100 that almost all functions of n arguments require

circuits of size Ω(2n/n). This proof is however non-constructive: it does not

give an explicit function of high circuit complexity. Showing superpolynomial

lower bounds for explicitly defined functions (for example, for functions from

NP) remains a difficult problem. (In particular, such lower bounds would im-

ply P ̸= NP.) Moreover, even superlinear bounds are unknown for functions

in ENP. Superpolynomial bounds are known for MAEXP (exponential-time

Merlin-Arthur games)16 and ZPEXPMCSP (exponential-time ZPP with oracle

access to the Minimal Circuit Size Problem)49, and arbitrary polynomial lower

bounds are known for O2 (the oblivious symmetric second level of the polyno-

mial hierarchy)17.

People started to tackle this problem in the 60s. Kloss and Malyshev57

proved a 2n − O(1) lower bound for the function
⊕

1≤i<j≤n xixj. Schnorr 95

proved a 2n − O(1) lower bound for a class of functions with certain structure.

Stockmeyer 102 proved a 2.5n−O(1) bound for most symmetric functions. Paul 83

proved a 2n− o(n) lower bound for the storage access function and a 2.5n− o(n)

lower bound for a combination of two storage access functions. Eventually, in

1984 Blum14 extended Paul’s argument and proved a 3n − o(n) bound for a

function combining three storage access functions using simple operations.

Blum’s bound remained unbeaten for more than thirty years. Blum’s proof

2

relies on a number of properties of his particular function, and it cannot be ex-

tended to get a stronger than 3n lower bound without using different properties.

Recently, Demenkov & Kulikov 29 presented a much simpler proof of a

3n − o(n) lower bound for functions with an entirely different property: affine

dispersers (and there are known efficient constructions of affine dispersers in P).

This property allows one to restrict the function to smaller and smaller affine

subspaces. As was later observed by Vadhan & Williams 106 , the way Demenkov

and Kulikov use this property cannot give stronger than 3n bounds as it is tight

for the inner product function.* (But this does not extinguish all hope of using

affine dispersers to prove better lower bounds.) Hence, mysteriously, two dif-

ferent proofs using two different properties are both stuck on exactly the same

lower bound 3n − o(n) which was first proven more than 30 years ago. Is this

lack of progress grounded in combinatorial properties of circuits, so that this

line of research faces an insurmountable obstacle? Or can refinements of the

known techniques go above 3n?

In this work we show that the latter is the case. We improve the bound for

affine dispersers to (3 + 1
86
)n − o(n), which is stronger than Blum’s bound.

We then show that a stronger lower bound of 3.11n can be proven much more

easily for a stronger object that we call a quadratic disperser. Roughly, such a

function is resistant to sufficiently many substitutions of the form x ← p where

p is a polynomial over other variables of degree at most 2. Currently, there are

no examples of quadratic dispersers in NP (though there are constructions with
*The inner product function is known to be an affine disperser for dimension n/2 + 1.

3

weaker parameters for the field of size two and constructions for larger fields).

We also study applications of these techniques to algorithms for the Circuit

Satisfiability problem, and give evidence that these techniques cannot lead to

strong linear lower bounds.

1.2 Computational models

The exact complexity of computational problems is different in different models

of computation. For example, switching from multitape to single-tape Turing

machines can square the time complexity, and random access machines are even

more efficient. Boolean circuits over the full binary basis make a very robust

computational model. Using a different constant-arity basis only changes the

constants in the complexity. A fixed set of gates of arbitrary arity (for example,

ANDs, ORs and XORs) still preserves the complexity in terms of the number of

wires. Furthermore, finding a function hard for Boolean circuits can be viewed

as a combinatorial problem, in contrast to lower bounds for uniform models

(models with machines that work for all input lengths). Therefore, breaking the

linear barrier for Boolean circuits can be viewed as an important milestone on

the way to stronger complexity lower bounds.

In this work we consider single-output circuits (that is, circuits computing

Boolean predicates). It would be natural to expect functions with larger out-

put to lead to stronger bounds. However, the only tool we have to transfer

bounds from one output to several outputs is Lamagna’s and Savage’s66 argu-

ment showing that in order to compute simultaneously m different functions

4

requiring c gates each, one needs at least m + c − 1 gates. That is, we do not

have superlinear bounds for multioutput functions either.

Stronger than 3n lower bounds are known for various restricted bases. One

of the most popular such bases, U2, consists of all binary Boolean functions

except for parity (xor) and its negation (equality). With this restricted basis,

Schnorr 96 proved that the circuit complexity of the parity function is 3n − 3.

Zwick 118 gave a 4n−O(1) lower bound for certain symmetric functions, Lachish

& Raz 65 showed a 4.5n − o(n) lower bound for an (n − o(n))-mixed function

(a function all of whose subfunctions of any n − o(n) variables are different).

Iwama & Morizumi 53 improved this bound to 5n−o(n). Demenkov et al. 31 gave

a simpler proof of a 5n − o(n) lower bound for a function with o(n) outputs. It

is interesting to note that the progress on U2 circuit lower bounds is also stuck

on the 5n − o(n) lower bound: Amano & Tarui 6 presented an (n − o(n))-mixed

function whose circuit complexity over U2 is 5n+ o(n).

While we do not have nonlinear bounds for constant-arity Boolean cir-

cuits, exponential bounds are known for weaker models: one thread was ini-

tiated by Razborov85 for monotone circuits; another one was started by Yao

and Håstad116,44 for constant-depth circuits with unbounded fanin AND/OR

gates and NOT gates. Shoup and Smolensky101 proved a superlinear lower

bound Ω(n log n/ log log n) for linear circuits of polylogarithmic depth over in-

finite fields. Also, superlinear bounds for formulas have been known for half a

century. For de Morgan formulas (i.e., formulas over AND, OR, NOT) Sub-

botovskaya103 proved an Ω(n1.5) lower bound for the parity function using the

5

random restrictions method. Khrapchenko56 showed an Ω(n2) lower bound for

parity. Applying Subbotovskaya’s random restrictions method to the universal

function by Nechiporuk74, Andreev7 proved an Ω(n2.5−o(1)) lower bound. By an-

alyzing how de Morgan formulas shrink under random restrictions, Andreev’s

lower bound was improved to Ω(n2.55−o(1)) by Impagliazzo and Nisan51, then

to Ω(n2.63−o(1)) by Paterson and Zwick81, and eventually to Ω(n3−o(1)) by Hås-

tad45 and Tal104. For formulas over the full binary basis, Nechiporuk74 proved

an Ω(n2−o(1)) lower bound for the universal function and for the element dis-

tinctness function. These bounds, however, do not translate to superlinear lower

bounds for general constant-arity Boolean circuits.

1.3 Circuit SAT algorithms

A recent promising direction initiated by Williams111,115 suggests the follow-

ing approach for proving circuit lower bounds against ENP or NE using SAT-

algorithms: a super-polynomially faster-than-2n time algorithm for the circuit

satisfiability problem of a “reasonable” circuit class C implies either ENP ⊈ C or

NE ⊈ C, depending on C and the running time of the algorithm. In this way,

unconditional exponential lower bounds have been proven for ACC0 circuits

(constant-depth circuits with unbounded-arity OR, AND, NOT, and arbitrary

cosntant modular gates)115. The approach has been strengthened and simplified

by subsequent work109,112,114,13,54, see also excellent surveys93,80,113 on this topic.

Williams’ result inspired lots of work on satisfiability algorithms for various

circuit classes52,114,22,5,4,73,23,105. In addition to satisfiability algorithms, several

6

papers92,50,10,97,21,19,21,24,91 also obtained average-case lower bounds (also known

as correlation bounds, see61,62,46) by investigating the analysis of algorithms in-

stead of just applying Williams’ result for worst-case lower bounds.

It should be noted, however, that currently available algorithms for the sat-

isfiability problem for general circuit classes are not sufficient for proving many

lower bounds. Current techniques require algorithmic upper bounds of the form

O(2n/na) for circuits with n inputs and size nk, while for most circuit classes

only cg-time algorithms are available, where g is the number of the gates and

c > 1 is a constant.

On the other hand, the techniques used in the cg-time algorithms for Cir-

cuitSAT are somewhat similar to the techniques used for proving linear lower

bounds for (general) Boolean circuits over the full binary basis. In particular,

an O(20.4058g)-time algorithm by Nurk79 (and subsequently an O(20.389667g)-time

algorithm by Savinov94) used a reconstruction of the linear part of a circuit sim-

ilar to the one suggested by Paul83. These algorithms and proofs use similar

tricks in order to simplify circuits.

Chen and Kabanets20 presented algorithms that count the number of satisfy-

ing assignments of circuits over U2 and B2 and run in time exponentially faster

than 2n if input instances have at most 2.99n and 2.49n gates, respectively (im-

proving also the previously best known #SAT-algorithm by Nurk79). At the

same time, they showed that 2.99n sized circuits over U2 and 2.49n sized cir-

cuits over B2 have exponentially small correlations with the parity function and

affine extractors with “good” parameters, respectively.

7

Generalizing this work, we also provide a general framework which takes

a gate-elimination proof and constructs a proof of worst/average case lower

bounds for circuits and upper bounds for #SAT.

1.4 Known limitations for proving lower bounds

Although there is no known argument limiting the power of gate elimination,

there are many known barriers to proving circuit lower bounds. In this section

we list some of them. This list does not pretend to cover all known barriers in

proving lower bounds, but we try to show both fundamental barriers in proving

strong bounds and limits of specific techniques.

1.4.1 Circuit lower bounds

Baker, Gill, and Solovay9,39 present the relativization barrier that shows that

any solution to the P versus NP question must be non-relativizing. In par-

ticular, they show that the classical diagonalization technique is not powerful

enough to resolve this question. Aaronson and Wigderson1 present the alge-

brization barrier that generalizes relativization. For instance, they show that

any proof of superlinear circuit lower bound requires non-algebrizing techniques.

The natural proofs argument by Razborov and Rudich88 shows that a “natu-

ral” proof of a circuit lower bound would contradict the conjecture that strong

one-way functions exist. This rules out many approaches; for example, this ar-

gument shows that the random restrictions method44 is unlikely to prove super-

polynomial lower bounds. The natural proofs argument implies the following

8

limitation for the gate elimination method. If subexponentially strong one-way

functions exist, then for any large class P of functions (i.e., a class with at least

a 1
n

fraction of the languages in P), for any effective measure (computable in

time 2O(n)) and effective family of substitutions S (i.e., a family of substitutions

enumerable in time 2O(n)), gate elimination using the family S of substitutions

cannot prove lower bounds better than O(n). We note that the measures con-

sidered in this work are not known to be effective.

Let F be a family of Boolean functions of n variables. Let X and Y be dis-

joint sets of input variables, and |X| = n. Then a Boolean function UF (X,Y)

is called universal for the family F if for every f(X) ∈ F , there exists an as-

signment c of constants to the variables Y , such that UF (X, c) = f(X). For

example, it can be shown that the function used by Blum14 is universal for the

family F = {xi ⊕ xj, xi ∧ xj|1 ≤ i, j ≤ n}. Nigmatullin77,78 shows that many

known proofs can be stated as lower bounds for universal functions for families

of low-complexity functions. At the same time, Valiant107 proves a linear upper

bound on the circuit complexity of universal functions for these simple families.

There are known linear upper bounds on circuit complexity of some specific

functions and even classes of functions. For example, Demenkov et al.28 show

that each symmetric function (i.e., a function that depends only on the sum of

its inputs over the integers) can be computed by a circuit of size 4.5n + o(n).

This, in turn, implies that no gate elimination argument for a class of functions

that contains a symmetric function can lead to a superlinear lower bound.

The basis U2 is the basis of all binary Boolean functions without parity and

9

its negation. The strongest known lower bound for circuits over the basis U2 is

5n− o(n). This bound is proved by Iwama and Morizumi53 for (n− o(n))-mixed

functions. Amano and Tarui6 construct an (n − o(n))-mixed function whose

circuit complexity over U2 is 5n+ o(n).

1.4.2 Formula lower bounds

A formula is a circuit where each gate has out-degree one. The best known

lower bound of n2−o(1) on formula size was proven by Nechiporuk74. The proof

of Nechiporuk is based on counting different subfunctions of the given function.

It is known that this argument cannot lead to a superquadratic lower bound

(see, e.g., Section 6.5 in55).

A De Morgan formula is a formula with AND and OR gates, whose inputs

are variables and their negations. The best known lower bound for De Morgan

formulas is n3−o(1) (Håstad45, Tal104, Dinur and Meir32). The original proof of

this lower bound by Håstad is based on showing that the shrinkage exponent Γ

is at least 2. This cannot be improved since Γ is also at most 2 as can be shown

by analyzing the formula size of the parity function.

Paterson introduces the notion of formal complexity measures for proving De

Morgan formula size lower bounds (see, e.g.,110). A formal complexity measure

is a function µ : Bn → R that maps Boolean functions to reals, such that

1. for every literal x, µ(x) ≤ 1;

2. for all Boolean functions f and g, µ(f ∧ g) ≤ µ(f) + µ(g) and µ(f ∨ g) ≤

µ(f) + µ(g).

10

It is known that De Morgan formula size is the largest formal complexity

measure. Thus, in order to prove a lower bound on the size of De Morgan for-

mula, it suffices to define a formal complexity measure and show that an ex-

plicit function has high value of measure. Khrapchenko56 uses this approach to

prove an Ω(n2) lower bound on the size of De Morgan formulas for parity. Un-

fortunately, many natural classes of formal complexity measures cannot lead

to stronger lower bounds. Hrubes et al.48 prove that convex measures (includ-

ing the measure used by Khrapchenko) cannot lead to superquadratic bounds.

A formula complexity measure µ is called submodular, if for all functions f, g it

satisfies µ(f∨g)+µ(f∧g) ≤ µ(f)+µ(g). Razborov86 uses a submodular measure

based on matrix parameters to prove superpolynomial lower bounds on the size

of monotone formulas. In a subsequent work, Razborov87 shows that submodu-

lar measures cannot yield superlinear lower bounds for non-monotone formulas.

The drag-along principle88,69 shows that no useful formal complexity measure

can capture specific properties of a function. Namely, it shows that if a func-

tion has measure m, then a random function with probability 1/4 has measure

at least m/4. Measures based on graph entropy (Newman and Wigderson75)

are used to prove a lower bound of n log n on De Morgan formula size, but it is

proved that these measures cannot lead to stronger bounds.

1.4.3 Gate elimination

We study limits of the gate elimination proofs. A typical gate elimination ar-

gument shows that it is possible to eliminate several gates from a circuit by

11

making one or several substitutions to the input variables and repeats this in-

ductively. In this work we prove that this method cannot achieve linear bounds

of cn beyond a certain constant c, where c depends only on the number of sub-

stitutions made at a single step of the induction. We note that almost all known

proofs make only one or two substitutions at a step. Thus, this limitation result

has an explicit small constant c for them.

1.5 Outline

Chapter 2 provides notation and definitions used in this work, Chapter 3 defines

the gate elimination method and gives an overview of our lower bounds proofs.

In Chapter 4 we give a proof of a (3 + 1
86
)n − o(n) circuit lower bound. Chap-

ter 5 introduces the weighted gate elimination method and presents a proof of

a conditional lower bound of 3.11n. Chapter 6 studies applications of the gate

elimination method to average-case lower bounds and upper bounds for #SAT.

Finally, Chapter 7 discusses limitations of the developed techniques.

Most of the results in this work appeared in the papers37,41,42,40, and are

based on joint works with Magnus Gausdal Find, Edward A. Hirsch, Alexander

Knop, Alexander S. Kulikov, Alexander Smal, and Suguru Tamaki.

12

2
Preliminaries

2.1 Circuits

Let us denote by Bn,m the set of all Boolean functions from Fn
2 to Fm

2 , and

let Bn = Bn,1. A circuit is an acyclic directed graph. A vertex in this graph

may either have indegree zero (in which case it is called an input or a variable)

or indegree two (in which case it is called a gate). Every gate is labelled by a

Boolean function g : {0, 1} × {0, 1} → {0, 1}, and the set of all the sixteen such

functions is denoted by B2.

For a circuit C, G(C) is the number of gates and is also called the size of the

13

circuit C. By I(C) we denote the number of inputs, and by I1(C) the number

of inputs of out-degree 1. For a function f ∈ Bn,m, C(f) is the minimum size of

a circuit with n inputs and m outputs computing f .

We also consider the basis U2 = B2 \ {⊕,≡} containing all binary Boolean

functions except for the parity and its complement. For a function f ∈ Bn and a

basis Ω, by CΩ(f) we denote the minimal size of a circuit over Ω computing f .

We say that a gate with inputs x and y is of and-type if it computes g(x, y) =

(c1 ⊕ x)(c2 ⊕ y) ⊕ c3 for some constants c1, c2, c3 ∈ {0, 1}, and of xor-type if it

computes g(x, y) = x ⊕ y ⊕ c1 for some constant c1 ∈ {0, 1}. If a gate computes

an operation depending on precisely one of its inputs, we call it degenerate.

If a gate computes a constant operation, we call it trivial. If a substitution

forces some gate G to compute a constant, we say that it trivializes G. (For ex-

ample, for a gate computing the operation g(x, y) = x∧y, the substitution x = 0

trivializes it.)

We denote by out(G) the outdegree of the gate G. If out(G) = k, we call G a

k-gate. If out(G) ≥ k, we call it a k+-gate. We adopt the same terminology for

variables (thus, we have 0-variables, 1-variables, 2+-variables, etc.).

A toy example of a circuit is shown in Figure 2.1. For inputs, the correspond-

ing variables are shown inside. For a gate, we show its operation inside and its

label near the gate. As the figure shows, a circuit corresponds to a simple pro-

gram for computing a Boolean function: each instruction of the program is a

binary Boolean operation whose inputs are input variables or the results of the

previous instructions.

14

x yz t

∧A

⊕D

∨B

≡C

∧ E

B = (z ∨ x)
A = (x ∧ y)
D = (B ⊕ A)
C = (A ≡ t)
E = (D ∧ C)

Figure 2.1: An example of a circuit and the program it computes.

For two Boolean functions f, g ∈ Bn, the correlation between them is defined

as

Cor(f, g) =

∣∣∣∣ Pr
x←{0,1}n

[f(x) = g(x)]− Pr
x←{0,1}n

[f(x) ̸= g(x)]

∣∣∣∣
= 2

∣∣∣∣12 − Pr
x←{0,1}n

[f(x) ̸= g(x)]

∣∣∣∣ .
For a function f ∈ Bn, basis Ω and 0 ≤ ϵ ≤ 1, by CΩ(f, ϵ) we denote the

minimal size of a circuit over Ω computing function g such that Cor(f, g) ≥ ϵ.

2.1.1 Circuit normalization

When a gate (or an input) A of a circuit trivializes (e.g., when an input is as-

signed a constant), some other gates (in particular, all successors of A) may

become trivial or degenerate. Such gates can be eliminated from the circuit

without changing the function computed by the circuit (see an example below).

Note that this simplification may change outdegrees and binary operations com-

puted by other gates.

15

A B

⊕

⊕C ⊕D

∧

E

∨F

A← 1

B

≡C ≡D

E

∨F

A gate is called useless if it is a 1-gate and is fed by a predecessor of its suc-

cessor:
A B

D
1

E

A B

E

In this example the gate D is useless, and the gate E computes a binary op-

eration of A and B, which can be computed without the gate D. This might

require to change an operation at E (if this circuit is over U2 then E still com-

putes an and-type operation of A and B since an xor-type binary function re-

quires three gates in U2).

By normalizing a circuit we mean removing all gates that compute trivial or

degenerate operations and removing all useless gates.

In the proofs we implicitly assume that if two gates are fed by the same vari-

able then either there is no wire between them or each of the gates feeds also

some other gate (otherwise, one of the gates would be useless).

2.2 Dispersers and extractors

Extractors are functions that take input from some specific distribution and

output a bit that is distributed statistically close to uniform*. Dispersers are
*In this work, we consider only dispersers and extractors with one bit outputs.

16

a relaxation of extractors; they are only required to output a non-constant bit

on “large enough” structured subsets of inputs. To specify the class of input

distributions, one defines a class of sources F , where each X ∈ F is a distribu-

tion over Fn
2 . Since dispersers are only required to output a non-constant bit, we

identify a distribution X with its support on Fn
2 . A function f ∈ Bn is called

a disperser for a class of sources F , if |f(X)| = 2 for every X ∈ F . Since it is

impossible to extract even one non-constant bit from an arbitrary source even

if the source is guaranteed to have n − 1 bits of entropy (each function from

Bn is constant on 2n−1 inputs), many special cases of sources are studied (see99

for an excellent survey). The sources we are focused on in this work are affine

sources and their generalization — sources for polynomial varieties. Affine dis-

persers have drawn much interest lately. In particular, explicit constructions of

affine dispersers for dimension d = o(n) have been constructed12,117,67,98,11,68.

Dispersers for polynomial varieties over large fields were studied by Dvir 34 , and

dispersers over F2 were studied by Cohen & Tal 27 .

Let x1, . . . , xn be Boolean variables, and f ∈ Bn−1 be a function of n − 1

variables. We say that xi ← f(x1, . . . , xi−1, xi+1, . . . , xn) is a substitution to the

variable xi.

Let g ∈ Bn be a function, then the restriction of g under the substi-

tution f is a function h = (g|xi ← f) of n − 1 variables, such that

h(x1, . . . , xi−1, xi+1, . . . , xn) = g(x1, . . . , xi−1, xi, xi+1, . . . , xn), where xi =

f(x1, . . . , xi−1, xi+1, . . . , xn). Similarly, if K ⊆ {0, 1}n is a subset of the Boolean

cube, then the restriction of K under this substitution is K ′ = (K|xi ← f),

17

such that (x1, . . . , xn) ∈ K ′ if and only if (x1, . . . , xn) ∈ K and xi =

f(x1, . . . , xi−1, xi+1, . . . , xn).

For a family of functions F = {f : {0, 1}∗ → {0, 1}} we define a set of

corresponding substitutions S(F) that contains the following substitutions:

for every 1 ≤ i ≤ n, c ∈ {0, 1}, f ∈ F , S contains the substitution

xi ← f(x1, . . . , xi−1, xi+1, . . . , xn)⊕ c.

Let S be a set of substitutions. We say that a set K ⊆ {0, 1}n is an (S, n, r)-

source if it can be obtained from {0, 1}n by applying at most r substitutions

from S.

Definition 1. A function f ∈ Bn is called an (S, n, r)-disperser if it is not

constant on every (S, n, r)-source. A function f ∈ Bn is called an (S, n, r, ϵ)-

extractor if |Prx←K [f(x) = 1]− 1/2| ≤ ϵ for every (S, n, r)-source K.

Definition 1 is parameterized by a class of substitutions. In this work, we will

often use dispersers for the set of affine or quadratic substitutions, and we give

specific definitions of the corresponding dispersers below.

Definition 2 (affine disperser). An affine disperser for dimension d(n) is a fam-

ily of functions fn : Fn
2 → F2 such that for all sufficiently large n, fn is non-

constant on any affine subspace of dimension at least d(n).

There are known explicit constructions of affine dispersers:

Theorem 1 (12,117,67,98,11,68). There exist affine dispersers for dimension d =

o(n) in P.

18

Definition 3 (quadratic variety). A set S ⊆ Fn
2 is called an (n, k)-quadratic

variety if it can be defined as the set of common roots of t ≤ k polynomials of

degree at most 2:

S = {x ∈ Fn
2 : p1(x) = · · · = pt(x) = 0} ,

where pi is a polynomial of degree at most 2, for each 1 ≤ i ≤ t. Here k and s

can be functions of n.

Definition 4 (quadratic disperser). An (n, k, s)-quadratic disperser is a family

of functions fn : Fn
2 → F2 such that for all sufficiently large n, fn is non-constant

on any (n, k)-quadratic variety S ⊆ Fn
2 of size at least s.

Although we do not know explicit constructions of quadratic dispersers, we

note that almost all functions from Bn are (n, 2o(n), 2o(n))-quadratic dispersers.

Lemma 1. Let ω(1) ≤ s ≤ 2o(n), k = o
(

s
n2

)
. Let Dn ∈ Bn be the set of (n, k, s)-

quadratic dispersers. Then |Dn|
|Bn| → 1 when n→∞.

Proof. There are q = n(n+1)
2

+ 1 = Θ(n2) monomials of degree at most 2 in

F2[x1, . . . , xn]. Therefore, there are 2q polynomials of degree at most 2, and

at most 2qk (n, k)-quadratic varieties. Each function that is not an (n, k, s)-

quadratic disperser can be specified by

1. an (n, k)-quadratic variety, where it takes a constant value,

2. this value (0 or 1),

3. values at the remaining at most 2n − s points.

19

Thus, the number of functions that are not (n, k, s)-quadratic dispersers is

bounded from above by 2qk · 2 · 22n−s = 22
n
2qk+1−s = 22

n
2−Θ(s) = o (|Bn|).

Cohen & Tal 27 prove that any affine disperser (extractor) is also a disperser

(extractor) for polynomial varieties with slightly weaker parameters. In partic-

ular, their result, combined with the affine disperser by Li 68 , gives an explicit

construction of an
(
n,Θ

(
n

poly(logn)

)
, 2o(n)

)
-quadratic disperser. Two explicit

constructions of extractors for varieties over large fields are given by Dvir 34 . For

a similar, although different, notion of polynomial sources, explicit constructions

of dispersers (extractors) are given by Dvir et al. 35 for large fields, and by Ben-

Sasson & Gabizon 11 for constant-size fields.

2.3 Circuit complexity measures

A function µ mapping circuits to non-negative real values is called a circuit

complexity measure if for any circuit C,

• normalization of C does not increase its measure†, and

• if µ(C) = 0 then C has no gates.

For a fixed circuit complexity measure µ, and function f ∈ Bn, we define

µ(f) to be the minimum value of µ(C) over circuits C computing f . Similarly,

we define µ(f, ϵ) to be the minimum value of µ(C) over circuits C computing g

such that Cor(f, g) ≥ ϵ.
†See Section 2.1.1 for the definition of circuit normalization.

20

Such measures were previously considered by several authors. For example,

Zwick 118 counted the number of gates minus the number of inputs of outde-

gree 1. The same measure was later used by Lachish & Raz 65 and by Iwama &

Morizumi 53 . Kojevnikov & Kulikov 60 used a measure assigning different weights

to linear and non-linear gates to show that Schnorr’s 2n − O(1) lower bound96

can be strengthened to 7n/3 − O(1). Carefully chosen complexity measures are

also used to estimate the progress of splitting algorithms for NP-hard prob-

lems63,59,38.

The following two circuit complexity measures will prove useful in Section 6:

• µ(C) = s(C) + α · i(C) where α ≥ 0 is a constant;

• µ(C) = s(C) + α · i(C)− σ · i1(C) where 0 ≤ σ ≤ 1/2 < α are constants.

It is not difficult to see that these two functions are indeed circuit complexity

measures. The condition 0 ≤ σ ≤ 1/2 < α is needed to guarantee that if by re-

moving a degenerate gate we increase the out-degree of a variable, the measure

does not increase (an example is given below), and that the measure is always

non-negative.

Intuitively, we include the term I(C) into the measure to handle cases like the

one below (throughout this work, we use labels above the gates to indicate their

outdegrees, and we write k+ to indicate that the degree is at least k):

xi

1+
xj

1

∧

21

In this case, by assigning xi ← 0 we make the circuit independent of xj, so the

measure is reduced by at least 2α. Usually, our goal is to show that we can find

a substitution to a variable that eliminates at least some constant number k of

gates, that is, to show a complexity decrease of at least k + α. Therefore, by

choosing a large enough value of α we can always guarantee that 2α ≥ α +

k. Thus, in the case above we do not even need to count the number of gates

eliminated under the substitution.

The measure µ(C) = s(C) + α · I(C)− σ · i1(C) allows us to get an advantage

of new 1-variables that are introduced during splitting.

xi

2
xj

2

∧

xi

2
xj

2

∧

∨
xk

1

For example, by assigning xi ← 0 in a situation like the one in the left picture

we reduce the measure by at least 3 + α + σ. As usual, the advantage comes

with a related disadvantage. If, for example, a closer look at the circuit from

the left part reveals that it actually looks as the one on the right, then by as-

signing xi ← 0 we introduce a new 1-variable xj, but also lose one 1-variable

(namely, xk is now a 2-variable). Hence, in this case µ is reduced only by (3+α)

rather than (3+α+σ). That is, our initial estimate was too optimistic. For this

reason, when use the measure with I1(C) we must carefully estimate the num-

ber of introduced 1-variables.

22

2.4 Splitting numbers and splitting vectors

Let µ be a circuit complexity measure and C be a circuit. Consider a recursive

algorithm solving #SAT on C by repeatedly substituting input variables. As-

sume that at the current step the algorithm chooses k variables x1, . . . , xk and

k functions f1, . . . , fk to substitute these variables and branches into 2k situ-

ations: x1 ← f1 ⊕ c1, . . . , xk ← fk ⊕ ck for all possible c1, . . . , ck ∈ {0, 1}

(in other words, it partitions the Boolean hypercube {0, 1}n into 2k subsets).‡

For each substitution, we normalize the resulting circuit. Let us call the 2k

nnormalized resulting circuits C1, . . . , C2k . We say that the current step has a

splitting vector v = (a1, . . . , a2k) w.r.t. the circuit measure µ, if for all i ∈ [2k],

µ(C) − µ(Ci) ≥ ai > 0. That is, the splitting vector gives a lower bound on

the complexity decrease under the considered substitution. The splitting number

τ(v) is the unique positive root of the equation
∑

i∈[2k] x
−ai = 1.

Splitting vectors and numbers are heavily used to estimate the running time

of recursive algorithms. Below we assume that k is bounded by a constant. In

all the proofs of this work either k = 1 or k = 2, that is, we always estimate the

effect of assigning either one or two variables. If an algorithm always splits with

a splitting number at most β then its running time is bounded by O∗(βµ(C)).§

To show this, one notes that the recursion tree of this algorithm is 2k-ary and

k = O(1) so it suffices to estimate the number of leaves. The number of leaves
‡Sometimes it is easier to consider vectors of length that is not a power of 2 too. For exam-

ple, we can have a branching into three cases: one with one substituted variable, and two with
two substituted variables. All the results from this work can be naturally generalized to this
case. For simplicity, we state the results for splitting vectors of length 2k only.

§O∗ suppresses factors polynomial in the input length n.

23

T (µ) satisfies the recurrence T (µ) ≤
∑

i∈[2k] T (µ− ai) which implies that T (µ) =

O(τ(v)µ) (we assume also that T (µ) = O(1) when µ = O(1)). See, e.g.,64 for a

formal proof.

For a splitting vector v = (a1, . . . , a2k) we define the following related quanti-

ties:

vmax = max
i∈[2k]

{ai
k

}
, vmin = min

i∈[2k]

{ai
k

}
, vavg =

∑
i∈[2k] ai

k2k
.

Intuitively, vmax (vmin, vavg) is a (lower bound for) the maximum (minimum,

average, respectively) complexity decrease per single substitution.

We will need the following estimates for the splitting numbers. It is known

that a balanced binary splitting vector is better than an unbalanced one: 21/a =

τ(a, a) < τ(a + b, a − b) for 0 < b < a (see, e.g.,64). There is a known upper

bound on τ(a, b).

Lemma 2. τ(a, b) ≤ 21/
√
ab.

In the following lemma we provide an asymptotic estimate of their difference.

Lemma 3 (Gap between τ(a1+ b, a2+ b) and τ((a1+a2)/2+ b, (a1+a2)/2+ b)).

Let a1 > a2 > 0, a′ = (a1 + a2)/2 and δ(b) = τ(a1 + b, a2 + b) − 2
1

a′+b . Then,

δ(b) = O((a1 − a2)
2/b3) as b→∞.

Proof. Let x = τ(a1 + b, a2 + b), then by definition we have

1 =
1

xa1+b
+

1

xa2+b
=

x−(a1−a2)/2 + x(a1−a2)/2

xa′+b
.

24

Since

x = 2
1

a′+b + δ(b) = 1 +
ln 2

a′ + b
+ δ(b) +O

(
1

(a′ + b)2

)
and

(1 + ϵ)(a1−a2)/2 = 1 + (a1 − a2)ϵ/2 + (a1 − a2)(a1 − a2 − 1)ϵ2/4 +O(ϵ3),

we have

x−(a1−a2)/2+x(a1−a2)/2 = 2+
(a1 − a2)

2

2

(
ln 2

a′ + b
+ δ(b)

)2

+O

((
ln 2

a′ + b
+ δ(b)

)3
)
.

We also have

xa′+b = 2
(
1 + δ(b)/2

1
a′+b

)a′+b

= 2
(
1 + (a′ + b)δ(b)/2

1
a′+b +O(δ(b)2)

)
.

By the definition of x, we have

lim
b→∞

(a1 − a2)
2 ln2 2

2b2
/(2bδ(b)) = 1.

This implies

δ(b) =
(a1 − a2)

2 ln2 2

4b3
+ o(1/b3).

25

3
Gate elimination

3.1 Overview

Essentially, the only known technique for proving lower bounds for circuits

with no restrictions on depth and outdegree is the gate elimination method.

To illustrate it, let us give a proof of a 2n − O(1) lower bound presented by

Schnorr 95 . The MODn
3,r ∈ Bn function outputs 1 if and only if the sum (over

integers) of n input bits is congruent to r modulo 3. We prove that MODn
3,r re-

quires circuits of size at least 2n − 6 by induction on n. The base case n ≤ 3

holds trivially. For the induction step consider an optimal circuit C comput-

26

ing MODn
3,r and its topologically minimal gate A (such a gate exists since for

n ≥ 4, MODn
3,r is not constant). Let x and y be input variables to A. The cru-

cial observation is that either x or y must feed at least one other gate. Indeed

if both x and y feed only A then the whole circuit depends on x and y only

through A. This, in particular, means that by fixing x and y in four possible

ways ((x, y) = (0, 0), (0, 1), (1, 0), (1, 1)) one gets at most two different subfunc-

tions while there must be three different subfunctions under these assignments:

MODn−2
3,0 , MODn−2

3,1 , and MODn−2
3,2 (they are pairwise different for n ≥ 4). As-

sume that it is x that feeds at least one other gate and call it B. We then re-

place x by 0. This eliminates at least two gates from the circuit (A and B): if

one of the inputs to a gate computes a constant then this gate computes either

a constant or a degenerate function of the other input and hence can be elimi-

nated from the circuit. The resulting circuit computes the function MODn−1
3,r so

the lower bound follows by induction. The best known lower bound for MODn
3,r

is now 2.5n−O(1) by Stockmeyer 102 , the best known upper bound is 3n+O(1)

by Demenkov et al. 28 . Knuth 58 (see solution to exercise 480) recently conjec-

tured that the circuit size of MODn
3,r is equal to 3n− 5− [(n+ r) mod 3 = 0].

In the analysis above, we eliminated two gates by assigning x ← 0. If A com-

putes, say, xy = x ∧ y then we eliminate more than two gates (A becomes 0 and

hence all of its successors are also eliminated). So, the bottleneck case is when

both A and B compute parities of their inputs. In this case we cannot make A

and B constant just by assigning a constant to x.

27

3.2 A 3n− o(n) lower bound

A natural idea that allows to overcome the bottleneck from the previous proof is

to allow to substitute variables not only by constants but also by sums (over F2)

of other variables. Using this idea one can prove a 3n − o(n) lower bound. The

proof is due to Demenkov & Kulikov 29 , the exposition here is due to Vadhan

& Williams 106 . A function we are going to prove a lower bound for is called

an affine disperser. Informally, an affine disperser is a function that cannot be

made constant by sufficiently many linear substitutions (see Definition 2).

For a 3n − o(n) lower bound it is convenient to use xor-layered circuits.

In an xor-layered circuit we allow linear sums of variables to be used as in-

puts to a circuit. Consider the following measure of an xor-layered circuit C:

µ(C) = G(C) + I(C) where G(C) is the number of non-input gates and I(C) is

the number of inputs of C. Note that an xor-gate that depends on two inputs of

an xor-layered circuit C may be replaced by an input without increasing µ(C).

A 3n − 4d lower bound for an affine disperser f ∈ Bn for dimension d fol-

lows from the following fact: for any affine subspace S ⊆ Fn
2 of dimension D

and any xor-layered circuit C computing f on S, µ(C) ≥ 4(D − d − 1). This

can be shown by induction on D. The base case D ≤ d + 1 is trivial. For the

induction step, assume that C has the minimal value of µ. Let A be a top gate

fed by linear sums x and y (such a gate must exist since f on S cannot compute

a linear function for D > d + 1). If A computes a sum of x and y then it can

be replaced by an input (without increasing µ) so assume that A computes a

28

product, i.e., (x ⊕ c1)(y ⊕ c2) ⊕ c where c1, c2, c ∈ F2 are constants. In the fol-

lowing we assign either x = c1 or y = c2. This gives us an affine subspace of Fn
2

of dimension at least D − 1 (if the dimension of the resulting subspace drops to

0 this means that either x or y is constant on S contradicting the fact that the

considered circuit is optimal). To proceed by induction we need to show that

the substitution reduces µ by at least 4. For this, we consider two cases.

Case 1. Both x and y have outdegree 1.

x y

∧A

We then assign x = c1. This trivializes A to c, so all its successors are

eliminated too. In total, we eliminate at least two gates (A and its succes-

sors) and at least two inputs (x and y). Hence µ is reduced by at least 4.

(Note that A must have at least one successor as otherwise it is the out-

put gate, but this means that f is constant on an affine subspace of di-

mension at least d.)

Case 2. The outdegree of x is at least 2.

x y

∧AB

C

Let B be another successor of x and let C be a successor of A. We assign

x = c1. This removes an input x and gates A, B, and C. If B = C then

29

C becomes a constant under the substitution (since both its inputs are

constants) so its successors are also eliminated. Thus, in this case we elim-

inate at least one input and at least three gates implying that µ is reduced

by at least 4.

Plugging in an affine disperser for sublinear dimension in this argument gives a

3n − o(n) lower bound. It is also interesting to note that the inequality G(C) +

I(C) ≥ 4(n − d − 1) is tight. To see this, note that the inner product function

(IP(x1, y1, x2, y2, . . . , xn/2, yn/2) = x1y1⊕x2y2⊕· · ·⊕xn/2yn/2) is an affine disperser

for dimension n/2 + 1 (see, e.g.,26 Theorem A.1) and has circuit size n− 1.

3.3 A 3.01n lower bound for affine dispersers

Following29, we prove lower bounds for affine dispersers, that is, functions that

are non-constant on affine subspaces of certain dimensions. Our first main result

is the following theorem.

Theorem 2. The circuit size of an affine disperser for sublinear dimension is at

least
(
3 + 1

86

)
n− o(n).

Feeding an appropriate constant to a non-linear gate (for example, AND)

makes this gate constant and therefore eliminates subsequent gates, which helps

to eliminate more gates than in the case of a linear gate (for example, XOR).

On the other hand, linear gates, when stacked together, allow us to reorganize

the circuit. This idea has been used in83,102,14,97,29. Then affine restrictions can

kill such gates while keeping the properties of an affine disperser.

30

Thus, it is natural to consider a circuit as a composition of linear circuits

connected by non-linear gates. In our case analysis we do not just dive into an

affine subspace: we make affine substitutions, that is, instead of just saying that

x1 ⊕ x2 ⊕ x3 ⊕ x9 = 0 and removing all gates that become constant, we make

sure to replace all occurrences of x1 by x2 ⊕ x3 ⊕ x9. Since a gate computing

such a sum might be unavailable and we do not want to increase the number of

gates, we “rewire” some parts of the circuit, which, however, may potentially in-

troduce cycles. This is the first ingredient of our proof: cyclic circuits. That is,

the linear components of our “circuits” may now have directed cycles; however,

we require that the values computed in the gates are still uniquely determined.

Cyclic circuits have already been considered in90,36,76,89 (the last reference con-

tains an overview of previous work on cyclic circuits).

Thus we are able to make affine substitutions. We try to make such a substi-

tution in order to make the topmost (i.e., closest to the inputs) non-linear gate

constant. This, however, does not seem to be enough. The second ingredient in

our proof is a complexity measure that manages difficult situations (bottlenecks)

by allowing us to perform an amortized analysis: we count not just the number

of gates, but rather a linear combination of the number of gates and the num-

ber of bottlenecks.

Our main bottleneck (called “troubled gate”) is shown below.
x y

∧G

All gates have outdegrees exactly as shown on the picture, and ∧ refers to a

31

gate computing any nonlinear operation. That is, two inputs of degree 2 feed

a gate of outdegree 1 that computes (x ⊕ a)(y ⊕ b) ⊕ c where a, b, c ∈ {0, 1} are

constants.

Sometimes in order to fight a troubled gate, we have to make a quadratic sub-

stitution, which is the third ingredient of our proof. This happens if the gate

below G is a linear gate fed by a variable z; in the simplest case a substitution

z = xy kills G, the linear gate, and the gate below (actually, we show it kills

much more). However, quadratic substitutions may make affine dispersers con-

stant, so we consider a special type of quadratic substitutions. Namely, we con-

sider quadratic substitutions as a form of delayed affine substitutions (in the

example above, if we promise to substitute later a constant either to x or to y,

the substitution can be considered affine). In order to maintain this, instead of

affine subspaces (where affine dispersers are non-constant by definition) we con-

sider so-called read-once depth-2 quadratic sources (essentially, this means that

all variables in the right-hand sides of the quadratic substitutions that we make

are pairwise distinct free variables). We show that an affine disperser for a sub-

linear dimension remains non-constant for read-once depth-2 quadratic sources

of a sublinear dimension.

3.4 A 3.11n lower bound for quadratic dispersers

The two considered functions, MODn
3 and an affine disperser, can be viewed as

functions that are not constant on any sufficiently large set S ⊆ Fn
2 that can be

defined as the set of roots of k polynomials:

32

S = {x ∈ Fn
2 : p1(x) = p2(x) = · · · = pk(x) = 0} .

For MODn
3 , k ≤ n − 4 and each pi is just a variable or its negation while for

affine dispersers, k ≤ n− d and pi’s are arbitrary linear polynomials.

A natural extension is to allow polynomials to have degree at most 2, i.e., to

prove lower bounds against quadratic dispersers (see Definition 4). We prove

the following result.

Theorem 3. Let 0 < α ≤ 1 and 0 < β be constants satisfying

2−
2+α
β + 2−

4+2α
β ≤ 1, (3.1)

2−
2
β + 2−

5+2α
β ≤ 1, (3.2)

2−
3+3α

β + 2−
2+2α

β ≤ 1, (3.3)

2−
3
β + 2−

4+α
β ≤ 1, (3.4)

and let f ∈ Bn be an (n, k, s)-quadratic disperser. Then

C(f) ≥ min {βn− β log2 s− β, 2k} − αn .

The constants α and β allow us to balance between the decrease in the circuit

complexity and the decrease in the variety size: informally, the numerator (e.g.,

2 + α) corresponds to the decrease in the complexity measure (which takes into

account the number of gates and the number of variables) for a particular sub-

stitution and the exponent (for example, 2−
2+α
β) upper bounds the decrease in

the variety size after this substitution.

33

For example, for an (n, 1.83n, 2o(n))-quadratic disperser, Theorem 3 with α =

0.535 and β = 3.6513 implies a 3.1163n − o(n) > 3.116n lower bound. For an

(n, 1.78n, 20.03n)-quadratic disperser, it implies a 3.006n lower bound.

Currently, explicit constructions of quadratic dispersers with such parame-

ters are not known while showing their existence non-constructively is easy (see

Lemma 1 and the discussion after it for the known constructions with weaker

parameters). Theorem 3 can be viewed as an additional motivation for studying

quadratic dispersers.

34

4
Lower bound of 3.01n for affine

dispersers

4.1 Overview

In this chapter we prove a (3 + 1
86
)n − o(n) lower bound on the circuit size of

affine dispersers.

We apply a sequence of transformations on circuits. To accomodate this we

use a generalization of circuits which we call “fair semicircuits”. Semicircuits

may contain cycles of a certain kind; however we only introduce cycles in such a

35

way that the values computed in the gates are internally consistent. Section 4.2

contains the definitions, examples and properties of fair semicircuits.

The proof of the lower bound goes by induction. We start with an affine

disperser and a circuit computing it on {0, 1}n. Then we gradually shrink the

space where it is computed by adding equations (“substitutions”) for variables.

This allows us to simplify the circuit by reducing the number of gates (and

other parameters counted in the complexity measure) and eliminating the sub-

stituted variables.

In Section 4.3 we show how to make substitutions in fair semicircuits, and

how to normalize them afterwards. We introduce five normalization rules cover-

ing various degenerate cases that may occur in a circuit after applying a substi-

tution to it: e.g., a gate of outdegree 0, a gate computing a constant function,

a gate whose value depends on one of its inputs only. For each such case, we

show how to simplify the circuit.

We then show how to make affine substitutions. This is the step that might

potentially introduce cycles in the affine part of a circuit and that requires to

work with a generalized notion of circuits.

Also, we define a so-called troubled gate. Informally speaking, this is a special

bottleneck configuration in a circuit that does not allow us to eliminate more

than three gates easily. To overcome this difficulty, we use a circuit complexity

measure that depends on the number of troubled gates. This, in turn, requires

us to analyze carefully how many new troubled gates can be introduced by ap-

plying a normalization rule. We show that a circuit computing an affine dis-

36

perser cannot have too many troubled gates (otherwise one could find an affine

subspace of not too large dimension that makes the circuit constant). This im-

plies that the bottleneck case cannot appear too often during the gate elimina-

tion process.

In Section 4.4 we formally define a source arising from constant, affine, and

quadratic substitutions. We only apply simple quadratic substitutions. In par-

ticular, we maintain the following invariant: the variables from the right-hand

side of quadratic substitutions are pairwise different and do not appear in the

left hand side of affine substitutions. This invariant guarantees that a disperser

for affine sources is also a disperser for our generalized sources (with parameters

that are only slightly worse).

In Section 4.5 we define the circuit complexity measure and state the main

result of this chapter: we can always reduce the measure by an appropriate

amount by shrinking the space. The circuit lower bound follows from this result.

The measure is defined as a linear combination of four parameters of a circuit:

the number of gates, the number of troubled gates, the number of quadratic

substitutions, and the number of inputs. The optimal values for coefficients in

this linear combination come from solving a simple linear program.

Finally, Section 4.6 employs all developed techniques in order to prove the

lower bound. Before going into details, in Section 4.6.1 we give a short out-

line of the case distinction argument that covers all essential cases. A complete

proof is given in Section 4.6.2.

37

4.2 Cyclic circuits

A cyclic circuit is a directed (not necessarily acyclic) graph where all vertices

have indegree either 0 or 2. We adopt the same terminology for its vertices (in-

puts and gates) and its size as for ordinary circuits. We restrict our attention

to cyclic xor-circuits, where all gates compute affine operations. While the most

interesting gates compute either ⊕ or ≡, for technical reasons we also allow de-

generate gates and trivial gates. We will be interested in multioutput cyclic cir-

cuits, so, in contrast to our definition of ordinary circuits, several gates may be

designated as outputs, and they may have nonzero outdegree.

A circuit, and even a cyclic circuit, naturally corresponds to a system of equa-

tions over F2. Variables of this system correspond to the values computed in

the gates. The operation of a gate imposes an equation defining the computed

value. Whenever an input is encountered, it is treated like a constant (because

we will be interested in solving this system when we are given specific input val-

ues). Thus we formally have a separate system for every assignment to the in-

puts; for the case of a cyclic xor-circuit all these systems are linear and share

the same matrix. For a gate G fed by gates F and H and computing some op-

eration ⊙, we write the equation G ⊕ (F ⊙ H) = 0. A more specific example is

a gate G computing F ⊕ x ⊕ 1, where x is an input; then the line in the system

would be G ⊕ F = x ⊕ 1, where G and F contribute two 1’s to the matrix, and

x⊕ 1 contributes to the constant vector.

For a cyclic xor-circuit, this is a linear system with a square matrix. We call

38

a cyclic xor-circuit fair if this matrix has full rank. It follows that for every as-

signment of the inputs, there exist unique values for the gates such that these

values are consistent with the circuit (that is, for each gate its value is correctly

computed from the values in its inputs). Thus, similarly to an ordinary circuit,

every gate in a fair circuit computes a function of the values fed into its inputs

(clearly, it is an affine function). A simple example of a fair cyclic xor-circuit is

shown in Figure 4.1. Note that if we additionally impose the requirement that

the graph is acyclic, we arrive at ordinary linear circuits (that is, circuits con-

sisting of xor-type gates, degenerate gates, and constant gates).

4.2.1 Relations between xor-circuits

It is not difficult to show that for multiple outputs, fair cyclic xor-circuits form

a stronger model than acyclic xor-circuits. For example, the 9 functions com-

puted simultaneously by the cyclic xor-circuit shown in Figure 4.1 cannot be

computed by an acyclic xor-circuit with 9 gates. To see this, assume for the

sake of contradiction, that an acyclic xor-circuit with 9 gates computes the

same functions. Since the circuit has 9 gates all gates must compute outputs.

Consider a topologically minimal gate G. Such a gate exists since the circuit is

acyclic. Since G is topologically minimal it can only compute the sum of two

inputs, therefore it cannot compute any output of the given function.

On the other hand, a minimal xor-circuit of k variables computing a single

output has exactly k − 1 gates and is acyclic.

39

⊕G5

⊕G6

⊕G7

⊕ G2

⊕ G3

⊕ G4

⊕
G1

⊕
G8

⊕ G9

x7

x8

x1

x4

x3

x2

x5

x6

G1 = x1 ⊕ x2 ⊕ x3 ⊕ x4 ⊕ x5 ⊕ x6 ⊕ x7 ⊕ x8

G2 = x1 ⊕ x2 ⊕ x3 ⊕ x5 ⊕ x6 ⊕ x7 ⊕ x8

G3 = x1 ⊕ x2 ⊕ x5 ⊕ x6 ⊕ x7 ⊕ x8

G4 = x1 ⊕ x5 ⊕ x6 ⊕ x7 ⊕ x8

G5 = x1 ⊕ x2 ⊕ x3 ⊕ x4 ⊕ x5 ⊕ x6 ⊕ x8

G6 = x1 ⊕ x2 ⊕ x3 ⊕ x4 ⊕ x5 ⊕ x6

G7 = x2 ⊕ x3 ⊕ x4 ⊕ x5 ⊕ x6

G8 = x1 ⊕ x2 ⊕ x3 ⊕ x4 ⊕ x7 ⊕ x8

G9 = x1 ⊕ x2 ⊕ x3 ⊕ x4 ⊕ x6 ⊕ x7 ⊕ x8

G1 = G9 ⊕ x5

G2 = G1 ⊕ x4

G3 = G2 ⊕ x3

G4 = G3 ⊕ x2

G5 = G1 ⊕ x7

G6 = G5 ⊕ x8

G7 = G6 ⊕ x1

G8 = G4 ⊕G7

G9 = G8 ⊕ x6



1 0 0 0 0 0 0 0 1
1 1 0 0 0 0 0 0 0
0 1 1 0 0 0 0 0 0
0 0 1 1 0 0 0 0 0
1 0 0 0 1 0 0 0 0
0 0 0 0 1 1 0 0 0
0 0 0 0 0 1 1 0 0
0 0 0 1 0 0 1 1 0
0 0 0 0 0 0 0 1 1


×



G1

G2

G3

G4

G5

G6

G7

G8

G9


=



x5

x4

x3

x2

x7

x8

x1

0
x6


Figure 4.1: A simple example of a cyclic xor-circuit. In this case all the gates are labeled with ⊕.
The affine functions computed by the gates are shown on the right of the circuit. The bottom row
shows the program computed by the circuit as well as the corresponding linear system.

40

4.2.2 Semicircuits

We introduce the class of semicircuits which is a generalization of both Boolean

circuits and cyclic xor-circuits.

A semicircuit is a composition of a cyclic xor-circuit and an (ordinary) cir-

cuit. Namely, its nodes can be split into two sets, X and C. The nodes in the

set X form a cyclic xor-circuit. The nodes in the set C form an ordinary circuit

(if wires going from X to C are replaced by variables). There are no wires going

back from C to X. A semicircuit is called fair if X is fair.

In this chapter we abuse notation by using the word “circuit” to mean a fair

semicircuit.

4.3 Cyclic circuit transformations

4.3.1 Basic substitutions

In this section we consider several types of substitutions. A constant substitu-

tion to an input is straightforward:

Proposition 1. Let C be a circuit with inputs x1, . . . , xn, and let c ∈ {0, 1} be

a constant. For every gate G fed by x1 replace the operation g(x1, t) computed

by G with the operation g′(x1, t) = g(c, t) (thus the result becomes independent

of x1). This transforms C into another circuit C ′ (in particular, it is still a fair

semicircuit) such that it has the same number of gates, the same topology, and

for every gate H that computes a function h(x1, . . . , xn) in C, the corresponding

gate in the new circuit C ′ computes the function h(c, x2, . . . , xn).

41

We call this transformation a substitution by a constant.

A more complicated type of a substitution is when we replace an input x with

a function computed in a different gate G. In this case in each gate fed by x, we

replace wires going from x by wires going from G.

We call this transformation a substitution by a function.

Proposition 2. Let C be a circuit with inputs x1, . . . , xn, and let g(x2, . . . , xn)

be a function computed in a gate G. Consider the construction C ′ obtained by

substituting a function g to x1 (it has the same number of gates as C). Then

if G is not reachable from x1 by a directed path in C, then C ′ is a fair semi-

circuit, and for every gate H that computes a function h(x1, . . . , xn) in C, ex-

cept for x1, the corresponding gate in the new circuit C ′ computes the function

h(g(x2, . . . , xn), x2, . . . , xn).

Proof. Note that we require that G is not reachable from x1 (thus we do not

introduce new cycles), and also that g does not depend on x1. Functions com-

puted in the gates are the solution to the system corresponding to the circuit

(see Section 4.2). The transformation simply replaces every equation of the

form H = F ⊙ x1 with the equation H = F ⊙ G (and equation of the form

H ′ = x1 ⊙ x1 with the equation H ′ = G⊙G).

In order to prove that C ′ is a fair semicircuit, we show that for each assign-

ment to the inputs, there is a unique assignment to the gates of C ′ that is con-

sistent with the inputs. Consider specific values for x2, . . . , xn. Assume that the

solution to the original system does not satisfy the new equation. Then take

x1 = g(x2, . . . , xn), it violates the corresponding equation in the original system,

42

a contradiction. Vice versa, consider a different solution for the new system. It

must satisfy the original system (where x1 = g(x2, . . . , xn)), but the original

system has a unique solution.

In what follows, however, we will also use substitutions that do not satisfy the

hypothesis of this proposition: substitutions that create cycles. We defer this

construction to Section 4.3.3.

4.3.2 Normalization and troubled gates

In order to work with a circuit, we are going to assume that it is “normalized”,

that is, it does not contain obvious inefficiencies (such as trivial gates, etc.), in

particular, those created by substitutions. We describe certain normalization

rules below; however, while normalizing we need to make sure the circuit re-

mains within certain limits: in particular, it must remain fair and compute the

same function. We need to check also that we do not “spoil” a circuit by intro-

ducing “bottleneck” cases. Namely, we are going to prove an upper bound on

the number of newly introduced unwanted fragments called “troubled” gates.

We say that a gate G is troubled if it satisfies the following three criteria:

• G is an and-type gate of outdegree 1,

• the gates feeding G are inputs,

• both inputs feeding G have outdegree 2.
x y

∧G

43

For simplicity, we will denote all and-type gates by ∧, and all xor-type gates by

⊕.

We say that a circuit is normalized if none of the following rules is applica-

ble to it. Each rule eliminates a gate G whose inputs are gates I1 and I2. (Note

that I1 and I2 can be inputs or gates, and, in rare cases, they can coincide with

G itself.)

Rule 1: If G has no outgoing edges and is not marked as an output, then re-

move it.
I1 I2

G

I1 I2

Note also that it could not happen that the only outgoing edge of G feeds itself,

because this would make a trivial equation and violate the circuit fairness.

Rule 2: If G is trivial, i.e., it computes a constant function c of the circuit

inputs (not necessarily a constant operation on the two inputs of G), remove

G and “embed” this constant to the next gates. That is, for every gate H fed

by G, replace the operation h(g, t) computed in this gate (where g is the input

from G and t is the other input) by the operation h′(g, t) = h(c, t). (Clearly, h′

depends on at most one argument, which is not optimal, and in this case after

removing G one typically applies Rule 3 or Rule 2 to its successors.)

I1 I2
G

I1 I2

Rule 3: If G is degenerate, i.e., it computes an operation depending only on

one of its inputs, remove G by reattaching its outgoing wires to that input. This

44

may also require changing the operations computed at its successors (the cor-

responding input may be negated; note that an and-type gate (xor-type gate)

remains an and-type gate (xor-type gate)).

If G feeds itself and depends on another input, then the self-loop wire (which

would now go nowhere) is dropped. (Note that if G feeds itself it cannot depend

on the self-loop input.)

If G has no outgoing edges it must be an output gate (otherwise it would

be removed by Rule 1). In this special case, we remove G and mark the corre-

sponding input of G (or its negation) as the output gate.

I1 I2
G

I1 I2

Rule 4: If G is a 1-gate that feeds a single gate Q, Q is distinct from G itself,

and Q is also fed by one of G’s inputs, then replace in Q the incoming wire go-

ing from G by a wire going from the other input of G (this might also require

changing the operation at Q); then remove G. We call such a gate G useless.

I1 I2
G

Q

I1 I2

Q

Rule 5: If the inputs of G coincide (I1 and I2 refer to the same node) then

we replace the binary operation g(x, y) computed in G with the operation

g′(x, y) = g(x, x). Then perform the same operation on G as described in Rule 3

or 2.

45

Proposition 3. Each of the Rules 1–5 removes one gate, and introduces at

most four new troubled gates. An input that was not connected by a directed

path to the output gate cannot be connected by a new directed path*. None of

the rules change the functions of n input variables computed in the gates that

are not removed. A fair semicircuit remains a fair semicircuit.

Proof. Fairness. The circuit remains fair since no rule changes the set of solu-

tions of the system.

New troubled gates. For all the rules, the only gates that may become trou-

bled are I1, I2 (if they are and-type gates), and the gates they feed after the

transformation (if I1 or I2 is a variable). Each of I1, I2 may create at most two

new troubled gates. Hence each rule, when applied, introduces at most four new

troubled gates.

4.3.3 Affine substitutions

In this section, we show how to make substitutions that do create cycles. This

will be needed in order to make affine substitutions. Namely, we take a gate

computing an affine function x1 ⊕
⊕

i∈I xi ⊕ c (where c ∈ {0, 1} is a constant)

and “rewire” a circuit so that this gate is replaced by a trivial gate comput-

ing a constant b ∈ {0, 1}, while x1 is replaced by a gate. The resulting cir-

cuit over x2, . . . , xn may be viewed as the initial circuit under the substitution

x1 ←
⊕

i∈I xi ⊕ c ⊕ b. The “rewiring” is formally explained below; however,
*This trivial observation will be formally needed when we later count the number of such

gates.

46

before that we need to prove a structural lemma (which is trivial for acyclic cir-

cuits) that guarantees its success.

For an xor-circuit, we say that a gate G depends on a variable x if G com-

putes an affine function in which x is a term. Note that in a circuit without

cycles this means that precisely one of the inputs of G depends on x, and one

could trace this dependency all the way to x, therefore there always exists a

path from x to G. In the following lemma we show that it is always possible

to find such a path in a fair cyclic circuit too. However, it may be possible that

some nodes on this path do not depend on x. Note that dependencies in cyclic

circuits are sometimes counterintuitive. For example, in Figure 4.1, gate G4 is

fed by x2 but does not depend on it.

Lemma 4. Let C be a fair cyclic xor-circuit, and let the gate G depend on the

variable x. Then there is a path from x to G.

Proof. Let us substitute all variables in C except for x to 0. Since G depends

on x, it can only compute x or its negation.

Let R be the set of gates that are reachable from x, and U be the set of gates

that are not reachable from x. Let us enumerate the gates in such a way that

gates from U have smaller indices than gates from R. Then the circuit C corre-

sponds to the system U 0

R1 R2

× G =

LU

LR

 ,

where G = (g1, . . . , g|C|)
T is a vector of unknowns (the gates’ values), U is the

principal submatrix corresponding to U (a square submatrix whose rows and

47

columns correspond to the gates from U). Note that

• the upper right part of the matrix is 0, because there are no wires going

from R to U , and thus unknowns corresponding to gates from R do not

appear in the equations corresponding to gates from U ,

• LU is a vector of constants, it cannot contain x since U is not reachable

from x,

• LR is a vector of affine functions of x, since all other inputs are substi-

tuted by zeros.

If U is singular, then the whole matrix is singular, which contradicts the fair-

ness of C. Therefore, U is nonsingular, i.e., the values G ′ = (g1, . . . , g|U|)
T are

uniquely determined by U × G ′ = LU , and they are constant (independent of x).

This means that G cannot belong to U .

We now come to rewiring.

Lemma 5. Let C be a fair semicircuit with inputs x1, . . . , xn and gates

G1, . . . , Gm. Let G be a gate not reachable by a directed path from any and-

type gate. Assume that G computes the function x1 ⊕
⊕

i∈I xi ⊕ c, where

I ⊆ {2, . . . , n}. Let b ∈ {0, 1} be a constant. Then one can transform C into

a new circuit C ′ with the following properties:

1. graph-theoretically, C ′ has the same gates as C, plus a new gate Z; some

edges are changed, in particular, x1 is disconnected from the circuit;

2. the operation in G is replaced by the constant operation b;

48

3. inC′(Z) = 2, outC′(G) = outC(G)+1, outC′(x1) = 0. outC′(Z) = outC(x1)−

1.

4. The indegrees and outdegrees of all other gates are the same in C and C ′.

5. C ′ is fair.

6. all gates common for C ′ and C compute the same functions on the affine

subspace defined by x1 ⊕
⊕

i∈I xi ⊕ c ⊕ b = 0, that is, if f(x1, . . . , xn) is

the function computed by a gate in C and f ′(x2, . . . , xn) is the function

computed by its counterpart in C ′, then f(
⊕

i∈I xi ⊕ c ⊕ b, x2, . . . , xn) =

f ′(x2, . . . , xn). The gate Z computes the function
⊕

i∈I xi ⊕ c ⊕ b (which

on the affine subspace equals x1).

Proof. Consider a path from x1 to G that is guaranteed to exist by Lemma 4.

Denote the gates on this path by G1, . . . , Gk = G. Denote by T1, . . . , Tk the

other inputs of these gates. Note that we assume that G1, . . . , Gk are pairwise

different gates while some of the gates T1, . . . , Tk may coincide with each other

and with some of G1, . . . , Gk (it might even be the case that Ti = Gi).

The transformation is shown in Figure 4.2. The gates A0, . . . , Ak are shown

on the picture just for convenience: any of x1, Z,G1, . . . , Gk may feed any num-

ber of gates, not just one Ai.

To show the fairness of C ′, assume the contrary, that is, the sum of a subset

of rows of the new matrix is zero. The row corresponding to Gk = b must be-

long to the sum (otherwise we would have only rows of the matrix for C, plus

an extra column). However, this would mean that if we sum up the correspond-

49

A0
x1

⊕
G1A1 T1

⊕
G2A2 T2

...
⊕

Gk−1Ak−1 Tk−1

⊕
GkAk Tk

G1 = x1 ⊕ T1

G2 = G1 ⊕ T2...
Gk = Gk−1 ⊕ Tk

A0
⊕
Z

⊕
G1A1 T1

⊕
G2A2 T2

...
⊕

Gk−1Ak−1 Tk−1

b
GkAk Tk

Z = G1 ⊕ T1

G1 = G2 ⊕ T2...
Gk−1 = Gk ⊕ Tk

Gk = b

Figure 4.2: This figure illustrates the transformation from Lemma 5. We use ⊕ as a generic label
for xor-type gates. That is, in the picture, gates labelled ⊕ may compute the function ≡.

ing lines of the system (not just the matrix) for C, we get Gk = const⊕
⊕

j∈J xj

where J ̸∋ 1 (note that x1 was replaced by Z in the new system, and cancelled

out by our assumption). This contradicts the assumption of the Lemma that Gk

computes the function x1 ⊕
⊕

i∈I xi ⊕ c. Therefore, the matrix for C ′ has full

rank.

The programs shown next to the circuits explain that for x1 =
⊕

i∈I xi⊕ c⊕ b,

the gates G1, . . . , Gk compute the same values in C ′ and C; the value of Z is

also clearly correct.

Corollary 1. This transformation does not introduce new troubled gates.

Proof. Indeed, the gates being fed by G1, . . . , Gk−1, Gk, Z are not fed by vari-

ables; these gates themselves are not and-type gates; other gates do not change

their degrees or types of inputs.

After an application of this transformation, we apply Rule 2 to G. Since the

only troubled gates introduced by this rule are the inputs of the removed gate,

50

no troubled gates are introduced (and one gate, G itself, is eliminated, thus the

combination of Lemma 5 and Rule 2 does not increase the number of gates).

4.4 Read-once depth-2 quadratic sources

We generalize affine sources as follows.

Definition 5. Let the set of variables {x1, . . . , xn} be partitioned into three

disjoint sets F,L,Q ⊆ {1, . . . , n} (for free, linear, and quadratic). Consider a

system of equalities that contains

• for each variable xj with j ∈ Q, a quadratic equality of the form

xj = (xi ⊕ ci)(xk ⊕ ck)⊕ cj ,

where i, k ∈ F and ci, ck, cj are constants; the variables from the right-

hand side of all the quadratic substitutions are pairwise disjoint;

• for each variable xj with j ∈ L, an affine equality of the form

xj =
⊕

i∈Fj⊆F

xi ⊕
⊕

i∈Qj⊆Q

xi ⊕ cj

for a constant cj.

A subset R of {(x1, x2, . . . , xn) ∈ Fn
2} that satisfies these equalities is called a

read-once depth-2 quadratic source (or rdq-source) of dimension d = |F |.

An example of such a system is shown in Figure 4.3.

51

x1 x2 x3 x4 x5 x6 x7 x8

∧x9 ∧ x10 ∧x11

⊕x12 ⊕x13 ⊕ x14

Figure 4.3: An example of an rdq-source. Note that a variable can be read just once by an and-
type gate while it can be read many times by xor-type gates.

The variables from the right-hand side of quadratic substitutions are called

protected. Other free variables are called unprotected.

For this, we will gradually build a straight-line program (that is, a sequence

of lines of the form x = f(. . .), where f is a function depending on the pro-

gram inputs (free variables) and the values computed in the previous lines)

that produces an rdq-source. We build it in a bottom-up way. Namely, we take

an unprotected free variable xj and extend our current program with either a

quadratic substitution

xj = (xi ⊕ ci)(xk ⊕ ck)⊕ cj

depending on free unprotected variables xi, xk or a linear substitution

xj =
⊕
i∈J

xi ⊕ cj

depending on any variables. It is clear that such a program can be rewritten

into a system satisfying Definition 5. In general, we cannot use protected free

variables without breaking the rdq-property. However, there are two special

cases when this is possible: (1) we can substitute a constant to a protected vari-

able (and update the quadratic line accordingly: for example, z = xy and x = 1

52

yield z = y and x = 1); (2) we can substitute one protected variable for an-

other variable (or its negation) from the same quadratic equation (for example,

z = xy and x = y yield z = y and x = y).

In what follows we abuse notation by denoting by the same letter R the

source, the straight-line program defining it, and the mapping R : Fd
2 → Fn

2 com-

puted by this program that takes the d free variables and evaluates all other

variables.

Definition 6. Let R ⊆ Fn
2 be an rdq-source of dimension d, let the free vari-

ables be x1, x2, . . . , xd, and let f : Fn
2 → F2 be a function. Then f restricted

to R, denoted f |R, is a function f |R : Fd
2 → F2, defined by f |R(x1, . . . , xd) =

f(R(x1, . . . , xd)).

Note that affine sources are precisely rdq-sources with Q = ∅. We define dis-

persers for rdq-sources similarly to dispersers for affine sources.

Definition 7. An rdq-disperser for dimension d(n) is a family of functions

fn : Fn
2 → F2 such that for all sufficiently large n, for every rdq-source R of

dimension at least d(n), fn|R is non-constant.

The following proposition shows that affine dispersers are also rdq-dispersers

with related parameters.

Proposition 4. Let R ⊆ Fn
2 be an rdq-source of dimension d. Then R contains

an affine subspace of dimension at least d/2.

Proof. For each quadratic substitution xj = (xi ⊕ ci)(xk ⊕ ck) ⊕ cj, further

restrict R by setting xi = 0. This replaces a quadratic substitution by two affine

53

substitutions xi = 0 and xj = ci(xk ⊕ ck) ⊕ cj; the number of free variables

is decreased by one. Also, since the free variables do not occur on the left-hand

side, the newly introduced affine substitution is consistent with the previous

affine substitutions.

Since the variables occurring on the right-hand side of our quadratic substitu-

tions are disjoint we have initially that 2|Q| ≤ |F | = d, so the number of newly

introduced affine substitutions is at most d/2.

Note that it is important in the proof that protected variables do not appear

on the left-hand sides. The proposition above is obviously false for quadratic

varieties: no Boolean function can be non-constant on all sets of common roots

of n − o(n) quadratic polynomials. For example, the system of n/2 quadratic

equations x1x2 = x3x4 = . . . = xn−1xn = 1 defines a single point, so any function

is constant on this set.

Corollary 2. An affine disperser for dimension d is an rdq-disperser for dimen-

sion 2d. In particular, an affine disperser for sublinear dimension is also an rdq-

disperser for sublinear dimension.

4.5 Circuit complexity measure

For a circuit C and a straight-line program R defining an rdq-source (over the

same set of variables), we define the following circuit complexity measure:

µ(C,R) = g + αQ · q + αT · t+ αI · i ,

54

where g = G(C) is the number of gates in C, q is the number of quadratic sub-

stitutions in R, t is the number of troubled gates in C, and i is the number of

influential inputs in C. We say that an input is influential if it feeds at least

one gate or is protected (recall that a variable is protected if it occurs in the

right-hand side of a quadratic substitution in R). The constants αQ, αT , αI > 0

will be chosen later.

Proposition 3 implies that when a gate is removed from a circuit by applying

a normalization rule the measure µ is reduced by at least β = 1 − 4αT . The

constant αT will be chosen to be very close to 0 (certainly less than 1/4), so β >

0.

In order to estimate the initial value of our measure, we need the following

lemma.

Lemma 6. Let C be a circuit computing an affine disperser f : Fn
2 → F2 for

dimension d, then the number of troubled gates in C is less than n
2
+ 5d

2
.

Proof. Let V be the set of the inputs, |V | = n. In what follows we let ⊔ denote

the disjoint set union. Let us call two inputs x and y neighbors if they feed the

same troubled gate. Assume to the contrary that t ≥ n
2
+ 5d

2
. Let vi be the

number of variables feeding exactly i troubled gates. Since a variable feeding a

troubled gate must have outdegree 2, vi = 0 for i > 2. By double counting the

number of wires from inputs to troubled gates, 2t = v1 + 2v2. Since v1 + v2 ≤ n,

n+ 5d ≤ 2t = v1 + 2v2 ≤ n+ v2.

Let T be the set of inputs that feed two troubled gates, |T | = v2 ≥ 5d. We now

55

construct two disjoint subsets X ⊂ T and Y ⊂ V such that

• |X| = d,

• there are |Y | consistent linear equations that make the circuit C indepen-

dent of variables from X ⊔ Y .

When the sets X and Y are constructed the theorem statement follows immedi-

ately. Indeed, we first take |Y | equations that make C independent of X ⊔ Y ,

then we set all the remaining variables V \ (X ⊔ Y) to arbitrary constants.

After this, the circuit C evaluates to a constant (since it does not depend on

variables from X ⊔ Y and all other variables are set to constants). We have

|Y | + |V \ (X ⊔ Y)| = |V \ X| = n − d linear equations which contradicts

the assumption that f is an affine disperser for dimension d.

Now we turn to constructing X and Y . For this we will repeat the following

routine d times. First we pick any variable x ∈ T , it feeds two troubled gates,

let y1 and y2 be neighbors of x (y1 may coincide with y2). We add x to X, also

we add y1, y2 to Y . Note that it is possible to assign constants to y1 and y2 to

make C independent of x. (See the figure below. If y1 differs from y2, then we

substitute constants to them so that they eliminate troubled gates fed by x and

leave C independent of x. If y1 coincides with y2, then either x = c, or y1 = c,

or y1 = x ⊕ c eliminates both troubled gates for some constant c; if we make an

x = c substitution, then formally we have to interchange x and y, that is, add

y rather than x to X.) Each of y1, y2 has at most one neighbor different from

x. We remove x, y1, y2, neighbors of y1 and y2 (at most five vertices total) from

56

the set T , if they belong to it. Since at each step we remove at most five ver-

tices from T , we can repeat this routine d times. Since we remove the neighbors

of y1 and y2 from T , we guarantee that in all future steps when we pick an in-

put, its neighbors do not belong to Y , so we can make arbitrary substitutions to

them and leave the system consistent.
y1 x y2
∧ ∧

y x
∧ ∧

We are now ready to formulate the main bounds of this section.

Theorem 4. Let f : Fn
2 → F2 be an rdq-disperser for dimension d and C be a

fair semicircuit computing f . Let αQ, αT , αI ≥ 0 be some constants, and αT ≤

1/4. Then µ(C, ∅) ≥ δ(n− d− 2) where

δ := αI +min
{αI

2
, 4β, 3 + αT , 2β + αQ, 5β − αQ, 2.5β +

αQ

2

}
,

and

β = 1− 4αT .

We defer the proof of this theorem to Section 4.6.2. This theorem, together

with Corollary 2, implies a lower bound on the circuit complexity of affine dis-

persers.

Corollary 3. Let δ, β, αQ, αT , αI be constants as above, then the circuit size of

an affine disperser for sublinear dimension is at least

57

(
δ − αT

2
− αI

)
n− o(n) .

Proof. Note that q = 0, i ≤ n, t < n
2
+ 5d

2
(see Lemma 6). Thus, the circuit size

is

g = µ− αQ · q − αT · t− αI · i

> δ(n− 2d− 2)− αT ·
(
n

2
+

5d

2

)
− αI · n

=
(
δ − αT

2
− αI

)
n−

(
2δ +

5αT

2

)
d− 2δ

=
(
δ − αT

2
− αI

)
n− o(n) .

The maximal value of δ − αT

2
− αI satisfying the condition from Corollary 3 is

given by the following linear program: maximize δ − αT

2
− αI subject to

β + 4αT = 1

αT , αQ, αI , β ≥ 0

δ ≤ αI+min
{αI

2
, 4β, 3 + αT , 2β + αQ, 5β − αQ, 2.5β +

αQ

2

}
.

The optimal values for this linear program are

αT =
1

43
,

αQ = 1 + 22αT =
65

43
,

αI = 6 + 2αT = 6 +
2

43
,

58

β = 1− 4αT =
39

43
,

δ = 9 + 3αT = 9 +
3

43
.

This gives the main result of this chapter.

Theorem 2. The circuit size of an affine disperser for sublinear dimension is at

least
(
3 + 1

86

)
n− o(n).

4.6 Gate elimination

In order to prove Theorem 4 we first show that it is always possible to make a

substitution and decrease the measure by δ.

Theorem 5. Let f : Fn
2 → F2 be an rdq-disperser for dimension d, let R be an

rdq-source of dimension s ≥ d + 2, and let C be an optimal (i.e., C with the

smallest µ(C,R)) fair semicircuit computing the function f |R. Then there exist

an rdq-source R′ of dimension s′ < s and a fair semicircuit C ′ computing the

function f |R′ such that

µ(C ′, R′) ≤ µ(C,R)− δ(s− s′) .

Before we proceed to the proof, we show how to infer the main theorem from

this claim:

Proof of Theorem 4. We prove that for optimal C computing f |R, µ(C,R) ≥

δ(s − d − 2). We do it by induction on s, the dimension of R. Note that the

59

statement is vacuously true for s ≤ d + 2, since µ is nonnegative. Now sup-

pose the statement is true for all rdq-sources of dimension strictly less than s

for some s > d + 2, and let R be an rdq-source of dimension s. Let C be a fair

semicircuit computing f |R. Let R′ be the rdq-source of dimension s′ guaranteed

to exist by Theorem 5, and let C ′ be a fair semicircuit computing f |R′ . We have

that

µ(C,R) ≥ µ(C ′, R′) + δ(s− s′) ≥ δ(s− d− 2),

where the second inequality comes from the induction hypothesis.

4.6.1 Proof outline

The proof of Theorem 5 is based on a careful consideration of a number of

cases. Before considering all of them formally in Section 4.6.2, we show a high-

level picture of the case analysis.

We fix the values of constants αT , αQ, αI , β, δ to the optimal values: αT =

1
43
, αQ = 65

43
, αI = 6 2

43
, β = 39

43
, δ = 9 3

43
. Now it suffices to show that we can

always make one substitution and decrease the measure by at least δ = 9 3
43

.

First we normalize the circuit. By Proposition 3, during the normalization pro-

cess if we eliminate a gate then we introduce at most four new troubled gates,

this means that we decrease the measure by at least 1 − 4αT = 39
43

. Therefore,

normalization never increases the measure.

We always make constant, linear or simple quadratic substitution to a vari-

able. Then we remove the substituted variable from the circuit, so that for each

60

assignment to the remaining variables the function is defined. It is easy to make

a constant substitution x = c for c ∈ {0, 1}. We propagate the value c to the in-

puts fed by x and remove x from the circuit, since it does not feed any other

gates. An affine substitution x =
⊕

i∈I xi ⊕ c is harder to make, because a

straightforward way to eliminate x would be to compute
(⊕

i∈I xi ⊕ c
)

else-

where. We will always have a gate G that computes
⊕

i∈I xi ⊕ c and that is

not reachable by a direct path from an and-type gate. Fortunately, in this case

Lemma 5 shows how to compute it on the affine subspace defined by the sub-

stitution without using x and without increasing the number of gates (later, an

extra gate introduced by this lemma is removed by normalization).

Thus, in this sketch we will be making arbitrary affine substitutions for sums

that are computed in gates without saying that we need to run the recon-

struction procedure first. Also, we will make a simple quadratic substitution

z = (x ⊕ c1)(y ⊕ c2) ⊕ c3 only if the gates fed by z are canceled out after the

substitution, so that we do not need to propagate this quadratic value to other

gates. We want to stay in the class of rdq-sources, therefore we cannot make an

affine substitution to a variable x if it already has been used in the right-hand

side of some quadratic restriction z = (x ⊕ c1)(y ⊕ c2) ⊕ c3, also we cannot

make quadratic substitutions that overlap in the variables. In this proof sketch

we ignore these two issues, but they are addressed in the full proof in the next

section.

Let A be a topologically minimal and-type gate (i.e., an and-type gate that

is not reachable from any and-type gate), let I1 and I2 be the inputs of A (I1

61

I1 I2
∧A

Case I

x I2
∧A

Case II

I1 I2
∧A

Case III

I1 x
∧A

Case IV

x y

∧ A

Case V.I

x y

∧A

Case V.II.I

x y

∧A

⊕D

B C

∧ FE

z

Case V.II.II

Figure 4.4: The gate elimination process in Proof Outline of Theorem 5.

and I2 can be variables or gates). Now we consider the following cases (see Fig-

ure 4.4).

Case I. At least one of I1, I2 (say, I1) is a gate of outdegree greater than one.

There is a constant c such that if we assign I1 = c, then A becomes con-

stant. (For example, if A is an and, then c = 0, if A is an or, then c = 1

etc.) When A becomes constant it eliminates all the gates it feeds. There-

fore, if we assign the appropriate constant to I1, we eliminate I1, two of

the gates it feeds (including A), and also a successor of A. This is four

gates total, and we decrease the measure by at least αI + 4β = 929
43

> δ.

Case II. At least one of I1, I2 (say, I1) is a variable of outdegree one. We assign

the appropriate constant to I2. This eliminates I2, A, a successor of A,

and I1. This assignment eliminates at least two gates and two variables, so

the measure decrease is at least 2αI + 2β = 1339
43

> δ.

62

Case III. I1 and I2 are gates of outdegree one. Then if we assign the appropriate

constant to I1, we eliminate I1, A, a successor of A, and I2 (since I2 does

not feed any gates). We decrease the measure by at least αI + 4β > δ.

Case IV. I1 is a gate of outdegree one, I2 is a variable of outdegree greater than

one. Then we assign the appropriate constant to I2. This assignment elim-

inates I2, at least two of its successors (including A), a successor of A, and

I1 (since it does not feed any gates). Again, we decrease the measure by

at least αI + 4β > δ.

Case V. I1 and I2 are variables of outdegree greater than one.

Case V.I. I1 or I2 (say, I1) has outdegree at least three. By assigning the

appropriate constant to I1 we eliminate at least three of the gates it

feeds and a successor of A, four gates total.

Case V.II. I1 and I2 are variables of degree two. If A is a 2+-gate we elim-

inate at least four gates by assigning I1 so in what follows we as-

sume that A is a 1-gate. In this case A is a troubled gate. We want

to make the appropriate substitution and eliminate I1 (or I2), its suc-

cessor, A, and A’s successor.

Case V.II.I. If this substitution does not introduce new troubled gates,

then we eliminate a variable, three gates and decrease the num-

ber of troubled gates by one. Thus, we decrease the measure by

αI + 3 + αT = 9 3
43

= δ.

63

Case V.II.II. If the substitution introduces troubled gates, then we consider

which normalization rule introduces troubled gates. The full case

analysis is presented in the next section, here we demonstrate

just one case of the analysis. Let us consider the case when a

new troubled gate is introduced when we eliminate the gate fed

by A (see Figure 4.4, the variable z will feed a new troubled gate

after assignments x = 0 or y = 0). In such a case we make a

different substitution: z = (x ⊕ c1)(y ⊕ c2) ⊕ c3. This substi-

tution eliminates gates A,D,E, F and a gate fed by F . Thus,

we eliminate one variable, five gates, but we introduce a new

quadratic substitution, and decrease the measure by at least

αI + 5β − αQ = 9 3
43

= δ.

It is conceivable that when we count several eliminated gates, some of them co-

incide, so that we actually eliminate fewer gates. Usually in such cases we can

prove that some other gates become trivial. This and other degenerate cases are

handled in the full proof in the next section.

4.6.2 Full proof

Proof of Theorem 5. Since normalization does not increase the measure and

does not change R, we may assume that C is normalized.

In what follows we will further restrict R by decreasing the number of free

variables either by one or by two, then we will implement these substitutions in

C and normalize C afterwards. Formally, we do it as follows:

64

• We add an equation or two to R.

• Since we now compute the disperser on a smaller set, we simplify C (in

particular, we disconnect the substituted variables from the rest of the

circuit). For this, we

– change the operations in the gates fed by the substituted variables or

restructure the xor part of the circuit according to Lemma 5,

– apply some normalization rules to remove some gates (and disconnect

substituted variables).

• We count the decrease of µ.

• We further normalize the circuit (without increase of µ) to bring it to the

normalized state required for the next induction step.

Since s ≥ d + 2, even if we add two more lines to R, the disperser will not

become a constant. This, in particular, implies that if a gate becomes constant

then it is not an output gate and hence feeds at least one other gate. By going

through the possible cases we will show that it is always possible to perform one

or two consecutive substitutions matching at least one of the following types

(by ∆µ we denote the decrease of the measure after subsequent normalization).

1. Perform two consecutive affine substitutions to reduce the number of in-

fluential inputs by at least three. Per one substitution, this gives ∆µ ≥

1.5αI .

65

2. Perform one affine substitution to reduce the number of influential inputs

by at least 2: ∆µ ≥ 2αI (numerically, this case is subsumed by the previ-

ous one).

3. Perform one affine substitution to kill four gates: ∆µ ≥ 4β + αI .

4. Perform one constant substitution to eliminate three gates including at

least one troubled gate so that no new troubled gate is introduced: ∆µ ≥

αI + 3 + αT .

5. Perform one quadratic substitution to kill five gates: ∆µ ≥ 5β − αQ + αI .

6. Perform two affine substitutions to kill at least five gates and replace a

quadratic substitution by an affine one, reducing the measure by at least

5β + αQ + 2αI . By substitution this is ∆µ ≥ 2.5β +
αQ

2
+ αI .

7. Perform one affine substitution to kill two gates and replace one quadratic

substitution by an affine one: ∆µ ≥ 2β + αQ + αI .

All substitutions that we perform are of the form such that adding them to

an rdq-source results in a new rdq-source.

We check all possible cases of (C,R). In every case we assume that the condi-

tions of the previous cases are not satisfied. We also rely on the specified order

of applications of the normalization rules where applicable.

Note that the measure can accidentally drop less than we expect if new trou-

bled gates emerge. We take care of this when counting the number of gates that

disappear. In particular, recall Proposition 3 that guarantees the decrease of

66

β per one eliminated gate. If some additional gate accidentally disappears, it

may introduces new troubled gates but does not increase the measure, because

β ≥ 0.

4.6.3 Cases:

Case 1. The circuit contains a protected variable q that either feeds an and-

type gate or feeds at least two gates. Then there is a type 7 substitution

of q by a constant.

Case 2. The circuit contains a protected 0-variable q occurring in the right-

hand side of a quadratic substitution together with some variable q′. We

substitute a constant to q′. After this neither q nor q′ are influential, so we

have a type 2 substitution.

Note that after this case all protected variables are 1-variables feeding xor

gates.

Case 3. The circuit contains a variable x feeding an and-type gate T , and

out(x) + out(T) ≥ 4. Then if x gets the value that trivializes T , we re-

move four gates: T by Rule 2, and descendants of x and T by Rule 3. If

some of these descendants coincide, this gate becomes trivial (instead of

degenerate) and is removed by Rule 2 (instead of Rule 3), and an addi-

tional gate (a descendant of this descendant) is removed by Rule 3. This

makes a type 3 substitution.

Note that after this case all variables feeding and-gates have outdegree one

67

or two.

Case 4. There is an and-type gate T fed by two inputs x and y, one of which

(say, x) has outdegree 1. Adopt the notation from the following picture.

In this and all the subsequent pictures we show the outdegrees near the

gates that are important for the case analysis.

x
1

y
1+

∧T

We substitute y by a constant trivializing T . This removes the dependence

on x and y (which are both influential and unprotected), a type 2 substi-

tution.

Case 5. There is an and-type gate T fed by two inputs x and y, and at this

point (due to the cases 3 and 4) we inevitably have out(T) = 1 and

out(x) = out(y) = 2, that is, T is “troubled”. Adopt the notation from

the following picture:

x
2

y
2

∧T
1

D

B C

Since the circuit is normalized, B ̸= D and C ̸= D (Rule 4). One can

now remove three gates by substituting a constant to x that trivializes

T . If in addition to the three gates one more gate can be killed, we are

done (substitution of type 3). Otherwise, we have just three gates, but

68

the troubled gate T is removed. If this does not introduce a new troubled

gate, it makes a substitution of type 4. Likewise, if this is the case for a

substitution to y, we are done.

So in the remaining subcases of Case 5 we will be fighting the situation

where only three gates are eliminated while one or more troubled gates are

introduced.

How can it happen that a new troubled gate is introduced? This means

that something has happened around some and-type gate E. Whatever

has happened, it is due to two gates, B and D, that became degenerate (if

some of them became trivial, then one more gate would be removed). The

options are:

• E gets as input a variable instead of a gate (because some gate in

between became degenerate).

• A variable increases its outdegree from 1 to 2 (because a gate of de-

gree at least two became degenerate), and this variable starts to feed

E (note that it could not feed it before, because after the increase it

would feed it twice).

• A variable decreases its outdegree to 2. This variable could not feed

E before this happens, because this would be Case 3. It takes at

least one degenerate gate, X, to pass a new variable to E, thus the

decrease of the outdegree has happened because of a single degen-

erate gate Y . In order to decrease the outdegree of the variable this

69

gate must have outdegree 1, thus it would be removed by Rule 4 as

useless.

• E decreases its outdegree to 1.

– This could happen if two gates, B and D, became degenerate,

and they fed a single gate. However, in this case E should al-

ready have 2-variables as its inputs, Case 3.

– This could also happen if E feeds B and some gate X, and B

becomes degenerate to X. However, in this case B is useless

(Rule 4). (Note that out(B) = 1, because otherwise E would

not decrease its outdegree to 1.)
E x

B
X

– Similarly, if E feeds D and some gate X, and D becomes degen-

erate to X.

Summarizing, only the two first possibilities could happen, and both pass

some variable to E through either B or D (or both).

The plan for the following cases is to exploit the local topology, that is,

possible connections between B, D, and C. First we consider “degenerate”

cases where these gates are locally connected beyond what is shown in the

figure in case 5. After this, we continue to the more general case.

Case 5.1. If B = C, then one can trivialize both T and B either by substi-

tuting a constant to x or y or by one affine substitution y = x ⊕ c

70

(using 2) for the appropriate constant c (this can be easily seen by

examining the possible operations in the two gates). Since x and y

are unprotected, the number of influential variables is decreased by 2,

making a substitution of type 2.

Case 5.2. Assume that D feeds both B and C. In this case, a new trou-

bled gate may emerge only because D is fed by a variable u, and it is

passed to some and-type gate E. Note that out(D) ≤ 2, because oth-

erwise u would become a 3-variable and E would not become trou-

bled. Therefore, u cannot be passed by D to E directly, it is passed

via B.

x
2

y
2

∧T
1

D

B
1+

C
∧E

z
2

u

If out(B) ≥ 2, then even if out(u) = 1, it must be that C = E or

that B feeds C, because otherwise u would become a 3-variable af-

ter substituting x. Neither is possible: C = E would imply B = D

and y = z, contradicting the assumption that D ̸= B (from the as-

sumption of Case 5); if B feeds C, that means that B = D, which is

impossible. Therefore, we conclude that out(B) = 1. So we can sub-

stitute constants for z, to make B a 0-gate, and for y, to trivialize T .

This way x ceases to be influential, and we have ∆µ ≥ 3αI for two

71

substitutions (type 1).

Note that after this case we can assume that D does not feed B. If it

does, we switch the roles of the variables x and y.

Case 5.3. Assume now that B feeds D, and D feeds C. (Or, symmetrically,

C feeds D, and D feeds B.) Then substituting y to trivialize T re-

moves T , D, and C. Now we show that this substitution introduces

no new troubled gates, which contradicts our assumption about new

troubled gates. The gates C and D are degenerate the gate B. Thus,

the gate that used to be fed by C is now fed by B, therefore, locally

nothing changed for this gate. The only gate that now locally looks

differently is the gate B, but it is now fed by the variable x of degree

1, and, therefore, is not a troubled gate.

x
2

y
2

∧T
1

D

B C

Case 5.4. We can now assume that B and D are not connected (in any di-

rection).

Indeed, if B feeds D, we can switch the roles of x and y unless C

feeds D (impossible, because then D has three inputs: T , B, and C)

or unless we switched x and y before (that is, D feeds C, Case 5.3).

Case 5.4.1. Assume that D feeds a new troubled gate under the substi-

tution of x. The troubled gate E gets some variable z from D

(directly, as D and B are not connected).

72

x
2

y
2

∧T
1

D

B C

∧E

z
1+

• If out(z) ≥ 2, then out(D) = 1 and E is fed by another

variable t either directly or via B. In the former case, we can

substitute t to trivialize E, this kills E and the gate it feeds,

and also makes D and then T 0-gates; a type 3 substitution.

In the latter case:

x
2

y
2

t
∧T
1

D
1

B C

∧E

z
2+

– if out(B) ≥ 2, then B is a xor-type gate (see Case 3), and

by substituting x = t⊕ c for the appropriate constant c, we

can make B a constant trivializing E and remove two more

descendants of B and E, a type 3 substitution;

– if out(B) = 1, then we can set z and y to constants trivial-

izing T and E, respectively. Then B becomes a 0-gate and

is eliminated, which means that x becomes a 0-variable.

We then get a substitution of type 1.

We can now assume that out(z) = 1 and thus out(D) ≥

2, because z must get outdegree two in order to feed the new

73

troubled gate.

• If D is an and-type gate, substituting z by the appropriate

constant trivializes D and kills both gates that it feeds; also

T becomes a 0-gate, a type 3 substitution.

• If z is protected, we set x and z to constants trivializing

T , D, and E. This additionally removes B and the gates

that E feeds, at least five gates in total. Since we also kill

a quadratic substitution, this makes a type 6 substitution.

• Since we can now assume that z is unprotected and D is an

xor-type gate, we can make a substitution z = (x ⊕ c1)(y ⊕

c2) ⊕ c3 for appropriate constants c1, c2, c3 to assign D a

value that trivializes E. This makes T a 0-gate and removes

also D, E, another gate that D feeds, and the gate(s) that

E feeds. As usual, if some degenerate gates coincide, an-

other gate is removed. Taking into account the penalty for

introducing a quadratic substitution, we get a substitution of

type 5.

Case 5.4.2. Since D does not feed a new troubled gate, B does, and B is

fed directly by a variable t (since B and D are not connected).

The new troubled gate E must be also fed directly by a variable

z (because D does not feed it).

74

x
2

y
2

∧T

D

B
1+

C

∧
E

z

t
1+

• If out(B) ≥ 2 (which means B is a xor-type gate, see

Case 3), then by substituting x = t ⊕ c (using Proposition 2)

for the appropriate constant c, we can make B a constant

trivializing E and remove two more descendants of B and E,

a type 3 substitution.

• If out(B) = 1, then we can set z and y to constants trivial-

izing T and E, respectively. Then B becomes a 0-gate and

is eliminated, which means that x becomes a 0-variable. We

then get a substitution of type 1.

—————————–

Starting from the next case we will consider a topologically minimal and-

type gate and call it A for the remaining part of the proof. Here A is topo-

logically minimal if it cannot be reached from another and-type gate via a

directed path. (Note that there are no cycles containing and-type gates in a

fair semicircuit. Thus, it is always possible to find a topologically minimal

and-type gate.)

Note that the circuit C must contain at least one and-type gate (otherwise

it computes an affine function, and a single affine substitution makes it

75

constant). The minimality implies that both inputs of A are computed

by fair cyclic xor-circuits (note that a subcircuit of a fair circuit is fair,

because it corresponds to a submatrix of a full-rank matrix); in particular,

they can be inputs.

Case 6. One input of A is an input x of outdegree 2 while the other one is a

gate Q of outdegree 1.

x
2 1

Q
∧A

Recall that x is unprotected due to Case 1, and x cannot feed Q because

of Rule 4. Substituting x by the constant trivializing A eliminates the two

successors of x, all the successors of A, and makes Q a 0-gate which is

then eliminated by Rule 1. A type 3 substitution. (As usual, if the only

successor of A coincides with the other successor of x then this gate be-

comes constant so its successors are also eliminated. That is, in any case

at least four gates are eliminated.)

Case 7. One input to A is a gate Q. Denote the other input by P . If P is also a

gate and has outdegree larger than Q we switch the roles of P and Q.

In this case we will try to substitute a value to Q in order to trivialize A.

Q is a gate computed by a fair xor-circuit, so it computes an affine func-

tion c ⊕
⊕

i∈I xi. Note that I ̸= ∅ because of Rule 2. For this, we use the

xor-reconstruction procedure described in Lemma 5. In order to perform

it, we need at least one unprotected variable xi with i ∈ I.

76

Case 7.1. Such a variable x1 exists.

We then add the substitution x1 = b⊕c⊕
⊕

i∈I\{1} xi to the rdq-source

R for the appropriate constant b (so that Q on the updated R com-

putes the constant trivializing A). We could now simply replace the

operation in Q by this constant (since the just updated circuit com-

putes correctly the disperser on the just updated R). However, we

need to eliminate the just substituted variable x1 from the circuit. To

do this, we perform the reconstruction described in Lemma 5. Note

that it only changes the in- and outdegrees of x1 (replacing it by a

new gate Z) and Q. No new troubled gates are introduced, and the

subsequent application of Rule 2 to Q removes Q without introducing

new troubled gates as well.

Moreover, normalizations remove all descendants of Q, all descen-

dants of A, and, in the case out(P) = 1, Rule 1 removes P if it is

a gate, or P becomes a 0-variable, if it was a variable. It remains to

count the decrease of the measure.

Below we go through several subcases depending on the type of the

gate P .

Case 7.1.1. Q is a 2+-gate. We recall the general picture of xor-

reconstruction.
x1

P
1+

⊕
2+

Q
∧A

xor-reconstruction

⊕ Z

P
1+ 3+

Q
∧A

77

After the reconstruction, there are at least three descendants of

Q and at least one descendant of A, a type 3 substitution.

Case 7.1.2. Q is a 1-gate and P is an input. Then P has outdegree 1 and

is unprotected (see Cases 6, 1).
x1

P
1

⊕
1
Q

∧A

xor-reconstruction

⊕ Z

P
1 2

Q
∧A

Note that P ̸= x1 since the only outgoing edge of P goes to an

and-type gate. This means that P is left untouched by the xor-

reconstruction. After trivializing A the circuit becomes indepen-

dent of both x1 and P giving a type 2 substitution.

Case 7.1.3. Q is a 1-gate and P is a gate. Then P is a 1-gate (if the out-

degree of P were larger we would switch the roles of P and Q).
x1

⊕
1

P ⊕
1
Q

∧A

xor-reconstruction

⊕ Z

⊕
1

P
2
Q

∧A

Again, P is left untouched by the xor-reconstruction since

it only has one successor and it is of and-type while the xor-

reconstruction is performed in the linear part of the circuit.

After the substitution, we remove two successors of Q, at least

one successor of A, and make P a 0-gate. A type 3 substitution.

Note that P cannot be a successor of Q because of Rule 4.

78

Case 7.2. All variables in the affine function computed by Q are protected.

Case 7.2.1. Both inputs to Q, say xj and xk, are variables, and they occur

in the same quadratic substitution w = (xj⊕c)(xk⊕c′)⊕c′′. Then

perform a substitution xj = xk⊕c′′′ (using Proposition 2) in order

to trivialize the gate A. It kills the quadratic substitution (and

does not harm other quadratic substitutions, because xj and xk

could not occur in them), Q, A, its descendant (and more, but

we do not need it), which makes ∆µ ≥ 3β + αQ + αI , a type 7

substitution.

Case 7.2.2. Q is a 2+-gate. Take any j ∈ I. Assume that xj occurs in

a quadratic substitution xp = (xj ⊕ a)(xk ⊕ b) ⊕ c. Recall

that at this point all protected variables are 1-variables feeding

xor-gates (see Cases 1 and 2). We substitute xk by a constant d

and normalize the circuit. This eliminates the successor of xk,

kills the quadratic substitution, and makes xj unprotected. If at

least two gates are removed during normalization then we get

∆µ ≥ 2β + αQ + αI , a type 7 substitution. In what follows we as-

sume that the only gate removed during normalization after the

substitution xk ← d is the successor of xk.

If the gate Q is not fed by xk then it has outdegree at least 2 af-

ter the substitution xk ← d and normalizing the descendants

of xk. If the gate Q is fed by xk then its second input must be

an xor-gate Q′ (if it were an input it would be a variable xj

79

but then we would fall into Case 7.2.1). Then after substituting

xk ← d and normalizing Q the gate Q′ feeds A and has outdegree

at least 2. We denote Q′ by Q in this case.

Hence in any case, in the circuit normalized after the substitu-

tion xk ← d, the gate A is fed by the 2+-gate Q that computes

an affine function of variables containing an unprotected vari-

able xj. We then make Q constant trivializing A by the appro-

priate affine substitution to xj. This kills four gates. Together

with the substitution xk ← d, it gives ∆µ ≥ 5β + αQ + 2αI ,

a type 6 substitution.

Hence in what follows we assume that out(Q) = 1. Therefore P

is either a variable or an xor-type 1-gate.

Case 7.2.3. P is an input. Then it has the following properties as in

Case 7.1.2. Take any j ∈ I and assume that xj appears with xk

in a quadratic substitution. We first substitute xk ← d and nor-

malize the circuit. After this the second input of A still computes

a linear function that depends on xj which is now unprotected.

We make an affine substitution to xj trivializing A. This makes

P a 0-variable, a type 1 substitution.

Case 7.2.4. P is an xor-type 1-gate. If P computes an affine function

of variables at least one of which is unprotected, we are in

Case 7.1.3 with P and Q exchanged. So, in what follows we as-

sume that both P and Q compute affine functions of protected

80

variables.

Case 7.2.4.1. Both inputs to P or Q (say, P) are variables xp and xq.

Let xj be a variable from the affine function computed at Q

and let xk be its couple. Note that xj ̸= xp, xq while it might

be the case that xk = xp or xk = xq. We substitute xk by a

constant to make xj unprotected. We then trivialize A by an

affine substitution to xj. This way, we kill the dependence on

three variables by two substitutions. A type 1 substitution.

Thus in what follows we can assume that both P and Q have

at least one xor-gate as an input.

Case 7.2.4.2. One of P and Q (say, Q) computes an affine function of

variables one of which (call it xj) has a couple xk that does

not feed P . We substitute xk by a constant and normalize

the descendant of xk. It only kills one xor-gate fed by xk and

makes xj unprotected. Note that at this point P is still a

1-xor. We then trivialize A by substituting xj by an affine

function. Similarly to Case 7.1.3, this kills four gates and

gives, for two substitutions, ∆µ ≥ 5β + αQ + 2αI . A type 6

substitution.

Case 7.2.4.3. Since P and Q, and gates that feed them all compute non-

trivial functions (because of Rule 2), the only case when the

condition of the previous case does not apply is the following:

P computes an affine function on a single variable xi, Q com-

81

putes an affine function on a single variable xj, the variables

xi and xj appear together in a quadratic substitution, and

moreover xi feeds Q while xj feeds P . But this is just impos-

sible. Indeed, since xi is a protected variable it only feeds Q.

As Q computes an affine function on xi, Lemma 4 guaran-

tees that there is a path from xi to Q. But this path must

go through P and A leading to a cycle that goes through an

and-type gate A.

82

5
Lower bound of 3.11n for quadratic

dispersers

5.1 Overview

In this chapter we introduce the weighted gate elimination method. This

method allows us to give a simple proof of a 3.11n lower bound for quadratic

dispersers against xor-layered circuits. We define xor-layered circuits as a gen-

eralization of Boolean circuits in Section 5.2. Section 5.3 defines weighted gate

elimination and proves the lower bound. We note that there are no known ex-

83

plicit constructions of quadratic dispersers with the parameters needed for our

proof, and refer the reader to Section 2.2 for the known constructions with

weaker parameters.

We prove this lower bound by extending the gate elimination method. The

proof goes by induction on the size of the quadratic variety S on which the

circuit computes the original function correctly. Note that for affine varieties,

after k substitutions we have |S| = 2n−k, while for quadratic varieties this

relation no longer holds. (E.g., the set of roots of n/2 polynomials x1x2 ⊕ 1,

x3x4 ⊕ 1, . . . , xn−1xn ⊕ 1 contains just one point.) We choose a polynomial p

of degree 2 and consider two subvarieties of S: S0 = {x ∈ S : p(x) = 0} and

S1 = {x ∈ S : p(x) = 1}. We then estimate how much the size of the circuit

shrinks for each of these varieties and how much the size of the variety shrinks.

Roughly, we show that in at least one of these cases the circuit shrinks a lot

while the size of the variety does not shrink a lot.

5.2 Preliminaries

By an xor-layered circuit we mean a circuit whose inputs may be labeled not

only by input variables but also by sums of variables. One can get an xor-

layered circuit from a regular circuit by replacing xor-gates that depend on two

inputs by an input (see Figure 5.1).

We will need the following technical lemma.

Lemma 7. Let 0 < α ≤ 1 and 0 < β be constants satisfying inequalities (3.4),

(3.1):

84

x y z

⊕

⊕

∨

∧

x⊕ y ⊕ z y z

∨

∧

Figure 5.1: An example of a transformation from a regular circuit to an xor-layered circuit.

2−
3
β + 2−

4+α
β ≤ 1,

2−
2+α
β + 2−

4+2α
β ≤ 1.

Then

2−
4
β + 2−

4
β ≤ 1, (5.1)

2−
3+α
β + 2−

3+2α
β ≤ 1. (5.2)

Proof. Since 2 ≤ x+ 1
x

for positive x,

2−
4
β + 2−

4
β ≤ 2−

4
β (2

1
β + 2−

1
β) = 2−

3
β + 2−

5
β ≤ 2−

3
β + 2−

4+α
β ≤ 1 .

In order to prove the inequality (5.2), we use Heinz’s inequality47:

x1−tyt + xty1−t

2
≤ x+ y

2
for x, y > 0, 0 ≤ t ≤ 1.

85

Let us take x = 2−
2+α
β , y = 2−

4+2α
β , t = 1

2+α
:

2−
3+α
β + 2−

3+2α
β = x1−tyt + xty1−t ≤ x+ y = 2−

2+α
β + 2−

4+2α
β ≤ 1.

In this chapter we abuse notation by using the word “circuit” to mean an xor-

layered circuit.

5.3 Weighted Gate Elimination

The main result of this chapter is the following theorem.

Theorem 3. Let 0 < α ≤ 1 and 0 < β be constants satisfying

2−
2+α
β + 2−

4+2α
β ≤ 1, (3.1)

2−
2
β + 2−

5+2α
β ≤ 1, (3.2)

2−
3+3α

β + 2−
2+2α

β ≤ 1, (3.3)

2−
3
β + 2−

4+α
β ≤ 1, (3.4)

and let f ∈ Bn be an (n, k, s)-quadratic disperser. Then

C(f) ≥ min {βn− β log2 s− β, 2k} − αn .

As noted in Section 3.4, this theorem implies a lower bound 3.11n

for (n, 1.83n, 2o(n))-quadratic dispersers, and a lower bound 3.006n for

(n, 1.78n, 20.03n)-quadratic dispersers.

86

In the next lemma, we use the following circuit complexity measure: µ(C) =

G(C)+α·I(C) where 0 < α ≤ 1 is a constant to be determined later. Theorem 3

follows from this lemma with S = Fn
2 , which is an (n, 0)-quadratic variety.

Lemma 8. Let f ∈ Bn be an (n, k, s)-quadratic disperser, S ⊆ Fn
2 be an (n, t)-

quadratic variety, 0 < α ≤ 1, 0 < β be constants satisfying inequalities (3.1),

(3.2), (3.3), (3.4), C be an xor-layered circuit that computes f on S. Then

µ(C) ≥ min {β(log2 |S| − log2 s− 1), 2(k − t)} .

Proof. The proof goes by induction on |S|. The base case |S| ≤ 2s holds triv-

ially. For the induction step, assume that |S| > 2s.

To prove the induction step we proceed as follows. If t ≥ k then the right-

hand side is non-positive, so assume that t < k. Assume that C is optimal with

respect to µ (that is, C has the minimal value of µ among all circuits computing

f on S). We find a gate G in C that computes a polynomial g of degree at most

2 and consider two (n, t + 1)-quadratic varieties of S: S0 = {x ∈ S : g(x) = 0}

and S1 = {x ∈ S : g(x) = 1}. Let |S0| = p0|S| and |S1| = p1|S| where

0 < p0, p1 < 1 and p0 + p1 = 1 (note that pi = 0 or pi = 1 would mean

that G computes a constant on S contradicting the fact that C is optimal). By

eliminating from the circuit C all the gates that are either constant or depend

on just one of its inputs on Si, one gets a circuit Ci that computes f on Si. As-

sume that µ(C)− µ(Ci) ≥ ∆i. Then, by the induction hypothesis,

µ(C) ≥ µ(Ci) + ∆i ≥

87

min {β(log2 |Si| − log2 s− 1), 2(k − (t+ 1))}+∆i =

min {β (log2 |S| − log2 s− 1) + (∆i + β log2 pi) , 2(k − t) + (∆i − 2)} .

Hence, if ∆i ≥ −β log2 pi and ∆i ≥ 2 for either i = 0 or i = 1 then the required

inequality follows by the induction hypothesis. The inequality ∆i ≥ −β log2 pi is

true whenever pi ≥ 2−
∆i
β . Since we want this inequality to hold for at least one

of i = 0 and i = 1 and since p0 + p1 = 1 we conclude that for the induction step

to go through it suffices to have

2−
∆0
β + 2−

∆1
β ≤ 1 and ∆0,∆1 ≥ 2 . (5.3)

By going through a few cases we show that we can always find a gate G such

that the corresponding ∆0 and ∆1 satisfy the inequalities (5.3). For this, we use

the inequalities (3.1)–(3.4),(5.1)–(5.2).

We start by showing that the circuit C must be non-empty. Indeed, if C is

empty then it computes a linear function l. Hence f is constant on both S0 =

{x ∈ S : l(x) = 0} and S1 = {x ∈ S : l(x) = 1}. However max{|S0|, |S1|} ≥

|S|/2 > s which contradicts the fact that f is an (n, k, s)-quadratic disperser.

Let A be an and-gate with the maximal number of and-gates on a path from

A to the output of C. That is, for each and-gate we consider all directed paths

from this gate to the output gate and select a path with the maximal number of

and-gates on it; then we choose an and-gate for which this number is maximal

over all and-gates. Since C is an xor-layered circuit, we may assume that A is

a top-gate, that is, it is fed by inputs. Denote by x and y the input gates that

88

feed A.

Case 1. outdeg(x) = outdeg(y) = 1.

Case 1.1. outdeg(A) = 1 and A feeds an and-gate B.

Let C be the other input of B (it might be an input as well as a non-

input gate).

Case 1.1.1. outdeg(C) = 1.
x y

∧A

∧B
C

We make A constant. Then the gate B is eliminated. More-

over, either A = 0 or A = 1 trivializes the gate B so all

its successors and the gate C are also eliminated (since C is

only used to compute B, but B now computes a constant). In

both cases x and y are not needed anymore (as the only gate A

that was fed by both these inputs is now constant). So, we get

{∆0,∆1} = {2 + 2α, 3 + 3α}. (Or {2 + 2α, 4 + 2α}, but it is even

better as α ≤ 1, which we use in the rest of the analysis with-

out further mentioning it.) The required inequalities (5.3) follows

from (3.3).

Case 1.1.2. outdeg(C) ≥ 2.
x y

∧A

∧B
C

89

Because of the choice of A, the gate C computes a polynomial of

degree at most 2. We make C constant. In both cases we elimi-

nate two successors of C and C itself. This reduces the measure

by at least 2+α. In one of the cases B is trivialized which causes

the removal of the successors of B, the gate A, and inputs x and

y. Hence we get {∆0,∆1} = {2 + α, 4 + 3α} in this case. These

∆0,∆1 satisfy the inequalities (5.3) because of (3.1).

Case 1.2. outdeg(A) = 1 and A feeds an xor-gate B.
x y

∧A

⊕B

Since A was chosen as an and-gate with the maximal number of and-

gates to the output, the other input of B computes a polynomial of

degree at most 2. Hence B itself computes a polynomial of degree at

most 2. We make B constant. This eliminates B and its successors.

The gate A and its inputs x and y are also not needed. Hence ∆0 =

∆1 = 3 + 2α. The inequalities (5.3) are satisfied due to (5.2).

Case 1.3. outdeg(A) ≥ 2.
x y

∧A

Just by making the gate A constant we get ∆0 = ∆1 = 3 + 2α since

A and all its successors (at least two gates) are eliminated. Similarly

to the previous case, the inequality (5.2) imply that (5.3) holds.

90

Case 2. Outdegree of either x or y is at least 2. Say, outdeg(x) ≥ 2.

Case 2.1. outdeg(A) = 1 and A feeds an and-gate B.

We make A constant. Assume that A computes (x ⊕ c1)(y ⊕ c2) ⊕ c.

Then A can only be equal to c⊕ 1 if x = c1 ⊕ 1 and y = c2 ⊕ 1. That

is, when A is equal to c ⊕ 1 not only its successor is eliminated but

also all successors of x and y. In both cases the gate B is eliminated,

but in one of them it is trivialized and so all its successors are also

eliminated.

Denote by C another gate fed by x. Note that B ̸= C (otherwise the

circuit would not be optimal).

Case 2.1.1. outdeg(y) = 1.
x y

∧AC

∧B

Case 2.1.1.1. B is trivialized when A = c.

If A = c we eliminate A, B, the successors of B, and y. If

A = c⊕ 1 we eliminate A, B, C, x, and y. Hence {∆0,∆1} =

{3 + α, 3 + 2α}. The inequality (5.2) guarantees that (5.3)

holds.

Case 2.1.1.2. B is trivialized when A = c⊕ 1.

If A = c we eliminate A, B, and y. If A = c ⊕ 1 we eliminate

A, B, C, the successors of B, x, and y (if C happens to be

the only successor of B then it becomes constant and all its

91

successors are eliminated). Hence {∆0,∆1} = {2+α, 4+ 2α}.

The inequalities (5.3) are satisfied because of (3.1).

Case 2.1.2. outdeg(y) ≥ 2.

Denote by D another successor of y. Note that D might be equal

to C, but D ̸= B.
x y

∧AC D

∧B

Case 2.1.2.1. B is trivialized when A = c.

If A = c we eliminate A, B, and the successors of B. If

A = c ⊕ 1 we eliminate A, B, C, D, x, and y. If C = D then

this gate becomes constant so all its successors are also elim-

inated. Hence {∆0,∆1} = {3, 4 + 2α}. The inequalities (5.3)

are satisfied because (3.4).

Case 2.1.2.2. B is trivialized when A = c⊕ 1.

If A = c we eliminate A and B. If A = c ⊕ 1 we eliminate A,

B, C, D, the successors of B, x, and y. In this case we need

to take additional care to show that we eliminate five gates

even if some of the mentioned five gates coincide. If C ̸=

D and, say, C is a successor of B then C becomes constant

so all its successors are eliminated too. If C = D then C

becomes constant so all its successors are eliminated. Hence

{∆0,∆1} = {2, 5 + 2α}. The inequality (3.2) ensures (5.3).

Case 2.2. outdeg(A) = 1 and A feeds an xor-gate B.

92

Case 2.2.1. outdeg(B) = 1 and B feeds an xor-gate C.
x y

∧A

⊕B

⊕C

Because of the choice of A, we know that the gate C computes

a quadratic polynomial. We make C constant. In both cases we

eliminate A,B,C, and the successors of C. Hence ∆0 = ∆1 = 4.

The inequalities (5.3) are satisfied because of (5.1).

Case 2.2.2. outdeg(B) = 1 and B feeds an and-gate C.

Let D be the other input of C. Note that if D = A then the

circuit is not optimal (C depends on A and the other input of B

so one can compute C directly without using B).

Case 2.2.2.1. outdeg(D) = 1.
x y

∧A

⊕B

∧C
D

We make B constant. In both cases we eliminate A, B,

and C. Moreover, when B is the constant trivializing C

we eliminate also D and the successors of C. The gate D

contributes (to the complexity decrease) α ≤ 1 if it is

an input gate and 1 if it is not an input. Hence we have

{∆0,∆1} = {3, 4 + α}. The inequality (3.4) guarantees

that (5.3) is satisfied.

93

Case 2.2.2.2. outdeg(D) ≥ 2.
x y

∧A

⊕B

∧C
D

We make D constant (we are allowed to do so because it

computes a polynomial of degree at most 2). In both cases

we eliminate D and its successors and reduce the measure by

at least 2 + α (as D might be an input). In the case when

C becomes constant we eliminate also the successors of C as

well as A and B. Thus, {∆0,∆1} = {2 + α, 5 + α} (to en-

sure that all the five gates eliminated in the second case are

different one notes that if D feeds B or a successor of C then

the circuit is not optimal). The inequalities (5.3) are satisfied

because (3.1) and α ≤ 1.

Case 2.2.3. outdeg(B) ≥ 2.
x y

∧A

⊕B

The gate B computes a polynomial of degree at most 2. By

making it constant we eliminate B, its successors, and A, so

∆0 = ∆1 = 4. The inequalities (5.3) are satisfied because

of (5.1).

Case 2.3. outdeg(A) ≥ 2.

94

x y

∧A

We make A constant. In both cases A and its successors are elimi-

nated. When x and y become constant too (recall that if A computes

(x ⊕ c1)(y ⊕ c2) ⊕ c then A = c ⊕ 1 implies that x = c1 ⊕ 1 and

y = c2 ⊕ 1) at least one other successor of x is also eliminated. Thus,

{∆0,∆1} = {3, 4 + 2α}. The inequality (3.4) implies that (5.3) is

satisfied.

95

6
Circuit SAT Algorithms

6.1 Overview

The most efficient known algorithms for the #SAT problem on binary Boolean

circuits use similar case analyses to the ones in gate elimination. Chen and

Kabanets20 recently showed that the known case analyses can also be used to

prove average case circuit lower bounds, that is, lower bounds on the size of ap-

proximations of an explicit function.

In this chapter, we provide a general framework for proving worst/average

case lower bounds for circuits and upper bounds for #SAT that is built on ideas

96

of Chen and Kabanets. A proof in such a framework goes as follows. One starts

by fixing three parameters: a class of circuits, a circuit complexity measure, and

a set of allowed substitutions. The main ingredient of a proof goes as follows:

by going through a number of cases, one shows that for any circuit from the

given class, one can find an allowed substitution such that the given measure

of the circuit reduces by a sufficient amount. This case analysis immediately

implies an upper bound for #SAT. To obtain worst/average case circuit com-

plexity lower bounds one needs to present an explicit construction of a function

that is a disperser/extractor for the class of sources defined by the set of sub-

stitutions under consideration. Then the worst-case circuit lower bound can be

obtained by gate elimination, and the average-case circuit lower bound follows

from Azuma-type inequalities for supermartingales.

We show that many known proofs (of circuit size lower bounds and upper

bounds for #SAT) fall into this framework. Using this framework, we prove the

following new bounds: average case lower bounds of 3.24n and 2.59n for circuits

over U2 and B2, respectively (though the lower bound for the basis B2 is given

for a quadratic disperser whose explicit construction is not currently known),

and faster than 2n #SAT-algorithms for circuits over U2 and B2 of size at most

3.24n and 2.99n, respectively. Recall that by B2 we mean the set of all bivariate

Boolean functions, and by U2 the set of all bivariate Boolean functions except

for parity and its complement.

97

6.1.1 New results

The main qualitative contribution of this chapter is a general framework for

proving circuit worst/average case lower bounds and #SAT upper bounds.

This framework is separated into conceptual and technical parts. The concep-

tual part is a proof that for a given circuit complexity measure and a set of

allowed substitutions, for any circuit, there is a substitution that reduces the

complexity of the circuit by a sufficient amount. This is usually shown by ana-

lyzing the structure of the top of a circuit. The technical part is a set of lemmas

that allows us to derive worst/average case circuit size lower bounds and #SAT

upper bounds as one-line corollaries from the corresponding conceptual part.

The technical part can be used in a black-box way: given a proof that reduces

the complexity measure of a circuit (conceptual part), the technical part im-

plies circuit lower bounds and #SAT upper bounds. For example, by plugging

in the proofs by Schnorr and by Demenkov and Kulikov, one immediately gets

the bounds given by Chen and Kabanets. We also give new proofs that lead to

the quantitatively better results.

The main quantitative contribution of this chapter is the following new

bounds which are currently the strongest known bounds:

• average case lower bounds of 3.24n and 2.59n for circuits over U2 and B2

(though the lower bound for the basis B2 is given for a quadratic disperser

whose explicit construction is not currently known), respectively, improv-

ing upon the bounds of 2.99n and 2.49n20;

98

• faster than 2n #SAT-algorithms for circuits over U2 and B2 of size at

most 3.24n and 2.99n, respectively, improving upon the bounds of 2.99n

and 2.49n20.

6.1.2 Framework

We prove circuit lower bounds (both in the worst case and in the average case)

and upper bounds for #SAT using the following four step framework.

Initial setting We start by specifying the three main parameters: a class of

circuits C, a set S of allowed substitutions, and a circuit complexity mea-

sure µ. A set of allowed substitutions naturally defines a class of “sources”.

For the circuit lower bounds we consider functions that are non-constant

(dispersers) or close to uniform (extractors) on corresponding sets of

sources. In this chapter we focus on the following four sets of substitutions

where each set extends the previous one:

1. Bit fixing substitutions, {xi ← c}: substitute variables by constants.

2. Projections, {xi ← c, xi ← xj ⊕ c}: substitute variables by constants

and other variables and their negations.

3. Affine substitutions, {xi ←
⊕

j∈J xj ⊕ c}: substitute variables by

affine functions of other variables.

4. Quadratic substitutions, {xi ← p : deg(p) ≤ 2}: substitute variables

by degree two polynomials of other variables.

99

Case analysis We then prove the main technical result stating that for any

circuit from the class C there exists (and can be constructed efficiently) an

allowed substitution xi ← f ∈ S such that the measure µ is reduced by a

sufficient amount under both substitutions xi ← f and xi ← f ⊕ 1.

#SAT upper bounds As an immediate consequence, we obtain an upper

bound on the running time of an algorithm solving #SAT for circuits

from C. The corresponding algorithm takes as input a circuit, branches

into two cases xi ← f and xi ← f ⊕ 1, and proceeds recursively. When

applying a substitution xi ← f ⊕ c, it replaces all occurrences of xi by a

subcircuit computing f ⊕ c. The case analysis provides an upper bound on

the size of the resulting recursion tree.

Circuit size lower bounds Then, by taking a function that survives under

sufficiently many allowed substitutions, we obtain lower bounds on the

average case and worst case circuit complexity of the function. Below, we

describe such functions, i.e., dispersers and extractors for the classes of

sources under consideration.

1. The class of bit fixing substitutions generates the class of bit-fixing

sources25. Extractors for bit-fixing sources find many applications in

cryptography (see33 for an excellent survey of the topic). The stan-

dard function that is a good disperser and extractor for such sources

is the parity function x1 ⊕ · · · ⊕ xn.

2. Projections define the class of projection sources82. Dispersers for

100

projections are used to prove lower bounds for depth-three circuits82.

It is shown82 that a binary BCH code with appropriate parameters is

a disperser for n− o(n) substitutions. See84 for an example of extrac-

tor with good parameters for projection sources.

3. Affine substitutions give rise to the class of affine sources. There are

several known constructions of dispersers12,98 and extractors117,67,11,68

that are resistant to n− o(n) substitutions.

4. The class of quadratic substitutions generates a special case of poly-

nomial sources35,11 and quadratic varieties sources34. Although an

explicit construction of a function resistant to sufficiently many

quadratic substitutions* is not currently known, it is easy to show

that a random function is resistant to any n − o(n) quadratic substi-

tutions.

6.2 Preliminaries

Following the approach from20, we use a variant of Azuma’s inequality with

one-sided boundedness condition in order to obtain average case lower bounds.

The standard version of Azuma’s inequality requires the difference between two

consecutive variables to be bounded, and20 considers the case when the differ-

ence takes on only two values but is bounded only from one side. For our re-

sults, we need a slightly more general variant of the inequality: the difference
*We note that a disperser for quadratic substitutions is a weaker object than a quadratic

disperser defined in Section 5, and thus might be easier to construct.

101

between two consecutive variables takes on up to k values and is bounded from

one side. We give a proof of this inequality, which is an adjustment of proofs

from71,3,20.

A sequence X0, . . . , Xm of random variables is a supermartingale if for every

0 ≤ i < m, E[Xi+1|Xi, . . . , X0] ≤ Xi.

Lemma 9. Let X0, . . . , Xm be a supermartingale, let Yi = Xi − Xi−1. If Yi ≤

c and for fixed values of (X0, . . . , Xi−1), the random variable Yi is distributed

uniformly over at most k ≥ 2 (not necessarily distinct) values, then for every

λ ≥ 0:

Pr[Xm −X0 ≥ λ] ≤ exp

(
−λ2

2mc2(k − 1)2

)
.

Note that we have an extra factor of (k − 1)2 comparing to the usual form

of Azuma’s inequality, but we do not assume that Xi − Xi−1 is bounded from

below.

Proof. For any t > 0,

Pr [Xm −X0 ≥ λ] = Pr

[
m∑
i=1

Yi ≥ λ

]
= Pr

[
exp

(
t ·

m∑
i=1

Yi

)
≥ eλt

]

≤ e−λt · E

[
exp

(
t ·

m∑
i=1

Yi

)]
.

First we show that for any t > 0, E[etYi] ≤ exp (t2c2(k − 1)2/2). Since

{Xi} is a supermartingale, E[Yi|Xi−1, . . . , X0] ≤ 0. W.l.o.g., assume that

E[Yi|Xi−1, . . . , X0] = 0, otherwise we can increase the values of negative Yi’s

which only increases the objective function E[etYi]. Note that E[Yi] = 0, Yi ≤ c

102

and Y being uniform over k values imply that |Yi| ≤ c(k − 1). Let

h(y) =
etc(k−1) + e−tc(k−1)

2
+

etc(k−1) − e−tc(k−1)

2
· y

c(k − 1)

be the line going through points
(
−c(k − 1), e−tc(k−1)

)
and

(
c(k − 1), etc(k−1))

)
.

From convexity of etY , etY ≤ h(y) for |y| ≤ c(k − 1). Thus,

E[etYi] ≤ E[h(Yi)] = h (E[Yi]) = h(0) = cosh(tc(k − 1)) ≤ exp
(
t2c2(k − 1)2/2

)
,

where the last inequality cosh(x) ≤ exp (x2/2) for x > 0 can be proven by

comparing the Taylor series of the two functions.

Now,

E

[
exp

(
t ·

m∑
i=1

Yi

)]
= E

[
exp

(
t ·

m−1∑
i=1

Yi

)
· E [exp (t · Ym) |Xm−1, . . . , X0]

]
≤

E

[
exp

(
t ·

m−1∑
i=1

Yi

)]
· exp

(
t2c2(k − 1)2/2

)
≤ exp

(
mt2c2(k − 1)2/2

)
,

which for t = λ/mc2(k − 1)2 implies Pr[Xm −X0 ≥ λ] ≤ exp
(

−λ2

2mc2(k−1)2

)
.

6.3 Main theorem

In this section we prove the main technical theorem that allows us to get circuit

complexity lower bounds and #SAT upper bounds.

Definition 8. Let {v1, . . . , vm} be splitting vectors, and each vi is a splitting

vector of length 2ti ≥ 2. For a class of circuits Ω (e.g., Ω = B2 or Ω = U2), a set

103

of substitutions S, and a circuit complexity measure µ, we write

Splitting(Ω,S, µ) ⪯ {v1, . . . , vm}

as a shortcut for the following statement: For any normalized circuit C from the

class Ω one can find in time poly(|C|) either a substitution† from S whose split-

ting vector with respect to µ belongs to the set {v1, . . . , vm} or a substitution

that trivializes the output gate of C. A substitution always trivializes at least

one gate (in particular, when we assign a constant to a variable we trivialize an

input gate) and eliminates at least one variable.

Theorem 6. If Splitting(Ω,S, µ) ⪯ {v1, . . . , vm} and the longest splitting vector

has length 2k, then‡

1. There exists an algorithm solving #SAT for circuits over Ω in time

O∗(γµ(C)), where

γ = max
i∈[m]
{τ(vi)} .

2. If f ∈ Bn is an (S, n, r)-disperser, then

µ(f) ≥ βw · (r − k + 1) , where βw = min
i∈[m]
{vimax} .

†Here we assume that the circuit obtained from C by the substitution and normalization
belongs to Ω too.

‡See Section 2.4 for the definitions of vmax, vmin, and vavg.

104

3. If f ∈ Bn is an (S, n, r, ϵ)-extractor, then for every µ < βa · r,

µ (f, δ) ≥ µ, where βa = min
i∈[m]

{
viavg

}
and βm = min

i∈[m]
{vimin} ,

δ = ϵ+ exp

(
−(r · βa − µ)2

2r(βa − βm)2(2k − 1)2

)
.

Proof. We present a proof for a special case when all splitting vectors have

length 2 (i.e., k = 1): {v1, . . . , vm} = {(a1, b1), . . . , (am, bm)}. This makes the

exposition simpler, and it is easy to see that the general statement follows by

the same argument. In this case,

βw = min
i∈[m]
{max{ai, bi}}, βa = min

i∈[m]

{
ai + bi

2

}
, βm = min

i∈[m]
{min{ai, bi}}.

1. Consider the following branching algorithm for #SAT. We describe the al-

gorithm as a branching tree, each node of which contains a Boolean circuit

and a set of currently made substitutions. The root of the tree is (C, ∅) —

the input circuit and an empty set of substitutions. The nodes where the

circuit is trivialized are called leaves. At each internal node (a node that

is not a leaf) the algorithm finds in polynomial time substitutions xi ← f

and xi ← f ⊕ 1 guaranteed by the theorem statement. Then the algo-

rithm recursively calls itself on two circuits obtained from the current one

by substituting xi ← f and xi ← f ⊕ 1. That is, the algorithm adds

to the current node (C, S) two children (C|xi ← f, S ∪ {xi ← f}) and

(C|xi ← f ⊕ 1, S ∪{xi ← f ⊕ 1}). Note that the statement guarantees that

105

the substitutions xi ← f and xi ← f ⊕ 1 either give us an (ai, bi)-splitting

for some i (i.e., decrease the measure µ by at least ai in one branch, and bi

in the other one), or trivialize the circuit and produce two leaves.

At each leaf the algorithm counts the number V of satisfying assignments:

If the formula is constant zero, then V = 0, otherwise, V = 2v, where v

is the number of variables in the current formula. Indeed, for each assign-

ment to the v variables, there exists a unique assignment to the rest of the

variables (via the substitutions at the leaf), and the circuit remains con-

stant 1. Since substitutions xi ← f and xi ← f ⊕ 1 lead to different assign-

ments to the input variables, the leaves of the branching tree correspond

to disjoint sets of assignments. Therefore, the total number of satisfying

assignments of the original circuit is the sum of the number of satisfying

assignments at the leaves of the tree. Since the running time of the algo-

rithm at each node is polynomial, the total running time is bounded from

above by O∗
(
γµ(C)

)
, where γ = max

i∈[m]
{τ(ai, bi)}.

2. For every pair of integers (n, r) such that n ≥ r ≥ 0, let Fn,r ⊆ Bn denote

the class of functions from {0, 1}n to {0, 1} that are not constant after any

r substitutions from S. We show that for every f ∈ Fn,r, µ(f) ≥ βw · (r −

k + 1).

The proof of the claim proceeds by induction on r. For r < k the state-

ment is trivial. Now assume that r ≥ k. Consider substitutions xi ← f

and xi ← f ⊕ 1 guaranteed by the lemma statement. Now select a value

of c ∈ {0, 1} in such a way that the substitution xi ← f ⊕ c reduces the

106

measure by at least βw. Consider the function g of n− 1 variables which is

f restricted to xi ← f ⊕ c. By the theorem statement, µ(f) ≥ βw + µ(g),

and by the induction hypothesis, µ(g) ≥ βw · (r − 1 − k + 1). Therefore,

µ(f) ≥ βw · (r − k + 1).

3. Let us consider a circuit C such that µ(C) ≤ βa ·r. Consider the branching

tree from the 1st part of the proof. At each node of the branching tree

let us uniformly at random choose a child we proceed to. Let δi be the

random variable that equals to the measure decrease at ith step (ith level

of the branching tree, where 0 corresponds to the root). For i ≥ 0, define

the random variable

Xi = (i+ 1) · βa −
i∑

j=0

δj.

Let us show that the variable Xi is a supermartingale:

E[Xi|Xi−1, . . . , X0] = i · βa −
i−1∑
j=0

δj + (βa − E[δi|Xi−1, . . . , X0])

= Xi−1 + (βa − E[δi]) ≤ Xi−1.

Let Yi = Xi − Xi−1. Then Yi is distributed uniformly over at most 2k

values, and Yi ≤ βa − βm. Now let λ = βa · r − µ(C). Then, by Lemma 9:

Pr[Xr −X0 ≥ λ] ≤ exp

(
−λ2

2r(βa − βm)2(2k − 1)2

)
.

Now we want to bound from above the correlation between f and the

function given by the branching tree. Note that all leaves of the tree that

107

have depth smaller than r altogether give correlation at most ϵ with the

extractor f (since each of these leaves defines an (S, n, r) source). Now let

us count the number of leaves at the depth at least r. There are at most

2r possible leaves, but each of them survives till the rth level only with

probability Pr[Xr−X0 ≥ λ]. Indeed, if Xr−X0 < λ, then
∑r

j=1 δj > µ(C),

which means that the function becomes constant before the rth level.

Therefore, there are at most 2r · Pr[Xr − X0 ≥ λ] leaves at the depth

at least r. Since each leaf at the depth r has r inputs fixed, it covers at

most 2n−r points of the Boolean cube. Therefore, the total correlation is

bounded from above by:

Cor(f, C) ≤ ϵ+ exp

(
−λ2

2r(βa − βm)2(2k − 1)2

)
= ϵ+ exp

(
−(r · βa − µ(C))2

2r(βa − βm)2(2k − 1)2

)
.

6.4 Bounds for the basis U2

In this and the following sections, we give proofs of the known and new circuit

lower bounds and upper bounds for #SAT using the described framework. The

main ingredient of all proofs is the case analysis showing the existence of a sub-

stitution reducing the measure by a sufficient amount. Usually, in such proofs

we argue as follows: take a gate A and make a substitution trivializing A; this

eliminates A and all its successors. However it might be the case that A is the

108

output gate and so does not have any successors. This means that we are at the

end of the gate elimination process or at the leaf of a recursion tree. This, in

turn, means that we do not need to estimate the current measure decrease. For

this reason, in all the proofs below we assume implicitly that if we trivialize a

gate then it is not the output gate.

6.4.1 Bit fixing substitutions

We start with a well-known case analysis of a 3n − 3 lower bound for the par-

ity function over U2 due to Schnorr95. Using this case analysis we reprove the

bounds given recently by Chen and Kabanets20 in our framework. The analy-

sis is basically the same, although the measure is slightly different. We provide

these results mostly as a simple illustration of usage of the framework.

Lemma 10. Splitting(U2, {xi ← c}, s+ αi) ⪯ {(α, 2α), (3 + α, 3 + α), (2 + α, 4 +

α)} .

Proof. Let A be a top-gate (that is, a gate fed by two inputs) computing

(xi ⊕ a)(xj ⊕ b) ⊕ c where xi, xj are input variables and a, b, c ∈ {0, 1} are

constants. If out(xi) = out(xj) = 1 we split on xi. When xi ← a the gate A triv-

ializes and the resulting circuit becomes independent of xj. This gives (α, 2α).

Assume now that out(xi) ≥ 2. Denote by B the other successor of xi and let

C,D be successors of A,B, respectively. Note that B ̸= C since the circuit is

normalized but it might be the case that C = D. We then split on xi. Both

A and B trivialize in at least one of the branches and their successors are also

eliminated. This gives us either (3+α, 3+α) or (2+α, 4+α). (Note if A and B

109

trivialize in the same branch and C = D then we counted C twice in the anal-

ysis above. However in this case C also trivializes so all its successors are also

eliminated.)

Corollary 4. 1. For any ϵ > 0 there exists δ = δ(ϵ) > 0 such that #SAT for

circuits over U2 of size at most (3− ϵ)n can be solved in time (2− δ)n.

2. CU2(x1 ⊕ · · · ⊕ xn ⊕ c) ≥ 3n− 6 .§

3. CU2

(
x1 ⊕ · · · ⊕ xn ⊕ c, exp

(
−(t−9)2
18(n−1)

))
≥ 3n−t . This, in particular, implies

that Cor(x1 ⊕ · · · ⊕ xn ⊕ c, C) is negligible for any circuit C of size 3n −

ω(
√
n log n).

Proof. 1. First note that for large enough α, we have τ(α, 2α) < τ(3 + α, 3 +

α) = 2
1

3+α < τ(2+α, 4+α). Let γ(α) = τ(2+α, 4+α)−2
1

3+α . By Lemma 3,

γ(α) = O(1/α3) holds. The running time of the algorithm is at most

(τ(2 + α, 4 + α))s+αn ≤
(
2

1
3+α (1 + γ(α))

)s+αn ≤ 2
s+αn
3+α 2(s+αn)γ(α) log2 e

≤ 2
(3−ϵ)n+αn

3+α
+O(n/α2) ≤ (2− δ)n

for some δ > 0 if we set α = c/ϵ for large enough c > 0.

2. The parity function takes a uniform random value after any n − 1 substi-

tutions of variables to constants. Lemma 10 guarantees that for α = 3 we

can always assign a constant to a variable so that s + 3i is reduced by at
§(We include this item only for completeness. In fact, a simple case analysis shows that

CU2
(x1 ⊕ · · · ⊕ xn) = 3n− 3.

110

least 6. Hence for any circuit C over U2 computing parity, s(C) + 3n ≥

6(n− 1) implying s(C) ≥ 3n− 6.

3. Let us consider a circuit C of size at most 3n−t, that is, µ(C) ≤ (3n−t)+

αn. Now we fix α = 6, then βa = min{9, 9, 9} = 9, βm = min{6, 9, 8} = 6.

We use the third item of Theorem 6 with k = 1, r = n − 1, ϵ = 0, µ =

(3n− t+ 6n), which gives us

δ = exp

(
−(9(n− 1)− (3n− t+ 6n))2

18(n− 1)

)
= exp

(
−(t− 9)2

18(n− 1)

)
.

6.4.2 Projection substitutions

In this subsection, we prove new bounds for the basis U2. The two main ideas

leading to improved bounds are using projections to handle the Case 3 below

and using 1-variables to get better estimates for complexity decrease (this trick

was used by Zwick118 and then by65,53).

Lemma 11. For 0 ≤ σ ≤ 1/2,

Splitting(U2, {xi ← c, xi ← xj ⊕ c}, s+ αi− σi1) ⪯

{(α, 2α), (2α, 2α, 2α, 3α), (3 + α + σ, 3 + α), (4 + α + σ, 2 + α)} .

Proof. Note that for every eliminated gate we decrease the measure by at least

1 − σ ≥ 1/2, if some gate becomes constant we decrease the measure by at least

111

1.

xi

1+
xj

1

A

xi

3+

A B C

xi

2
xj

2

A B

Case 1 Case 2 Case 3

Case 1. There is a top gate A fed by 1-variable xj. Assigning xi a constant we

trivialize the gate A in one of the branches and lose the dependence on xj.

Thus, we get at least (α, 2α) splitting.

Case 2. There is a variable xi of degree at least 3. Neither of A, B, C is fed

by a 1-variable otherwise we would be in the Case 1. When we assign xi

a constant, gates A, B, and C become constant in one of the branches.

Hence in one of the branches we eliminate also at least one extra gate.

Thus, we get at least (4 + α − σ, 3 + α) splitting vector which dominates

(3 + α + σ, 3 + α) (since σ ≤ 1/2).

Case 3. There are two 2-variables that feed the same two top gates. Let the

gates A and B compute Boolean functions fA(xi, xj) = (xi⊕aA)(xj⊕bA)⊕

cA and fB(xi, xj) = (xi ⊕ aB)(xj ⊕ bB) ⊕ cB respectively. If aA = aB or

bA = bB then we assign xi ← aA or xj ← bA respectively and make both

gates constant. Otherwise, fB(xi, xj) = (xi⊕aA⊕1)(xj⊕ bA⊕1)⊕ cB. It is

easy to see that if xi ⊕ aA ⊕ xj ⊕ bA = 1 then both functions are constant.

Hence, the substitution xi ← aA ⊕ xj ⊕ bA ⊕ 1 makes A and B constant

as well. In both cases there is a substitution that makes A and B constant

112

and therefore eliminates the dependence on xj, so we get at least (α, 2α)

splitting vector.

Case 4. There are three gates that are fed by two 2-variables.

xi

2
xj

2

xk

1
AB

C

xi

2
xj

2

xk

1
AB

C

xi

2
xj

2

xk

1
AB

C

D

Case 4.1 Case 4.2 Case 4.3

Case 4.1. Gate B is a 1-gate with a successor C that is a 2+-gate fed by

the 1-variable xk. If we assign constants to xj and xk we elimi-

nate the dependence on xi as well in one of the branches, so we get

(2α, 2α, 2α, 3α) splitting.

Case 4.2. Gate A is a 1-gate with a successor C that is a 2+-gate fed by 1-

variable xk. Analogous to the previous case if we assign constants to

xi and xj we eliminate the dependence on xk in one of the branches,

so we get again (2α, 2α, 2α, 3α) splitting.

Case 4.3. Gates A and B and its common successor C are 1-gates and the

only successor of C is a 2-gate fed by 1-variable xk. When we as-

sign constants to xk gate D becomes constant in one of the branches,

hence, gates A, B, C become unnecessary and we lose the depen-

dence on variable xi. So we have at least (α, 2α) splitting.

113

Case 4.4. None of three previous cases apply.

xi

2
xj

2

AB

Previous cases ruled out the possibility that A or B has the only suc-

cessor that contributes only 1 − σ to the measure decrease: we know

that each of A and B is either a 2+-gate and its successors contribute

at least 2(1 − σ) ≥ 1 or a 1-gate with a successor which is not a 2+-

gate fed by a 1-variable and it contributes at least 1. We also know,

that when A and B are 1-gates with a common successor, this succes-

sor is not a 2+-gate fed by a 1-variable, and hence it contributes at

least 1.

Therefore, if we assign xi a constant each of A and B becomes con-

stant in one of the branches, so the successors of A and B either

contribute at least 1 in both branches or contribute at least 2 in

one of the branches. In addition, xj becomes a 1-variable in the

branch where A trivializes. Thus, we get either (3 + α + σ, 3 + α)

or (4 + α + σ, 2 + α).

Corollary 5. 1. For any ϵ > 0 there exists δ = δ(ϵ) > 0 such that #SAT for

circuits over U2 of size at most (3.25− ϵ)n can be solved in time (2− δ)n.

114

2. Let f ∈ Bn be an
(
n, r(n) = n− logO(1)(n)

)
-projections disperser from68.

Then CU2(f) ≥ 3.5n− logO(1)(n).

3. Let f ∈ Bn be an
(
n, r(n) = n−

√
n, ϵ(n) = 2−n

Ω(1)
)

-projections extractor

from84. Then CU2(f, δ) ≥ 3.25n− t, where δ = 2−n
Ω(1)

+exp
(
−(t−10.25

√
n)2

190.125(n−
√
n)

)
.

This, in particular, implies that Cor(f, C) is negligible for any circuit C of

size 3.25n− ω(
√
n log n).

Proof. 1. Let σ = 1/2. First note that for large enough α, we have

τ(α, 2α) < τ(2α, 2α, 2α, 3α) < τ(3.25 + α, 3.25 + α) = 2
1

3.25+α

< τ(3.5 + α, 3 + α) < τ(4.5 + α, 2 + α).

Let γ(α) = τ(4.5+α, 2+α)− 2
1

3.25+α . By Lemma 3, γ(α) = O(1/α3) holds.

The running time of the algorithm is at most

(τ(4.5 + α, 2 + α))s+αn ≤
(
2

1
3.25+α (1 + γ(α))

)s+αn ≤ 2
s+αn
3.25+α2(s+αn)γ(α) log2 e

≤ 2
(3.25−ϵ)n+αn

3.25+α
+O(n/α2) ≤ (2− δ)n

for some δ > 0 if we set α = c/ϵ for large enough c > 0.

2. Lemma 11 guarantees that for α = 7, σ = 0.5 one can always make

an affine substitution reducing s + 7i by at least 10.5. The function f is

resistant to r(n) such substitutions. Hence for a circuit C computing f ,

s(C) + 7n ≥ 10.5r(n).

115

3. Let us consider a circuit C of size at most 3.25n − t, that is, µ(C) ≤

(3.25n − t) + αn. Now we fix α = 7, σ = 0.5, then βa =

min{10.5, 15.75, 10.25, 10.25} = 10.25, βm = min{7, 7, 10, 9} = 7.

We use the third item of Theorem 6 with k = 2, r = n −
√
n, ϵ = 2−n

Ω(1) ,

µ = (3.25n− t+ 7n), which gives us

δ = 2−n
Ω(1)

+ exp

(
−(10.25(n−

√
n)− (10.25n− t))2

2(n−
√
n) · 3.252 · 32

)
= 2−n

Ω(1)

+ exp

(
−(t− 10.25

√
n)2

190.125(n−
√
n)

)
.

6.5 Bounds for the basis B2

6.5.1 Affine substitutions

Here, we again start by reproving the bounds for B2 by Chen and Kabanets20

by using the case analysis due to Demenkov and Kulikov29.

Lemma 12. Splitting(B2, {xi ← ⊕j∈Jxj ⊕ c}, µ = s+ αi) ⪯ {(α, 2α), (2 + α, 3 +

α)} .

Proof. Fix any topological ordering of a given circuit C and let A be the first

gate in this ordering which is not a 1-xor (if there is no such gate then all the

gates in C are 1-xors hence C computes an affine function and we can trivialize

it with a single affine substitution). Note that the subcircuit underneath the

gate A is a tree of xors, that is, a subcircuit consisting of 1-xors only. Let P

116

and Q be inputs to A. Each of P and Q is computed by a tree of xors. Since

each gate in such a tree has outdegree 1, it is not used in any other part of the

circuit. Also, both P and Q might as well be input gates.
⊕ ⊕

⊕A

In any case, we can trivialize, say, P by an affine substitution. If P is an input

gate this can be done simply by assigning the corresponding variable a constant.

If P is an internal gate then it computes a sum
⊕

j∈J xj ⊕ c. To trivialize it,

we select any variable i ∈ J and make a substitution xi ←
⊕

j∈J\{i} xj ⊕ c′.

This clearly makes P constant. To remove xi from the circuit we replace the

whole tree for P by a new tree computing
⊕

j∈J\{i} xj ⊕ c′ (at this point, we

use essentially the fact that all the gates in the tree computing P were needed

to compute P only; hence when P is trivialized all these gates may be removed

safely). We then replace all occurrences of xi by this new tree. The new tree

has one gate less than the old one. So when P is an internal gate, by trivializing

it we eliminate a variable and the gate P itself.

Case 1. A is a 2+-xor. Then A itself is computed by a tree of 1-xors. Trivializ-

ing it gives (3 + α, 3 + α).

Case 2. A is an and-gate and one of its inputs (say, P) is an internal gate. We

trivialize P . In both branches we eliminate A and P , but in one of them

A is trivialized so we eliminate also its successors. This gives (2+α, 3+α).

Case 3. A is an and-gate fed by two variables xi and xj.

117

Case 3.1. The outdegree of one of them (say, xi) is at least 2. Then splitting

on xi gives (2 + α, 3 + α).

Case 3.2. out(xi) = out(xj) = 1. Then splitting on xi is (α, 2α).

Corollary 6. 1. For any ϵ > 0 there exists δ = δ(ϵ) > 0 such that #SAT for

circuits over B2 of size at most (2.5− ϵ)n can be solved in time (2− δ)n.

2. Let f ∈ Bn be an
(
n, r(n) = n− logO(1)(n)

)
-affine disperser from68. Then

CB2(f) ≥ 3n− logO(1)(n).

3. Let f ∈ Bn be an
(
n, r(n) = n−O(n/ log log n), ϵ(n) = 2−n

Ω(1)
)

-affine

extractor from67. Then CB2(f, δ) ≥ 2.5n − t, where δ = 2−n
Ω(1)

+

exp
(
−(t−O(n/ log logn))2

O(n)

)
. This, in particular, implies that Cor(f, C) is negli-

gible for any circuit C of size 2.5n− ω(n/ log log n).

Proof. 1. First note that for large enough α, we have

τ(α, 2α) < τ(2.5 + α, 2.5 + α) = 2
1

2.5+α < τ(2 + α, 3 + α).

Let γ(α) = τ(2 + α, 3 + α) − 2
1

2.5+α . By Lemma 3, γ(α) = O(1/α3) holds.

The running time of the algorithm is at most

(τ(2 + α, 3 + α))s+αn ≤
(
2

1
2.5+α (1 + γ(α))

)s+αn ≤ 2
s+αn
2.5+α2(s+αn)γ(α) log2 e

≤ 2
(2.5−ϵ)n+αn

2.5+α
+O(n/α2) ≤ (2− δ)n

118

for some δ > 0 if we set α = c/ϵ for large enough c > 0.

2. Lemma 12 guarantees that for α = 3 one can always make an affine sub-

stitution reducing s + 3i by at least 6. The function f is resistant to r(n)

such substitutions. Hence for a circuit C computing f , s(C) + 3n ≥ 6r(n).

3. Let us consider a circuit C of size at most 2.5n − t, that is, µ(C) ≤

(2.5n − t) + αn. Now we fix α = 5, then βa = min{7.5, 7.5} = 7.5, βm =

min{5, 7} = 5.

We use the third item of Theorem 6 with k = 1, r = r(n), ϵ = ϵ(n),

µ = (2.5n− t+ 5n), which gives us

δ = ϵ(n) + exp

(
−(7.5r(n)− (7.5n− t))2

12.5r(n)

)
= ϵ(n) + exp

(
−(t− 7.5(n− r(n)))2

12.5r(n)

)
.

6.5.2 Quadratic substitutions

Lemma 13. For 0 ≤ σ ≤ 1/5,

Splitting(B2, {xi ← p : deg(p) ≤ 2}, s+ αi− σi1) ⪯

{(α, 2α), (2α, 2α, 2α, 3α), (3 + α− 2σ, 3 + α− 2σ), (3 + α + σ, 2 + α)} .

Proof. Fix any topological order of a given circuit C and let A be the first

119

gate in this ordering which is not a 1-xor (if there is no such gate then all the

gates in C are 1-xors hence C computes an affine function and we can trivial-

ize it with a single affine substitution). Then each input of A is a tree of xors,

that is, a subcircuit consisting of 1-xors only. When we do an affine substitu-

tion to some variable that feed an xor-tree, we rebuild the tree and reduce the

number of gates in it by at least one (it is explained in details in the proof of

Lemma 12).

xi

1
xj

1+

∧A

xi

3+

B C D

⊕ ⊕

⊕A
2+

Case 1 Case 2 Case 3

(In all the pictures of this proof we show only the type of the gates but not the

actual functions computed at them.)

Case 1. A is a top and-gate fed by a 1-variable xi. Similarly to the Case 1 of

Lemma 11 we get (α, 2α).

Case 2. There is a variable xi of degree at least 3. Neither of B, C, D is an

and-gate fed by a 1-variable otherwise we would be in the Case 1. If,

say, B is an xor 2+-gate fed by the 1-variable xk we can trivialize it by

an affine substitution xi ← xk ⊕ c and eliminate two variables in both

branches, so we get (2α, 2α). Otherwise we assign xi a constant and elim-

inate three gates in every branch, all the gates contribute 1 to the mea-

sure decrease. Thus, we get at least (3 + α, 3 + α) which dominates

(3 + α− 2σ, 3 + α− 2σ).

120

Case 3. A is 2+-xor. Let A compute cA ⊕
⊕

i∈I xi and I ⊆ {1, . . . , n}, |I| ≥ 2.

If all xi, i ∈ I, are 1-variables then for any j ∈ I a substitution xj ← c ⊕⊕
i∈I\{j} xi eliminates the dependence on at least one 1-variable, so we get

(2α, 2α). Otherwise, there is at least one 2-variable xi, i ∈ I. Substituting

xi ← c ⊕
⊕

k∈I\{i} xk we eliminate three gates in both branches, so we get

at least (3 + α− 2σ, 3 + α− 2σ).

Case 4. A is an and-gate which is not a top gate.

⊕I ⊕ J

∧ A

Let I, J ⊂ {1, . . . , n} be the sets of indices of variables in the left and in

the right xor-trees respectively. W.l.o.g., we assume that |I| > 1, i.e. there

is at least one gate in the left xor-tree feeding A.

Case 4.1. There is a 1-variable xi in the left tree. An affine substitution

xj ← c ⊕
⊕

k∈J\{j} xk for some j ∈ J eliminates two variables in one

of the branches: the variable xi becomes unnecessary in the branch

where A becomes constant. The splitting is at least (α, 2α).

Case 4.2. There is at least one gate in the right tree, i.e. |J | ≥ 2. We apply

an affine substitution xi ← c ⊕
⊕

k∈I\{i} xk for some i ∈ I and elim-

inate four gates in one branch and two in the other one. This gives

(4 + α− σ, 2 + α) which dominates (3 + α + σ, 2 + α).

Case 4.3. The right tree consists of only one variable xj.

121

⊕I xj

1

∧ A

⊕I xj

2

∧ A B

Case 4.3.1 Case 4.3.2

Case 4.3.1. xj is a 1-variable. An affine substitution xi ← c ⊕
⊕

k∈I\{i} xk

for some i ∈ I eliminates xj in the branch where A becomes

constant, so we get at least (α, 2α).

Case 4.3.2. xj is a 2-variable. Assigning xj a constant we eliminate four

gates in one branch and two in the other one. Gate B does not

introduce new an 1-variable: if B is a 2+-gate fed by 1-variable

we would be either in the Case 1 or in the Case 3. The splitting

on xj gives at least (4 + α − σ, 2 + α) which dominates (3 + α +

σ, 2 + α).

Case 5. A is a top and-gate fed by 2-variables xi and xj.

Case 5.1. Variables xi and xj feed the same two gates.

xi xj

∧A ⊕B

xi xj

∧A ∧B

Case 5.1.1 Case 5.1.2

Case 5.1.1. B is an xor-gate. An affine substitution xi ← xj ⊕ c eliminates

the dependence on xj in the branch where A becomes constant,

so we get at least (α, 2α).

Case 5.1.2. B is an and-gate. Similarly to the Case 3 of the proof of

Lemma 11 we get (α, 2α).

122

Case 5.2. Variables xi and xj feed three gates: A, B, and C.

Note that in the following cases eliminating gates B and C we can

not kill a 1-variable, otherwise we would be either in the Case 1 of in

the Case 3.

Case 5.2.1. xi and xj feed two and-gates. W.l.o.g., B is an and-gate.
xi xj

∧A∧B C

Assigning a constant to xi we trivialize gates A and B in one of

the branches, so we eliminate either four gates in one branch and

two in the other one, or three gates in both branches. This gives

either (4+α− 2σ, 2+α) or (3+α−σ, 3+α−σ), which dominate

(3 + α + σ, 2 + α) and (3 + α− 2σ, 3 + α− 2σ) respectively.

Case 5.2.2. Both B and C are xor-gates.

xi xj

xk

1∧A⊕B ⊕C

∧D

xi xj

xk

1∧A

⊕D

⊕B ⊕C

xi xj

∧A

D

⊕B ⊕C

Case 5.2.2.1 Case 5.2.2.2 Case 5.2.2.3
Case 5.2.2.1. A is a 1-gate and its only successor D is an and-gate fed

by the 1-variable xk. Assigning constants to xi and xj we

eliminate also the dependence on xk in one of the branches.

We get at least (2α, 2α, 2α, 3α).

Case 5.2.2.2. A is a 1-gate and its only successor D is an xor-gate

123

fed by the 1-variable xk. Let gate A computes function

(xi ⊕ aA)(xj ⊕ bA) ⊕ cA. An affine substitution xk ←

(xi ⊕ aA)(xj ⊕ bA) ⊕ c makes D constant and eliminates

at least three gates in each branch; in addition xi and xj be-

come 1-variables. So, we get at least (3 + α + σ, 3 + α + σ)

which dominates (3 + α + σ, 2 + α). Note that xk only feeds

gate D which is now constant so we do not need to replace

xk by a subcircuit computing (xi ⊕ aA)(xj ⊕ bA)⊕ c.

Case 5.2.2.3. A is either a 2+-gate or a 1-gate with the only succes-

sor D which is not fed by a 1-variable. Assigning xi a con-

stant we eliminate three gates in one branch and two in the

other one, in addition xj becomes a 1-variable in the branch

where A becomes constant. Gate D does not introduce new

1-variables, otherwise we would be in one of the previous two

cases. Thus, we get (3 + α + σ, 2 + α).

Corollary 7. 1. For any ϵ > 0 there exists δ = δ(ϵ) > 0 such that #SAT for

circuits over B2 of size at most (2.6− ϵ)n can be solved in time (2− δ)n.

2. Let f ∈ Bn be an (n, r(n) = n− o(n))-quadratic disperser. Then CB2(f) ≥

3n− o(n).

3. Let f ∈ Bn be an
(
n, r(n) = n− o(n), ϵ(n) = 2−ω(logn)

)
-quadratic extrac-

tor. Then CB2(f, δ) ≥ 2.6n − t, where δ = 2−n
Ω(1)

+ exp
(
−(t−7.8(n−r(n)))2

121.68r(n)

)
.

124

This, in particular, implies that Cor(f, C) is negligible for any circuit C of

size 2.6n− g(n) for some g(n) = o(n).

Proof. 1. Let σ = 1/5. First note that for large enough α, we have

τ(α, 2α) < τ(2α, 2α, 2α, 3α) < τ(2.6 + α, 2.6 + α) = 2
1

2.6+α

< τ(3.5 + α, 3 + α) < τ(3.2 + α, 2 + α).

Let γ(α) = τ(3.2 + α, 2 + α)− 2
1

2.6+α . By Lemma 3, γ(α) = O(1/α3) holds.

The running time of the algorithm is at most

(τ(3.2 + α, 2 + α))s+αn ≤
(
2

1
2.6+α (1 + γ(α))

)s+αn ≤ 2
s+αn
2.6+α2(s+αn)γ(α) log2 e

≤ 2
(2.6−ϵ)n+αn

2.6+α
+O(n/α2) ≤ (2− δ)n

for some δ > 0 if we set α = c/ϵ for large enough c > 0.

2. Lemma 13 guarantees that for α = 6, σ = 0 one can always make an affine

substitution reducing s + 6i by at least 9. The function f is resistant to

r(n) such substitutions. Hence for a circuit C computing f , s(C) + 6n ≥

9r(n).

3. Let us consider a circuit C of size at most 2.6n− t, that is, µ(C) ≤ (2.6n−

t) + αn. Now we fix α = 5.2, σ = 0.2, then βa = min{7.8, 11.7, 7.8, 7.8} =

7.8, βm = min{5.2, 5.2, 7.8, 7.2} = 5.2.

We use the third item of Theorem 6 with k = 2, r = r(n), ϵ = ϵ(n),

125

µ = (2.6n− t+ 5.2n), which gives us

δ = ϵ(n) + exp
(
−(7.8r(n)−(7.8n−t))2

2r(n)·2.62·32

)
= ϵ(n) + exp

(
−(t−7.8(n−r(n)))2

121.68r(n)

)
.

Remark 1. Note that it is an open problem to find an explicit construction

of quadratic disperser or extractor over F2 with r = n − o(n). It is shown in

Section 5, that a disperser for a slightly more general definition of quadratic va-

rieties would also imply a new worst case lower bound.

Remark 2. Note that the upper bound for #SAT can be improved using the

following “forbidden trick”, that is, a simplification rule that reduces the size of

a circuit without changing the number of its satisfying assignments, but changes

the function computed by the circuit.

In the proof of Lemma 13 set σ = 0 (that is, do not account for 1-variables).

The set of splitting vectors then turn into

{(α, 2α), (2α, 2α, 2α, 3α), (3 + α, 3 + α), (3 + α, 2 + α)} .

By inspecting all the cases, we see that the splitting vector (3 + α, 2 + α) only

appears in the the Case 5.2.2. We can handle this case differently: split on xi.

When A is trivialized, xj becomes a 1-variable feeding an xor-gate. It is not

difficult to show that by replacing this gate with a new variable x′j one gets a

126

circuit with the same number of satisfying assignments.

xi xj

∧A⊕B ⊕C

G

D E
xi ← 0

xj

⊕C

G

D E
simplify

x′j

G

D E

This additional trick gives us the following set of splitting vectors:

{(α, 2α), (2α, 2α, 2α, 3α), (3 + α, 3 + α), (4 + α, 2 + α)} .

These splitting numbers give an algorithm solving #SAT in (2 − δ(ϵ))n for B2-

circuits of size at most (3− ϵ)n for ϵ > 0.

127

7
Limitations of Gate Elimination

7.1 Overview

It is tempting to conjecture that the gate elimination method cannot eliminate

many gates because it only changes the top part of a circuit. In general, this in-

tuition fails for the following reason. Consider a function f of the highest circuit

complexity C(f) ≥ 2n/n.100 Every substitution (e.g., the substitution x1 = 0)

turns f into a function of n− 1 variables. Since the circuit complexity of a func-

tion of n − 1 variables cannot exceed 2n−1/(n − 1) + o(2n−1/(n − 1)),70 this

substitution decreased the circuit complexity of b by almost a factor of two, i.e.,

128

it eliminated an exponential number of gates.

However, in this chapter we manage to make this intuition work for specially

designed functions that compose gadgets satisfying certain rather general prop-

erties with arbitrary base functions. We show that certain formalizations of the

gate elimination method cannot prove superlinear lower bounds. We prove that

one cannot reduce the complexity of the designed functions by more than a con-

stant using any constant number of substitutions of any type (that is, we al-

low to substitute variables by arbitrary functions). The complexity of a func-

tion may be counted as a complexity measure (i.e., a nonnegative function of a

circuit) varying from the number of gates to any subadditive function. For re-

cently popular measures that combine the number of gates with the number of

inputs we prove a stronger result: One cannot prove lower bounds beyond cn for

a certain specific constant c; this constant may depend on the number m of con-

secutive substitutions made in one step of the induction but does not depend on

the substitutions themselves, in all modern proofs m = 1 or 2.

It was shown in Chapter 6 that the gate elimination method can also be used

for proving average-case circuit lower bounds and upper bounds for Circuit

#SAT. The limitation result of this chapter also applies to this line of research,

implying that gate elimination cannot lead to strong improvements on the cur-

rently known results.

We summarize the known lower bound proofs in the table below (where the

class Qn
2,3 consists of functions that have at least three different subfunctions

with respect to any two variables).

129

Bound Class Measure Substitutions

2n95 Qn
2,3 G xi ← c

2.5n102 symmetric G xi ← c, {xi ← f, xj ← f ⊕ 1}

3n14 artificial G arbitrary: xi ← f

3n29 affine disp. G+ I linear: xi ←
⊕

j∈J xj ⊕ c

3.01n37 affine disp. G+ αI + · · · linear: xi ←
⊕

j∈J xj ⊕ c

3.1n41 quadratic disp. G+ αI quadratic: xi ← f , deg(f) ≤ 2

It is interesting to note that there is a trivial limitation for the first three

proofs in the table above: the corresponding classes of functions contain func-

tions of linear circuit complexity. The class Qn
2,3 contains the function THRn

2

(that outputs 1 if and only if the sum of n input bits is at least 2) of circuit

size 2n + o(n). The class of symmetric functions used by Stockmeyer contains

the function MODn
4 whose circuit size is at most 2.5n + Θ(1). The circuit size

of Blum’s function is upper bounded by 6n + o(n). At the same time it is not

known whether there are affine dispersers of sublinear dimension that can be

computed by linear size circuits.

7.2 Preliminaries

Let X = {x1, . . . , xn} be a set of Boolean variables. A substitution ρ of a set of

variables R ⊆ X is a set of |R| restrictions of the form

ri = fi(x1, . . . , xn),

130

one restriction for each variable ri ∈ R, where fi depends only on variables from

X \ R. The degree of a substitution is the maximum degree of fi’s represented

as Boolean polynomials. The size of a substitution is |R|. Substitutions of size

m are called m-substitutions.

Given an m-substitution ρ and a function f , one can naturally define a new

function f |ρ that has m fewer arguments than f .

A function f depends on a variable x if there is a substitution ρ of constants

to all other variables such that f |ρ(0) ̸= f |ρ(1).

A gate elimination argument uses a certain nonnegative complexity measure

µ, a family of substitutions S, a family of functions F , a function gain : N→ R,

and a certain predicate stop, and includes proofs of the following statements:

1. (Measure usefulness.) If µ(f) is large, then G(f) is large.

2. (Invariance.) For every f ∈ F and ρ ∈ S, either f |ρ ∈ F or stop(f |ρ).

3. (Induction step.) For every f ∈ F with I(f) = n, there is a substitution

ρ ∈ S such that µ(f |ρ) ≤ µ(f) − gain(n). (In known proofs, gain(n) is

constant.)

The family must contain functions f such that stop(f |ρ1,...,ρs) is not reached

for sufficiently many substitutions from S (for example, for s = 0.999 · I(f)

substitutions).

In what follows, we prove that every gate elimination argument fails to prove

a strong lower bound, for many functions of (virtually) arbitrarily large com-

plexity.

131

7.3 Introductory example

We start by providing an elementary construction of functions that are resistant

with respect to any constant number of arbitrary substitutions, i.e., such sub-

stitutions eliminate only a constant number of gates. In the next sections, we

generalize this construction to capture other complexity measures.

Consider a function f ∈ Bn and let f ⋄MAJ3 ∈ B3n be a function resulting

from f by replacing each of its input variables xi by the majority function of

three fresh variables xi1, xi2, xi3 (see Figure 7.1):

(f ⋄MAJ3)(x11, x12, . . . , xn3) = f(MAJ3(x11, x12, x13), . . . ,MAJ3(xn1, xn2, xn3)) .

Consider a circuit C of the smallest size computing f ⋄ MAJ3. We claim that

no substitution xij ← ρ, where ρ is any function of all the remaining variables,

can remove from C more than 5 gates: G(C) − G(C|xij←ρ) ≤ 5. We are going

to prove this by showing that one can attach a gadget of size 5 to the circuit

C|xij←ρ and obtain a circuit that computes f . This is explained in Fig. 7.2. For-

mally, assume, without loss of generality, that the substituted variable is x11.

We then take a circuit C ′ computing f |x11←ρ and use the value of a gadget com-

puting MAJ3(x11, x12, x13) instead of x12 and x13. This way we suppress the ef-

fect of the substitution x11 ← ρ, and the resulting circuit C ′′ computes the ini-

tial function f ⋄MAJ3. Since the majority of three bits can be computed in five

gates, we get:

132

f

x1 · · · xn

(a)
f

MAJ3

x11 x13

· · · MAJ3

xn1 xn3

(b)

Figure 7.1: (a) A circuit for f . (b) A circuit for f ⋄MAJ3.

MAJ3

x1 x2 x3

(a)

MAJ3

ρ

x2 x3

(b)

MAJ3

x1 x2 x3

MAJ3

ρ

(c)

Figure 7.2: (a) A circuit computing the majority of three bits x1, x2, x3. (b) A circuit resulting
from substitution x1 ← ρ. (c) By adding another gadget to a circuit with x1 substituted, we force
it to compute the majority of x1, x2, x3.

G(C) ≤ G(C ′′) ≤ G(C|x11←ρ) + 5 .

This trick can be extended from 1-substitution to m-substitutions in a natu-

ral way. For this, we use gadgets computing the majority of 2m + 1 bits instead

of just three bits. We can then suppress the effect of substituting any m vari-

ables by feeding the values to m + 1 of the remaining variables. Taking into

account the fact that the majority of 2m + 1 bits can be computed by a circuit

of size 4.5(2m+ 1)30, we get the following result.

Lemma 14. For any h ∈ Bn and any m > 0, the function f = h ⋄MAJ2m+1 ∈

Bn(2m+1) satisfies the following two properties:

• Circuit complexity of f is close to that of h: G(h) ≤ G(f) ≤ G(h) +

133

4.5(2m+ 1)n,

• For any m-substitution ρ, G(f)−G(f |ρ) ≤ 4.5(2m+ 1)m.

Remark 1. Note that from the Circuit Hierarchy Theorem (see, e.g.,55), one

can find h of virtually any circuit complexity from n to 2n/n.

7.4 Subadditive measures

In this section we generalize the result of Lemma 14 to arbitrary subadditive

measures. A function µ : Bn → R is called a subadditive complexity mea-

sure, if for all functions f and g, µ(h) ≤ µ(f) + µ(g), where h(x̄, ȳ) =

f(g(x̄), . . . , g(x̄), ȳ). That is, if h can be computed by application some function

g to some of the the inputs, and then evaluating f , then the measure of h must

not exceed the sum of measures of f and g. Clearly, the measures µ(f) = G(f)

and µα(f) = G(f) + α · I(f) are subadditive, and so are many other natural

measures.

Let f ∈ Bn and g ∈ Bk. Then by h = f ⋄ g ∈ Bnk we denote the function

resulting from f by replacing each of its input variables by h applied to k fresh

variables.

Our main construction is such a composition of a function f (typically, of

large circuit complexity) and a gadget g that is chosen to satisfy certain com-

binatorial properties. Note that since we show a limitation of the proof method

rather than a proof of a lower bound, we do not necessarily need to present ex-

plicit functions.

134

In this section we use gadgets that satisfy the following requirement: For ev-

ery set of variables Y of size m, we can force the value of the gadget to be 0 and

1 by assigning constants only to the remaining variables.

Definition 9 (weakly m-stable function). A function g(X) is weakly m-stable

if, for every Y ⊆ X of size |Y | ≤ m, there exist two assignments τ0, τ1 : X \ Y →

{0, 1} to the remaining variables, such that g|τ0(Y) ≡ 0 and g|τ1(Y) ≡ 1. That

is, after the assignment τ0 (τ1), the function does not depend on the remaining

variables Y .

It is easy to see that MAJ2m+1 is a weakly m-stable function. In Lemma 15

we show that almost all Boolean functions satisfy an even stronger requirement

of stability.

Theorem 7. Let µ be a subadditive measure, f ∈ Bn be any function, g ∈

Bk be a weakly m-stable function, and h = f ⋄ g ∈ Bnk. Then for every m-

substitution ρ, µ(h)− µ(h|ρ) ≤ m · µ(g).

Proof. Similarly to Lemma 14, we use a circuit H for the function h|ρ to con-

struct a circuit C for h. Let

h(x11, x12, . . . , xnk) = f(g(x11, . . . , x1k), . . . , g(xn1, . . . , xnk)).

Let us focus on the variables x11, . . . , x1k. Assume, without loss of generality,

that the variables x11, . . . , x1r are substituted by ρ. Since ρ is an m-substitution,

r ≤ m. From the definition of weakly m-stable function, there exist substitu-

tions τ0 and τ1 to the variables x1r+1, . . . , x1k, such that g|ρτ0 = 0 and g|ρτ1 = 1.

135

We take the circuit H and add a circuit computing g(x11, . . . , x1k). Now, for ev-

ery variable x ∈ {x1r+1, . . . , x1k} in the circuit H, we wire g(x11, . . . , x1k)⊕ τ0(x)

instead of x if τ0(x) ̸= τ1(x), and wire τ0(x) otherwise. That is, we set

x1r+1, . . . , x1k in such a way that g|ρ(x1r+1, . . . , x1k) = g(x11, . . . , x1k). Thus,

we added one instance of a circuit computing the gadget g and “repaired”

g(x11, . . . , x1k).

Now we repeat this procedure for each of the n inner functions g that have

at least one variable substituted by ρ. Since ρ is an m-substitution, there are

at most m gadgets we need to repair. Thus, we can compute h using the circuit

H and m instances of a circuit computing g. From subadditivity of µ, µ(h) −

µ(h|ρ) ≤ m · µ(g).

Corollary 8. Let m = cn/2, f be a Boolean function from {0, 1}n to {0, 1},

g be a weakly m-stable function, and h = f ⋄ g (h : {0, 1}N → {0, 1} where

N ≈ cn2). Then for every m-substitution ρ, G(h)−G(h|ρ) ≤ O(N).

Using similar constructions and error correcting codes we can extend this

corollary to larger substitutions.

Theorem 8. Let S be an error-correcting code with relative distance 2ϵ, code-

word length N and message length n. Let D(x) be a Boolean circuit of size d(n)

decoding S correcting ϵn errors, and E(x) be a Boolean circuit of size e(N) en-

coding S. Let f be a Boolean function from {0, 1}n to {0, 1} and let h = f ◦ D

(h : {0, 1}N → {0, 1}) be a composition of f and D. Then

1. G(h) ≥ G(f)− e(n),

136

2. for every ϵ · n-substitution ρ, G(h)−G(h|ρ) ≤ e(n) + d(N).

Proof. Let us prove that G(h) ≥ G(f) − e(n). Let C be a circuit computing h.

Let us consider the composition of two circuits C ′(x) = C(E(x)). Note that C ′

computes f and the size of C ′ equals G(h) + e(n).

Now let us prove that for every ϵ · n-substitution ρ, G(h) − G(h|ρ) ≤

e(n) + d(N). Let C be a circuit computing h|ρ. Let us consider the circuit

C ′′(x) = C(E(D(x))) (to abuse the notation, we assume that C just ignores

the substituted inputs). Note that C ′′ computes h and the size of C ′′ equals

G(h|ρ) + e(n) + d(N).

Corollary 9. For any ϵ > 0, there is a function gn ∈ BN,n (where N depends

on n) such that for any Boolean function f ∈ Bn and h = f ◦ gn it holds that

1. G(h) ≥ G(f)−O(n),

2. for every (1
2
− ϵ) ·N -substitution ρ, G(h)−G(h|ρ) ≤ O(N log(N)).

Proof. Results of43 and classical transformation from Turing machines to cir-

cuits shows that for any ϵ > 0 there is a error-correcting code C : {0, 1}n →

{0, 1}N (N = O(n)) with distance (1 − ϵ) · N , and circuits of size O(n) and

O(n log(n)) for encoding and decoding respectively.

The corollary then follows from Theorem 8.

Remark 2. To complement the result from Corollary 9, we note that any func-

tion h : {0, 1}N → {0, 1} can be trivialized by N/2 substitutions.

137

Corollary 10. There exists a function f ∈ Bn such that any decision tree of f

has size at least 2Ω(n) even if branchings x ← ρ and x ← ρ ⊕ 1 (where ρ is an

arbitrary function) are allowed.

Proof. Use any function of exponential complexity and apply Corollary 9.

7.5 Measures that count inputs

The number of gates is not the only circuit complexity measure that is used

in gate elimination proofs. In some bottleneck cases, it is not possible to find

a substitution killing many gates, but it is still possible to make a substitution

that reduces some other complexity parameter of a circuit significantly. One

such parameter is the number of inputs of a circuit. In29 it is used as follows.

Assume that two variables x and y feed an ∧-gate. If one of them (say, x) has

out-degree at least 2, one easily eliminates at least three gates: assign x ← 0,

this kills all successors of x (at least two gates) and also makes the ∧-gate con-

stant, so its successors are also eliminated (at least one gate). If, on the other

hand, both x and y have out-degree 1, it is not clear how to eliminate more

than two gates by assigning x or y. One notes, however, that the substitu-

tion x ← 0 eliminates not only two gates, but also two inputs: x is assigned,

while y is just not needed anymore as the only gate that is fed by y turns into

a constant under x ← 0. If one deals with a function that is resistant w.r.t.

any n − k substitutions (and usually k = o(n)), then the situation like the

one above (when by assigning one variable one makes a circuit independent of

some other variable, too) can only appear k times. Indeed, if k such substitu-

138

tions can be made, then the circuit (and hence the function) trivializes after

k + (n− 2k) = n− k substitutions (contradicting the fact that it is stable to any

n− k substitutions). Usually we have k = o(n) which implies that this situation

happens only o(n) times. A convenient way of exploiting this fact is to incorpo-

rate the number of inputs into the circuit complexity measure. Namely,29 uses

the following measure: µ(C) = G(C) + I(C). Then, to prove a lower bound

G(C) ≥ 3n− o(n) it is enough to prove that µ(C) ≥ 4n− o(n). For this, in turn,

one shows that it is always possible to find a substitution that reduces µ by at

least 4. For the two cases discussed above it is easy: in the former case, we re-

move three gates and one input (hence, µ is reduced by 4), in the latter one, we

remove two gates and two inputs (µ is reduced by 4 again). In42,41 a more gen-

eral measure is used: µα(C) = G(C) + α · I(C), where α > 0 is a constant.

A typical m-substitution reduces µα by k + αm where k is the number of gates

eliminated. If, however, a substitution removes more than m inputs, then µα

is reduced by at least α(m + 1). By choosing a large enough value for α, one

ensures that α(m+ 1) ≥ k + αm.

For example, in Lemma 14 we show that there are circuits where no substi-

tution can eliminate too many gates. But this claim does not exclude the fol-

lowing possibility: Assume that for some circuits we can eliminate log n gates,

and for the remaining circuits we cannot eliminate even 2 gates, but we can

eliminate 2 inputs. Then by setting α ≈ log n and considering the measure

µα(C) = G(C) + α · I(C) one would prove a superlinear lower bound.

In this section, we construct gadgets against such measures. Namely, we con-

139

struct a function f such that any m-substitution reduces the number of gates

by a constant cm and reduces the number of inputs by m. This prevents anyone

from proving a better than cmn bound using these measures.

Definition 10 (m-stable function). A function g(X) is m-stable if, for every

Y ⊆ X of size |Y | ≤ m + 1 and every y ∈ Y , there exists an assignment τ : X \

Y → {0, 1} to the remaining variables such that g|τ (Y) ≡ y or g|τ (Y) ≡ ¬y.

That is, after the assignment τ , the function depends only on the variable y.

It is now easy to see that every m-stable function is weakly m-stable.

Theorem 9. Let f be a Boolean function, g be an m-stable function, and h =

f ⋄ g. Then for every m-substitution ρ, µα(h)− µα(h|ρ) ≤ m · (G(g) + α).

Proof. Since g is m-stable, Theorem 7 implies that G(h) − G(h|ρ) ≤ m · G(g).

It remains to show that I(h) − I(h|ρ) = m. Thus, it suffices to prove that if f

depends on xij and ρ does not substitute xi,j, then h|ρ depends on xi,j. Let

h(x11, x12, . . . , xnk) = f(g(x11, . . . , x1k), . . . , g(xn1, . . . , xnk)).

Without loss of generality let i = 1. Let R be the set of variables xst for

s > 1 substituted by ρ. There exists a substitution η to the variables

{x21, . . . , x2k, . . . , xn1, . . . , xnk} \ R such that h|η(x11, . . . , x1k) does not depend

on the variables in R and is not a constant: by the definition of m-stability we

can force the instances of the gadget g except for the first one to produce any

desired assignment for the inputs of f (all but the first one).

140

Let us consider the variables x11, . . . , x1k. Assume, without loss of generality,

that the variables x11, . . . , x1r are substituted by ρ. Since ρ is an m-substitution,

r ≤ m. Now we want to show that for every j > r, h|ρ depends on x1j.

From the definition of an m-stable function, there exists a substitution τ to

{x1,r+1, . . . , x1k} \ {x1j} such that g|ρτ (x1j) is not constant (g|ρτ = x1j or

g|ρτ = ¬x1j). Now, we compose the substitutions η and τ , which gives us that

h|ρτη(x1j) is not constant. This implies that the function h|ρ depends on the

variable x1j.

Now we show that for a fixed m, almost all Boolean functions are m-stable.

Lemma 15. For m ≥ 1 and k = Ω(2m), a random f ∈ Bk is m-stable almost

surely.

Proof. Let X denote the set of k input variables. Let us fix a set Y , |Y | ≤ m+1,

and a variable y ∈ Y . Now let us count the number of functions that do not

satisfy the definition of m-stable function for this fixed choice of Y and y. Thus,

for each assignment to the variables from X \ Y , the function must not be y nor

¬y. There are 2k−m−1 assignments to the variables X\Y , and at most (22
m+1−2)

functions of (m + 1) variables that are not y nor ¬y. Thus, there are at most

(22
m+1 − 2)2

k−m−1 functions that do not satisfy the definition of m-stable func-

tion for this fixed choice of Y and y. Now, since there are
(

k
m+1

)
· (m + 1) ways

to choose Y and y, the union bound implies that a random function is not m-

stable with probability at most

141

(
k

m+1

)
(m+ 1)(22

m+1 − 2)2
k−m−1

22k
≤ km+2 ·

(
22

m+1 − 2

22m+1

)2k−m−1

≤

exp
(
(m+ 2) ln k − 2k−m−2

m+1
)
= o(1)

for k = Ω(2m).

Lemma 15, together with Theorem 9, provides a class of functions such that

any m-substitution decreases the measure µα by at most a fixed constant (which

may depend on m but not on α).

Corollary 11. For any m > 0, there exist k > 0 and g ∈ Bk such that for any f

of n inputs, the function h = f ⋄ g ∈ Bnk satisfies:

• Circuit complexity of h is close to that of f : G(f) ≤ G(h) ≤ G(f) +

G(g) · n,

• For any m-substitution ρ and real α > 0, µα(h)−µα(h|ρ) ≤ G(g) ·m+αm.

Thus, gate elimination with m-substitutions and µα measures can prove only

O(n) lower bounds.

Although Lemma 15 proves the existence of m-stable functions, their circuit

complexities may be large (though constant). To optimize these constants, one

can use explicit constructions of m-stable functions.

Lemma 16. For any m, there exists an m-stable function of circuit complexity

at most O(m2 logm).

142

Proof. Let n be a power of two, and let C : {1, . . . , n} → {0, 1}n be the Walsh–

Hadamard error correcting code (a code with distance n
2
, see, e.g.,8 Section

19.2.2). We define a function gC : {0, 1}n → {0, 1} in the following way. Given

an input x, we first find the nearest codeword C(i) to x (any of them in the

case of a tie), and then output the ith bit of the input: gC(x) = xi.

It is easy to see that gC can be computed in randomized linear time O(n),

thus, it can be computed by a circuit of size O(n2 log n) (see, e.g.,2).

Let us show that gC is
(
n
4
− 2
)
-stable. To this end we show that for any set

Y ⊆ {x1, . . . , xn}, |Y | ≤
(
n
4
− 1
)
, for any y ∈ Y , there exists an assignment

to the remaining variables that forces gC to compute y. Without loss of gener-

ality, assume that Y = {x1, . . . , xn/4−1} and that y = x1. Let us fix the last

3n/4 + 1 bits to be equal to the corresponding bits of C(1). Namely, we set

(xn/4, . . . , xn) = (C(1)n/4, . . . , C(1)n). After these substitutions, any input x has

distance less than n/4 to the codeword C(1), thus C(1) is the nearest codeword.

This implies that gC(x) always outputs y = x1.

Corollary 12. For any m > 0, there exists a function g of k = O(m) inputs

such that for any function h of n inputs, the function f = h ⋄ g of nk inputs

satisfies:

• Circuit complexity of f is close to that of h: G(h) ≤ G(f) ≤ G(h) +

O(m2n logm),

• For any m-substitution ρ and real α > 0, µα(f)− µα(f |ρ) ≤ O(m3 logm) +

αm.

143

A computer-assisted search gives a 1-stable function of 5 inputs that can be

computed with 11 gates.

Lemma 17. There exists a 1-stable function gst1 : {0, 1}5 → {0, 1} of circuit

complexity at most 11.

Proof. The truth table of the function gst1 is shown below.

x0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1

x1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1

x2 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1

x3 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1

x4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

gst1 (x0, x1, x2, x3, x4) 0 0 0 0 0 0 1 1 0 1 0 1 1 1 1 0 0 1 1 1 0 1 1 0 0 1 1 0 1 0 0 0

It can be checked that for any i, j ∈ {0, 1, 2, 3, 4}, where i ̸= j, there exist

c1, c2, c3 ∈ {0, 1} such that when the three remaining variables are assigned the

values c1, c2, c3, the function gst1 turns into xi. For example, under the substitu-

tion {x0 ← 0, x2 ← 0, x4 ← 1} the function gst1 is equal to x1.

This lemma implies that the basic gate elimination argument is unable to

prove a lower bound of 11n using the measure µα and 1-substitutions. (Note

that almost all known proofs use either 1- or 2-substitutions.)

Corollary 13. For any function h of n inputs, assume function f = h ⋄ gst1 (it

has 5n inputs). Then

1. The complexity of f is close to that of h: G(h) ≤ G(f) ≤ G(h) + 11n;

144

2. For any 1-substitution ρ and real α > 0, µα(f)− µα(f |ρ) ≤ 11 + α.

145

8
Conclusions

In this work, we have obtained new results using gate elimination and also

showed limitations of this method. A natural further direction is to develop new

methods for proving circuit lower bounds against Boolean circuits of unbounded

depth. We summarize several specific open problems below.

• One of the few examples of lower bounds against circuits of unbounded

depth which does not use gate elimination is the work of Chashkin18.

He proved a lower bound of 2n − o(n) on the complexity of the parity-

check matrix of Hamming codes. Another classical example of a lower

bound which does not use gate elimination is a lower bound of Blum and

146

Seysen15 who showed that an optimal circuit computing AND and OR

must have two separate trees computing outputs (which also gives a lower

bound of 2n− 2). Melanich72 proved a similar property and a lower bound

of 2n − o(n) for a function whose outputs compute products of specific

subsets of inputs. Can we extend these techniques to prove new stronger

lower bounds?

• A natural question left open by this work is to find an explicit construc-

tion of a quadratic disperser. Such a construction would imply new circuit

lower bounds (see Chapter 5 and Section 6.5.2). Another big open prob-

lem is to find explicit construction of dispersers for polynomial varieties of

higher degrees. By Valiant’s reductions108, any O(log n)-depth circuit for

such a disperser must have superlinear size.

• Although the limitation result from Chapter 7 covers almost all currently

used techniques, it is not fully general. It would be great to extend it by

showing that the limitation holds for more general classes of circuit mea-

sures, and for all large enough classes of Boolean functions.

147

References

[1] Aaronson, S. & Wigderson, A. (2009). Algebrization: A new barrier in

complexity theory. ACM Transactions on Computation Theory (TOCT),

1(1), 2.

[2] Adleman, L. (1978). Two theorems on random polynomial time. In 19th

Annual Symposium on Foundations of Computer Science (pp. 75–83).:

IEEE.

[3] Alon, N. & Spencer, J. H. (2004). The probabilistic method. John Wiley &

Sons.

[4] Amano, K. & Saito, A. (2015a). A nonuniform circuit class with multi-

layer of threshold gates having super quasi polynomial size lower bounds

against NEXP. In Proceedings of the 9th International Conference on

Language and Automata Theory and Applications (LATA) (pp. 461–472).

[5] Amano, K. & Saito, A. (2015b). A satisfiability algorithm for some class

of dense depth two threshold circuits. IEICE Transactions, 98-D(1), 108–

118.

148

[6] Amano, K. & Tarui, J. (2011). A well-mixed function with circuit com-

plexity 5n: Tightness of the Lachish-Raz-type bounds. Theor. Comput.

Sci., 412(18), 1646–1651.

[7] Andreev, A. E. (1987). On a method for obtaining more than quadratic

effective lower bounds for the complexity of π-schemes. Moscow Univ.

Math. Bull., 42(1), 63–66.

[8] Arora, S. & Barak, B. (2009). Computational complexity: a modern ap-

proach. Cambridge.

[9] Baker, T., Gill, J., & Solovay, R. (1975). Relativizations of the P =?NP

question. SIAM Journal on computing, 4(4), 431–442.

[10] Beame, P., Impagliazzo, R., & Srinivasan, S. (2012). Approximating AC0

by small height decision trees and a deterministic algorithm for #AC0

SAT. In Proceedings of the 27th Conference on Computational Complexity

(CCC) (pp. 117–125).

[11] Ben-Sasson, E. & Gabizon, A. (2013). Extractors for polynomial sources

over fields of constant order and small characteristic. Theory of Comput-

ing, 9, 665–683.

[12] Ben-Sasson, E. & Kopparty, S. (2012). Affine dispersers from subspace

polynomials. SIAM J. Comput., 41(4), 880–914.

149

[13] Ben-Sasson, E. & Viola, E. (2014). Short PCPs with projection queries. In

Proceedings of the 41st International Colloquium on Automata, Languages,

and Programming (ICALP), Part I (pp. 163–173).

[14] Blum, N. (1984). A Boolean function requiring 3n network size. Theor.

Comput. Sci., 28, 337–345.

[15] Blum, N. & Seysen, M. (1984). Characterization of all optimal networks

for a simultaneous computation of AND and NOR. Acta informatica,

21(2), 171–181.

[16] Buhrman, H., Fortnow, L., & Thierauf, T. (1998). Nonrelativizing separa-

tions. In Proceedings of the 13th Annual IEEE Conference on Computa-

tional Complexity (CCC) (pp. 8–12).

[17] Chakaravarthy, V. T. & Roy, S. (2011). Arthur and Merlin as oracles.

Computational Complexity, 20(3), 505–558.

[18] Chashkin, A. V. (1994). On the complexity of Boolean matrices, graphs

and their corresponding Boolean functions. Diskretnaya matematika, 6(2),

43–73.

[19] Chen, R. (2015). Satisfiability algorithms and lower bounds for Boolean

formulas over finite bases. In Proceedings of the 40th International Sympo-

sium on Mathematical Foundations of Computer Science (MFCS), Part II

(pp. 223–234).

150

[20] Chen, R. & Kabanets, V. (2015). Correlation bounds and #SAT algo-

rithms for small linear-size circuits. In Proceedings of the 21st Interna-

tional Conference on Computing and Combinatorics (COCOON) (pp.

211–222).

[21] Chen, R., Kabanets, V., Kolokolova, A., Shaltiel, R., & Zuckerman, D.

(2015). Mining circuit lower bound proofs for meta-algorithms. Computa-

tional Complexity, 24(2), 333–392.

[22] Chen, R., Kabanets, V., & Saurabh, N. (2014). An improved deterministic

#SAT algorithm for small De Morgan formulas. In Proceedings of the

39th International Symposium on Mathematical Foundations of Computer

Science (MFCS), Part II (pp. 165–176).

[23] Chen, R. & Santhanam, R. (2015). Improved algorithms for sparse MAX-

SAT and MAX-k-CSP. In Proceedings of the 18th International Confer-

ence on Theory and Applications of Satisfiability Testing (SAT) (pp. 33–

45).

[24] Chen, R., Santhanam, R., & Srinivasan, S. (2016). Average-case lower

bounds and satisfiability algorithms for small threshold circuits. In Pro-

ceedings of the 31th Conference on Computational Complexity (CCC) (pp.

1:1–1:35).

[25] Chor, B., Goldreich, O., Håstad, J., Friedman, J., Rudich, S., & Smolen-

sky, R. (1985). The bit extraction problem of t-resilient functions (prelim-

151

inary version). In Proceedings of the 26th Annual Symposium on Founda-

tions of Computer Science (FOCS) (pp. 396–407).

[26] Cohen, G. & Shinkar, I. (2016). The complexity of DNF of parities.

In Proceedings of the 7th Innovations in Theoretical Computer Science

(ITCS) Conference (pp. 47–58).

[27] Cohen, G. & Tal, A. (2015). Two structural results for low degree poly-

nomials and applications. In Approximation, Randomization, and Combi-

natorial Optimization. Algorithms and Techniques, APPROX/RANDOM

2015, August 24-26, 2015, Princeton, NJ, USA (pp. 680–709).

[28] Demenkov, E., Kojevnikov, A., Kulikov, A. S., & Yaroslavtsev, G. (2010).

New upper bounds on the Boolean circuit complexity of symmetric func-

tions. Information Processing Letters, 110(7), 264–267.

[29] Demenkov, E. & Kulikov, A. S. (2011). An elementary proof of a 3n−o(n)

lower bound on the circuit complexity of affine dispersers. In Proceedings

of 36th International Symposium on Mathematical Foundations of Com-

puter Science (MFCS), volume 6907 of Lecture Notes in Computer Science

(pp. 256–265).: Springer.

[30] Demenkov, E. & Kulikov, A. S. (2012). Computing All MOD-Functions

Simultaneously. Computer Science – Theory and Applications, (pp. 81–

88).

152

[31] Demenkov, E., Kulikov, A. S., Melanich, O., & Mihajlin, I. (2015). New

lower bounds on circuit size of multi-output functions. Theory Comput.

Syst., 56(4), 630–642.

[32] Dinur, I. & Meir, O. (2016). Toward the KRW composition conjecture:

cubic formula lower bounds via communication complexity. In 31st Con-

ference on Computational Complexity (CCC) (pp.3̃).

[33] Dodis, Y. (2000). Exposure-resilient cryptography. PhD thesis, Mas-

sachusetts Institute of Technology.

[34] Dvir, Z. (2012). Extractors for varieties. Computational complexity, 21(4),

515–572.

[35] Dvir, Z., Gabizon, A., & Wigderson, A. (2009). Extractors and rank ex-

tractors for polynomial sources. Computational Complexity, 18(1), 1–58.

[36] Dymond, P. W. & Cook, S. A. (1989). Complexity theory of parallel time

and hardware. Inf. Comput., 80(3), 205–226.

[37] Find, M. G., Golovnev, A., Hirsch, E. A., & Kulikov, A. S. (2016). A

better-than-3n lower bound for the circuit complexity of an explicit func-

tion. In 57th IEEE Symposium on Foundations of Computer Science

(FOCS) (pp. 89–98). IEEE.

[38] Fomin, F. V., Grandoni, F., & Kratsch, D. (2009). A measure & conquer

approach for the analysis of exact algorithms. J. ACM, 56(5).

153

[39] Fortnow, L. (1994). The role of relativization in complexity theory. Bul-

letin of the EATCS, (pp. 1–15).

[40] Golovnev, A., Hirsch, E. A., Knop, A., & Kulikov, A. S. (2016a). On the

Limits of Gate Elimination. In 41st International Symposium on Mathe-

matical Foundations of Computer Science (MFCS 2016), volume 58 (pp.

46:1–46:13).

[41] Golovnev, A. & Kulikov, A. S. (2016). Weighted gate elimination:

Boolean dispersers for quadratic varieties imply improved circuit lower

bounds. In Proceedings of the 7th Innovations in Theoretical Computer

Science (ITCS) Conference (pp. 405–411).

[42] Golovnev, A., Kulikov, A. S., Smal, A. V., & Tamaki, S. (2016b). Circuit

size lower bounds and #SAT upper bounds through a general framework.

In Mathematical Foundations of Computer Science (MFCS) (pp. 45:1–

45:16).

[43] Guruswami, V. & Indyk, P. (2005). Linear-time encodable/decodable

codes with near-optimal rate. IEEE Trans. Information Theory, 51(10),

3393–3400.

[44] Håstad, J. (1986). Almost optimal lower bounds for small depth circuits.

In Proceedings of the eighteenth annual ACM symposium on Theory of

computing (pp. 6–20).: ACM.

154

[45] Håstad, J. (1998). The shrinkage exponent of de Morgan formulas is 2.

SIAM J. Comput., 27(1), 48–64.

[46] Håstad, J. (2014). On the correlation of parity and small-depth circuits.

SIAM J. Comput., 43(5), 1699–1708.

[47] Heinz, E. (1951). Beiträge zur störungstheorie der spektralzerleung. Math-

ematische Annalen, 123(1), 415–438.

[48] Hrubeš, P., Jukna, S., Kulikov, A., & Pudlak, P. (2010). On convex com-

plexity measures. Theoretical Computer Science, 411(16), 1842–1854.

[49] Impagliazzo, R., Kabanets, V., & Volkovich, I. (2017). The power of nat-

ural properties as oracles. Electronic Colloquium on Computational Com-

plexity (ECCC), 24, 23.

[50] Impagliazzo, R., Matthews, W., & Paturi, R. (2012). A satisfiability algo-

rithm for AC0. In Proceedings of the 23rd Annual ACM-SIAM Symposium

on Discrete Algorithms (SODA) (pp. 961–972).

[51] Impagliazzo, R. & Nisan, N. (1993). The effect of random restrictions on

formula size. Random Struct. Algorithms, 4(2), 121–134.

[52] Impagliazzo, R., Paturi, R., & Schneider, S. (2013). A satisfiability algo-

rithm for sparse depth two threshold circuits. In Proceedings of the 54th

Annual IEEE Symposium on Foundations of Computer Science (FOCS)

(pp. 479–488).

155

[53] Iwama, K. & Morizumi, H. (2002). An Explicit Lower Bound of 5n− o(n)

for Boolean Circuits. In Mathematical Foundations of Computer Science

(MFCS), volume 2420 of Lecture Notes in Computer Science (pp. 353–

364).: Springer.

[54] Jahanjou, H., Miles, E., & Viola, E. (2015). Local reductions. In Proceed-

ings of the 42nd International Colloquium on Automata, Languages, and

Programming (ICALP), Part I (pp. 749–760).

[55] Jukna, S. (2012). Boolean function complexity: advances and frontiers,

volume 27. Springer Science & Business Media.

[56] Khrapchenko, V. M. (1971). A method of determining lower bounds for

the complexity of π-schemes. Math. Notes of the Acad. of Sci. of the

USSR, 10(1), 474–479.

[57] Kloss, B. M. & Malyshev, V. A. (1965). Estimates of the complexity of

certain classes of functions. Vestn.Moskov.Univ.Ser.1, 4, 44–51. In Rus-

sian.

[58] Knuth, D. E. (2015). The Art of Computer Programming, volume 4, pre-

fascicle 6a. Addison–Wesley. Section 7.2.2.2. Satisfiability. Draft available

at http://www-cs-faculty.stanford.edu/~uno/fasc6a.ps.gz.

[59] Kojevnikov, A. & Kulikov, A. S. (2006). A new approach to proving upper

bounds for MAX-2-SAT. In Proceedings of the Seventeenth Annual ACM-

156

http://www-cs-faculty.stanford.edu/~uno/fasc6a.ps.gz

SIAM Symposium on Discrete Algorithms, SODA 2006, Miami, Florida,

USA, January 22-26, 2006 (pp. 11–17).: ACM Press.

[60] Kojevnikov, A. & Kulikov, A. S. (2010). Circuit complexity and multi-

plicative complexity of Boolean functions. In Proceedings of the 6th Con-

ference on Computability in Europe (CiE) (pp. 239–245).

[61] Komargodski, I. & Raz, R. (2013). Average-case lower bounds for for-

mula size. In Proceedings of the 45th Symposium on Theory of Computing

(STOC) (pp. 171–180).

[62] Komargodski, I., Raz, R., & Tal, A. (2013). Improved average-case lower

bounds for demorgan formula size. In 54th Annual IEEE Symposium

on Foundations of Computer Science, FOCS 2013, 26-29 October, 2013,

Berkeley, CA, USA (pp. 588–597).: IEEE Computer Society.

[63] Kullmann, O. (1999). New methods for 3-SAT decision and worst-case

analysis. Theor. Comput. Sci., 223(1-2), 1–72.

[64] Kullmann, O. (2009). Fundaments of branching heuristics. In A. Biere,

M. Heule, H. van Maaren, & T. Walsh (Eds.), Handbook of Satisfiability,

volume 185 of Frontiers in Artificial Intelligence and Applications (pp.

205–244). IOS Press.

[65] Lachish, O. & Raz, R. (2001). Explicit lower bound of 4.5n − o(n) for

Boolean circuits. In Proceedings on 33rd Annual ACM Symposium on

Theory of Computing (STOC) (pp. 399–408).

157

[66] Lamagna, E. A. & Savage, J. E. (1973). On the logical complexity of sym-

metric switching functions in monotone and complete bases. Technical

report, Brown University.

[67] Li, X. (2011). A new approach to affine extractors and dispersers. In

Proceedings of the 26th Annual IEEE Conference on Computational Com-

plexity (CCC) (pp. 137–147).

[68] Li, X. (2016). Improved two-source extractors, and affine extractors for

polylogarithmic entropy. In 57th IEEE Symposium on Foundations of

Computer Science (FOCS) (pp. 168–177).: IEEE.

[69] Lipton, R. J. (2010). The P = NP Question and Gödel’s Lost Letter.

Springer Science & Business Media.

[70] Lupanov, O. (1958). A circuit synthesis method. Izv. Vuzov, Radiofizika,

1(1), 120–130.

[71] Maurey, B. (1979). Espaces de Banach: Construction de suites

symetriques. C.R. Acad. Sci. Paris Ser. A-B., 288, 679–681.

[72] Melanich, O. (2012). Personal communication.

[73] Nagao, A., Seto, K., & Teruyama, J. (2015). A moderately exponential

time algorithm for k-IBDD satisfiability. In Proceedings of the 14th In-

ternational Symposium, on Algorithms and Data Structures (WADS) (pp.

554–565).

158

[74] Nechiporuk, E. I. (1966). On a Boolean function. Doklady Akademii Nauk.

SSSR, 169(4), 765–766.

[75] Newman, I. & Wigderson, A. (1995). Lower bounds on formula size of

boolean functions using hypergraph entropy. SIAM Journal on Discrete

Mathematics, 8(4), 536–542.

[76] Nickelsen, A., Tantau, T., & Weizsäcker, L. (2004). Aggregates with com-

ponent size one characterize polynomial space. Electronic Colloquium on

Computational Complexity (ECCC), 028.

[77] Nigmatullin, R. G. (1985). Are lower bounds on the complexity lower

bounds for universal circuits? In Fundamentals of Computation Theory

(pp. 331–340).: Springer.

[78] Nigmatullin, R. G. (1990). Complexity lower bounds and complexity of

universal circuits. Kazan University.

[79] Nurk, S. (2009). An 20.4058m upper bound for Circuit SAT. Technical

Report 10, Steklov Institute of Mathematics at St.Petersburg. PDMI

Preprint.

[80] Oliveira, I. C. (2013). Algorithms versus circuit lower bounds. Electronic

Colloquium on Computational Complexity (ECCC), TR13-117.

[81] Paterson, M. & Zwick, U. (1993). Shrinkage of de Morgan formulae under

restriction. Random Struct. Algorithms, 4(2), 135–150.

159

[82] Paturi, R., Saks, M. E., & Zane, F. (2000). Exponential lower bounds for

depth three boolean circuits. Computational Complexity, 9(1), 1–15.

[83] Paul, W. J. (1977). A 2.5n-lower bound on the combinational complexity

of Boolean functions. SIAM J. Comput., 6(3), 427–443.

[84] Rao, A. (2009). Extractors for low-weight affine sources. In Proceedings of

the 24th Annual IEEE Conference on Computational Complexity (CCC)

(pp. 95–101).

[85] Razborov, A. A. (1985). Lower bound on monotone complexity of some

Boolean functions. Doklady Akademii Nauk. SSSR, 281(4), 798–801.

[86] Razborov, A. A. (1990). Applications of matrix methods to the theory of

lower bounds in computational complexity. Combinatorica, 10(1), 81–93.

[87] Razborov, A. A. (1992). On submodular complexity measures. In Poceed-

ings of the London Mathematical Society Symposium on Boolean Func-

tion Complexity (pp. 76–83). New York, NY, USA: Cambridge University

Press.

[88] Razborov, A. A. & Rudich, S. (1997). Natural proofs. Journal of Com-

puter and System Sciences, 55(1), 24–35.

[89] Riedel, M. D. & Bruck, J. (2012). Cyclic boolean circuits. Discrete Ap-

plied Mathematics, 160(13-14), 1877–1900.

[90] Rivest, R. L. (1977). The necessity of feedback in minimal monotone com-

binational circuits. IEEE Trans. Computers, 26(6), 606–607.

160

[91] Sakai, T., Seto, K., Tamaki, S., & Teruyama, J. (2016). Bounded depth

circuits with weighted symmetric gates: Satisfiability, lower bounds and

compression. In 41st International Symposium on Mathematical Founda-

tions of Computer Science, MFCS 2016 (pp. 82:1–82:16).

[92] Santhanam, R. (2010). Fighting perebor: New and improved algorithms

for formula and QBF satisfiability. In Proceedings of the 51th Annual

IEEE Symposium on Foundations of Computer Science (FOCS) (pp. 183–

192).

[93] Santhanam, R. (2012). Ironic complicity: Satisfiability algorithms and

circuit lower bounds. Bulletin of the EATCS, 106, 31–52.

[94] Savinov, S. (2014). Upper bounds for the Boolean circuit satisfiability

problem. Master Thesis defended at St.Peterburg Academic University of

Russian Academy of Sciences. In Russian.

[95] Schnorr, C. (1974). Zwei lineare untere Schranken für die Komplexität

Boolescher Funktionen. Computing, 13(2), 155–171.

[96] Schnorr, C. (1976). The combinational complexity of equivalence. Theor.

Comput. Sci., 1(4), 289–295.

[97] Seto, K. & Tamaki, S. (2013). A satisfiability algorithm and average-case

hardness for formulas over the full binary basis. Computational Complex-

ity, 22(2), 245–274.

161

[98] Shaltiel, R. (2011a). Dispersers for affine sources with sub-polynomial

entropy. In Proceedings of the 52nd Annual IEEE Symposium on Founda-

tions of Computer Science (FOCS) (pp. 247–256).

[99] Shaltiel, R. (2011b). An introduction to randomness extractors. In Pro-

ceedings of 38th International Colloquium on Automata, Languages and

Programming (ICALP), volume 6756 of Lecture Notes in Computer Sci-

ence (pp. 21–41). Springer.

[100] Shannon, C. E. (1949). The synthesis of two-terminal switching circuits.

Bell Systems Technical Journal, 28, 59–98.

[101] Shoup, V. & Smolensky, R. (1991). Lower bounds for polynomial evalua-

tion and interpolation problems. In 32nd Annual Symposium on Founda-

tions of Computer Science, San Juan, Puerto Rico, 1-4 October 1991 (pp.

378–383).: IEEE Computer Society.

[102] Stockmeyer, L. J. (1977). On the combinational complexity of certain

symmetric Boolean functions. Mathematical Systems Theory, 10, 323–336.

[103] Subbotovskaya, B. A. (1961). Realizations of linear functions by formulas

using +, ·,−. Doklady Akademii Nauk. SSSR, 136(3), 553–555.

[104] Tal, A. (2014). Shrinkage of de Morgan formulae by spectral techniques.

In Foundations of Computer Science (FOCS), 2014 IEEE 55th Annual

Symposium on (pp. 551–560).: IEEE.

162

[105] Tal, A. (2015). #SAT algorithms from shrinkage. Electronic Colloquium

on Computational Complexity (ECCC), TR15-114.

[106] Vadhan, S. & Williams, R. (2013). Personal communication.

[107] Valiant, L. G. (1976). Universal circuits (preliminary report). In Proceed-

ings of the eighth annual ACM symposium on Theory of computing (pp.

196–203).: ACM.

[108] Valiant, L. G. (1977). Graph-theoretic arguments in low-level complexity.

In MFCS 1977 (pp. 162–176).

[109] Wang, F. (2011). NEXP does not have non-uniform quasipolynomial-size

ACC circuits of o(loglogn) depth. In Proceedings of the 8th Annual Con-

ference on Theory and Applications of Models of Computation (TAMC)

(pp. 164–170).

[110] Wegener, I. (1987). The complexity of Boolean functions. Wiley-Teubner.

[111] Williams, R. (2013a). Improving exhaustive search implies superpolyno-

mial lower bounds. SIAM J. Comput., 42(3), 1218–1244.

[112] Williams, R. (2013b). Natural proofs versus derandomization. In Proceed-

ings of the 45th ACM Symposium on Theory of Computing Conference

(STOC) (pp. 21–30).

[113] Williams, R. (2014a). Algorithms for circuits and circuits for algorithms.

In Proceedings of the 29th Annual IEEE Conference on Computational

Complexity (CCC) (pp. 248–261).

163

[114] Williams, R. (2014b). New algorithms and lower bounds for circuits with

linear threshold gates. In Proceedings of the 46th Symposium on Theory of

Computing (STOC) (pp. 194–202).

[115] Williams, R. (2014c). Nonuniform ACC circuit lower bounds. J. ACM,

61(1), 2.

[116] Yao, A. C. (1985). Separating the polynomial-time hierarchy by oracles

(preliminary version). In FOCS (pp. 1–10).: IEEE Computer Society.

[117] Yehudayoff, A. (2011). Affine extractors over prime fields. Combinatorica,

31(2), 245–256.

[118] Zwick, U. (1991). A 4n lower bound on the combinational complexity

of certain symmetric Boolean functions over the basis of unate dyadic

Boolean functions. SIAM J. Comput., 20(3), 499–505.

164

	Dedication
	Acknowledgments
	Abstract
	List of Figures
	Introduction
	Overview
	Computational models
	Circuit SAT algorithms
	Known limitations for proving lower bounds
	Circuit lower bounds
	Formula lower bounds
	Gate elimination

	Outline

	Preliminaries
	Circuits
	Circuit normalization

	Dispersers and extractors
	Circuit complexity measures
	Splitting numbers and splitting vectors

	Gate elimination
	Overview
	A 3n-o(n) lower bound
	A 3.01n lower bound for affine dispersers
	A 3.11n lower bound for quadratic dispersers

	Lower bound of 3.01n for affine dispersers
	Overview
	Cyclic circuits
	Relations between xor-circuits
	Semicircuits

	Cyclic circuit transformations
	Basic substitutions
	Normalization and troubled gates
	Affine substitutions

	Read-once depth-2 quadratic sources
	Circuit complexity measure
	Gate elimination
	Proof outline
	Full proof
	Cases:

	Lower bound of 3.11n for quadratic dispersers
	Overview
	Preliminaries
	Weighted Gate Elimination

	Circuit SAT Algorithms
	Overview
	New results
	Framework

	Preliminaries
	Main theorem
	Bounds for the basis U2
	Bit fixing substitutions
	Projection substitutions

	Bounds for the basis B2
	Affine substitutions
	Quadratic substitutions

	Limitations of Gate Elimination
	Overview
	Preliminaries
	Introductory example
	Subadditive measures
	Measures that count inputs

	Conclusions
	References

