APPENDIX 45

Theorem 5.21 Let U be a feasible augmented graph, with the blocks of BY?-bridges: By, By,
..., By.

Then U does not have a pair of interlacing bights, if for all i (1 < i <1) U, has no pair of
interlacing bights.
PROOF.
Assume to the contrary. Then there exists a feasible U-Fragment with the blocks of overlapping B¥9-
bridges: By, Bs, ... By, such that for all ¢ (1 <7 <) UB, has no pair of interlacing bights, but U has a
pair of interlacing bights, A; and A,. Let A; be between a; and as and As, between b; and bs, where ay,
a9, b1 and by are four distinct vertices on J such that they are external vertices of attachment on J or one
of s and t. Further assume that U has the least number of blocks of overlapping B¥?-bridges. Assume
that By, By, ..., B; are so so ordered that if i < j (for 1 < ¢, j <) then the vertices of attachment of
B; on P and @ are to the left of those of B; on P and @), respectively.

It then follows that of the four vertices a1, as, b1 and by, at least two lie on the subpath J]tp(B1);to(B1)[
and at least two lie on the subpath J]sp(By);sq(Bi)[ and that [ = 2.

But then it is easy to see that in this case either UB1 or UB2 has a pair of interlacing bights; this

contradicts the assumption. ]
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of Up obtained by contracting the set of residual paths, £, be as in the step2 of the Algorithm
ANALYzZE-U- U.

Theorem 5.18 If Up contains a P-, Q-, PQ- or an ST-Cross-Cut pair then U has a P-, Q-,
PQ- or an ST-Cross-Cut pair.

PROOF.

Follows immediately from the following two facts:

1. If Ni[e1;2s] and Na[yr;ya] are the cross-cuts of U]’3 then Up has a pair of interlacing cross-cuts,
Ni[z1;2s] and Na[yi;ya].

2. If L{[a;b] is a contraction of L;[a;b] € £, and if U]’3 has an external vertex of attachment at a, at b or
on Li]a; b[ then Up has an external vertex of attachment at a, at b or on L;]a;b[, respectively. O

Theorem 5.19 If Up does not have a pair of interlacing bights then Up does not have a pair
of interlacing bights.

PROOF.

Let U]% (= UB)’_ U]13, - Up (= Ui3) be sequence of minors of the bridge-fragment Upg, where U]% is
obtained from U]Z?)_1 by contracting L; (for 1 < i < m). The theorem follows from the following claim:

Claim If Ugl has a pair of interlacing bights then Uﬁ has a pair of interlacing bights.

PROOF OF THE CLAIM. Let L; = L[a;b]. Let Jo be the cycle J of Upg, and J;, the cycle in U]Zé) obtained
by contracting the subpath L; of J;_;1 in Uit Assume that ay, as, by and by are four distinct vertices of
Ji—1 such that there is a pair of interlacing Eights, A1 between a; and ay and A, between by and bs—here,
a1, as, by and by are either external vertices of attachment or one of s and ¢. Henceforth, assume that
|L[a; b]| > 3, since otherwise Uﬁ = Ugl, and the claim holds trivially.

Consider the case when both A; and A; have common sections, M; and M, respectively, such that
LNM; #0(fori=1,2).

Then M; and M5 are common end sections of A; and As, respectively. Without loss of generality
assume that M; = A{[aq;a] and My = A4[b1;6]. Then a; must be to the left of by on L]a;b[; and
|[EA(L]a;b])| > 2. Let [z;y] be the contraction of the subpath L]a;b[. Then Ui'?) has external vertices of
attachment at z and y.

Note that both z and y are external vertices of attachment of U]Z'_j) and z and a, separate y and b
on J;. The vertex-disjoint paths [z, a] * A1[a;as] and [y, b] * As[b; bs] define the appropriate interlacing
bights.

Other cases can be handled in a similar fashion. ]

§E Interlacing Cross-Cuts and Bights: Augmented Graph
Let U be a feasible augmented graph consisting of the cycle J = {P} U {Q}.

Theorem 5.20 Let U be a feasible augmented graph, with the blocks of BY? -bridges: By, By,
..., B

Then U has a P-, Q-, PQ- or an ST-cross-cut pair, if for some ¢ (1 <i<1) U, has a P-,
Q-, PQ- or an ST-cross-cut pair.
PROOF.
Obvious. I
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(4) Since U is feasible, U an external vertex of attachment d, on Q]sg; S*Q] or on J[t};tz?], where d
is distinct from ¢. Assume that d € Q]s; 522] Then, if Cy is defined then we may assume that the bridges
of Cy avoid the bridges of €, since, otherwise, U has Q- or ST-cross-cuts. Hence B interlaces with a
bridge of €y, but in this case, again U has Q- or ST-cross-cuts.

In the other case, i.e., d € J[t};;ta], B interlaces with a bridge of C; UCs, and U has P-, - or
PQ-cross-cuts. [

Lemma 5.16 Let U and B be as in the Theorem 5.14. If U has an external vertex of attachment,
¢, on Plsp;tp| and an external vertex of altachment, d, on Qlsg;tg[ then U has a PQ-, P-,
Q- or an ST-cross-cul pair.

PROOF.

We may assume that B has exactly one vertex of attachment, s} = t}, on P]s;?[ and has exactly one
vertex of attachment, S*Q = tzz, on @]s;t[, since, otherwise, the statement follows from the previous
Lemma 5.15. Since sp is distinct from ¢{p, sg, distinct from tg, and since B is not a block of equivalent
BPQ 3-bridges, B has a vertex of attachment at s and a vertex of attachment at ¢. Since B is a single
proper block of overlapping BY9-bridges, there must be a BP?-bridge, B € B, such that B has vertices
of attachment at s and ¢t and U has ST-cross-cuts. L]

Lemma 5.17 Let U and B be as in the Theorem 5.14. If U has an external vertez of atlachment,
¢, on J[sp;sg| and an external vertex of attachment, d, on J[tp;lg], and if B has more than
one distinct vertices of attachment on P)s;t[ and more than one distinct vertices of attachment
on Q]s;t[ then U has PQ-, P-, Q- or an ST-cross-cut pair.

PROOF.

Since B is not a singleton set, and not a block of equivalent 3-bridges, and since B has more than one
distinct vertices of attachment on P]s;t[ and more than one distinct vertices of attachment on @]s;t[, it
must have two bridges B; and By € B such that they provide two interlacing cross-cuts: Nij[a1;zs] in
B; and Ns[yi;y2] in By such that z; is to the left of y; on P]s;t[ and ys is to the left of 21 on Q]s;t[.
Hence U has P@-cross-cuts. O

Proor or THE THEOREM 5.14.

Since U is feasible either sp # tp or sg # tg (or both). Assume that sg # tq.
e CASE.1. U has an external vertex of attachment on Qlsq;tgl.
If sp = tp then both sg and tg are distinct from s and ¢; and the theorem follows from Lemma 5.15.
Hence assume that sp # tp. If U also has an external vertex of attachment on Plsp;tp[ then the theorem
follows from the Lemma 5.16. On the other hand, if U has no external vertex of attachment on Plsp;tp|
then, since U is feasible, s’é and t*Q are distinct, and the theorem follows from Lemma 5.15.
e ©ASE.2. U has no external vertex of attachment on Qlsq;tgl.
Since U is feasible, s} and ¢} are distinct. We may assume that U has no external vertex of attachment
on Plsp;tp[ (otherwise, it is similar to the previous case.) Then s, and 7, are distinct. Moreover, since
U is feasible, not all the external vertices of attachment lie only on the subpath J[sg; sp], or only on the
subpath J[tp;tg]. But then the theorem follows from Lemma 5.17. L

§D Interlacing Cross-Cuts and Bights: Minor of an Augmented Graph

Let Up be an augmented graph with the single (possibly, degenerate) block of BY?-bridges
Bof J = {P}U{Q} in Up. Let L, the set of residual paths of J in Ug and Ug, the minor
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Note that if Class.1 = §} then both Class.2 and Class.3 # 0.

(1) We may assume that Class.1 = ).

Suppose not, i.e., Class.1 # (. Then if Class.4 # ) then U has P-cross-cuts. If Class.2 # () then a bridge
of Class.2 overlaps with a bridge of Class.1 and U has P- or PQ-cross-cuts. If Class.3 # () then again U
has P- or PQ-cross-cuts.

Hence consider the case when Class.2 = Class.3 = Class.4 = @), i.e.,B = Class.1. Hence Class.1 is
neither a singleton set; nor is it a block of equivalent B¥'? 3-bridges. Hence, either Class.1 has more than
two vertices of attachment on P, in which case U has P-cross-cuts, or Class.1 has more than one vertex
of attachment on @, in which case U has PQ-cross-cuts.

(2) We may assume that Class.2 # () and Class.3 # () and bridges of Class.2 avoid the bridges of

Class.3.
This follows from the facts that Class.1 = () and if a bridge of Class.2 interlaces with a bridge of Class.3
then U has P- or PQ-cross-cuts. Hence the vertices of attachment of Class.2 are to the left of those of
Class.3 on P and @, respectively. Let x5 and ys be the right-most vertices of attachment of Class.2 on
P and @), respectively; and similarly, 3 and ys, the left-most vertices of attachment of Class.3 on P and
@, respectively. Hence x5 is to the left of 3 on P and y-, to the left of y3 on Q).

(3) We may further assume that Class.4# ().

If Class.4 = () then from (2) it follows that B is not a single block of BF%-bridges, which is a
contradiction. Let v be an arbitrary vertex on the path Q[y2;ys]. If every bridge of Class.4 has all its
vertices of attachment on @[s;t] either to the left of v or to the right of v on @, then B is not a single
block of BY@-bridges.

Hence Class.4 has a BP?-bridge that interlaces with a bridge of Class.2 and has a vertex of attachment
on Qy2;t]. Similarly, Class.4 has a B¥?-bridge that interlaces with a bridge of Class.3 and has a vertex
of attachment on Q[s; ys|.

Since U is feasible it has an external vertex of attachment d, distinct from ¢. If d lies on J]ys;¢[ or
on J]¢; ys[ then U has P-; @-, PQ or ST-cross-cuts.

Hence, assume that d € Q[y2;ys]. Hence there is a bridge B € Class.4 with a vertex of attachment
on @[s;d[ and a vertex of attachment on @Q]d;¢]. If in addition, B has a vertex of attachment on Q]s; d|
and a vertex of attachment on Q]d;t[ then if we define the Classes (1, 2, 3 and 4) as above, then the
Class.1# 0 for d. Hence we can derive a contradiction as in (1). Otherwise it is easy to see that U has
@- or ST-cross-cuts.
® CASE.2.

By an argument similar to casel, we derive a contradiction, if ¢ € P]szg;t*Q[ (where 5o # tz?)

® CASE.J.

Hence assume that U has no external vertex of attachment on P]sp;¢p[ or Q]sg;t5 [, but U satisfies one
of the conditions of the Lemma, say condition(1).

Without loss of generality assume that ¢ € P]sp;sp] (where sp # sp). Let Class.1, Class.2, Class.3
and Class.4, with respect to ¢, be defined as before. In this case, Class.1 and Class.2 = (§, but Class.3U
Class.4 # 0.

Let C; C B be the set of bridges of B with a vertex of attachment at s. Notice that C; is non-empty.
Let z and y be the left- and right-most vertices of attachment of C; on P]s;¢[.

(1) If B\ (; has a bridge with a vertex of attachment on Pls;y[ then U has P-cross-cuts. Hence
every bridge of B \ C; has all its vertices of attachment on P[s;t] only on P[y;t].

(2) If x and y are distinct then C; is a singleton set. (Otherwise, U has P-cross-cuts.) Since B is a
proper block, B\ C; has a bridge B such that B overlaps with the bridge of C;. Since the B?-bridge,
B € B\ C;, B has a vertex of attachment on Plz;t].

(3) If # = y then define Cy to be the set of bridges of B with exactly one vertex of attachment
at z on P]s;t[. But in this case, since B has more than one distinct vertices of attachment on P]s;t[,
there is a BY9-bridge B € B\ (C1 U Cy) that overlaps with a bridge of C; U Cz. Since the BFQ_bridge,
B € B\ (C; UCy), B has a vertex of attachment on PJz;¢[.



APPENDIX 41

constituent bights of J; in U’ to a Jordan curve such that all but its end vertices lie in the face, Fy; each
of its constituent bights of Js in U’ to a Jordan curve such that all but its end vertices lie in the face,
Fy; and each of its common sections to appropriate common sections in the Jordan curve R(w) or J().
The claim follows from the following observations: every common section on R(w) (or J(w)) is disjoint
with every other common section on R(w) (or J(m), respectively), and do not contain a point of Fy, F»
or EXT J; every Jordan curve corresponding to a bight of J; (respectively, J3) can be mapped in Fy
(respectively, Fy) such that it does not meet any other Jordan curves in Fy (respectively, Fy) and meets
R(w) or J(m) at the appropriate ends of its common end sections.

Arguing in a manner similar to above, we can show that, since A} and A} are vertex-disjoint simple
paths and since constituent bights of neither of them can interlace with one another in U’ or U/, it is,
additionally, possible to map them such that Aj(7) and AL(w) do not meet each other. Notice that
Al (w) and A4(7) are Jordan curves with their end points a;(7) and as(7), and by (7) and ba(w) of J(7),
respectively, and with none of their points in EXT J. But this is impossible. L]

§C Interlacing Cross-Cuts and Bights: Single Proper Block

Notice that if U is an infeasible augmented graph with a single block of BP?-bridges, it
follows from the Theorem 3.1 that U does not have a pair of interlacing bights. Hence we may
concentrate only on the case when U is a feasible augmented graph with a single (feasible) proper
block of BY?-bridge, B.

Theorem 5.14 Let U be a feasible augmented graph with a single (feasible) proper block of
BY® _bridges, B. Notice that since U is feasible, B is not a block of equivalent 3-bridges. Then
U has a PQ-, P-, Q- or an ST-cross-cut pair. []

Lemma 5.15 Let U and B be as in the Theorem 5.14. If

1. U has an external vertex of attachment, ¢, on Plsp;tp[ and B has more than one distinct
vertices of attachment on P)s;t[, or

2. U has an external vertex of atlachment, ¢, on Qsq;tg[ and if B has more than one distinct
vertices of attachment on Q]s; [

then U has PQ-, P-, Q- or an ST-cross-cul pair.

PROOF.

Assume to the contrary, i.e. U satisfies one of the conditions of the lemma, but does not have P-, @-,
PQ- or ST-cross-cuts.

e CASE.l.

First assume that ¢ € P]sp;tp[ (where s # ). Let us partition the bridges of B in to the following
four classes:

1. Class.] = {B € B | B has at least one vertex of attachment on P]s;c[ and at least one vertex of
attachment on Ple;¢[.}

2. Class.2 = {B € B | B has at least one vertex of attachment on P]s;¢[ and no vertex of attachment on
Ple; t[.}

3. Class.3 = {B € B | B has no vertex of attachment on P]s;¢[ and at least one vertex of attachment on
Ple; t[.}

4. Class.4 = B\ ( Class.1 U Class.2 U Class.3 ) = {B € B | B has ezactly one vertex of attachment on
Pls;t[ at ¢.}
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by the Claim.2. A; must be a bight of U'. Hence if the path associated with A; contains a vertex of
V(H) it must lie on R[sg;tq].

(2) Assume that the path associated with A; contains exactly one vertex z € V(H), where z lies
on R]sg;tg[. Hence z must be veyr. Hence the path associated with A, does not contain veyt, and the

end segment of A, starting at by, A4[b1;y1] must terminate in sg or tg. In either case U has a pair of
interlacing bights.

(3) Hence if the path associated with A; contains a vertex z € V(H) then it must be one of sg or
tg (say, sg). Let the end segment of A, starting with b1, A}[b1; 1] terminate in y; where y; lies on the
subpath Qsg;tq[. Hence AL[b1;y1] must contain the veys.

Since R is a path in a proper bridge, R must have an internal vertex, ¢. Let L be a path in B
connecting the vertices ¢ and veyt. An appropriate subpath of L meets R only in ¢/ and A4[b1; y1] only
in ¥ and avoids the path associated with the bight A;. (Follows from reducibility of B.) Hence the path
Ablbe; '] *L[y'; ¢'] *R[c';tg] defines a bight of U’ between by and tg that interlaces with the bight A;.

On the other hand, if the end segment of A%[b1;y1] terminates in a vertex on the subpath R[sq;tg]
it is easy to show, by an argument as above, that U has a pair of interlacing bights. In either case, it
results in a contradiction. L]

Theorem 5.13 Lel U be a feasible augmented graph with a single (feasible) BFC _bridge, B, such
that the pair of vertices associated with B is (sg;lg). Let R[sg;tg] be a path in B, connecting
the vertices sg and tg, such that B is irreducible with respect to R. Let By, By, B3 and By be
as in the definition 4.5. Assume that |Bs| = 0; and the path R divides U into U', a U-Fragment
on @, and U a U-Fragment on @, as in the definition 4.5.

Then U does not have a pair of interlacing bights, if neither U’ nor U has a pair of interlacing
bights.

PROOF.

In the following we use some simple ideas from ‘point set topology.” (Cf. [5], [15] and [17].) Let 7 be a
plane and J(7) be closed Jordan curve in m: the closed Jordan curve J(7) divides the rest of the plane
into two connected open residual domains, the interior domain (INT J) and the ezterior domain (EXT J).

Assume that ap, as, by and bs are four distinct vertices of J such that there is a pair of interlacing
bights, A; between a; and as, and A between b; and bs—here, ay, a2, by and by are either external
vertices of attachment or one of s and ¢. Let A} and A% be the paths associated with the bights 4; and
As, respectively. We derive a contradiction.

Let J = P[s;t]U Q[s;t], J1 = P[s;t] U Q[s; sg] * R[sq;tol * Qtg;t] and J2 = Q[sq;to] U R[sg;to]-

Let J(7) be a closed Jordan curve in the plane w. The vertices on J are mapped onto a point set
in J(m) such that the mapping preserves their order in J. Let sg(w) and tg(w) be the points on J(m)
corresponding to the vertices sg and tg of J, respectively. There exists a Jordan curve in the plane 7 with
its end points being sq(7) and tg(7) and with all other vertices of it in INT J; let R(7) be such a Jordan
curve. The vertices on R are mapped onto a point set in R(7) such that the mapping preserves their order
in R with respect to sg and tg. As a result the cycles J; and J, are mapped to the closed Jordan curves
J1(m) and Jo(7), uniquely defined by R(w). Let the faces Fy and F% be the residual domains INT J; and
INT Ja, respectively.

Let A’[ai;as] be the path associated with a bight between a; and ag of J in U. Such a path can
always be written as the concatenation of common sections on R, common sections on J, and bights
between vertices of Jy in T or bights between vertices of Js in U’. By the assumption, it is impossible
for two bights of J; in T or two bights of J5 in U’, to interlace. Moreover, since A’ is a simple path all
its common sections are vertex-disjoint.

We claim that A’ can be mapped to a Jordan curve A’(w) with its end points being ai(7) and as(m)
such that none of the points on it lie in EXT J. This can be done by successively mapping each of its
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Let A be a bight of U between two vertices a; and ay, where a; and as are external vertices of attachment
of U or one of s and t. Let A’ be the path associated with the bight A. If A’ contains one or more vertices
of V(H) then the subpath of A’, A'[a1;z1] = uo(= a1), w1, ..., Un—1, un(= x1), where ug, ..., up_1
¢ V(H) and u, € V(H), is called the end segment of A starting at a;. The end segment of A starting at
a9 18 defined similarly.

Figure 23: Three Cases for Lemma 5.12.

Claim.1. If the path associated with a bight A of U contains at least two distinct vertices of V(H)
then it contains at least two out of three vertices, veur, sg and tg.

PROOF OF THE CLAIM.l. Let A be a bight of U between two vertices a; and as. Let A’[a;;21] and
A'lag; z2] be the end segments of A starting with a; and as, respectively. Since the path associated with
A, A’ contains two or more distinct vertices of V(H), z1 and z» are distinct and A'[a1;z1] and A'[as; z3]
are vertex-disjoint.

Notice that if z; is distinct from sg and tg then A’[a;; 2] contains veys. This is due to following:
Since x1 € V(H) it lies on the path R]sg;tg[ or Q]sg;tg[. Since none of the other vertices of A'[as; 1] is
in V(H), there is a subpath of A'[a;; 1] that connects a vertex of P]s;t[ with 1, and otherwise avoids P,
@ and R. But this subpath must contain vey¢. Similarly, if 25 is distinct from s and tg then A'[as; 4]
contalns veyt-

The claim follows from the observation that A’[a;1;z1] and A’[as; 23] are vertex-disjoint, and hence,
both cannot contain vey;.

Claim.2. Let A be a bight of U. Then either A is also a bight of U/, or the path associated with it

contains at least two distinct vertices of V(H).

PROOF OF THE CLAIM.2. Assume to the contrary, i.e., there is a bight A of U between a; and as such

that the path associated with it contains no more than one vertex of V(H), but A is not a bight of U
This is possible only if A contains only one vertex z € V(H) such that z lies on Q]sg;tg[. But,

this implies that the end segments A'[a;; 2] and A'[as; 2] both contain vey;. But since veye € N(B) it is

distinct from @, and this contradicts the fact that A’, the path associated with the bight A, is simple.

Assume that a1, as, by and by are four distinct vertices on J of U such that there is a pair of interlacing
bights A; between a; and as, and As between by and by, where a1, ay, b1 and by are either external vertices
of U or one of s and ¢.

Since U does not have a pair of interlacing bights at least one of A; and As (say, Az2) is not a bight
of U'. Let a1 precede ag in the clockwise cyclic order of the vertices of J. Since a; and ay separate by
and by on J, one of by and by (say b1) lies on J]as;as[.

(1) We may assume that A; contains no more than one vertex of V(H), since, otherwise, by the
previous claims each of the paths associated with the bights A; and A; must contain at least two out of
three vertices, veut, Sg and tg, which is impossible, since these two paths are vertex-disjoint. Moreover,
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Figure 22: Cases 2 and 3 of Lemma 5.11.

(2) U has a PQ-cross-cut pair, Ni[z1;22] and Na[y1;y2], where 1 is to the left of y; on P.
Since U must be P@Q- or P-feasible, ‘UA(UI)‘ > 0 and since B is irreducible with respect to R, ‘LA(U/)
0.

>

If both sg and tg are distinct from s and ¢ then, clearly, U has weak P(Q)-cross-cuts. Hence assume
that sg = s. If U’ has a lower external vertex of attachment on R]ya;tg] and an upper external vertex
of attachment on P]s;y;[ then U has P-cross-cuts. If not, U’ has a lower external vertex of attachment

on R[s;zs[ and an upper external vertex of attachment on Plzq;t[. If ¢ is distinct from ¢ then U has
weak P()-cross-cuts. On the other hand, if {g = ¢ then U has P-cross-cuts.

(3) U has a P-cross-cut pair, Ni[z1; @] and Na[yi;ys], where 1, 9 € P[s;t], y1 € Pla1; 23] and
Y2 € R[sq;tq].
If s is distinct from s (or, symmetrically, tg distinct from ¢) then, since Ny avoids R]sg;tg], U has P-
cross-cuts. If sg = s and tg = ¢ then Ny avoids R]sq;tg[. Moreover, since B is irreducible, T’ has a lower
external vertex of attachment b’ € R]sqg;tg[ and there is a path Ry[b’; b] in By such that Ry meets R]sq;tg]
only in b and meets Q]sq;tg[ only in b. Clearly, the cross-cuts, N1 and Na[y1; y2] * R[y2; b'] * Re[b'; 5],
form P-cross-cuts in U. ]

§B Interlacing Bights: Single Bridge

Theorem 5.12 Lel U be a feasible augmented graph with a single (feasible) BFC _bridge, B, such
that the pair of vertices associated with B is (sg;lg). Let R[sg;tg] be a path in B, connecting
the vertices sq and tg, such that B is reducible with respect to R. Let U’ be its U-Fragment, as
in the definition 4.5.

Then U does not have a pair of interlacing bights, if U’ has no pair of inlerlacing bights.
PROOF.

First, we prove two useful claims. Since B is reducible with respect to R, there is a cut vertex, veyt, in
the nucleus of the bridge B, N(B). Let H be the section graph induced by the edges of the subpaths

Qlsg;te] and R[sq;tq], t.e.,
H = (E(Q[sq;tq]) U E(R[sq;tq]))-
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PROOF.

(1) U has a Q- or an ST-cross-cut pair, Ni[z1;z2] and No[yi;y2], where x1, 2 € R[sq;tq] and
y1 € Pls;t[ and y» € Rlaq; 2o[.

By definition of - and ST-cross-cuts, there is a lower external vertex of attachment ¢’ € R]z1;zs[ and
hence a path R.[¢'; c] in the U-Fragment U’ such that R, meets R]sq;tg[ only in ¢/ and meets Q]sq;tg]
only in c.

Let us refer to the path R[sq;x1]* N1[z1;22] * R[22;tg] by M and the path R]zq;zo[ by Ms.

By lemma 5.7, it suffices to show that U has a Y-@Q pair. Since B is irreducible with respect to R,
and since |Bs| = 0, there are two vertex disjoint paths R,[a’; a] and Ry[b’;b] where o/, b’ € R]sg;tg[ and
a, b € P]s;t[. Let R, and R} be the appropriate subpaths of the digjoint paths R, and Ry, respectively,
such that R} and R} meet P]s;¢[ only in @ and b, respectively; R/, meets only one of M7 and M, only in
a” and R} meets only one of My and M, only in b, where ' and 6" € V(M1) UV (M2)\ {sq,tq}.

s Y

Figure 21: Case 1 of Lemma 5.11.

e CASE.l.

a’ € V(Mi)\ {sq,tq} and b € V(M>).
Then the cross-cut N = Rj[b; b"] « Ma[b"; ¢'] x R:[¢'; ¢] and the Y-graph Y = {Mi[sq; a”’]} U{Rq[a;a"]} U
{M[a"; sg]} form a Y-Q) pair.
e CASE.2. ¢’ and b € V(My).
Since Nj is a path in some By bridge, say Bi, By is a proper bridge and N; has an internal vertex, d’.
Let d be a vertex of attachment of B; on P. There is a path in B; whose ends are d and d’ and which
avoids P. A suitable subpath, R}[d;d"], of it meets Ny only in d”, an internal vertex of N;, meets P]s; [
in d and otherwise avoids P, R and N;. If R/, is vertex-disjoint with either of R and R}, then this case
reduces to an instance of the previous case. Suppose not. Then a suitable subpath of R/[d;d"'] meets
N; only in d”, meets only one of R/, and R} only in z and avoids the other. Without loss of generality
assume that z € R/ [a;a”[. Then the pair of paths R}[d";z] * R [z;a] and R} satisfies the condition of
the previous case.
e CASE.3. a’ and b’ € V(M) \ {sq;tq}.
If No[y1;yo] is vertex-disjoint with either of R}, and R}, then this case reduces to an instance of the first
case. Suppose not. Then a suitable subpath of N meets M3 only in y;, meets only one of R/ and R}
only in z and avoids the other. Without loss of generality assume that z € R/ [a;a”[. Then the pair of
paths Nafyi; 2] * R [2;a] and R} satisfies the condition of the first case.
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Figure 20: Two Cases for Lemma 5.10.

(1) U’ has a PQ-cross-cut pair, N1[z1; 23] and Na[y1; y2].

As a result of the fact that N; and Ny form P@-cross-cuts and the above claim, we may assume that
a’ € Rlsg;yi[ and b’ € R]z1;tg[. Then the cross-cut N = Ni[ya;y1] *R[y1;b'] *Rs[b';b] and the Y-
Graph, ¥ = {R[sq; 1]} U {Rula; ] % Rla'; 1]} U {Ns[e1; 221} (if o € Bla; ), or ¥ = {Rlsgi a']} U
{Raa;a']} U {R[a"; 21] * Ni[z1;20]} (if @’ € R]sg; x1]), form a Y-@Q pair.

(2) U’ has P-cross-cut pair, N1[x1;z2] and Na[y1;y2], where z1, 2 € R[sq;tg].

As a result of the fact that N; and N3 form P-cross-cuts and the above claim, we may assume that at
least one of a’ and b € R]x1; x5, say o’

(2a) Assume that b’ € R]y:;tg[ and z, is distinct from tg. Then the cross-cut N = Na[ya;31] *
Rly1;d'] * Rq[a’; a] and the Y-graph Y = {R[sq; z1] * N1[a1; z2] * Rlzo; 6]} U {Rs[0'; 8]} U {R[V;to]} (if
b € Rlza;tg[), or Y = {R[sq; 1] * Ni[x1;z2]} U {Rs[b; 0] * R[V;x2]} U {R[tg;x2]} (if b € R]y1; z2]),
form Y-Q pair. Similarly, if b’ € R]sq; y1[ and ;1 is distinct from sg then U has a Y-Q pair.

(2b) From (2a), we see that if both 2, and 2, are both distinct from sq and ¢g then U has Y-Q
cross-cuts.

(2¢) Henceforth, assume that z; = sg and hence z, is distinct from tg. Hence b € R]sq; ],
and since b’ € R]x1; 2s[, also @’ € R]sg;y:1]. Moreover, if U’ has an external vertex of attachment on
R]y1;tq[ then using the claim above we can show that U has a Y-@Q pair. Hence all the external vertices
of attachment of U’ lie on R]sq;y1].

Let s}, be the left-most vertex of attachment of U’ on R distinct from s. Hence, there is a bridge
B’ € B, with a vertex of attachment s}, on R]sg;tg| and a vertex of attachment, y, on Qlsq;tgl.
Let L[sk;y] be a cross-cut of U’ between s}, and y. Since U’ is feasible, not all the external vertex of
attachment U’ lie on R[sq;s}]. If L avoids both N, and N3 then the P-cross-cuts defined by Ny and L,
together with an application of the above claim, satisfies (2a).

Hence, assume that L does not avoid both Nj and N3. Then there is a vertex z € L]s};y] such
that L]s%;z] meets N1 or Ny (but not both) in z. If L meets Ny in z then the P-cross-cuts N; and
L[s%; z] * Na[z; y2], together with an application of the above claim, satisfies (2a). On the other hand, if
L meets N in z then the P-cross-cuts L[s%;; z] * N1[z; z2] and N, satisfies (2b). ]

Lemma 5.11 Let U, B, R, By, By and Bs be as in the Theorem 5.3. IfU/ contains a P-, Q-,
PQ- or ST-cross-cul pair then U has a P- or a PQ-cross-cul pair.
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©) (20)

Figure 19: Three Cases for Lemma 5.9.

(3) d,b € R]sq;tgl.
Assume that Nyi;ys] meets both R, and Ry, since, otherwise, we can easily find a Y-@Q-pair. Hence
a suitable subpath of N meets @ only in y2, meets only one of R, and Rp in z, and avoids the other.
Without loss of generality assume that z € R4[a; a'[. Then R,[a; z]* N[z; y2] and {Rs[b; '] JU{R[sq; b'] U
{R[V';tg]} form a Y-Q-pair. ]

Lemma 5.10 Let U, B, R, By, By and Bs be as in the Theorem 5.3. If U’ contains a P-, Q-,
PQ- or ST-cross-cut pair then U has a P-, Q-, PQ- or an ST-cross-cutl pair.

PROOF.

Since B is irreducible with respect to R, [UA(U')| > 0. Moreover, since U’ must be P-feasible, U’ cannot
have @- or ST-cross-cuts.

Hence it suffices to show that if U’ has PQ- or P-cross-cuts, then U has weak PQ-cross-cuts or Y-Q-
cross-cuts. (Cf. Lemma 5.7.) Since B is irreducible with respect to R, and since |Bz| = 0, there are two
vertex disjoint paths R,[a’;a] and Ry[b';b] where a’, b’ € R]sq;tg[ and a, b € P]s;t[. (Cf. Lemma 4.3.)
Without loss of generality, we may assume that a’ is to the left of #’. The following claim will be found
useful in the rest of the proof:

Claim Let ¢’ be an arbitrary upper external vertex of attachment of U’ distinct from a’ and #’. Then
there exists a path R, in By, joining ¢’ to an internal vertex of P such that R, avoids R, or R or both.
PROOF OF THE CLAIM. Let B’ € By be a bridge such that ¢’ is a vertex of attachment of B’ on R and let
¢ be a vertex of attachment of B’ on P]s;t[. Then there is a path R.[¢";¢c] in By. If R, avoids R, or Ry
then it satisfies the claim.

Hence, let R. meet one or both of the paths R, and Rj. It is possible to find a vertex z € R.]¢’; ¢] such
that R.]c’; 2] meets Ry]a’;a] or R;]b’; 6] (but not both) only in z. (This follows from the facts that R,,
Ry are vertex disjoint and a’ b’ and ¢’ are distinct.) Without loss of generality, assume that z € R,]a’; a;
then the path R.[¢;z] * R,[z;a] avoids Ry.
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PQ-cross-cuts of U/, it has an upper external vertex of attachment on P]s;y;[ and U has P-cross-cuts.
The case, when {9 =t and sq is distinct from s, is similar.

@

Figure 18: Two Cases for Lemma 5.8.

(2) U has a P-cross-cut pair, Ni[z1;z2] and Na[yi1;ys], where z1, o € P[s;t], y1 € Pla1; 22| and
Y2 € R[sq;tq].
If s is distinct from s (or, symmetrically, tg distinct from ¢) then, since Ny avoids R]sqg;tg], U has P-
cross-cuts. If, on the other hand, sg = s and ¢ =t then, since B is reducible and since y» € R]sq;tg[,
the path N3 must contain the cut vertex wey; of N(B). Let b be a vertex of attachment of B on
Qls;t[ = Qlsq;tgl, say b. Let Ry[b; veut] be a path in B joining b and vey; and let Rp[b; 4] be a suitable
subpath of Ry such that Ry meets Q]sq;tg[ only in b and meets Ny or Ny (but not both) only in &'. If
Ry[b; b'] meets Ny in b’ then there is a path from b to z; and to x5 that does not contain the cut vertex,
Veut, Wwhere one of 1 and 2 € P]s;t[—thus contradicting the assumption that B is reducible with respect
to R. Hence Rp[b; '] meets Ny in b’ and the cross-cuts Ny and Na[yq;b'] * Rp[b';b] form P-cross-cuts.
]

Lemma 5.9 Let U, B, R, By, By and Bs be as in the Theorem 5.3. If |Bs| # 0 then U has a
P-, Q-, PQ- or an ST-cross-cul pair.
PROOF.
If |Bs| # 0 then there is a cross-cut N[yi;ys] of J between y; € Pls;t[ and y» € Q]sg;tg[ such that N
avoids R.

We will show that U has a Y-Q-Pair (Cf. Lemma 5.7.) Since B is irreducible, there are two vertex
disjoint paths R, and Rj.

(1) a €Qlsqite[ and V' € R]sq;iql.
Then the cross-cut R, and the Y-Graph {Rs[b;b']} U {R[sq; ']} U{R[tg;b']} form a Y-@Q pair.

(2) o, b €Q]sq;tql
Since R belongs to a proper bridge, B, R has an internal vertex d”. Let d be a vertex of attachment of
B on PJs;t[. Then there is a path in B that joins d and d”, and a suitable subpath, R4[d; d'], of it meets
R]sg;to[ only in d’, and meets P]s;t[ only in d. Assume that R4 meets both R, and R;, since, otherwise,
we can easily find a Y-@Q pair. Hence, a suitable subpath of R4 meets R]sqg;tg[ only in d’, meets only
one of R, and R only in z, and avoids the other. Without loss of generality assume that z € R,[a; a'[,
then the cross-cut Ry and the Y-graph {Rq[a; 2] * R4[z; d']} U{R[sq;d']} U{R[tg; d']} form a Y-Q pair.
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Figure 17: Modifying a Y-Q) Pair (Lemma 5.7).

(2) U has a Y-Q Pair, N[z1; 23] and Y = {Y1[z1;v]} U {Y2[22; v]} U {Y3][z3; v]}.

Without loss of generality assume that z; is to the left of z;. If z5 is distinct from s then the cross-cuts
Ny and Yi[z1; v] % Ya[v; z2] form weak PQ-cross-cuts, in which case the proof proceeds as in (1). However,
if z9 = s and if there is an external vertex of attachment on P]s; z1[ then the vertex-disjoint cross-cuts
N; and Yi[s;v] * Ya[v; z1] form P-cross-cuts.

Hence assume that zo = s and since B is P-feasible, all the external vertices of attachment lie on
J[z1;tg]. But since U is feasible, it has at least two distinct external vertices of attachment and not all its
external vertices of attachment lie on J[t};tg]. This implies that U has an external vertex of attachment
on J[z1;tp[ and an external vertex of attachment on J]z1;tq].

Let L be a path in B that joins ¢} and v and avoids J. It is possible to find a vertex z € L]t}; v]
such that L[t}; z] meets N or Y (but not both) only in z, an internal vertex.

If z is an internal vertex of Y then the vertex-disjoint cross-cuts N and Y'[s; z]* L[z;t}] form P-cross-
cuts. On the other hand, if z is an internal vertex of N and if z3 is distinct from ¢, then the cross-cuts
L[tp;z] * N[z; z2] and Y1 [z1; v] * Y3[v; 23] form weak PQ-cross-cuts; and the proof proceeds as in (1).

Hence, consider the case when z is an internal vertex of N and z3 = t. Observe that in this case
tg =t and U has an external vertex of attachment on P]z;;¢[. Clearly, the cross-cuts L[t}; z] * N[z; 2]
and Yi[z1; v] * Ys[v;t] form P-cross-cuts. O

Lemma 5.8 Let U, B, R, By, By and Bs be as in the Theorem 5.2. If U’ contains a P-, Q-
PQ- or ST-cross-cut pair then U has a P-, Q-, PQ- or an ST-cross-cut pair.

PROOF.

Notice that since B is reducible U has no lower external vertex of attachment on R]sq;tg[ and hence
no @- or ST-cross-cuts.

(1) U has a PQ-cross-cut pair, Ni[z1;22] and Na[y1;y2], where 1 is to the left of y; on P.

If both sg and ?¢g are distinct from s and ¢ then U has weak PQ-cross-cuts.

Notice that it is not possible that sg = s and g = 7, since, otherwise, N; and N3 are two vertex-
disjoint paths in B such that they meet P]s;?[ only in 21 and yi, respectively, and meet R]sq;tg[ only
in z3 and y» and B is not reducible with respect to R.

Hence assume that sg = s and {g is distinct from ¢. Hence U’ has a lower external vertex of
attachment at to and has no lower external vertex of attachment on R]s;tg[. Since N; and N, form
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Definition 5.7 Y-() PaIRr.

Let U be a U- or a U-Fragment with a cycle J = {P}U{Q}. Let Y = {Y[21;0]}U{Y2[20; v]}U
{Y5[z3; v]} be a Y-Graph of J and let N[z1;z3] be a cross-cut of .J, vertex-disjoint with Y. Such
a pair of subgraphs is said to be a Y-Q pair of U, if it satisfies the following two conditions:

1. z1 € Pls;t[ and 29, 23 € Q[s;1].

2. x1 € Pls;t, z2 € Q]z2; z3][.
Lemma 5.7 Let U be a feasible augmented graph with a single P-feasible BP9 -bridge, B, such
that the pair of vertices associated with B is (sqg;1g).

If U has a weak PQ-cross-cut pair or a Y-Q) pair, then U is guaranteed lo have a PQ- or a
P-cross-cut pair.

e )

Figure 16: Modifying a Weak PQ-Cross-Cut Pair (Lemma 5.7).

PROOF.
(1) U has a weak PQ-cross-cut pair, N1[x1;x2] and Na[y1;y2], where 1 is to the left of y; on P.
Assume that N; and N5 do not form P@Q-cross-cuts, that is all the external vertices of attachment lie on
J[y2; z1] (the case when the external vertices of attachment lie on J[y1; o] is symmetric.) But since B
is P-feasible, not all the external vertices of attachment of U lie on J[sq;s}]. Hence U has an external
vertex of attachment on P]s};x1]. Since the cross-cuts N; and N, belong to B, B is a proper bridge and
N3 has an internal vertex, z’. Let L be a path in B that joins s} and 2z’ and avoids J. It is possible to
find a vertex z € L]sp; 2] such that L[s};z] meets N3 or Ny (but not both) only in z, an internal vertex
of the appropriate cross-cut.

If z is an internal vertex of Ny then the vertex-disjoint cross-cuts L[s};z] * N1i[z;x2] and N, form
PQ-cross-cuts of U. If z is an internal vertex of Ny then vertex-disjoint cross-cuts L[s}; z] * Na[z; y1] and
Ny form P-cross-cuts of U.
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of attachment on R[s; z5[ and an upper external vertex of attachment on Plzq;¢[. If ¢ is distinct from
t then U has PQ-cross-cuts. On the other hand, if {g =¢ then U has P-cross-cuts.

e A

(2a) (2b)

Figure 14: Case(2) of Lemma 5.6.

(2) U’ has a P-cross-cut pair, N1[z1; 2] and Na[y1;ys], where z1, 2 € P[s;t], y1 € Pla1; 22| and
Y2 € R[sq;tq].
If sq is distinct from s (or, symmetrically, tg distinct from t) then, since Ny avoids R]sq;tg], U has
P-cross-cuts. If sg = s and tg =t then Ny avoids R]sg;tg[. Moreover, since B is irreducible, U has
a lower external vertex of attachment b’ € R]sq;tg[ (by definition) and there is a path Rp[b’;b] in B,
such that R meets R]sq;tg[ only in &' and meets Qsqg;tg[ only in b. Clearly, the cross-cuts, N1 and
Nolyi;y2] * R[ya; '] * Ry[b'; ], form P-cross-cuts in U. ]

§A.2 Case(2): B is P-feasible.

Before presenting the proofs for this case, we present the following definitions and a technical
Lemma.

Q

Y2
Weak PQ-Cross-Cut Pair Y-Q Pair

Figure 15: Weak PQ)-Cross-Cut Pair and Y-(Q) Pair.

Definition 5.6 WEAK P@-Cross-CuT PAIR.

Let U be a U- or a U-Fragment with a cycle J = {P} U {Q}. A pair of interlacing vertex-
disjoint cross-cuts Nq[z1;29] and Na[yp;y2] is said to be a weak PQ-cross-cut pair of U, if zy,
y1 € Pls;t and z, y2 € Q]s;t[. U
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(2) U’ has an ST-cross-cut pair, N1[sq;tq] and Na[y1;y].
Let a’ be an upper external vertex of attachment and b’ be a lower external vertex of attachment of U’;
and let R, be as above. Then the paths L1 = Ni[sq;tq] and Ly = R,[a;a’] *R[a’; y1] *Naly1; y»] form
either @)-cross-cuts or ST-cross-cuts of U.

(3) U’ has a P-cross-cut pair, N1[z1;22] and Na[y1;y2], where z1, &2 € R[sg;tq].
Let @' € R]zq;zo[ be an upper external vertex of attachment and b’ be any lower external vertex of
attachment and let R, be as above. The paths L = R[sq; 1] *N1[21; z2] *R[2x2;1g] and Ly = R,[a; d’]
*xR[a';y1] *Na[y1; y2] form either @-cross-cuts or ST-cross-cuts of U.

(4) U’ has a Q-cross-cut pair, N1[z1; 23] and Nalyi;y2], where z1, 22 € Q[sq;t0].
Let o’ be any upper external vertex of attachment and ¥ € Q]z1;z2[ be a lower external vertex of
attachment and let R, be as above. The paths L1 = Ny[z1;22] and Ly = Ry[a; a’] x R[a’; y1] * Na[y1; y=2]
form @-cross-cuts of U. L]

Lemma 5.6 Let U, B, R, By, By and Bs be as in the Theorem 5.3. If U’ contains a P-, Q-
PQ- or an ST-cross-cul pair then U has a P-, Q-, PQ)- or an ST-cross-cul pair.

PROOF.

Since B is PQ-feasible, it is easy to see that if U has @- or ST-cross-cuts, then U has Q- or ST-cross-cuts.
Hence, we need to consider the remaining two cases only.

Figure 13: Case(1) of Lemma 5.6.

(1) U has a PQ-cross-cut pair, Ni[z1;22] and Na[y1;y2], where 1 is to the left of y; on P.

Since B of U has two distinct vertices of attachment z; and y; on P, sp and tp must be distinct and U
is PQ-feasible. Hence, ‘UA(U/)‘ > 0. Moreover, since B is irreducible with respect to R, ‘LA(UI) >0

(by definition). If both sq and t¢ are distinct from s and ¢ then, clearly, U has PQ-cross-cuts.

Hence assume that sg = s. If U’ has a lower external vertex of attachment on R]y2;tg] and an upper

external vertex of attachment on P]s;y;[ then U has P-cross-cuts. If not, U’ has a lower external vertex
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Figure 11: Case: B is PQ)-feasible and |Bs| # 0.

Lemma 5.5 Let U, B, R, By, By and B3 be as in the Theorem 5.3. If U' contains a P-, Q-,
PQ- or ST-cross-cut pair then U has a Q- or an ST-cross-cut pair.

PROOF.

Since B is irreducible with respect to R, |[UA(U’)| > 0. Moreover, since B is PQ-feasible, and since
U’ is feasible, it must be a P(Q-feasible U-Fragment of U on (). Note that if sg = s and tg = ¢, then
sp = sg and tp = tg are distinct and by definition, U is PQ-feasible and has an upper external vertex
of attachment on P.

Figure 12: Four Cases for Lemma 5.5.

(1) U’ has a PQ-cross-cut pair, N1[x1; 23] and Na[y1; y2].
Without loss of generality, assume that there exist external vertices of attachment o’ € R]sq;y:1[ and
b € Qly2;tgl. Let Ryla;a’] be a path in By such that R, meets P]s;¢[ only in a and meets R]sqg;tg][
only in a’. The cross-cuts L1 = Na[ya;p1] *R[y1;tg] and Ly = Rg[a;a’] xR[a’; 21] *Ni[z1; 25] form
Q@-cross-cuts of U.
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Appendix: Interlacing Cross-Cuts and Bights

In this appendix we present a proof for Theorem 4.2. The proof is by a complete induction
on the graphs, where the well-ordering is the one induced by the lexico-graphic ordering of the
signature of the graphs. This appendix is organized in a fashion closely resembling the structure
of the algorithms ANALYZE-BLOCK and ANALYZE-U-U.

§A Interlacing Cross-Cuts: Single Bridge

Notice that if U is an infeasible augmented graph, then it does not have a pair of interlacing
bights. Hence we may assume that U is feasible.

Theorem 5.2 Let U be a feasible augmented graph with a single (feasible) BFQ -bridge, B, such
that the pair of vertices associated with B is (sg;lg). Let R[sg;tg] be a path in B, connecting
the vertices sq and tg, such that B is reducible with respect to R. Let U’ be its U-Fragment, as
in the definition 4.5.

Then U has a P-, Q-, PQ- or a ST-cross-cut pair, if U isa U-Fragment containing a P-,
Q-, PQ- or a ST-cross-cut pair. ]

Theorem 5.3 Let U be a feasible augmented graph with a single (feasible) BF? -bridge, B, such
that the pair of verlices associated with B is (sq;lg). Let R[sg;lg] be a path in B, connecting
the vertices sg and lg, such that B is irreducible with respect to R. Let By, By, B3 and By be as
in the definition 4.5. Notice that if |Bs| = 0 then the path R divides U into U’, a U-Fragment
on @, and U a U-Fragment on @, as in the definition 4.5.

Then U has a P-, Q-, PQ- or a ST-cross-cut pair, if one of the three following conditions
1s satisfied:

1. |Bs| # 0.
2. |Bs| = 0, and U’ is a feasible U-Fragment containing a P-, Q-, PQ- or a ST-cross-cul
pair.

3. |Bs| =0, and U’ is a U-Fragment containing a P-, Q-, PQ- or a ST-cross-cut pair. ]

We have three cases to consider: (1) B is PQ-feasible (if [LA(U)| # 0 and |[UA(U)| # 0),
(2) B is P-feasible (if |[LA(U)| = 0), and (3) B is Q-feasible (if [UA(U)| = 0), the last two cases

being symmetric.

§A.1 Case(1): B is PQ-feasible.

First notice that if B is P@)-feasible, then B is irreducible with respect to path R; and the
Theorem 5.2 is vacuously true. Hence for this case we only need to prove the Theorem 5.3.

Lemma 5.4 Let U, B, R, By, By and Bs be as in the Theorem 5.3. If |Bs| # 0 then U has a
P-, Q-, PQ- or an ST-cross-cul pair.

PROOF.

If |Bs| # 0 then there is a cross-cut N[yi;y2] of J between y; € P[s;t] and y» € Q[sq;tg] such that
N avoids R. Since B is a PQ-feasible BF?-bridge, the cross-cuts R and N form either Q-cross-cuts or
ST-cross-cuts of U. L]



ACKNOWLEDGEMENT 27

[15] M.H.A. Newman. Elements of Topology of Plane Sels of Points. Cambridge University Press,
London, 1951.

[16] T. Ohtsuki. The Two Disjoint Path Problem and Wire Routing Design. Number 108 in Graph
Theory and Algorithms (Eds. N. Saito, T. Nishizeki). Springer, October 1980.

[17] A.W. Schurle. Topics in Topology. North Holland, New York, New York, 1979.
[18] P.D. Seymour. Disjoint paths in graphs. Discrete Mathematics, 29:293-309, 1980.

[19] Y. Shiloach. A Polynomial Solution to the Undirected Two Paths Problem. J. Association for
Computing Machinery, 27(3):445-456, July 1980.

[20] W.T. Tutte. Graph Theory. Addison-Wesley Publishing Co., Menlo Park, California, 1984.



26

BiDIREcTIONAL EDGES PrROBLEM: 11

Example 1 Example 2

Figure 10: Labeling of the two example graphs.
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Complementary
U-Fragment

U-Fragment

Example 2

Figure 9: Two example graphs.

In the first example, since B3 = (), we determine its U- and U-fragments and analyze them
further to notice that the BF?-bridge in the first example does not have P-, Q-, PQ- or ST-
cross-cuts and the edges of P[s;t] (and similarly, edges of @[s;?]) are all unidirectional. Only
the edges of the BP?-bridge are bidirectinal.

In the second example, since B3 # (), we see that all the edges of P]s;t[ are admissible.
By a similar anlysis, we see that all the edges of ()]s;{[ are admissible. As all the edges of
the BY@-bridge are bidirectinal, we see that only the edges directly incident on s and ¢ are
unidirectional.
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RECUR:

if [B3] #0 then
ASy := E(P[sp;tp]);

else
Let U' and U be its U- and U-Fragment, respectively, as in the
Definition 4.5. Let AE(U’ : P) be the set of admissible edges of U’
obtained by calling FIND-AE-U-U((U’ : P));

AS, := AE(U’ : P);

if ANALYZE-U-(U ) returns ‘YES’ then
AS2 .= E(P[sp;tp]);

else
ASS = 0;

end {if} ;

AS, := AS, U ASZ;

end {if} ;

AE(Ug : P) :=FE(Ug : P)N E(AS3);

return AE(UpR : P);
end {case} ;

end{FIND-AE-Brock.} [

Remark 5.4 As before, we see that the algorithm reduces the augmented graph U to U’ and
U’ in O(|E|) time; and U’ < U and U' < U. [

Theorem 5.1 Let U be an augmented graph with the path P associated with it. Then the
Algorithm FIND-AE-U-U computes AE(U : P), the set of Admissible Edges of (U : P) in time
O(IE|- V).
PROOF.
The proof of the time-complexity of the algorithm is similar to that of ANALYzE-U-U.

The rest of the proof is by a simple case by case analysis, which shows that our algorithm
returns exactly those edges e € AE(U : P) for which ANALYZE-U-U(u(U : €)) returns ‘YES’.
We omit a detailed proof. (See [11].) [

Example 5.5 Consider the example graphs that were shown in the companion paper[12] (also,
see figure 9.) Since the graphs posses mirror symmetric, we might simply consider only one of
the paths, say P. First note that both the graphs are TYPE.IV.

Proceeding with the algorithms described in this section, we first find a path R[sqg;tg]
connecting the two extreme vertices of attachment of the bridge on Q]s;¢[. Note that both the
graphs are irreducible with respect to R.
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Algorithm Finp-AE-Brock((Ug : P)):

stepl. FEasIBILITY-TEST: If FE(Upg : P) = () then return AE(Up : P) := . Otherwise go to
the next step.

step2.

case
B| > 1:
AE(Ug : P):=FE(Ug : P);
return AE(Up : P);
IB| = 1:
Let B = {B};
if the pair of vertices associated with B is (sg,tg) then
Divide: Find a path R in B connecting the vertices sq and tg. Modify R
such that the bridges with vertices of attachment solely on R avoid other
bridges. Let By, By and Bs be as in the Definition 4.5.

Recur:
if B is reducible with respect to R then

Let U be the U-Fragment as in the Definition 4.5. Let AE(UI : P)
be the set of admissible edges of U obtained by calling FIND-AE-
U-T((T : P));

AS, = AE(U/ : P);
else (¥ B is irreducible with respect to R. %)
if |Bs| #0 then
ASy := E(P[s;1]);
else
Let U’ and U be its U- and U-Fragment, respectively, as
in the Definition 4.5.

if ANALYZE-U-(U’) returns ‘YES’ then
AS] := E(P][s;t]);
else
AS] = 0;
end {if} ;
Let AE(UI : P) be the set of admissible edges of U ob-
tained by calling FIND—AE—U—U((UI : P));
AS? = AE(UI : P);
AS; := AS] UAS?;
end {if} ;
end {if} ;
AE(Ug : P) :=FE(Upg : P) N ASy;
else if the pair of vertices associated with B is (sp,tp) then
Divide: Find a path R in B connecting the vertices sp and tp. Modify R
such that the bridges with vertices of attachment solely on R avoid other
bridges. Let B1, By and Bs be as in the definition 4.5.
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Now we are ready to describe the algorithm that computes all the admissible edges.

Algorithm FIND-AE-U-U((U : P)):
stepl. If FE(U : P) = () then return AE(U : P) := (.

step2. Let By, By, ..., B; be the set of blocks of BP?-bridges of U. Let B stand for an
arbitrary block of BP?-bridges B; (fori =1,2,...,1.) Let Ug = {P}U{Q} U {B} be the
subgraph of U whose external vertices of attachment are same as those of U on Q]s;[.
Let J = {P} U {Q}. The graph minor Ug of Up is obtained as follows:

Let vy, ..., vp—1 and wyq, ..., wg—1 be the vertices of attachment of the set of BFQ.
bridges of B on PJs;t[ and Q]s;t[, ordered in their left-to-right order, respectively. Let

L = {Plvg(= s);v1], ..., Plop_1;0,(= 1)], Qlwo(= s);w1], ..., Qwg_1;we(= t)]} be the
set of residual paths of J.

Let Lla;b] € £ be a residual path. If |L[a;b]] > 3 then contract the subpath L]a;b[ =
L[z;y] to a single edge, [z,y]. Let EA(L]a;b[) be the set of external vertices of attachment
of U on the subpath L]a;b|.

1. If [EA(L]a;b[)| > 2 then Uy has external vertices of attachment at = and y.

2. If [EA(L]a; b[)] = 1 then Up has external vertices of attachment at 2 or y, the choice
being arbitrary.

3. If [EA(L]a; b[)] = 0 then Ug has no external vertices of attachment at z or y.

Each of the edges of the cycle, J', of Up is a pseudo-edge.

step3. For each block B, find AE(Ug : P’'), the set of admissible edges of Ug, by calling
FiNnp-AE-Brock((Ug : P')). Let

AE;:={e € E(P): forsomei, J¢' € AE(Up : F/) such that ¢’ is a

contraction of a subpath of P containing e.}
AE(U : P):= FE(U : P)N AEq;

return AE(U : P).

end{Finp-U-U.} [

Remark 5.3 Note that since all of the non-recursive steps can be done in time O(|E| + |pE|)
time, we see that the algorithm reduces the augmented graph U to Uy " ’}’32, cen ’}’31 in O(|E)|)
time; and Ug < U,for 1 <i <1 [0
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5 Finding the Set of Admissible Edges

However, it is easy to see that a straight-forward application of the algorithm ANALYZzE-U-U
will result in an O(|F| - |V|2) algorithm. Instead, if we simply compute the set of edges, AE, of
P[s;t] and Q[s;t] in G such that e € AE if and only if ANALYZE-U-U(u(G : €)) returns ‘YES’
then these are exactly the bidirectional edges of P and @ in G. The set AE can be computed
efficiently in time O(|E|-|V|). The algorithm is developed in the rest of this section.

Remark 5.1 It is easy to see that FE(U : P) can be computed in time O(|E|). The set
FE(U : P) can be completely described as follows:

If U has less than four distinct vertices of attachment then FE(U : P) = (), otherwise
FE(U : P) = FE; NFE;, where FE; and FE; are as follows:

1. If sg # tg and U has no external vertex of attachment on @]sg;ig[ then
FE; = E (FS}UFS?UFS})

otherwise FE; = E(P[s;t]). FSi, FS? and FS} are as follows:
(a) If s3 and ¢} are distinct then FS] = P[s}h; (5] else FS] = 0).
(b) If s} and ¢} are distinct and U has an external vertex of attachment on Q[{g;t] then
FS} = P[s;t3] else FS? = 0.
(c) If sp and ¢} are distinct and U has an external vertex of attachment on () [s; sg] then
FS? = P[s}h; ] else FST = 0.
2. If sp # tp then
FE; = E (FS}UFS3UFSE)
otherwise FE; = E(P[s;1]). FS3, FS3 and FS3 are as follows:
(a) FS} = P[sp;tp].
(b) If sy and {3 are distinct and U has an external vertex of attachment on @]sf); ] then
FS3 = P[s;sp] else FS3 = .
(c) If 5y and {3 are distinct and U has an external vertex of attachment on Q[s; (5[ then

FS3 = Pltp;t] else FS3 =0. O

Definition 5.2 TuE VERTICES AssociATED WiTH A BP?-Bringe or (U : P).

Let U be an augmented graph, with a path P associated with it and with a single BF@-
bridge, B. If FE(U : P) # (), we associate a pair of left- and right-most vertices (either (sp,ip)
or (sg,lg)) with the bridge B as follows:

1. sp = tp and sg and tg are distinct: The pair of vertices associated with B is (sg,{q).

2. sg = lg and sp and lp are distinct: The pair of vertices associated with B is (sp,ip).

3. sp and {p as well as sg and lg are distinct: The pair of vertices associated with B is

<5Q7tQ>' O
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Let u, v € V(J). Then the distance between » and v is defined to be
distance(u,v) = MIN (|J[u; v]|, | [v;u]]).
Let e = [u,v] € E(J) and w € V(J). Then, similarly, the distance of e from w is defined as
distance(e,w) = MIN (distance(u, w), distance(v, w)).

We partition the pseudo edges, pE(H;), of H; into the following two classes: pE(1)(H;) and
pEG(H;) = pE(H;) \ pEW(H;), where

pEV(H;) = {e epE(H;) : e€ E(J) and there exists a vertex w, a vertex of attachment

of a BY?-bridge or one of s and ¢, such that
distance(e,w) < 2}.

(a) We define a function ¢g; that maps a pseudo-edge, e’ = [u,v] € pE(l)(Hj) to a graph
edge, e € gE(H;). If H; has a BF@_bridge, B with a vertex of attachment at w’ such that
distance(e’,w') < 2 then gi(e’) = e, where e is a graph edge of B incident at w’; otherwise,
g1(€’) = undefined. Since g; maps at most eight distinct pseudo-edges of pE(l)(Hj) to one graph
edge of gE(H;), and since g; is not defined for at most eight edges, we have ‘pE(l)(Hj)‘ <
8- [gE(H;)| +8.

(b) We define a function g, that maps a pseudo-edge, ¢’ = [u,v] € pE(Q)(H]-) to a graph
edge, e € gE(H). In this case, H; must be a U- or a U-fragment of the augmented graph H, and
there is a path R in H such that an edge e € E(R) corresponds to the edge ¢’. Moreover, every
such edge is a graph-edge. Define ga(e’) = e. Since g2 maps at most two distinct pseudo-edges

of UjL, pE®)(H;) to one graph edge of g E(H), we have PRy ‘pE((‘))(Hj)‘ <2-|gE(H).
Hence
S IpE(Hy) < T[S gE(H)) +8] +2- gE(H) <26 gE(H),
— =

since each graph edge of H occurs in one graph H; and since,
m < MAX(2,|gE(H)|) < 2-|gE(H)].

Now, by our previous observations, we know that the algorithms spend the following amount
of time in stage i:

0 (Z 9B+ EW] + 3 S [lo Bl + |pE<Uj,k>|]) ~0(E).

j=1 j=1k=1

where the graphs of stage ¢ be {Uy, ..., U,} and the graphs of stage i + 1 be {Uy1, ..., U1 m,,
cows Uty ooy Upmn }. As noted earlier, as there are at most O(|V]) stages, the algorithm has
the desired O(|F|-|V]) time complexity. [J
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The correctness of the algorithm will follow from the following theorem. The proof of the
theorem is rather technical and is presented in several parts in the appendix. The proof is by a
complete induction on the following well-ordering on augmented graphs.

Definition 4.9 SIGNATURE OF AN AUGMENTED GRAPH.
Let U be an augmented graph, consisting of the cycle J = {P} U {Q} and a set of BF?-
bridges, B. To U, we assign a pair of positive integers (i;,%3), called its signature, where

ii= ) [V(N(B) < V(U),

BeB3

and 73 = 1 or 0, depending, respectively, on whether U is an arbitrary augmented graph, or an
augmented graph with exactly one block of BY?-bridges.
We say augmented graphs Uy < Us, if

signature(Uy) <iex signature(Us).

This defines a well-ordering among the augmented graphs. Let Uy > Uy = --- > U, be a
decreasing chain of graphs ordered by the above ordering. Hence n < 2-|V(Up)|. U

Theorem 4.2 Let U be an augmented graph.

1. If the algorithm ANALYZE-U-U(U) returns ‘YEs’, then U is feasible and has a P-, Q-
PQ- or an ST-cross-cut pair.

2. If the algorithm ANALYZE-U-U(U) returns ‘N0’ then U does not have a pair of interlacing
bights. [

Corollary 4.3 An edge e on P[s;t] is bidirectional if and only if ANALYZE-U-U(u(G : e))
returns ‘YES'. [

§4.3 Complexity Analysis.

Theorem 4.4 Let U be a U-Fragment or a U-Fragmenl. The algorithm ANALYze-U-U(U)
terminates in O(|E|-|V]) time.
PROOF.
Let the pseudo-edges of a graph U be denoted by pE(U) and the graph-edges of U, by g E(U).
We define a set of graphs of a stage of the algorithm as follows: graphs of stage 1 = {U}.
Let graphs of stage ¢ be {Uy, ..., U,}. Suppose, we apply the appropriate algorithm (one of
ANALYZE-U-U and ANALYZE-BLOCK) to U; to reduce it to a set of graphs {U;1, ..., Ujm, }
such that U;; < U;. Then, the graphs of stage ¢ + 1 be {U11, ..., Ut myy s Un1s oo oy Unoy,
It is easy to see that the total number of stagesis < 2-|V(U)|. If we now show that the total
amount of time spent on the graphs of stage ¢ is O(|£(U)|) (for all ¢), then we have exhibited
an O(|E|-|V]) time complexity for the complete algorithm.
We start with the following observation: Let H be a graph in stage i — 1, and {Hy, ..., H,}
be the graphs of stage ¢, obtained from H. It can be readily checked that all the pseudo-edges
of H; lie on the cycle J.
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Algorithm ANaLYZE-BLock(Up):

stepl. FEASIBILITY-TEST: If Up is infeasible, return ‘NO’; otherwise go to the next step.

step2.
case
B| > 1:
return ‘YES’;
|IB| = 1:
Let B = {B};
Divide: Let (s',t"} be the pair of vertices associated with B. Find a path R in B
connecting the vertices s' and t' such that the bridges with vertices of attachment
solely on R avoid other bridges. Let By, B and B3 be as in the Definition 4.5.
Recur:
if B is reducible with respect to R then
Let U be the U-Fragment as in Definition 4.5.
if ANALYZE-U-(TU") returns ‘YES’ then
return ‘YES’
end {if} ;
else (* B is irreducible with respect to R. %)
if [Bs| #0 then
return ‘YES’
else (x [Bs| =0 *)
Let U’ and U be its U- and U-Fragment, respectively, as in Defi-
nition 4.5.
if ANALYZE-U-(U') returns ‘YES’ cor
ANALYZE-U-(U') returns “YES’ then
return ‘YES’
end {if} ;
end {if} ;
end {if} ;
return ‘NO’
end {case}

end{ ANaLYzE-BLock.} [

Remark 4.8 It is easily seen that the algorithm reduces the graph U to graphs U’ and U in
O(|E|) time. Furthermore, since the B¥?-bridge, B, of U is proper, and since the path R must
contain at least one vertex of N(B),

S VNB)| < V(NB)), i=12. O
B'eB;
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Algorithm ANALYZE-U-U(U):
stepl. If U is infeasible; return ‘NO’.

step2. Let By, By, ..., B; be the set of blocks of BF?-bridges of U. Let B stand for an arbitrary
block of BY?-bridges B; (fori = 1,2, ...,1.) Let Ug = {P}U{Q} U {B} be the subgraph
of U whose external vertices of attachment are same as those of U on P]s;t[ and on Q]s; {[.
Let J = {P} U {Q}. The graph minor Ug of Up is obtained as follows:

Let vy, ..., vp—1 and wy, ..., wg—1 be the vertices of attachment of the set of BFQ.
bridges of B on PJs;t[ and Q]s;t[, ordered in their left-to-right order, respectively. Let

L = {Plvg(= s);v1], ..., Plop_1;0,(= 1)], Qlwo(= s);w1], ..., Qwe_1;we(= t)]} be the
set of residual paths of J.

Let Lla;b] € £ be a residual path. If |L[a;b]] > 3 then contract the subpath L]a;b[ =
L[z;y] to a single edge, [z,y]. Let EA(L]a;b[) be the set of external vertices of attachment
of U on the subpath L]a;b|.

L. If |[EA(L]a;b[)| > 2 then Up has external vertices of attachment at z and y.

2. If [EA(L]a; b[)] = 1 then Up has external vertices of attachment at 2 or y, the choice
being arbitrary.

3. If |[EA(L]a;b[)| = 0 then Uy has no external vertices of attachment at z or y.
Each of the edges of the cycle, J', of Up is a pseudo-edge.

step3. For each block B, analyze Up by calling ANALYZE-BLOCK(Ug). If the answer is ‘YES’
for any of the blocks of B, return ‘YES’; otherwise, return ‘NO’.

end{Avaryze-U-U.} [

Remark 4.7 Since the stepl and step2 take O(|E|) time, the algorithm reduces the augmented
graph U to Uf g U]’327 - U]’31 in O(|£|) time. Also, note that, for each 1 <7 <, since

Yo IVINB)IL Y IVINB)),

BeB; BEB

and in this sense, the non-recursive part of the algorithm does not increase the “complexity” of
the original problem. This simplification is formalized through the notion of the “signature” of
a graph subsequently. L]
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Augmented Graph (reducible)

Complementary U-Fragment

Figure 8: U-Fragment: B is reducible.

of U and U/, corresponding to the edges of R[sg;lg] of U are considered to be pseudo-edges.
]

The following proposition can be easily verified:

Proposition 4.1 Let U and U be, respectively, the U- and U-Fragments of an augmented graph
U'. Then both U and U are themselves augmented graphs. [

§4.2 Analyzing a U-Fragment Let U be an augmented graph. In this section, we present an
algorithm to analyze an augmented graph and determine if it has a P-, @-, PQ- or an ST-cross-
cut pair. It consists of two mutually recursive algorithms ANALYZE-U-U, and ANALYZE-BLOCK.
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Augmented Graph (irreducible)

U-Fragment Complementary U-Fragment

Figure 7: U-Fragment and U-Fragment: B is irreducible.

attachment of By on R]sqg;tg[ and (iii) the vertex sg (if distinct from s) and the vertex g (if
distinct from ¢). The vertices sg and {g of U’ are marked, I and rg, respectively. I = lp and
e = Tp.

e B is reducible with respect to R. (See Figure 8.)

Let U’ be the mazimal nonseparable subgraph of U containing the vertices s and ¢, but
without the path Q]sg;tg[ and any of the By or By bridges. Notice that U’ contains the cycle
J = {P[s;1]} U{Q[s; sq] * R[sq;tg] * Q[lg;t]} and all its bridges have attachment on both P
and R. The subgraph U is called a U-Fragment of U on Q. The set of external vertices of
attachment, EA consist of (i) the external vertices of attachment of U on J]sg;{g[, and (i) the
vertex sqg (if distinct from s) and the vertex {g (if distinct from ¢). The vertices sg and g of
U’ are marked, I and g, respectively. I = Ip and rp = rp. L]

Remark 4.6 (1) Given a U- or a U-Fragment, U, with a single BP?-bridge, B, in linear
time, we can either divide U into a U-Fragment, U’ and a U-Fragment, U (if B is irreducible
with respect to R) or reduce U to a U-Fragment, U (if B is reducible with respect to R.)

(2) Let U and U’ be two distinct U- or U-Fragments. In order to distinguish between
the paths and vertices of U’ from those of U, we use the primed versions for U’: for instance,
P Q' s, tp, si7, Uy, ete. refer to those of U’ where as P, @), sp, Lp, sy, ly, etc. refer to those
of U. In what follows, either U is a U- or a U-Fragment of U’, or vice versa.

(3) If U and U’ are the U- and U-Fragments of an augmented graph, U, then the edges
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second kind. By our assumption the total number of such disjoint ties and hence the separation
number A must not exceed one. But, since B is a bridge, A(U™; E1, E3) must be at least one;
let veut € V(F1 N Fy), where (Fy, F3) is the cutting pair corresponding to this .

Furthermore, veyy € N(B). This is a consequence of the following reasoning: Since U is
feasible, and has no external vertex of attachment on Q]sg;{g[, s and ¢} must be distinct, i.e.,
B has at least two vertices of attachment on P]s;{[. If veye € V(P]s;¢[) or € V(Qlsg;tg[) then
there is a vertex of attachment z € V(P]s;t[), where z is distinct from vcy. Hence there is a path
from z to a vertex of R]sqg;lg[ in B; but such a path avoids vy, resulting in a contradiction.

As a result, it is easy to see that in order to determine if a bridge B is irreducible with
respect to a path R, we only have to find if the separation number A(U™; Ey, E2) > 1. This can
be done in O(|E|) time. O

Notation 4.4 It will be customary to associate following named vertices with an augmented
graph. An augmented graph U has two distinguished vertices [p and rp on P[s;t], and two
distinguished vertices lg and rg on @Q[s;t], such that all the vertices of attachment of all of its
BPQ bridges lie on P[lp;rp] and Q[lg;rg] Also, the left-most and right-most upper external
vertices of attachment on P are denoted by sy and {y and the left-most and right-most lower
external vertices of attachment on @ by sy, and {j,, respectively. [

Definition 4.5 U-FRAGMENT AND COMPLEMENTARY U-FRAGMENT.

Let U be a feasible augmented graph with a single (feasible) B”“-bridge, B, such that the
pair of vertices associated with B is (sg,lg). Let R[sg;lg] be a path in B, connecting sg and
lg, and let J' = {P} U{Q} U{R} be a subgraph of U. As a result B will be decomposed into
the following sets of bridges of J' in U:

1. The set of bridges, By, with vertices of attachment on P and R.
2. The set of bridges, By, with vertices of attachment on ¢} and R.
3. The set of bridges, Bs, with vertices of attachment on P, () and R.
4. The set of bridges, By, with vertices of attachment solely on R.

Assume that the path R is such that the bridges of B4 avoid those of By, By and Bs.
Note that a path R’ in B connecting sg and {g can be found in O(|£|) time and then, using
an algorithm similar to the ambitus-finding algorithm (see Tarjan and Mishra[13]), R’ can be

modified to R in O(|E|) time such that bridges of B4 avoid those of By, By and Bs.

e B is irreducible with respect to R. (See Figure 7.)

If |B3| # 0 then the U- and U-Fragment of B are undefined; otherwise, they are as follows:

The subgraph U’ = {R[sg;lgl} U{Q[sq;tg]} U By of U, is called a U-Fragment of U on
Q. The set of external vertices of attachment, FA, of U’ consists of (i) the external vertices of
attachment of U on Q]sq; [, and (ii) the vertices of attachment of By on R]sq;tq[. Ip = I
=sand rp =rg =1

The subgraph U’ = {Q[s; sgl*R[sq;tol*Qlg; ]} U{P}UB; of U, is called a complementary
U-Fragment (or simply U-Fragment) of U on Q. The set of exlernal vertices of attachment, FA,
of U consists of (i) the external vertices of attachment of U on J]sg;lg[, (ii) the vertices of
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vertices sg and {g. B is said to be reducible with respect to R, if (i) U has no external vertex of
attachment on Q]sq; {g[ and (i) has a vertex, veu € N(B), (called the cut vertez) in the nucleus
of B, N(B), satisfying the following condition:

If N is an arbitrary path in B that connects a vertex of Ps;t[ with a vertex of
Qlsg;tgl or R]sg;tg[ and meets P, Q and R only in its end vertices then N contains

Vcut -
Otherwise, B is said to be irreducible with respect to R. [

When U has a single reducible BF?-bridge, the analysis of U is carried on by analyzing only
a subgraph U of U (U-fragment). Otherwise, the divide-and-conquer algorithm may need to
explore at most two subgraphs to determine if it has the required structure. In the former case,
we say the graph U reduces to the subgraph U

Remark 4.3 Let U be a feasible augmented graph with a single (feasible) BF?-bridge, B, as
in the preceding definition. Let R[sqg;lg] be a path in B connecting sg and {g-the vertices
associated with B. Whether B is reducible with respect to R can easily be determined in O(|£])
time as a consequence of the following observation.

It can be seen that B is irreducible with respect to R iff the following holds:

There are at least two vertex-disjoint paths Ry[a;a’] and Ry[b;b'] in B such that
(i) R, and Ry meet P]s;t[ only in a and b, respectively; (ii) R, meets only one
of Qlsq;tg[ and R]sg;tlg[ only in a'; and (iii) Ry meets only one of Q)sg;tg[ and
Rlsg;tg[ only in b'.

Suppose that there are no two vertex-disjoint paths R, and Rp as in the above statement.
We shall show that B has a cut vertex vey € N(B), and B is reducible with respect to R.

Let U~ be the subgraph of U obtained by deleting the residual subpaths J[sg;s] and J[t;tg].
Let £y = E(P]s;t]) and E; = E(R]sg;tlg[) U E(Q]sg;tg[) be disjoint subsets of E(U~). Let
A = AU Eq, Eq) be the separation number of £q and Eo in U~ (Cf. pp. 43, Tutte(1984)[20] ?).
By a version of Menger’s Theorem, due to Nash-William and Tutte (Theorem I1.36[20], also see
[9] and [14]), there exists a set of A disjoint ties between between E; and F;. Since the vertices
of P[sp;tp] are disjoint with those of R]sg;tg[ and Q]sg;tg[, these ties must be ties of the

?We consider a graph G in which two disjoint subsets £y and Ej of E(G) are specified. Following Tutte, we
define a cutting pair of E1 and E> in G as an ordered pair (F1, F2) of edge-disjoint subgraphs of G such that

E1 g E(F1), E2 g E(FQ), and EJ U E2 = G

We define the order of a cutting pair (Fy, Fz) of E1 and E; as |V(Fi N F:)|, the number of common vertices of
F1 and F5. We now define )\(G; E1,E2) as the least number of vertices required to separate 1 and Ez. Thus

A(G;E],EQ) = MIN(Fl,Fg) |V(F1 n F2)|,

where the minimum is taken over all cutting pairs (Fl, F2> of £1 and E> in G.

There are two kinds of tie between E1 and E». A tie of the first kind i1s a vertex graph contained in both <E1>
and <E2> A tie of the second kind is a path in G with one end in <E1> but not <E2>, with its other end in <E2>
but not {£1), and with no edge or internal vertex in either {E1) or (Es).
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end{LaBeL-Tvypre-1V.} [

In order to prove an O(|E|-|V|) time-complexity of the algorithm, we need to show that each
substep of step3 takes O(|E|-|V]) time. In the next two sections, we devise a divide-and-conquer
algorithm for this purpose.

4 Analyzing Augmented Graphs

Now we are ready to study an algorithm to determine if an augmented graph is feasible and if
so, if it has one of the requisite disjoint cross-cut pairs. The techniques developed to analyze
an augmented graph can then be easily modified to devise an algorithm to determine the set of
admissible edges.

We start by introducing some further new concepts: Of particular interest to us, will be
the following special kinds of augmented subgraphs: (i) U-Fragment and (i7) its accompanying
U-Fragmenl. These augmented subgraphs allow us to develop an O(|E|-|V]) time algorithm to
detect if a feasible augmented graph has a P-cross-cutl pair, Q-cross-cut pair, PQ)-cross-cul pair
or ST-cross-cut pair.

§4.1 U-Fragment and Complementary U-Fragment. Consider an augmented graph U
with a set of BP?-bridges. If U is feasible and contains a single block of B¥?-bridges, B, then
the block B is said to be a feasible block of BY? -bridges. Similarly, if U is feasible and contains
a a single BP9-bridge, B. Then the bridge B is said to be a feasible BF? -bridge.

Also, there will be occasions where we distinguish among the feasible augmented graphs by
referring to them as: PQ-feasible (if |[LA(U)| # 0 and |[UA(U)| # 0), P-feasible (if |[LA(U)| = 0),
and Q- feasible (if [UA(U)| = 0).

Definition 4.1 THE PAIR OF VERTICES ASSOCIATED WITH A BP?-BRIDGE.
Let U be a feasible augmented graph, with a single (feasible) BY?-bridges B. We associate
a pair of left- and right-most vertices (either (sp,tp) or (sg,lg)) with the bridge B as follows:
1. sp = tp and sg and tg are distinct: The pair of vertices associated with B is (sg,{qg).
2. sg = lg and sp and lp are distinct: The pair of vertices associated with B is (sp,ip).
3. sp and tp as well as sg and lg are distinct:

(a) U is PQ-feasible: The pair of vertices associated with B is (sp,{p) or (sg,lq), the
choice being arbitrary.

(b) U is P-feasible: the pair of vertices associated with B is (sqg,tg).
(c) U is Q-feasible: the pair of vertices associated with B is (sp,tp). [

Definition 4.2 REDUCIBLE AND IRREDUCIBLE BP?-BRIDGE (WITH RESPECT TO R).
Let U be a feasible augmented graph with a single (feasible) BP?-bridge, B, such that the
pair of vertices associated with B is (sg,lg). Let R[sg;lg] be a path in B connecting the
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Let U be an augmented graph. We associate one of the paths P and ¢ with U such that
if P (respectively @) is associated with U then U has no external vertex of attachment on P
(respectively, @). We represent an augmented graph with the associated path, P or @, by
(U : P)and (U :Q), respectively.

Definition 3.5 SET OF FEASIBLE EDGES.

Let U be an augmented graph with the path P associated with it. A sel of feasible edges of
(U : P), FE(U : P), is a set of distinct edges of P[s;t], {e1, €z, ..., ex}, such that activation of
an edge e = [u,v] € P[s;{] results in a feasible augmented graph u(U : e) if and only if

e € FE(U : P).
The set of feasible edges of (U : ()) is defined in an identical manner. [
Clearly, if e € P[s;t]\ FE(U : P), it is unidirectional.

Definition 3.6 SET oF ADMISSIBLE EDGES.

Let U be an augmented graph with the path P associated with it. A set of admissible edges
of (U: P), AE(U : P), is a set of distinct edges of P[s;{], {e1, €2, ..., €x}, such that

1. Activation of an edge e = [u,v] € P[s;1] results in a (feasible) augmented graph (U : e)
with a P-, Q-, PQ- or an ST-cross-cut pair, if e € AE(U : P).

2. Activation of an edge e = [u,v] € P[s;{] results in an augmented graph u(U : e) with no

pair interlacing bights, if e ¢ AE(U : P).
The set of admissible edges of (U : @) is defined in an identical manner.  [J

Finally, using the notion of admissible edges, the LABEL-TYPE-IV algorithm may be ex-
pressed as follows:

§3.4 Labeling the edges of a Type.IV Graph Let G be TyPE.IV graph with the paths
P and Q.

Algorithm LABEL-TYPE-IV(G):
stepl. Label every edge [s, u] incident on s, (s, u) and every edge [u,?] incident on ¢, (u,t).
step2. Label every edge e of the BY?-bridge not incident on s or ¢, bidirectional.

step3. Let AE(G : P) C E(P[s;t]) and AE(G : Q) C E(Q[s;t]) be the sets of admissible edges
of the augmented graph GG, when the paths associated with G are P and @), respectively.

1. Label every edge e = [u,v] € AE(G : P) bidirectional and every edge e = [u,v] €
E(P[s;t]) \ AE(G : P), (u,v),if u is to the left of v on P.

2. Label every edge e = [u,v] € AE(G : @) bidirectional and every edge e = [u,v] €
E(Q[s;t]) \ AE(G : Q), (u,v),if u is to the left of v on Q.
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(b)

Two Main Casesfor P-Cross-Cut Pair

Figure 6: Case.b: P-Cross-Cut Pair.

t, without loss of generality, assume that x4 is distinct from ¢. Since U has an external vertex
of attachment ¢ € P]zy;2[, ¢ must be one of u and v; and hence, e € P[zy; 23]

If e € P[y;; z2], the the simple paths P[s;t] and P[s;zq]* Ny[a1;ao]* Plaa; y1]x Nafyr; yo]*
Q[y2; t] traverse e in either direction, and e is bidirectional. (Figure 6(a).)

Next, if e € P[zy1;y1], then we treat this case differently, depending on whether x4 is distinct
from s or not. If z; # s, then the simple paths P[s;t] and Q[s;y2]* Noy2;y1]x Plyr; z1]*
Ni[z1; 2] Plzg;t] traverse e in either direction, and e is bidirectional.(Figure 6(b).)

If, on the other hand, z1 = s, we shall see that the cross-cuts can be so modified that this
case reduces to one of the earlier cases. Clearly, e € P[sp;y1] and B has a vertex of attachment
at s and a vertex of attachment at y € Q]s;¢[. Let L[sp;y] be a cross-cut of J between s}
and y. If L avoids both Ny and Ny then the P-cross-cut pair defined by N{ and L satisfies the
condition shown in Figure 6(a).

Hence assume that L does not avoid both Ny and N;. Then there is a vertex z € L]sh; y[
such that L[sp; 2] meets Ny or Ny (but not both) in 2. If L meets N; in z, then the P-cross-cut
pair Ny and L[sp; z]* Na[z; y2] satisfies the first condition. On the other hand, if L meets Ny in 2z
then the P-cross-cut pair L[s}p; z]* Ni[2; 23] and N, satisfies the condition shown in Figure 6(b).

(2) We show that there is no simple path A'[s;?] in G such that A’ traverses e in the order
v and u. Assume to the contrary, then the subpaths A'[s;v] and A’[u;t] are vertex disjoint
paths in U. Notice that v and v are distinct from s and ¢, and hence, are external vertices of
attachment of U introduced as a result of the activation of the edge e. Moreover, since A’[s; v]
does not contain w or ¢, it is a not a subpath of J and hence a path associated with a bight, Ay
of U between s and v. By a similar argument, A’[u;1] is a path associated with a bight, A, of
U between u and ¢. But since u is to the left of v on P, s and v separate u and ¢ on J; and A;
and Aj form a pair of interlacing bights. This however is a contradiction. [

§3.3 Feasible and Admissible Edges. Now, based on the characterization of “bidirection-
ality” developed in the preceding section, we are ready to introduce the concept of feasible and
admissible edges.
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Figure 5: Case.a: PQ-Cross-Cut Pair.

is, a1, ag by and by are four distinct vertices on J such that there is a pair of interlacing bights
Ay between a; and ag, and Ay between by and by, where aq, ag, by and by are either external
vertices or one of s and {. Hence U has at least two distinct external vertices of attachment and
the bridges of of B have at least four distinct vertices of attachment.

Since U is infeasible, we may assume that U has no external vertex of attachment on
Qlsq;tgl, say. First,if s; = {5, then each of the paths associated with A; and A; must contain
at least two of the three vertices sp(= {p), sg and {g, contradicting the vertex-disjointness of
Ay and A,. Hence, we assume that s, # ¢35 and that all the external vertices of attachment
lie only on J[sg;sp]. Then a; and as lie on J[sg;sp], and the path associated with A; must
contain the vertices sg and sp, and every path associated with any other bight A; must meet
Ai—again a contradiction. [J

§3.2 Bidirectionality of an Edge

Theorem 3.2 Let e = [u,v] be an arbitrary edge on the path P[s;t] or Q[s;t] of a TyPE.IV
graph, G; and let U = u(G : e) be the augmented graph obtained from G by the activation of the
edge e.

1. If U is feasible and has a P-, -, PQ- or ST-cross-cut pair then e is a bidirectional edge.

2. If U has no pair of interlacing bights then e is a unidirectional edge.

PROOF.

Without loss of generality assume that e € P[s;t] and u is to the left of v on P.

(1) Since U is feasible, and since U has no external vertex of attachment on @, e € P[sp; (5]
Clearly U can have only P- or P@)-cross-cut pairs.

(Cask.A) U has PQ-cross-cut pair, Ny[z1;z2] and Nz[y1;y2], where 1 is to the left of y;
on P]s;t[. Since not all the external vertices of attachment lie only on the subpath J[ys;z1]
or only on the subpath J[yi;z3], we have e € P[z1;y1]. But since the simple paths P[s;t] and
Q[s; y2] *Nafy2; 1] *Plyr; z1] *Ny[z1; 9] *Q[x2;t] traverse e in either direction, e is bidirec-
tional. (Figure 5.)

(Cask.B) U has a P-cross-cut pair, Ny[z1;x2] and Na[yi;yz] where 21 and zy € P[s;t],
y1 € Play; o] and yo € Q]s;t[. Since at least one of the vertices 2y and x5 is distinct from s and
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P
S t
= b2
a,
Figure 4: Interlacing Bights.
3. There is a lower external vertex of attachment ¢ € Qzy;2o[. U

Definition 3.3 BIGHTS AND INTERLACING BIGHTS.

Let the augmented graph U and the cycle J = {P} U{Q} be as defined earlier. Let ¢ and b
be two distinct vertices on J such that they are either external vertices of attachment or one of
s and 1. Let A be a path in G connecting the vertices ¢ and b, where A is not a subpath of J.

This path can be dissected uniquely into an alternating sequence of (possibly empty) common
sections (subpaths of J) and cross-cuts of J. A suitable subpath of A, A[a; '], meets J in its end
vertices @’ and b’ such that the common end sections Ala;a’] and A[b’; b] are subpaths of J. We
say A[a’;b'] is a bight of J between the vertices a@ and b; and A[a;b] = J[a; a'] x Ala’; 6]+ J[b'; ]
the path associated with the bight.

Let a1, as, by and by be four distinct vertices on J such that they are external vertices of
attachment or one of s and . Let A;[a};a}] and A[b]; 0] be the bights of J between a; and
a9, and by and by, respectively. We say the bights A; and A, interlace, if the associated paths
are vertex-disjoint and a; and ay separate by and by in the cycle J. (Figure 4.) O

Definition 3.4 FEASIBLE AUGMENTED GRAPH.

Let U be an augmented graph with the set of BY?-bridges, B, such that U/ has at least two
distinct external vertices of attachment and the bridges of B have at least four distinct vertices
of attachment. U is said to be feasible if it satisfies the following two conditions:

1. If U has no external vertex of attachment on Q]sqg;tg[ (where sg # tg) then (i) s} and tp
are distinct and (i) not all its external vertices lie only on J[sg; sp] or only on J[{};lg].

2. If U has no external vertex of attachment on P]sp;{p[ (where sp # (p) then (i) s, and &,
are distinct and (7i) not all its external vertices lie only on J[sf); sp] or only on J[tp; (5]

Otherwise, U is said to be infeasible. [

Lemma 3.1 Let U be an augmented graph. If U is infeasible then U does not have a pair of
interlacing bights.

PROOF.

Let U be an augmented graph with the set of BF?-bridges, B. Assume to the contrary—that
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Figure 3: Interlacing Cross-Cuts.

1. 21, y1 € P]s;t[ and x4, y2 € Q]s;t[, where x; is to the left of y; on P.

2. Not all the external vertices of attachment lie only on the subpath J[yz; 2] or only on the
subpath J[y;; z2].

o ST-Cross-CUT PAIR, if it satisfies the following two conditions:
1. ¢y = s, 29 =1, y1 € P]s;t[ and y € Q]s; 1.

2. There are an upper external vertex of attachment on P]s;¢[ and a lower external vertex

of attachment on Q]s;¢][.

e P-Cross-CutT PaIR, if it satisfies the following three conditions:

1. @1, 3 € P[s;t] and at least one of them is distinct from s and ¢.
2. y1 € P]s;t[ and yo € Q]s; 1.
3. There is an upper external vertex of attachment ¢ € Play; x5

o ()-CRrOss-CuT PAIR, if it satisfies the following three conditions:

1. 21, x93 € Q[s;1] and at least one of them is distinct from s and .

2. y1 € Q]s;t[ and yo € P]s; 1.
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Figure 2: An Augmented Graph.

§3.1

Definition 3.1 Let U be a graph, consisting of the cycle J = {P} U {Q} and a set (possibly,
empty) of BF@-bridges, B. Some (possibly none) of its vertices on P]s;¢[ may be labeled as
upper external vertices of attachment, UA, and some (possibly none) of its vertices on Q]s; [, as
lower external vertices of attachment, LA. The set {UA}U{LA} is its set of external vertices of
attachment, FA. We refer to U as an Augmented Graph. (See Figure 2: UA = {eq, e3, €3} and
LA = {eq4}.) U

Note that every TYPE.IV graph with no external vertex of attachment is trivially an aug-
mented graph.

Usually, a non-trivial augmented graph may be created by activation of an edge as follows:

Let e = [u,v] be an arbitrary edge on the path P[s;t]. Let u be to the left of v on P[s;{].
We activate the edge e by introducing:

1. An external vertex of attachment at w, if u is distinct from s.

2. An external vertex of attachment at v, if v is distinct from ¢.

We say that the resulting graph, an augmented graph, is obtained from G by the activation of
the edge e, and represent it by u(G : e).

In general, the external vertices will be created in the process of recursive analysis of the
graph and represent conduits through which certain vertex disjoint paths may enter and exit
the augmented graph.

Definition 3.2 INTERLACING CROSs-CUTS.

Let U be an augmented graph with a cycle J = {P} U {Q} and let Ny[z1; 2] and Na[y1; y2]
be a pair of interlacing vertex-disjoint cross-cuts such that not all the vertices z1, x5, y1 and
lie only on P[s;t] or lie only on @[s;t]. Such a pair of cross-cuts (Figure 3) is said to be a:

o PQ)-Cross-CuT PAIR, if it satisfies the following two conditions:
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common steps and retain enough informations from one labeling to another future labeling, we
could improve the effliciency of the over-all algorithm.

Here, we will see how to exploit the intuitions noted above in order to devise an algorithm
that can label the edges of P and @ of a TyPE.IV graph correctly in time O(|E| - |V|). Such
an algorithm would be adequate for our stated goal of finding an O(|£|- |V|) time algorithm for
the general “bidirectional edges problem.”

Towards this goal, we proceed by forming a characterization of the bidirectionality of an edge
of the path P[s;{] in terms two properties: feasibility property and admissibility property, the
later being a stronger condition. These properties lead to the definitions of two subsets of the

edges E(P[s;t]): the feasible edges, FE(G : P) and the admissible edges, AE(G : P).
E(P[s;t]) O FE(G:P) O AE(G:P).

The feasible edges are relatively easy to compute; but the admissible edges cause more compli-
cations as they require one to detect if the graph has certain pairs of interlacing vertex-disjoint
cross-cuts (with respect to the cycle J = {P}U{Q}). However, since the bidirectional edges on
P and @ of a TYPE.IV graph are simply

AE(G: P)UAE(G: Q),
it suffices to show how to compute AE(G : P) in time O(|E| - |V]).

§2.3 Some Notations Let G, s, t, P[s;t], Q[s;t] and J = {P} U {Q} be as before. If B
is a bridge of the cycle J (and similarly, for B, a block of bridges) with at least one vertex of
attachment on P]s;t[, then the left- and the right-most vertices of attachment of B on P[s;{]
are referred to by sp(B) and {p(B) (and, in case of a block of bridges, B, sp(B) and tp(B)),
and the left-most and the right-most vertices of attachment of B on P]s;t[ are referred to by
sp(B) and tp(B) (and, in case of a block of bridges, B, sp(B) and {5(B)).

If, on the other hand, B is a bridge of the cycle J with at least one vertex of attachment on
Qls; [, then sg(B), lo(B), sg(B), tg(B), etc. are defined in an identical manner.

If the bridge or the block of bridges under consideration is clear from the context then we
simply write sp, sq, sp, s, P, lg, tp and {5.

3 Characterization of Bidirectionality

Let G be a TYPE.IV graph consisting of the cycle of J = {P} U{Q}, and a single B?-bridge,
B. In this section, we provide a new characterization for an edge e € E(P) to be bidirectional.

Before presenting the main theorem, we introduce the following notions:(i) an augmented
graph, (ii) and the conditions under which such a graph is feasible. The main admissibility
criterion is based on the condition whether a feasible augmented graph has certain pairs of
interlacing vertex-disjoint cross-cuts. Such pairs of cross-cuts are classified into four categories:
P-cross-cul pair, )-cross-cul pair, PQ-cross-cul pair and ST -cross-cut pair.

Finally, we introduce the concepts of (i) a Set of Feasible Edges and (it) a Set of Admissible
FEdges of an Augmented Graph with an associated path.
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e BY-BripGES: The set of bridges with no vertex of attachment on P]s;t[ and at least one
vertex of attachment on Q]s;¢[.

If a bridge B of J = PUQ in G is not a BF?-, BY- or B9-bridge then it has only s or ¢ as
vertices of attachment. [

Example 2.4 In the figure 1, we show BP?-, BP. and B?- bridges of the paths P and Q.
Bridges By, By and Bs are BPQ—bridges; By is a BP—bridge and Bs, a BQ—bridge.

Definition 2.5 AMBITUS.

Let J, P and Q be as in the previous definition. Then J is called an ambitus if every Bf-
or B%-bridge avoids every B?-bridge. ]

See Mishra and Tarjan[13] for a linear time algorithm to compute an ambitus.

Let B = By,..., By be the bridges of J in G. A non-empty subset of bridges B C B is called
a block of bridges if it satisfies the following two conditions: (1) If B; € B and B; and B; overlap,
then B; € B. (2) No non-empty proper subset of B satisfies the above condition.

We say B is proper, if it contains more than one bridge of J in GG, otherwise, it is degenerale.

§2.2 Henceforth, we assume that the graph G is a TyPE.IV graph satisfying the following
conditions:

Definition 2.6 TyYPE.IV GRAPHS.

A TYPE.IV graph G is a nonseparable graph G consisting of a cycle J containing the vertices
s and ¢ and exactly one BP?-bridge, such that if the vertices s and ¢ together with their incident
edges are deleted from G then the resulting derived subgraph is also nonseparable. ]

The following observation follows from the algorithmic results of [12]:

Theorem 2.1 Suppose we have an algorithm that correctly labels the edges of P[s;1] and Q[s; 1]
of a TYPE.IV graph G = (E,V) in time O(T(|E|,|V])) > O(|E| - |V]), where T(-,-) is a

monotonically-nondecreasing conver function in both its arguments, i.e.,
T(z, )+ T(y,) < T(z+vy,-) and T(,2)+T(,y) < T(,z+vy),

where x > 0 and y > 0.
Then there is a set of mutually recursive algorithms that correctly labels the edges of an
undirected connected strict graph G = (E,V) in time O(T(|E|,|V])). U

We also observed that using well-known algorithms for “two vertex disjoint paths problem,”
it is easy to label the edges of P and @ of a TYPE.IV graph correctly in time O(|£| - |V|2); this
insight leads to an over-all O(|E| - |V|?) time algorithm for an arbitrary undirected graph.

Essentially, such an algorithm “examines” each edge of the path P (and @) individually, in
order to find appropriate paths in the graph G that would yield a correct labeling. However,
many of the steps performed by the algorithm to label an edge of P are needlessly replicated
when a “near-by” edge of P is examined subsequently. Clearly, if we can economize on the
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Figure 1: BPQ- BY_ and B?-bridges of P and Q.

edges; B is a bridge of J in . The component C' of G~ is the nucleus of B (denoted, N(B)).
Such a bridge is called proper; if a bridge B does not have a nucleus (i.e., B is an edge), it is
degenerale.

If J is a cycle of the graph G, then a path N in G avoiding J but having its two ends z and
y in J is called a cross-cut of J between z and y. If B is a bridge of the cycle J in G, then the
vertices of attachment of B dissect J into subpaths called the residual paths of B in J.

Definition 2.2 RELATIONS BETWEEN BRIDGES.
Let By and B; be two distinct bridges of a cycle J of G.
o We say Bj avoids B if and only if one of the following two conditions is satisfied:

2. All the vertices of attachment of By are contained in a single residual path L of Bs.

e If By and B3 do not avoid one another we say that they overlap.

o If there exist two vertices of attachment zy and x5 of B; and two vertices of attachment g
and yy of By, all four distinct, such that z; and z, separate y; and gy, in the cycle J, then we
say that they interlace. [

Definition 2.3 BRIDGES WITH RESPECT TO THE PATHS.

Let G be an undirected graph with two distinguished vertices s and ¢ with two internally
vertex disjoint paths P[s;{] and Q[s;t], which meet each other only in their end vertices, s and
t; J ={P}U{Q} is a cycle in G. We consider three different classes of bridges with respect to
J:

o BP?_BRrIiDGES: The set of bridges with at least one vertex of attachment on PJs;¢[ and at
least one vertex of attachment on Q]s;[.

o BP-BripGEs: The set of bridges with at least one vertex of attachment on P]s;t[ and no
vertex of attachment on Q]s;{[.
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graph, and shows how this characterization can be used to devise an efficient algorithm. In
the last two sections (4 and 5), the algorithms are developed, followed by arguments for their
correctness and an analysis of their time-complexity. A key technical theorem is proven in the
appendix.

2 Overview

We begin by recalling some of the key notations and ideas developed in the companion paper[12]
and next, present an overview of an eflicient algorithm for the “bidirectional edges problem.”
In this paper, standard graph theoretic terminology is used without explicit definitions here;
readers unfamiliar with the terminology may consult [11,12] or [13].

Consider an undirected graph G = (V, E) consisting of a finite set V of vertices and a set
E of pairs of vertices, called edges. A path in G from w to v (u, v € V) in G is a sequence of
vertices in V' (u =) ug, w1, ..., up (= v) such that (u;,u;41) € £ for 0 < ¢ < k. (Sometimes
denoted by u —— v.) The vertices u and v are called the ends of the path P. All other vertices
of the path (i.e., u;’s for 0 < ¢ < k) are the internal vertices of the path.

If P is a path from » to v, w = ug,u1,...,ux = v, and 0 < ¢z < 7 < k then the subpath
from u; to uj, including both u; and u; is represented by P[u;;u;]; the subpath excluding u;
but including w;, by Plu;;u;]; the subpath including u; but excluding u;, by P[u;;u;[ and the

subpath excluding both w; and u;, by Plug;u;[. If Py = ug,uq,...,u; and Py = 4, wigq,. .., uk
are two paths then the concatenation of Py and Py is Py * Py = Ug, U1, .« «y Ujy Uit 1y - - -5 U
The path is simple if wug,...,ux are distinct (except possibly ug = wug) and the path is a

cycle if ug = wug. By convention there is a path of no edges from every vertex to itself (null
path), but a cycle must contain at least two edges. Two simple paths P; and P are said to be
vertex disjoint, if the vertices of P; and P, are mutually distinct; internally vertex disjoint, if
the internal vertices of P; and P, are mutually distinct.

§2.1 We recall the following definitions.

Definition 2.1 BRrIDGES.[Tutte]

Let J be a fixed subgraph of G. For a subgraph G of G, a vertex of altachment of G1 in G
is a vertex of (1 that is incident in G with some edge not belonging to GG1; subgraph G is said
to be J-detached in G, if all its vertices of attachment are in J. We define a bridge of J in G as
any subgraph B that satisfies the following three conditions:

e 3 is not a subgraph of J.
e B is J-detached in G.
e No proper subgraph of B satisfies both (1) and (2).

The set of vertices of attachment of a bridge B of a subgraph J in G is denoted by W (G, B) =
{Uo,l)l,...,ﬂk_l}. D

Let G~ be the graph derived from G by deleting the vertices of J and all their incident edges.
Let C' be any component of G~. Let B be the subgraph of G obtained from C' by adjoining to
it each edge of G having one end in C and one in J, and adjoining also the ends in J of all such
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1 Introduction

Let G = (V, F) be a finite undirected graph with two distinguished vertices, the source, s, and
the sink, t. We call an edge e = [u, v] of G ‘bidirectional’, if there are two simple paths connecting
s and ¢ and traversing e in either order—u, v and v, w. Similarly, we call an edge e = [u,v]
of G ‘unidirectional’, if every simple path connecting s and ¢ and containing e, traverses e only
in one order, say u, v; additionally, e is labeled (u,v). The “bidirectional edges problem” is
to find all the ‘bidirectional’ and ‘unidirectional’ edges of G, together with the labelings of the
‘unidirectional’ edges.

The notions of ‘unidirectional’ and ‘bidirectional’ edges can be formalized in terms of the
labeling function, £, that maps each undirected edge [u,v] to a subset of {(u,v), (v,u)}.

Definition 1.1 The edge-labeling function, £, is defined as follows:

(u,v), iff there is a simple path
(s =) wo, ..., Wi, Wig1, - .., W, (=1)
such that w; = w and w; 41 = v;
(v,u), iff there is a simple path
(s =) wo, ..., Wi, Wig1, -.., W, (=1)
such that w; = v and w;41 = u.

{([u,v]) 3

Clearly, an edge e = [u,v] is bidirectional, if {([u,v]) = {(u,v), (v,u)}; and unidirectional, if

{([u,v]) = {(w, 0)} or {{v,w)}. [

The relation between bidirectional edges problem and the classical two vertex disjoint paths
problem is elucidated in the previous installment of this paper[12]. Using the efficient algo-
rithms to find two vertex disjoint paths in an undirected graph (Cf. Ohtsuki[16], Seymour[18]
and Shiloach[19]; also, Mishra and Tarjan[13]), it is relatively easy to devise an algorithm for
bidirectional edges problem with time complexity of O(|E|* - |V]).

In this and its companion paper[12], we devise an O(|F|-|V|) time algorithm for bidirectional
edges problem; the algorithm makes a novel use of bridges of a circuit in a general graph. We
began in a prequel to this paper with a simple set of reduction processes which resulted in an
O(|E|-|V|*) time algorithm; here, we introduce some additional machinery that further reduces
the complexity to O(|F|-|V]). The algorithms described here first appeared in [10] and [11].

The problem of finding all bidirectional edges arises naturally in the context of the simulation
of an MOS transistor network, in which a transistor may operate as a unilateral or a bilateral
device, depending on the voltages at its source and drain nodes. (Cf. Brand[2].) For efficient
simulation, it is important to find the set of transistors that may operate as bilateral devices.
Also, sometimes it is desired that information propagates in one direction only, and propagation
in the wrong direction (resulting in a sneak path) can cause functional error. For a more detailed
discussions of this problem, also consult the followings: Frank[6], Barzilai, Breece, Huisman,
Iyengar and Silberman [1], Jouppi[7], Chen, Mathews and Newkirk[3], Brand[2], Lee, Gupta and
Breuer[8], and Cirit[4].

The paper is organized as follows: Section 2 provides an overview of the algorithm, with a
necessary recapitulation of the graph-theoretic terminology and the results developed in the com-
panion paper[12]. Section 3 provides a new characterization of the “path-edges” of a TYPE.IV
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ABSTRACT

The ‘“bidirectional edges problem” is to find an edge-labelling of an undirected network,
G = (V, E), with a source and a sink, such that an edge [u,v] € F is labelled (u,v) or (v, u)
(or both) depending on the existence of a (simple) path from the source to sink that visits
the vertices u and v, in the order u,v or v,u, respectively. In this paper, building upon the
machinery developed in a prequel, we devise an efficient algorithm for this problem with a
time complexity of O(|E| - |V|). The main technique exploits a clever partition of the graph
into a set of paths and bridges which are then analyzed recursively.

Bidirectional edges problem arises naturally in the context of the simulation of an MOS
transistor network, in which a transistor may operate as a unilateral or a bilateral device,
depending on the voltages at its source and drain nodes. Here, it is required to detect the
set of transistors that may operate as bilateral devices.

KEY WORDS.
Bridge, Cross-cut, Disjoint Paths, MOS Circuit, Pass Transistor, Sneak Path, complexity
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