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Abstract. This paper describes an efficient reduction of the learning
problem of ranking to binary classification. The reduction guarantees
an average pairwise misranking regret of at most that of the binary
classifier regret, improving a recent result of Balcan et al which only
guarantees a factor of 2. Moreover, our reduction applies to a broader
class of ranking loss functions, admits a simpler proof, and the expected
running time complexity of our algorithm in terms of number of calls to
a classifier or preference function is improved from Ω(n2) to O(n log n).
In addition, when the top k ranked elements only are required (k � n),
as in many applications in information extraction or search engines, the
time complexity of our algorithm can be further reduced to O(k log k+n).
Our reduction and algorithm are thus practical for realistic applications
where the number of points to rank exceeds several thousands. Much of
our results also extend beyond the bipartite case previously studied.
Our rediction is a randomized one. To complement our result, we also
derive lower bounds on any deterministic reduction from binary (pref-
erence) classification to ranking, implying that our use of a randomized
reduction is essentially necessary for the guarantees we provide.

1 Introduction

The learning problem of ranking arises in many modern applications, including
the design of search engines, information extraction, and movie recommendation
systems. In these applications, the ordering of the documents or movies returned
is a critical aspect of the system.

The problem has been formulated within two distinct settings. In the score-
based setting, the learning algorithm receives a labeled sample of pairwise pref-
erences and returns a scoring function f :U → R which induces a linear ordering
of the points in the set U . Test points are simply ranked according to the val-
ues of h for those points. Several ranking algorithms, including RankBoost [13,
21], SVM-type ranking [17], and other algorithms such as PRank [12, 2], were



designed for this setting. Generalization bounds have been given in this setting
for the pairwise misranking error [13, 1], including margin-based bounds [21].
Stability-based generalization bounds have also been given in this setting for
wide classes of ranking algorithms both in the case of bipartite ranking [2] and
the general case [11, 10].

A somewhat different two-stage scenario was considered in other publications
starting with Cohen, Schapire, and Singer [8], and later Balcan et al. [6], which
we will refer to as the preference-based setting. In the first stage of that setting,
a preference function h : U ×U 7→ [0, 1] is learned, where values of h(u, v) closer
to one indicate that v is ranked above u and values closer to zero the opposite.
h is typically assumed to be the output of a classification algorithm trained
on a sample of labeled pairs, and can be for example a convex combination of
simpler preference functions as in [8]. A crucial difference with the score-based
setting is that, in general, the preference function h does not induce a linear
ordering. The order it induces may be non-transitive, thus we may have for
example h(u, v) = h(v, w) = h(w, u) = 1 for three distinct points u, v, and w.
To rank a test subset V ⊂ U , in the second stage, the algorithm orders the points
in V by making use of the preference function h learned in the first stage.

This paper deals with the preference-based ranking setting just described.
The advantage of this setting is that the learning algorithm is not required to re-
turn a linear ordering of all points in U , which is impossible to achieve faultlessly
in accordance with a true pairwise preference labeling that is non-transitive. This
is more likely to be achievable exactly or with a better approximation when the
algorithm is requested instead, as in this setting, to supply a linear ordering,
only for a limited subset V ⊂ U .

When the preference function is learned by a binary classification algorithm,
the preference-based setting can be viewed as a reduction of the ranking problem
to a classification one. The second stage specifies how the ranking is obtained
using the preference function.

Cohen, Schapire, and Singer [8] showed that in the second stage of the
preference-based setting, the general problem of finding a linear ordering with
as few pairwise misrankings as possible with respect to the preference function
h is NP-complete. The authors presented a greedy algorithm based on the tour-
nament degree for each element u ∈ V defined as the difference between the
number of elements u is preferred to versus the number of those preferred to
u. The bound proven by these authors, formulated in terms of the pairwise dis-
agreement loss l with respect to the preference function h, can be written as
l(σgreedy, h) ≤ 1/2 + l(σoptimal, h)/2, where l(σgreedy, h) is the loss achieved by
the permutation σgreedy returned by their algorithm and l(σoptimal, h) the one
achieved by the optimal permutation σoptimal with respect to the preference
function h. This bound was given for the general case of ranking, but in the
particular case of bipartite ranking (which we define below), a random order-
ing can achieve a pairwise disagreement loss of 1/2 and thus the bound is not
informative.



More recently, Balcan et al [6] studied the bipartite ranking problem and
showed that sorting the elements of V according to the same tournament degree
used by [8] guarantees a pairwise misranking regret of at most 2r using a binary
classifier with regret r. However, due to the quadratic nature of the definition
of the tournament degree, their algorithm requires Ω(n2) calls to the preference
function h, where n = |V | is the number of objects to rank.

We describe an efficient algorithm for the second stage of preference-based
setting and thus for reducing the learning problem of ranking to binary classi-
fication. We improve on the recent result of Balcan et al. [6], by guaranteeing
an average pairwise misranking regret of at most r using a binary classifier with
regret r. In other words, we improve their constant from 2 to 1. Our reduction
applies (with different constants) to a broader class of ranking loss functions,
admits a simpler proof, and the expected running time complexity of our algo-
rithm in terms of number of calls to a classifier or preference function is improved
from Ω(n2) to O(n log n). Furthermore, when the top k ranked elements only
are required (k � n), as in many applications in information extraction or
search engines, the time complexity of our algorithm can be further reduced to
O(k log k + n). Our reduction and algorithm are thus practical for realistic ap-
plications where the number of points to rank exceeds several thousands. Much
of our results also extend beyond the bipartite case previously studied by [6] to
the general case of ranking. A by-product of our proofs is also a bound on the
pairwise disagreement loss with respect to the preference function h that we will
compare to the result given by Cohen, Schapire, and Singer [8].

The algorithm used by Balcan et al. [7] to produce a ranking based on the
preference function is known as sort-by-degree and has been recently used in the
context of minimizing the feedback arcset in tournaments [9]. Here, we use a
different algorithm, QuickSort, which has also been recently used for minimizing
the feedback arcset in tournaments [4, 3]. The techniques presented make use
of the earlier work by Ailon et al. on combinatorial optimization problems over
rankings and clustering [4, 3].

The remainder of the paper is structured as follows. In Section 2, we introduce
the definitions and notation used in future sections and introduce a family of
general loss functions that can be used to measure the quality of a ranking
hypothesis. Section 3 describes a simple and efficient algorithm for reducing
ranking to binary classification, proves several bounds guaranteeing the quality of
the ranking produced by the algorithm, and shows the running-time complexity
of our algorithm to be very efficient. In Section 4 we discuss the relationship of the
algorithm and its proof with previous related work in combinatorial optimization.
In Section ?? we derive a lower bound of factor 2 on any deterministic reduction
from binary (preference) classification to ranking, implying that our use of a
randomized reduction is essentially necessary for the improved guarantees we
provide.



2 Preliminaries

This section introduces several preliminary definitions necessary for the presen-
tation of our results. In what follows, U will denote a universe of elements (e.g.
the collection of all possible query-result pairs returned by a web search task)
and V ⊆ U will denote a small subset thereof (e.g. a preliminary list of relevant
results for a given query). For simplicity of notation we will assume that U is
a set of integers, so that we are always able to choose a minimal (canonical)
element in a finite subset (as we do in (9) below). This arbitrary ordering should
not be confused with the ranking problem we are considering.

2.1 General Definitions and Notation

We first briefly discuss the learning setting and assumptions made by Balcan
et al.’s [7] and Cohen et al. [8] and introduce a consistent notation to make it
easier to compare our results with that of this previous work.

Ground truth In [7], the ground truth is a bipartite ranking of the set V
of elements that one wishes to rank.3 A bipartite ranking is a partition of V
into positive and negative elements where positive elements are preferred over
negative ones and elements sharing the same label are in a tie. This is a natural
setting when the human raters assign a positive or negative label to each element.
Here, we will allow a more general structure where the ground truth is a ranking
σ∗ equipped with a weight function ω, which can be used for encoding ties. The
bipartite case can be encoded by choosing a specific ω as we shall further discuss
below.

In [8], the ”ground truth” has a different interpretation, which we briefly
discuss in Section 3.4.

Preference function In both [8] and [7], a preference function h : U×U → [0, 1]
is assumed, which is learned in a first learning stage. The convention is that the
higher h(u, v) is, the more our belief that u should be ahead of v. The function
h satisfies pairwise consistency : h(u, v) + h(v, u) = 1, but need not even be
transitive on 3-tuples. The second stage uses h to output a proper ranking σ, as
we shall further discuss below. The running time complexity of the second stage
is measured with respect to the number of calls to h.

Output of learning algorithm The final output of the second stage of the
algorithm, σ, is a proper ranking of V . Its cost is measured differently in [7]
and [8]. In [7], it is measured against σ∗ and compared to the cost of h against

3 More generally, the ground truth may also be a distribution of bipartite rankings,
but the error bounds both in our work and that of previous work are achieved by
fixing one ground truth and taking conditional expectation as a final step. Thus, we
can assume that it is fixed.



σ∗. This can be thought of as the best one could hope for if h encodes all the
available information. In [8], σ is measured against the given preference function
h, and compared to the best one can get.

2.2 Loss Functions

We are now ready to define the loss functions used to measure the quality of an
output ranking σ either with respect to σ∗ (as in [7]) or with respect to h (as in
[8]).

Let V ⊆ U be a finite subset that we wish to rank and let S(V ) denote the set
of rankings on V , that is the set of injections from V to [n] = {1, . . . , n}, where
n = |V |. If σ ∈ S(V ) is such a ranking, then σ(u) is the rank of an element
u ∈ V , where ”lower” is interpreted as ”ahead”. More precisely, we say that
u is preferred over v with respect to σ if σ(u) < σ(v). For compatibility with
the notation used for general preference functions, we also write σ(u, v) = 1 if
σ(u) < σ(v) and σ(u, v) = 0 otherwise.

The following general loss function Lω measures the quality of a ranking σ
with respect to a desired one σ∗ using a weight function ω (described below):

Lω(σ, σ∗) =
(

n

2

)−1∑
u 6=v

σ(u, v)σ∗(v, u)ω(σ∗(u), σ∗(v)) . (1)

The sum is over all pairs u, v in the domain V of the rankings σ, σ∗. It counts
the number of inverted pairs u, v ∈ V weighed by ω, which assigns importance
coefficients to pairs, based on their positions in σ∗. The function ω must satisfy
the following three natural axioms, which will be necessary in our analysis:

(P1) Symmetry: ω(i, j) = ω(j, i) for all i, j;
(P2) Monotonicity: ω(i, j) ≤ ω(i, k) if either i < j < k or i > j > k;
(P3) Triangle inequality: ω(i, j) ≤ ω(i, k) + ω(k, j).

This definition is very general and encompasses many useful, well studied dis-
tance functions. Setting ω(i, j) = 1 for all i 6= j yields the unweighted pairwise
misranking measure or the so-called Kemeny distance function.

For a fixed integer k, the following function

ω(i, j) =

{
1 if ((i ≤ k) ∨ (j ≤ k)) ∧ (i 6= j)
0 otherwise,

(2)

can be used to emphasize ranking at the top k elements. Misranking of pairs with
one element ranked among the top k is penalized by this function. This can be of
interest in applications such as information extraction or search engines where
the ranking of the top documents matters more. For this emphasis function, all
elements ranked below k are in a tie. In fact, it is possible to encode any tie
relation using ω.



The loss function considered in [6] can also be straightforwardly encoded
with the following emphasis bipartite function

ω(i, j) =


1 (i ≤ k) ∧ (j > k)
1 (j ≤ k) ∧ (i > k)
0 otherwise.

(3)

Items in positions 1, . . . , k for the permutation σ can be thought of as the positive
items (in a tie), and those in k+1, . . . , |V | as negative (also in a tie). This choice
coincides with (1−AUC), where AUC is the area under the ROC curve commonly
used in statistics and machine learning problems [14, 19].

Clearly, setting ω(i, j) = |s(i)−s(j)| for any monotone score function s works
as well. It is well known though that such a function can in fact be expressed as
a convex combination of functions of the type (3). Hence, a bipartite function
should be thought of as the simplest

In general, one may wish to work with a collection of ground truths σ∗
1 , . . . , σ∗

N

and weight functions ω1, . . . , ωN and a loss function which is a sum over the
individual losses with respect to σ∗

i , ωi, e.g. in meta searching4. Since our bound
is based on the expected loss, it will straightforwardly generalize to this setting
using the linearity of expectation. Thus, we can assume without loss of generality
a single ground truth σ∗ equipped with a single ω.

Preference Loss Function We need to extend the definition to measure the
loss of a preference function h with respect to σ∗. Recall that h(u, v) is In
contrast with the loss function just defined, we need to define a preference loss
measuring a ranking’s disagreements with respect to a preference function h.
When measured against σ∗, ω, the function Lω can be readily used:

Lω(h, σ∗) =
(

n

2

)−1∑
u 6=v

h(u, v)σ∗(v, u)ω(σ∗(u), σ∗(v)) . (4)

We use L to denote Lω for the special case where ω is the constant function 1,
ω = 1:

L(h, σ∗) =
(

n

2

)−1∑
u 6=v

h(u, v)σ(v, u) . (5)

The special case of L coincides with the standard pairwise disagreement loss of
a ranking with respect to a preference function as used in [8].

2.3 The Special Bipartite Case

A particular case of interest is when ω belongs to the family of weight functions
defined in (3). For this particular case we will use a slightly more convenient
4 The reason we have separate weight function ω’s is e.g. each search engine may

output top-k outputs for different values of k.



notation. For a set of elements V ⊆ U , Let ΠV denote the set of partitions of V
into two sets (positive and negative). More formally, τ ∈ ΠV is a function from
V to {0, 1} (where 0 should be thought of as the preferred or positive value,
and 1 the negative; we choose this convention so that τ(u) can be interepreted
as the rank of u, where there are two possible ranks). Abusing notation we say
that τ(u, v) = 1 if τ(u) < τ(v) (u is preferrede over v) and τ(u, v) = 0 otherwise
(note that here we can have τ(u, v) = τ(v, u) = 0). Our abuse of notation allows
us to use the readily defined function L to measure the loss of a ranking σ ∈ SV

against τ∗ ∈ ΠV (which will usually take the role of a ground truth):

L(σ, τ∗) =
(

n

2

)−1∑
u 6=v

σ(u, v)τ∗(v, u) .

Note that this coincides with Lω(σ, σ∗), where σ∗ is any ranking on V with
σ∗(u) < σ∗(v) whenever τ∗(u) < τ∗(v), and ω is as in (3) with

k = |{u ∈ V : τ∗(u) = 0}| .

A note on normalization: The bipartite case is the one considered in [6], with
a small different which is crucial for some of the bounds we derive. There, the
loss function is defined as

|{u, v : τ∗(u) < τ∗(v)}|−1
∑
u 6=v

σ(u, v)τ∗(v, u) . (6)

If we are working with just one τ∗, the two loss functions are the same up to a
constant. However, if we have a distribution over τ∗ and consider the expected
loss, then there may be a difference. For simplicity we will work with the defini-
tion derived from (4), and will leave the other choice for discussion in Section 4.

2.4 Independence on Irrelevant Alternatives and Regret Functions

The subset V is chosen from the universe U from some distribution. Together
with V , a ground truth ranking σ∗ ∈ S(V ), and an admissible weight function ω
are also chosen randomly. We let D denote the distribution on V, σ∗, ω. (In the
bipartite case, D is a distribution on V and on τ∗ ∈ Πv.)

Definition 1. A distribution D on V, σ∗, ω satisfies the pairwise independence
on irrelevant alternatives (IIA) property if for all distinct u, v ∈ U , conditioned
on u, v ∈ V the random variables σ∗(u, v)ω(u, v) and V \{u, v} are independent.

In the bipartite case this translates to

Definition 2. A distribution D on V, τ∗ satisfies the pairwise IIA property if
for all distinct u, v ∈ U , conditioned on u, v ∈ V the random variables τ∗(u, v)
and V \ {u, v} are independent.



Note that in the bipartite case, D can satisfy pairwise IIA while not satisfying
pointwise IIA. (Pointwise IIA means that conditioned on u ∈ V , τ∗(u) and
V \ {u} are independent.) In certain applications, e.g. when ground truth is
obtained from humans, it is reasonable not to assume pointwise IIA. Think of the
”grass is greener” phenomenon: a satisfactory option may seem unsatisfactory
in the presence of an alternative. Continuing the analogue, assuming pairwise
IIA means that choosing between two options does not depend on the presence
of a third alternative. (By choosing we mean that ties are allowed.)

In this work we do not assume pointwise IIA, and when deriving loss bounds
we will not assume pairwise IIA either. We will need pairwise IIA when working
with regret, which is an adjustment of the loss designed so that an optimal
solution would have a value of 0 with respect to the ground truth. As pointed
out in [6], the regret measures the loss modulo ”noise”.

Using regret (here) makes sense when the optimal solution has a strictly
positive loss value. In our case it can only happen if the ground truth is a proper
distribution, namely, the probability mass is not concentrated on one point.

To define ranking regret, assume we are learning how to obtain a full ranking
σ of V , using an algorithm A, so that σ = As(V ), where s is a random stream of
bits possibly used by the algorithm. For ranking learning, we define the regret
of A against D as

Rrank(A,D) = EV,σ∗,ω,s[Lω(As(V ), σ∗)]− min
σ̃∈S(U)

EV,σ∗,ω[Lω(σ̃|V , σ∗)] ,

where σ̃|V ∈ S(V ) is defined by restricting the ranking σ̃ ∈ S(U) to V in a
natural way.

In the preference classification setting, it makes sense to define the regret of
a preference function h : U × U 7→ {0, 1} as follows:

Rclass(h, D) = EV,σ∗,ω[Lω(h|V , σ∗)]−min
h̃

EV,σ∗,ω[Lω(h̃|V , σ∗)] ,

where the minimum is over h̃ a preference function over U , and ·|V is a restriction
operator on preference functions defined in the natural way. For the bipartite
special case, we have the simplified form:

Rrank(A,D) = EV,τ∗,s[L(As(V ), τ∗)]− min
σ̃∈S(U)

EV,τ∗ [L(σ̃|V , τ∗)] (7)

Rclass(h, D) = EV,τ∗ [L(h|V , τ∗)]−min
h̃

EV,τ∗ [L(h̃|V , τ∗)] . (8)

The regret measures how well an algorithm or a classifier performs compared
to the best ”static” algorithm, namely, one that ranks U in advance (in Rrank)
or provides preference information on U in advanced (in Rclass). Note that the
minimizer h̃ in (8) can be easily found by considering each u, v ∈ U separately.
More precisely, one can take

h̃(u, v) =


1 Eτ∗ [τ∗(u, v)|u, v ∈ V ] > Eτ∗ [τ∗(v, u)|u, v ∈ V ]
0 Eτ∗ [τ∗(u, v)|u, v ∈ V ] < Eτ∗ [τ∗(v, u)|u, v ∈ V ]
1u>v otherwise (equality)

(9)



Now notice that if D satisfies pairwise IIA, then for any set V0 containing
u, v,

Eτ∗ [τ∗(u, v)|V = V0] = Eτ∗ [τ∗(u, v)|u, v ∈ V ] .

Therefore, in this case the minh̃ and EV operators commute:

min
h̃

EV,τ∗ [L(h̃|V , τ∗)] = EV min
h̃

Eτ∗ [L(h̃|V , τ∗)] .

For our analysis it will indeed be useful to swap the min and EV operators. We
define

R′
rank(A,D) = EV,τ∗,s[L(As(V ), τ∗)]− EV min

σ̃∈S(V )
Eτ∗ [L(σ̃, τ∗)] (10)

R′
class(h, D) = EV,τ∗ [L(h|V , τ∗)]− EV min

h̃
Eτ∗ [L(h̃, τ∗)] , (11)

where now minh̃ is over preference functions h̃ on V . We summarize this section
with the following:

Observation 1 1. In general (using the concavity of min and Jensen’s inequal-
ity): R′

rank(A,D) ≥ Rrank(A,D);
2. Assuming pairwise IIA: R′

class(h, D) = Rclass(h, D) .

3 Algorithm for Ranking Using a Preference Function

This section describes and analyzes an algorithm for obtaining a global ranking
of a subset using a prelearned preference function h, which corresponds to the
second stage of the preference-based setting. Our bound on the loss will be
derived using conditional expectation on the preference loss assuming a fixed
subset V ⊂ U , and fixed σ∗ and ω. To further simplify the analysis, we assume
that h is binary, that is h(u, v) ∈ {0, 1} for all u, v ∈ U .

3.1 Description

One simple idea to obtain a global ranking of the points in V consists of using
a standard comparison-based sorting algorithm where the comparison operation
is based on the preference function. However, since in general the preference
function is not transitive, the property of the resulting permutation obtained is
unclear.

This section shows however that the permutation generated by the standard
QuickSort algorithm provides excellent guarantees.5 Thus, the algorithm we sug-
gest is the following. Pick a random pivot element u uniformly at random from
V . For each v 6= u, place v on the left6 of u if h(v, u) = 1, and to its right other-
wise. Proceed recursively with the array to the left of u and the one to its right
5 We are not assuming here transitivity as in most textbook presentations of Quick-

Sort.
6 We will use the convention that ranked items are written from left to right, starting

with the most preferred ones.



and return the concatenation of the permutation returned by the left recursion,
u, and the permutation returned by the right recursion.

We will denote by Qh
s (V ) the permutation resulting in running QuickSort

on V using preference function h, where s is the random stream of bits used
by QuickSort for the selection of the pivots. As we shall see in the next two
sections, on average, this algorithm produces high-quality global rankings in a
time-efficient manner.

3.2 Ranking Quality Guarantees

The following theorems give bounds on the ranking quality of the algorithm
described, for both loss and regret, on the general and bipartite cases.

Theorem 2 (Loss bounds in general case). For any fixed subset V ⊆ U ,
preference function h on V , ranking σ∗ ∈ S(V ) and admissible weight function
ω the following bound holds:

E
s
[Lω(Qh

s (V ), σ∗)] ≤ 2Lω(h, σ∗) (12)

Note: This implies by the principle of conditional expectation that

E
D,s

[Lω(Qh
s (V ), σ∗)] ≤ 2ED[Lω(h, σ∗)] (13)

(where h can depend on V ).

Theorem 3 (Loss and regret bounds in bipartite case). For any fixed
V ⊂ U , preference function h over V and τ∗ ∈ Π(V ), the following bound holds:

E
s
[L(Qh

s (V ), τ∗] = L(h, τ∗) . (14)

If V, τ∗ are drawn from some distribution D satisfying pairwise IIA, then

Rrank(Qh
s (·), D) ≤ Rclass(h, D) (15)

Note: Equation (14) implies by the principle of conditional expectation that
if V, τ∗ are drawn from a distribution D, then

E
D,s

[L(Qh
s (V ), τ∗)] = ED[L(h, τ∗)] (16)

(where h can depend on V ).
To prove these theorems, we must first introduce some tools to help analyze

QuickSort. These tools were first developed in [4] in the context of optimization,
and here we initiate their use in learning.



3.3 Analyzing QuickSort

Assume V is fixed, and let Qs = Qh
s (V ) be the (random) ranking outputted by

QuickSort on V using preference function h. During the execution of QuickSort,
the order between two points u, v ∈ V is determined in one of two ways:

– Directly: u (or v) was selected as the pivot with v (resp. u) present in the
same sub-array in a recursive call to QuickSort. We denote by puv = pvu

the probability of that event. In that case, the algorithm orders u and v
according to the preference function h.

– Indirectly: a third element w ∈ V is selected as pivot with w, u, v all present
in the same sub-array in a recursive call to QuickSort, u is assigned to the
left sub-array and v to the right (or vice-versa).
Let puvw denote the probability of the event that u, v, and w be present
in the same array in a recursive call to QuickSort and that one of them be
selected as pivot. Note that conditioned on that event, each of these three
elements is equally likely to be selected as a pivot since the pivot selection
is based on a uniform distribution.
If (say) w is selected among the three, then u will be placed on the left of v if
h(u, w) = h(w, v) = 1, and to its right if h(v, w) = h(w, u) = 1. In all other
cases, the order between u, v will be determined only in a deeper nested call
to QuickSort.

Let X, Y : V × V 7→ R be any two functions on ordered pairs u, v ∈ V ,
and let Z :

(
V
2

)
7→ R be a function on unordered pairs (sets of two elements).

By convention, we use X(u, v) to denote ordered arguments, and Yuv to denote
unordered arguments. We define three functions α[X, Y ] :

(
V
2

)
7→ R, β[X] :(

V
3

)
7→ R and γ[Z] :

(
V
3

)
7→ R as follows:

α[X, Y ]uv = X(u, v)Y (v, u) + X(v, u)Y (u, v)

β[X]uvw =
1
3
(h(u, v)h(v, w)X(w, u) + h(w, v)h(v, u)X(u, w))

+
1
3
(h(v, u)h(u, w)X(w, v) + h(w, u)h(u, v)X(v, w))

+
1
3
(h(u, w)h(w, v)X(v, u) + h(v, w)h(w, u)X(u, v))

γ[Z]uvw =
1
3
(h(u, v)h(v, w) + h(w, v)h(v, u))Zuw

+
1
3
(h(v, u)h(u, w) + h(w, u)h(u, v))Zvw

+
1
3
(h(u, w)h(w, v) + h(v, w)h(w, u))Zuv .

(17)

Lemma 1 (QuickSort decomposition).

1. For any Z :
(
V
2

)
7→ R,∑

u<v

Zuv =
∑
u<v

puvZuv +
∑

u<v<w

puvwγ[Z]uvw .



2. For any X : V × V 7→ R,

Es[
∑
u<v

α[Qs, X]uv] =
∑
u<v

puvα[h, X]uv +
∑

u<v<w

puvwβ[X]uvw .

Proof. To see the first part, notice that for every unordered pair u < v the
expression Zuv is accounted for on the RHS of the equation with total coefficient:

puv +
∑

w 6∈{u,v}

1
3
puvw(h(u, w)h(w, v) + h(v, w)h(w, u)) .

Now, puv is the probability that the pair uv is charged directly (by definition),
and 1

3puvw(h(u, w)h(w, v)+h(v, w)h(w, u)) is the probability that the pair u, v is
charged indirectly via w as pivot. Since each pair is charged exactly once, these
probabilities are of pairwise disjoint events that cover the probability space.
Hence, the total coefficient of Zuv on the RHS is 1, as is on the LHS. The second
part is proved similarly.

3.4 Loss Bounds

We prove the first part of Theorems 2 and 3. We start with the general case
notation. The loss incurred by QuickSort is (as a function of the random bits
s), for fixed σ∗, ω, clearly Lω(Qs, σ

∗) =
(
n
2

)−1∑
u<v α[Qs,∆]uv, where ∆ : V ×

V 7→ R is defined as ∆(u, v) = ω(σ∗(u), σ∗(v))σ∗(u, v) . By the second part of
Lemma 1, the expected loss is therefore

E
s
[Lω(Qs, σ

∗)] =
(

n

2

)−1
(∑

u<v

puvα[h, ∆]uv +
∑

u<v<w

puvwβ[∆]uvw

)
. (18)

Similarly, we have that Lω(h, σ∗) =
(
n
2

)−1∑
u<v α[h, ∆]uv. Therefore, using

the first part of Lemma 1,

Lω(h, σ∗) =
(

n

2

)−1
(∑

u<v

puvα[h, ∆]uv +
∑

u<v<w

γ[α[h, ∆]]uvw

)
. (19)

To complete the proof for the general (non-bipartite) case, it suffices to show
that for all u, v, w, β[∆]uvw ≤ 2γ[α[h, ∆]]uvw. Up to symmetry, there are two
cases to consider. The first case assumes h induces a cycle on u, v, w, and the
second assumes it doesn’t.

1. Without loss of generality, assume h(u, v) = h(v, w) = h(w, u). Plugging in
the definitions, we get

β[∆]uvw =
1
3
(∆(u, v) + ∆(v, w) + ∆(w, u)) (20)

γ[α[h, ∆]]uvw =
1
3
(∆(v, u) + ∆(w, v) + ∆(u, w)) . (21)



By the properties (P1)-(P3) of ω, transitivity of σ∗ and definition of ∆, we
easily get that ∆ satisfies the triangle inequality:

∆(u, v) ≤ ∆(u, w) + ∆(w, v)
∆(v, w) ≤ ∆(v, u) + ∆(u, w)
∆(w, u) ≤ ∆(w, v) + ∆(v, u)

Summing up the three equations, this implies that β[∆]uvw ≤ 2γ[α[h, ∆]]uvw.
2. Without loss of generality, assume h(u, v) = h(v, w) = h(u, w) = 1. By

plugging in the definitions, this implies that

β[∆]uvw = γ[α[h, ∆]]uvw = α[h, ∆]uw ,

as required.

This concludes the proof for the general case. As for the bipartite case, (20-21)
translates to

β[∆]uvw =
1
3
(τ∗(u, v) + τ∗(v, w) + τ∗(w, u)) (22)

γ[α[h, ∆]]uvw =
1
3
(τ∗(v, u) + τ∗(w, v) + τ∗(u, w)) . (23)

It is trivial to see that the two expressions are identical for any partition τ∗

(indeed, they count the number of times we cross the partition from left to right
when going in a circle on u, v, w: it does not matter in which direction we are
going). This concludes the loss bound part of Theorems 2 and 3.

ut
We place Theorem 2 in the framework used by Cohen et al [8]. There, the

objective is to find a ranking σ that has a low loss measured against h compared
to the theoretical optimal ranking σoptimal. Therefore, the problem considered
there (modulo learning a preference function h) is a combinatorial optimization
and not a learning problem. More precisely, we define

σoptimal = argmin
σ

L(h, σ)

and want to minimize L(h, σ)/L(h, σoptimal).

Corollary 1. For any V ⊆ U and preference function h over V , the following
bound holds:

E
s
[L(Qh

s (V ), σoptimal)] ≤ 2 L(h, σoptimal) . (24)

The corollary is immediate because technically any ranking and in particular
σoptimal can be taken as σ∗ in the proof of Theorem 2.

Corollary 2. Let V ⊆ U be an arbitrary subset of U and let σoptimal be as above.
Then, the following bound holds for the pairwise disagreement of the ranking
Qh

s (V ) with respect to h:

E
s
[L(h, Qh

s (V ))] ≤ 3 L(h, σoptimal). (25)



Proof. This result follows directly Corollary 1 and the application of a triangle
inequality. ut

The result in Corollary 2 is known from previous work [4, 3], where it is proven
directly without resorting to the intermediate inequality (24). In fact, a better
bound of 2.5 is known to be achievable using a more complicated algorithm,
which gives hope for a 1.5 bound improving Theorem 2.

3.5 Regret Bounds for Bipartite case

We prove the second part (regret bounds) of Theorem 3. By Observation 1, it
is enough to prove that R′

rank(A,D) ≤ R′
class(h, D). Since in the definition of

R′
rank and R′

class the expectation over V is outside the min operator, we may
continue fixing V . Let DV denote the distribution over τ∗ conditioned on V It
is now clearly enough to prove

E
DV ,s

[L(Qh
s , τ∗)]−min

σ̃
E

DV

[L(σ̃, τ∗)] ≤ E
DV

[L(h, τ∗)]−min
h̃

E
DV

[L(h̃, τ∗)] (26)

We let µ(u, v) = EDV
[τ∗(u, v)]. (By pairwise IIA, µ(u, v) is the same for all

V such that u, v ∈ V .) By linearity of expectation, it suffices to show that

E
s
[L(Qh

s , µ)]−min
σ̃

L(σ̃, µ)] ≤ L(h, µ)−min
h̃

L(h̃, µ) . (27)

Now let σ̃ and h̃ be the minimizers of the min operators on the left and right
sides, respectively. Recall that for all u, v ∈ V , h̃(u, v) can be taken greedily as
a function of µ(u, v) and µ(v, u) (as in (9)).

h̃(u, v) =


1 µ(u, v) > µ(v, u)
0 µ(u, v) < µ(v, u)
1u>v otherwise (equality) .

(28)

Using Lemma 1 and linearity, we write the LHS of (27) as:(
n

2

)−1
(∑

u<v

puvα[h− σ̃, µ]uv +
∑

u<v<w

puvw(β[µ]− γ[α[σ̃, µ]])uvw

)

and the RHS of (27) as:(
n

2

)−1
(∑

u<v

puvα[h− h̃, µ]uv +
∑

u<v<w

puvwγ[α[h− h̃, µ]]uvw

)
.

Now, clearly for all u, v by construction of h̃ we must have α[h − σ̃, µ]uv ≤
α[h − h̃, µ]uv. To conclude the proof of the theorem, we define F :

(
n
3

)
7→ R as

follows:



F = β[µ]− γ[α[σ̃, µ]]− (γ[α[h, µ]]− γ[α[h̃, µ]]) . (29)

It now suffices to prove that Fuvw ≤ 0 for all u, v, w ∈ V . Clearly F is a
function of the values of

µ(a, b) : a, b ∈ {u, v, w}
h(a, b) : a, b ∈ {u, v, w}
σ̃(a, b) : a, b ∈ {u, v, w}

(30)

(recall that h̃ depends on µ.) The µ-variables can take values satisfying following
constraints or all u, v, w ∈ V :

µ(a, c) ≤ µ(a, b) + µ(b, c) ∀ {a, b, c} = {u, v, w} (31)
µ(u, v) + µ(v, w) + µ(w, u) = µ(v, u) + µ(w, v) + µ(u, w) (32)

µ(a, b) ≥ 0 ∀ a, b ∈ {u, v, w} . (33)

(the second constraint is obvious for any partition τ∗.)
Let P ⊆ R6 denote the polytope defined by (31-33) in the variables µ(a, b)

for {a, b} ⊆ {u, v, w}. We subdivide P into smaller subpolytopes on which the h̃
variables are constant. Up to symmetries, we can consider only two cases: (i) h̃
induces a cycle on u, v, w and (ii) h̃ is cycle free on u, v, w.

(i) Without loss of generality, assume h̃(u, v) = h̃(v, w) = h̃(w, u) = 1. But
this implies that µ(u, v) ≥ µ(v, u), µ(v, w) ≥ µ(w, v) and µ(w, u) ≥ µ(u, w).
Together with (32) and (33) this implies that µ(u, v) = µ(v, u), µ(v, w) =
µ(w, v) and µ(w, u) = µ(u, w). Consequently

β[µ]uvw = γ[α[σ̃, µ]]uvw = γ[α[h, µ]]uvw = γ[α[h̃, µ]]uvw

=
1
3
(µ(u, v) + µ(v, w) + µ(w, u))

and Fuvw = 0 , as required.
(ii) Without loss of generality, assume h̃(u, v) = h̃(v, w) = h̃(u, w) = 1. This

implies that

µ(u, v) ≥ µ(v, u)
µ(v, w) ≥ µ(w, v)
µ(u, w) ≥ µ(w, u) .

(34)

Let P̃ ⊆ P denote the polytope defined by (34) and (31)-(33). Clearly F is
linear in the 6 µ variables when all the other variables are fixed. Since F is
also homogenous in the µ variables, it is enough to prove that F ≤ 0 for µ
taking values in P̃ ′ ⊆ P̃ , which is defined by adding the constraint, say,∑

a,b∈{u,v,w}

µ(a, b) = 2 .



It is now enough to prove that F ≤ 0 for τ∗ being a vertex of of P̃ ′. This
finite set of cases can be easily checked to be:

(µ(u, v),µ(v, u), µ(u, w), µ(w, u), µ(w, v), µ(v, w)) ∈ A ∪B

where A = {(0, 0, 1, 0, 0, 1), (1, 0, 1, 0, 0, 0)}
B = {(.5, .5, .5, .5, 0, 0), (.5, .5, 0, 0, .5, .5), (0, 0, .5, .5, .5, .5)} .

The points in B were already checked in case (i) (which is, geometrically, a
boundary of case (ii)). It remains to check the two points in A.
– case (0, 0, 1, 0, 0, 1): Plugging in the definitions, one checks that:

β[µ]uvw =
1
3
(h(w, v)h(v, u) + h(w, u)h(u, v))

γ[α[h, µ]]uvw =
1
3
((h(u, v)h(v, w) + h(w, v)h(v, u))h(w, u)

+ (h(v, u)h(u, w) + h(w, u)h(u, v))h(w, v))

γ[α[h̃, µ]]uvw = 0 .

Clearly F could be positive only of βuvw = 1, which happens if and only
if either h(w, v)h(v, u) = 1 or h(w, u)h(u, v) = 1. In the former case we
get that either h(w, v)h(v, u)h(w, u) = 1 or h(v, u)h(u, w)h(w, v) = 1,
both implying γ[α[h, µ]]uvw ≥ 1, hence F ≤ 0. In the latter case either
h(w, u)h(u, v)h(w, v) = 1 or h(u, v)h(v, w)h(w, u) = 1, both implying
again γ[α[h, µ]]uvw ≥ 1 and hence F ≤ 0.

– case (1, 0, 1, 0, 0, 0):Plugging in the definitions, one checks that:

β[µ]uvw =
1
3
(h(w, v)h(v, u) + h(v, w)h(w, u))

γ[α[h, µ]]uvw =
1
3
((h(u, v)h(v, w) + h(w, v)h(v, u))h(w, u)

+ (h(u, w)h(w, v) + h(v, w)h(w, u))h(v, u)) .

γ[α[h̃, µ]]uvw = 0 .

Now F could be positive if and only if either h(w, v)h(v, u) = 1 or
h(v, w)h(w, u) = 1. In the former case we get that either h(w, v)h(v, u)h(w, u) =
1 or h(v, u)h(u, w)h(w, v) = 1, both implying γ[α[h, µ]]uvw ≥ 1, hence
F ≤ 0. In the latter case either h(v, w)h(w, u)h(v, u) = 1 or h(u, v)h(v, w)h(w, u) =
1, both implying again γ[α[h, µ]]uvw ≥ 1 and hence F ≤ 0.

This concludes the proof for the bipartite case. ut

3.6 Time Complexity

Running QuickSort does not entail Ω(|V |2) accesses to hu,v. The following bound
on the running time is proven in Section 3.6.



Theorem 4. The expected number of times QuickSort accesses to the preference
function h is at most O(n log n). Moreover, if only the top k elements are sought
then the bound is reduced to O(k log k + n) by pruning the recursion.

It is well known that QuickSort on cycle free tournaments runs in time
O(n log n), where n is the size of the set we want to sort. That it is true
for QuickSort on general tournaments is a simple extension (communicated by
Heikki Mannila) which we present it here for self containment. The second part
requires more work.

Proof. Let T (n) be the maximum expected running time of QuickSort on a
possibly cyclic tournament on n vertices in terms of number of comparisons.
Let G = (V,A) denote a tournament. The main observation is that each vertex
v ∈ V is assigned to the left recursion with probability exactly outdeg(v)/n and
to the right with probability indeg(v)/n, over the choice of the pivot. Therefore,
the expected size of both the left and right recursions is exactly (n − 1)/2.
The separation itself costs n − 1 comparisons. The resulting recursion formula
T (n) ≤ n− 1 + 2T ((n− 1)/2) clearly solves to T (n) = O(n log n).

Assume now that only the k first elements of the output are sought, that is,
we are interested in outputting only elements in positions 1, . . . , k. The algorithm
which we denote by k-QuickSort is clear: recurse with min {k, nL}-QuickSort on
the left side and max {0, k − nL − 1}-QuickSort on the right side, where nL, nR

are the sizes of the left and right recursions respectively and 0-QuickSort takes 0
steps by assumption. To make the analysis simpler, we will assume that whenever
k ≥ n/8, k-QuickSort simply returns the output of the standard QuickSort,
which runs in expected time O(n log n) = O(n + k log k), within the sought
bound. Fix a tournament G on n vertices, and let tk(G) denote the running
time of k-QuickSort on G, where k < n/8. Denote the (random) left and right
subtournaments by GL and GR respectively, and let nL = |GL|, nR = |GR|
denote their sizes in terms of number of vertices. Then, clearly,

tk(G) = n− 1 + tmin{k,nL}(GL) + tmax{0,k−nL−1}(GR) . (35)

Assume by structural induction that for all {k′, n′ : k′ ≤ n′ < n} and for
all tournaments G′ on n′ vertices, E[tk′(G′)] ≤ cn′ + c′k′ log k′ for some global
c, c′ > 0. Then, by conditioning on GL, GR, taking expectations on both sides
of (35) and by induction,

E[tk(G) | GL,GR] ≤
n− 1 + cnL + c′ min{k, nL} log min{k, nL}+
cnR1nL<k−1 + c′ max{k − nL − 1, 0} log max{k − nL − 1, 0} .

By convexity of the function x 7→ x log x,

min{k, nL} log min{k, nL}+max{k−nL−1, 0} log max{k−nL−1, 0} ≤ k log k , (36)

hence

E[tk(G) | GL, GR] ≤ n− 1 + cnL + cnR1nL<k−1 + c′k log k. (37)



By conditional expectation,

E[tk(G)] ≤ n− 1 + c(n− 1)/2 + c′k log k + cE[nR1nL<k−1].

To complete the inductive hypothesis, we need to bound E[nR1nL<k−1] which
is bounded by n Pr[nL < k − 1]. The event {nL < k − 1}, equivalent to {nR >
n − k},occurs when a vertex of out-degree at least n − k ≥ 7n/8 is chosen as
pivot. For a random pivot v ∈ V , where V is the vertex set of G, E[outdeg(v)2] ≤
n2/3 + n/2 ≤ n2/2.9. Indeed, each pair of edges (v, u1) ∈ A and (v, u2) ∈
A for u1 6= u2 gives rise to a triangle which is counted exactly twice in the
cross-terms, hence n2/3 which upper-bounds 2

(
n
3

)
/n; n/2 bounds the diagonal).

Thus, Pr[outdeg(v) ≥ 7n/8] = Pr[outdeg(v)2 ≥ 49n2/64] ≤ 0.46 (by Markov).
Plugging in this value into our last estimate yields

E[tk(G)] ≤ n− 1 + c(n− 1)/2 + c′k log k + 0.46× cn,

which is at most cn + c′k log k for c ≥ 30, as required. ut

4 Discussion

4.1 History of QuickSort

The now standard textbook algorithm was discovered by Hoare [16] in 1961.
Montague and Aslam [20] experiment with QuickSort for information retrieval by
aggregating rankings from different sources of retrieval. They claim an O(n log n)
time bound on the number of comparisons although the proof seems to rely on
the folklore QuickSort proof without addressing the non-transitivity problem.
They prove certain combinatorial bounds on the output of QuickSort and pro-
vide empirical justification to its IR merits. Ailon, Charikar and Newman [4]
also consider the rank aggregation problem and prove theoretical cost bounds
for many ranking problems on weighted tournaments. They strengthen these
bounds by considering nondeterministic pivoting rules (arising from solutions to
certain ranking LP’s). This work was extended by Ailon [3] to deal with rankings
with ties (in particular, top-k rankings). Hedge et al [15] and Williamson et al
[22] derandomize the random pivot selection step in QuickSort for many of the
combinatorial optimization problems studied by Ailon et al.

4.2 The decomposition technique

The technique developed in Lemma 1 is very general and can used for a wide
variety of loss functions and variants of QuickSort involving nondeterministic
ordering rules (see [4, 3]). Such results would typically amount to bounding
β[X]uvw/γ[Z]uvw for some carefully chosen functions X, Z (depending on the
application).



4.3 Combinatorial Optimization vs. Learning

In Ailon et al’s work [4, 3] the QuickSort algorithm (sometimes referred to there
as FAS-Pivot) is used to approximate certain NP-Hard (see [5]) weighted in-
stances of minimum feedback arcset in tournaments. There is much similarity
between the techniques used in the analyses, but there is also a significant dif-
ference that should be noted. In the minimum feedback arc-set problem we are
given a tournament G and wish to find an acyclic tournament H on the same
vertex set minimizing ∆(G, H), where ∆ counts the number of edges pointing in
opposite directions between G, H (or a weighted version thereof). However, the
cost we are considering is ∆(G, Hσ) for some fixed acyclic tournament Hσ in-
duced by some permutation σ (the ground truth). In this work we showed in fact
that if G′ is obtained from G using QuickSort, then E[∆(G′,Hσ)] ≤ 2∆(G, Hσ)
for any σ (from Theorem 2). If H is the optimal solution to the (weighted)
minimum feedback arc-set problem corresponding to G, then it is easy to see
that ∆(H,Hσ) ≤ ∆(G, H) + ∆(G, Hσ) ≤ 2∆(G, Hσ). However, recovering G
is NP-Hard in general. Approximating ∆(G, H) (as done in the combinatorial
optimization world) by some constant factor7 1+ε by an acyclic tournament H ′

only guarantees (using trivial arguments) a constant factor of 2 + ε as follows:

∆(H ′,Hσ) ≤ ∆(G, H ′)+∆(G, Hσ) ≤ (1+ε)∆(G, H)+∆(G, Hσ) ≤ (2+ε)∆(G, Hσ) .

This work therefore adds an important contribution to [4, 3, 18].

4.4 Normalization

As mentioned earlier, the loss function L used in the bipartite case is not exactly
the same one used by Balcan et al in [6]. There the total number of ”misordered
pairs” is divided not by

(
n
2

)
but rather by the number of mixed pairs u, v such

that τ∗(u) 6= τ∗(v) (see (6)). We will not discuss the merits of each choice in
this work, but will show that the loss bound (first part) of Theorem 3 applies
to their normalization as well. Indeed, let ν : Π(V ) → R+ be any normalization
function that depends on a partition, and define a loss

L(X, τ∗) = ν(τ∗)−1
∑
u 6=v

X(u, v)τ∗(v, u)

for any X : V × V → R+ (X can be a preference function h or a ranking).
In [6], for example, ν(τ∗) is taken as |{u, v : τ∗(u) < τ∗(v)}| and here as

(
n
2

)
.

Since V, τ∗ are fixed in the loss bound of Theorem 3, this makes no difference
for the proof. For the regret bound (second part) of Theorem 3 this however
does not work. Indeed, the pairwise IIA is not enough to ensure that the event
u, v ∈ V determines ν(τ∗), and we cannot simply swap ED and minh̃ as we
did in Observation 1. Working around this problem seems to require a stronger
version of IIA which does not seem natural.
7 Kenyon-Mathiew and Schudy [18] recently found such a PTAS for the combinatorial

optimization problem.



5 Lower Bounds

Balcan et al [6] prove a lower bound of a constant factor of 2 for the regret bound
of the algorithm MFAT, defined as the solution to the minimum feedback arc-set
problem on the tournament V with an edge (u, v) if h(u, v) = 1. More precisely,
they show an example of fixed V, h and τ∗ ∈ Π(V ) such that the classification
regret of h tends to 1/2 of the ranking regret of MFAT on V, h. Note that in this
case, since τ∗ is fixed, the regret and loss are the same thing for both classification
and ranking. Here we show the following stronger statement which is simpler to
prove and applies in particular to the specific algorithm MFAT that is argued
there.

Theorem 5. For any deterministic algorithm A taking input V ⊆ U and pref-
erence function h on V and outputting a ranking σ ∈ S(V ) there exists a distri-
bution D on V, τ∗ such that

Rrank(A,D) ≥ 2 Rclass(h, D) (38)

Note that this theorem says that in some sense, no deterministic algorithm
that converts a preference function into a linear ranking can do better than a ran-
domized algorithm (on expectation) in the bipartite case. Hence, randomization
is essentially necessary in this scenario.

The proof is by an adversarial argument. In our construction, D will always
put all the mass on a single V, τ∗ (deterministic input), so the loss and regret
are the same thing, and a similar argument will follow for the loss. Also note
that the normalization ν will have no effect on the result.

Proof. Fix V = {u, v, w}, and D puts all the weight on this particular V and one
partition τ∗ (which we adversarially choose below). Assume h(u, v) = h(v, w) =
h(w, u) = 1 (a cycle). Up to symmetry, there are two options for the output σ
of A on V, h.

1. σ(u) < σ(v) < σ(w). In this case, the adversary chooses τ∗(w) = 0 and
τ∗(u, v) = 1. Clearly Rclass(h, D) now equals 1/3 (h pays only for misorder-
ing v, w) but Rrank(A,D) = 2/3 (σ pays for misordering the pairs u, w and
v, w).

2. σ(w) < σ(v) < σ(u). In this case, the adversary chooses τ∗(u) = 0 and
τ∗(v, w) = 1. Clearly Rclass(h, D) now equals 1/3 (h pays only for misorder-
ing u, w) but Rrank(A,D) = 2/3 (σ pays for misordering the pairs u, v and
u, w).

This concludes the proof.

6 Conclusion

We described a reduction of the learning problem of ranking to classification.
The efficiency of this reduction makes it practical for large-scale information



extraction and search engine applications. A finer analysis of QuickSort is likely
to further improve our reduction bound by providing a concentration inequality
for the algorithm’s deviation from its expected behavior using the confidence
scores output by the classifier. Our reduction leads to a competitive ranking
algorithm that can be viewed as an alternative to the algorithms previously
designed for the score-based setting.
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