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Abstract

We investigate numerically a 1956 conjecture of Payne, Polya, and Wein-
berger. The conjecture asserts that the ratio of the first two eigenvalues of
the Laplacian on a bounded domain 2 of the plane with Dirichlet boundary
conditions reaches its minimum value precisely when € is a disk. A crucial
feature of this problem is the loss of smoothness of the objective function
at the solution. The following results form the core of our numerical treat-
ment. First, we construct finite dimensional families of deformations of a
disk equipped with a uniform triangulation. This permits the formulation
of a discrete model of the problem via finite element techniques. Second, we
build on the work of M. Overton to derive optimality conditions in terms
of Clarke’s generalized gradients for nonsmooth functions. These ideas are
then combined into an algorithm and implemented in Fortran.
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1 Introduction

In 1956 a conjecture was formulated by Payne, Polya and Weinberger con-
cerning the ratio of the two smallest eigenvalues of the Laplacian on bounded
regions € of the plane [18]. More specifically, if A;(Q) < Ay(Q) denote these
eigenvalues, then they conjectured that the ratio, Ay/A{, attains its maxi-
mum precisely when Q is a disk. Recently, while the present work was still
in progress, Ashbaugh and Benguria have given a proof that the conjecture
is indeed true [1,2].

In this thesis we investigate this problem from a different perspective,
namely that of numerically minimizing this ratio for an appropriate dis-
cretized model. Optimization problems involving eigenvalues are particu-
larly interesting and challenging because the optimization objective often
forces some eigenvalues to coalesce at the solution point and this results in
a loss of smoothness. This is precisely what occurs in the above problem
since the second eigenvalue of the Laplacian on a disk has multiplicity two.
Methods for the optimization of the largest eigenvalue of a symmetric matrix
that can handle the lack of smoothness at the solution have recently been
devised by Michael Overton [16,15] who implemented them in an algorithm
which has been successfully applied to an extensive collection of problems
[16,8]. We extend these techniques to apply in our context.

The main steps are as follows. First we use finite elements to describe a
family Q(z) of perturbations of a disk of radius R. Here z lies in a bounded
open neighborhood U of (1,...,1) in ®™, and (1,...,1) is our approxi-
mation of the disk. Computing the eigenvalues of the Laplacian on Q(z) is
then reduced to computing the eigenvalues of the symmetric definite pen-
cil (A(z), B(z)), where A(z) is the stiffness matrix and B(z) is the mass
matrix corresponding to the given triangulation of ©(z) [19]. Next we ex-
tend the work of Overton and Womersley [17] to sums Y2 A; of the first
k eigenvalues of symmetric pencils (A, B). More precisely, we give a char-
acterization of the generalized gradient of Ele A; as a function of both A
and B. We then apply this result to obtain a description of the general-
ized gradient 2%, \;(z), the sum of the first k eigenvalues of A(z), B(z).
This, combined with Clarke’s calculus of generalized gradients [7], allows
us to derive a characterization of the generalized gradient of the function
p(z) = —(A1(@) + A2(z))/A1(x). This is the function that we wish to mini-
mize. Indeed, minimizing p(z) is equivalent to maximizing Ay(z)/A1(z). We
are then able to derive optimality conditions for a minimizer of p(z) and to
formulate the appropriate variant of Overton’s algorithm.



The thesis is organized as follows. We begin with a few preliminary
remarks about eigenvalues of symmetric pencils in section 2. Then, in sec-
tions 3 and 4, we recall the results of Overton and Womersley [17] men-
tioned above. In section 5 we show how this leads to a characterization of
the generalized gradient of the sum, Zle A;, of the first k eigenvalues of the
symmetric pencil (A, B) by considering the symmetric matrix G1AG™T,
where G is the Choleski factor B. Then, composing the function Y%, A;
with the smooth function associating (A(z), B(z)) to € U, we give a de-
scritption of the generalized gradient of Zle Ai(z) as a function of z in
section 6. Next we compute the generalized gradient of the function p(z)
in section 7, while in section 8 we digress briefly to derive the generalized
gradient of the related function n(z) = Az(z) — A1(z), measuring the gap
between Ay and Aq. Optimality conditions for a minimizer of p(z) are given
in section 9, and the construction of our family of perturbations of a disk is
given in section 10. Our modified version of Overton’s algorithm is described
in section 11. Finally a discussion of the numerical data generated by the
algorithm is presented in section 12.

We wish to thank our advisor, Prof. M. Overton, for introducing us
to this material and for his help and kindness (and patience!) during the
preparation of this thesis.

Notations.

R™X" denotes the vector space of n X n real matrices.

SR is the subspace of symmetric nxn matrices, O™ the group of orthogonal
n X n matrices and Q" the set of positive definite symmetric matrices.
SR™ is endowed with an inner product, < , >, defined by

< M,N >=> miny; =Tr M"N,
i
for M = {m;;}, N = {n;;} in SR".

If Ay is an n X r matrix and A, is an n X s matrix, A = [A; : A;] denotes
the n x (r+4 s) matrix obtained by juxtaposing the columns the A; and As;.



2 Preliminaries

We collect in this section some well known facts for future reference.
First observe that SR™x Q" is a convex subset of SR"XSR"™. Indeed it
is obvious that

M,NeSR'= AM+(1-A)N € SR",VAeR
M,Ne Q"= AM+(1-A)N e Q" VAe|0,1].

Lemma 2.1 A symmetric matriz B is positive definite if and only if all
its eigenvalues are positive. It is positive semi-definite if and only if all its
etgenvalues are nonnegative.

Proof: Let Ay > Ay > ... > A, denote the eigenvalues of the symmetric
matrix B. There exists an orthogonal matrix ¢ such that

QTBQ = diag{\,...,\,} = A.

The Raleigh characterization of A, gives

- 2TBz
A, = min T
z#0 't x
Then
eTBr >0,YVe #£0<= X\, >0
and

eTBx >0, Ve < X, > 0.0

Lemma 2.2 Let V = {v;;} be a posilive semi-definile symmeltric matriz.
Then we have
(1) v;; >0, Vi

.. 2 . .
(i7) v;; < v, V1, ]

Proof: (i) This is trivial. Take z to be the vector ¢; = (0,...,1,...,0)
with 1 in the *" position. Then

Vi = TV > 0.



ii) given 7 < j, consider the vector x with z; = A\, z; = g and 25, = 0
g 75 y Lj H

for all k # ¢. Then

Ve = Zxkxwk[
k,l

= va“ + x?vjj + 27505
= Moy + pPoj; + 2hpvg;
Hence we must have
Mo, + ,u%jj + 2 pw;; > 0,V A, p (2.3)

Viewing (2.3) as a polynomial in A with p fixed, we see that the discriminant
must be <0 . Thus
4;12712-%' — 4pPvgvi; < 0,Vu
and the conclusion follows. O
Given a symmetric definite pencil (A, B), the spectrum A(A, B) may be

expressed in several equivalent ways. Let G denote the Choleski factor of B,
that is G is a positive definite lower triangular matrix such that B = GGT .

Lemma 2.4 The following sels are equal.

1. A(A, B)

2. A(B™1A)
3. AGTTAGT)

Proof: Tt is obvious that A(A, B) = A(B~1A), so we show that A(A, B) =
A(GTTAG™T). Let A € A(A, B) and let x be an eigenvector for A\. Write
y = GTz. Then

Az = ABz < Az =AGG'z
— AG Ty =)Gy
— G'AG Ty= )y

Thus we have proved that A € A(A, B) with eigenvector x if and only if
A € A(G7TAG™T) with eigenvector y = GTz. O

Remark 2.5 The advantage of viewing A(A, B) as A(GT'AG™T) rather
than as A(B7!A) is that GTAG™T is still a symmetric matrix. On the

other hand, the dependence upon the data (A, B) is by far more explicit in
the matrix B~'A than in G1AGT.



We can build upon the proof of lemma 2.4 a bit. Suppose B € Q" with
Choleski factor G. Let A; denote the set of orthonormal bases of ®” (i.e. the
set of orthonormal matrices), and let A; denote the set of B-orthonormal
bases of ", i.e. bases {v1,...,v,} such that

UZ'TB?JJ' =6, for 1 <4,5 < n.
Lemma 2.6 The matriz G induces a bijection of Ay onto Ay defined as
{vlv tee vn} = {G_Tlvlv teey G_Tvn}

Proof: Given {vy,...,v,} € A;. Then

T

(G~ Tv;) B(G™Tw;) = ol (GT'BG™T ),

— T
= v ’U]

= (52']'. O
Now let M € SR". We recall a few facts about the eigenvalues A; of M.
Write : Ay > ... > Ay, and let @ € Q" be an orthogonal matrix whose
columns ¢, ..., ¢, form an orthonormal basis of eigenvectors of M, ordered

so that
QTMQ = A = diag{\1,..., .}

For k > 0, write
HkE{UE%”MTqi:O,lSiSk}

and let Hy = R". Then we have the Raleigh quotient characterization of
AL

oI Mo
A = max T
vEH_1,v#£0 v

Next let L,, denote the subspace of R spanned by a set of m orthonormal
vectors {v1,..., v, }. We define the Raleigh trace of M on L,, by

Tr(Ln] =" vl Mo
=1

Observe that T'r[L,,] is independent of the choice of an orthonormal basis
of the subspace L,,. Indeed, let V = [v;...v,,] so that VIV = I and

Tr[Ly) =Tr(VIMV).



Any other orthonormal basis {wq,...,w,} of L,, with W = [wy...w,,] is
such that
W =VA,

for some orthonormal m X m matrix A. It follows that
Tr(ATVITMVA) = Tr(VTAV) = Tr[L,,].

Lemma 2.7 ([3]) We have the following characterization of the sum of the
k eigenvalues Apiq1,y ooy Atk :

m+k
| Z Ai = max Tr[Lg].
1=m+1

Proof: Let Ly, C H,, be fixed. Then for any v € Ly, we have v ¢; = 0,
for 1 <+ < m. Since dim L = k, there must exist a vxy,, € Lx such that

g =0, for 1<i<k+m—1.
Hence vgyrm € Hiym—1, and it follows that
Ak-l—m 2 v,{+mﬂlvk+m.
Similarly, we construct vy, 4; € Ly N Hypyj—q for 1 < 5 <k such that

T —
Vi Umtj = 1

and
vgﬂvl:(), form+7+1<I<m+k.

Thus Apq; > vnT%HLM?JmH and it follows that

m+k
> N> Tr[Ly).

i=m+1

On the other hand, if we take L to be the span of ¢;41,- .., ¢m+k, then we

have
m+k

> Ai=Tr[L]. O

i=m+1



3 Max characterization of Y%, \; for symmetric

matrices

Let M be an arbitrary element of SR™ with eigenvalues Ay > ...

Then lemma 2.7 implies that

k
SE A = maz Z v;‘-FJVIUj

i=1

where the max is taken over all sets of k orthonormal vectors {vy,..

Now
k k
vaMvj = Z < vjv;‘-r,ﬂl >
7=1 7=1

k
< Evjva,M > .
i=1

Let us write
k
SE = {(VesSR'|V = Zvj“ujr}
J=1

where {vy,...,v;} runs over all orthonormal sets of k vectors.
Then
SE A= max <V, M >.
VESl

We now provide another characterization of 3% | A;. We let
Sk={UeSR"|0<ULI,TrU =k}

and
Dk ={D € SR"| D is diagonal ,0 < D < I,TrD = k}.

Lemma 3.2 S¥ = {PDPT|D e Dk, Pc 0"}

> A

Sy UL}

(3.1)

Proof: 1t is obvious that PDPT € S} for any D € D% and P € O
Indeed, the partial ordering < on R™*™ is preserved by conjugation by or-

thogonal matrices, so that

0<D<I+< 0<PDPT<I.



Also
Tr(PDPYY=Tr(DPTP)=TrD = k.

Conversely, given any U € 8§, a spectral decomposition of U yields

U=PDPT P orthogonal, D diagonal,

i.e. the entries of D are the eigenvalues of U and the columns of P are the
corresponding eigenvectors. Then, as before, we get

0<KULKI=0<D<LI
TrU =k = TrD =k

and we conclude that D € D. O

Lemma 3.3 D) is a retract of S5 , i.e. D5 C S5 and there is a map
r:Sy — Dk

such that 7(D) = D for all D € D5.

Proof: Given U € S5, define 7(U) to be the diagonal matrix consisting
of the diagonal entries of U, i.e.

N ) oug ifi=j
r(U)is = { 0  otherwise
It is obvious that 7(D) = D for D € D5. We check that r(U) € D5. r(U)
is diagonal by construction and clearly T'r(r(U)) = Tr(U). Moreover, by
lemma 2.2, we have
U>0= u; >0, Vi

ULI <= I-U2>0
= 1—u;; >0,V
= u; <1, Vi
Hence : 0 < r(U);; < 1forall i =1,...,n. But since r(U) is diagonal, this
implies that 0 < r(U) < 1. O
Now let @ € O™ be such that QT MQ = A, where A = diag {\1,..., A\, }.



Remark 3.4 Even with the order of the eigenvalues fixed the matrix @
is not uniquely determined, in general, due to possible eigenvalues with
multiplicity greater than 1. Indeed, ¢) may be replaced by QP for any
P € O" such that P'AP = A. But

(AP)i; = AisPsj = AiP;

(PA)ij = > Pulyj = AjP;
t
so that
AP = PA = P;; = 0 for all i,j with A; # A;.

Hence P is block diagonal, P = diag (Pi,. .., Py), where m is the number of
distinct eigenvalues of M. The size of P}, for 1 <1 < m, is the multiplicity
of the corresponding eigenvalue, and, of course, P; is orthogonal.

It is clear that
A= max < DA >. (3.5)
peDb
Since r(S§) = D%, we have

max < D,A>= max <r(U),A>
DeD§ UeSy

and, as A is diagonal, < r(U),A >=< U,A >. Thus

SE AN = max < U, A >
UeS;

= max < U,QTMQ >
UeSE

= max < QUQT, M > .
UeSE

Furthermore, observe that the map
U+— QUQT
induces a bijection of Sé“ onto itself, with inverse

Vi— QTvQ

10



and it follows that
SE A= max <V, M > . (3.6)
veSk

Next we determine which elements U € S§ realize the maximum

max < V,M > .
veSy

This requires more information about the eigenvalues of M. Let us assume
that the k*-eigenvalue has multiplicity t, so that

AL > A > AT_|_1 = ...= A= ---:Ar+t> A,,,_|_t+1 > > A, (37)
where 7 > 0. It is clear that those D € D¥ which realize

max < D, A >
deDk

are of the form D = diag( Dy, D3, D3) where the diagonal matrices Dy, D3, D3
satisfy

Dy = I, the identity r X r matrix
D3 =0, the zero (n —r —t) X (n — r — t) matrix
Dy e SR, with 0< Dy < I, TrDy =k — 7.

Let us write S5(t) for the set of all symmetric ¢ X ¢ matrices M of trace p
with 0 < M < I;.

Lemma 3.8 The matrices U € S§ for which r(U) = diag(Dy, Dy, D3),
Dy, Dy, D3 as above, are precisely those matrices of the form

I, 0 0
U=10 Uz 0
0 0 0

where Uy € S§77(1).
Proof: Clearly any such U € S} satisfies
r(U) = diag(1,, D,,0)

with Dy = r(U;) of the appropriate type.

11



Now suppose that U € 8§ is such that r(U) = diag(I,, D,,0), and let us
write

Uin Uz Uss

U= Uxn U Ui

Usi Usz Uss
Note that if a matrix V' € R"*™ is > 0, then so is any principal submatrix
V of V. Indeed, say V € R™*™ then we have to show that zXVi > 0 for
all Z € ™. But we can extend # to a vector x € R” by inserting 0’s in the
components corresponding to the rows of V not in V, and we get

i'vi=aTvz > 0.

Then, 0 < U < I immediately implies that 0 < Ujy < I;. Obviously,
TrUss = k — r. It only remains to show that Uy; = I, and all other blocks
are 0. But this is an easy consequence of lemma 2.2. Indeed since U > 0
and u;; = 01if § > r 4+ {, we conclude that

u;; =0=wuj forg>r+1, 1<
Thus Usy, Usg, Ussz, Uss, U3 are all 0. Moreover, since V=1 — U > 0,
v;; = 0for 1 <7 <7 and v ; = u; foralli# 7,

we conclude that u;; = u;; = v;; = 0for 1 <@ < r, 7 < j. It follows that
6711 = IT and []12, (]13, 6721, 6731 are all 0.0

Now recall our choice of Q € O such that QT MQ = A and write
Q =[Q1:Q2:Qs]
where @, € O™, Q5 € O™ and Q3 € O™~ "~t. Thus
QT MQ, = diag{),...,)\,}

QT MQ, = \oI,.

By lemma 3.8, the matrices U € Sy realizing max, gk < V,A > are of the
2

form
I. 0 0
U= 0 Uy 0
0 0 0

12



with Uy € SR, 0 < Uy < I; and TrUy = k — 7. Then

QUQT = QT + Q.U,qQ1.

Since < U,A >=< U,QTMQ >=< QUQT, M >, we have proved the fol-
lowing result.

Theorem 3.9 The matrices U € S§ which realize

SE A= max < V, M >
VeS;

are of the form
U=0:1Q] +Q:20:Q7

where Q = [Q1 : Q2 : Q3] € O™ satisfies QT MQ = A, and Uy € SR with
0<U;<LiandTrUy =k —r.

We have obtained three characterizations of Ele A;so far, namely equa-
tions (3.1), (3.5) and (3.6). We now introduce a set Df whose relation to
S} is as that of D to S§. Define

DF = {D € SR™| D is diagonal, TrD = k and d;; = 0 or 1, for all i }.
Lemma 3.10 Dk is the convex hull of D¥.

Proof: Observe that the number of nonzero entries of a matrix D € D¥
is exactly k and that moreover they are all equal to 1. It is obvious that a
convex combination of elements of D lies in D5. So we need to show that
every D € D% is a convex combination of elements of D¥.
We proceed by induction on the number /(D) of nonzero entries of D € D¥.
Clearly, the trace condition implies that {(D) > k, for all D € D%, and that

I(D)=k<= D €D} CD5.

Obviously, I[(D) < n for all D € D5.

Now suppose we have proved that any D € D with (D) < m, (k < m < n),
is a convex combination of elements of Df. We prove that the same holds for
D € D% with I(D) = m. Let 8 denote the smallest nonzero entry of D, say

0 = d;; for some 1 < ¢ < n (Note that ¢ need not be uniquely determined).
Define D € D be such that



(Again there may be many choices for such a D). Then let
D'=D-3D.
Clearly D' is diagonal and 0 < D’ < I. Moreover,
Tr(D"Y=TrD - 3TrD = (1 - B)k
and, since (1 — 3) # 0, we may define

A 1
D=——D"
1-p

Observe that D € D% and that l(ﬁ) < m—1 < m, so that by induction, we
have

D= Zaij, with 0 < a; <1, Zaj =1land D; € Dk,

i=1 i=1
Thus we get
D = D'+3D
= (1-p)Y a;Dj+pD
J=1
= Y (1-p)a;Dj + 8D
J=1
s+1 _
= E7TDT
r=1
where
_J 1=-pPa, 1<r<s
1= I¢] r=s+1
_ D, 1<r<s
DT _ T > >
{ D r=s+1
Clearly, D, € D{“, for1<r<s+4+1,and 0 < v, <1 with
s+1 s
Yo o= Y (1=, +5
r=1 r=1

r=1
= (1-f)+8=10

14



Lemma 3.11 Sf = {PDPT|D e Dk, Pc O"}.

Proof: Let us write C = {PDPT |D € Df, P € O"}. Given D € D},
let 2q,...,7; denote the indices of the nonzero entries of D, i.e.

dyy =1 <=1 =1, forsomel <j<k.

Given P € O™, write P = [p1,...,pn|, where p; denote the columns of P.
Thus
pi € R, plp; = 6ij, for 1 <4, < n.

Then PD = [qq,...,q,] where

-} p; il j =i for some s
%973 0 otherwise

i.e. the columns p; with j # 41,...,1; are replaced by 0 while the others are
preserved. Hence PDPT = Ele pitpg;. We claim that

C={QQ"|Qe 0™},

Indeed, given PDPT and iy,...,i; as above, let Q = [p;,, .. LD € Ok,
Then PDPT = QQT. Conversely, given Q = [q1,...,q:] € O™*, we may
write

QQT = pPDPT

for many choices of P and D. For example, we may complete {qg1,...,qr}
to an orthonormal basis of R", say {¢1,...,¢%, qk+1,---,9n} and let D =
diag{1,...,1,0,...,0} and P = [¢q1,...,¢,]. Thus we have

——

k

k
SF = {Vesp|V = Zviv;‘r, {v1,...,v;} orthonormal set }

=1
= {QQ"|Q e 0™}
= {(VeSR'|V=pPDPY, DeDt PcO*}.O

Lemma 3.12 S} is the convex hull of Sf.
Proof: We have
Sk={U e SR"|U = PDPT, De Dk, PcO"}
Sk={VvesSR'|V=PDPY DeD PcO").

The result follows since D5 is the convex hull of Df by lemma 3.10. O

15



Remark 3.13 Observe that the elements of Df and SF have rank exactly
k while those of D5 and S5 have rank > k.

Remark 3.14 We proved earlier the existence of a retraction
r: Sk — D5

However, the restriction of r to Sf does not yield a retraction of S§ onto
D% but maps SF into DE. We may summarize the relationships between
the spaces D¥, D5, SF and S in the following diagram.

Diﬂ convex hull DIZC

k

k
S convex hull S

Given a symmetric matrix M with spectral decomposition QT MQ = A,
we trivially have the following characterization of Y5, A;.

SE A= max < D,A>.
DeD¥
1

Taking the convex hull of D¥ gives

max < D,A>= max < D,A >.
DeD*k peD5

Then
max < D,A>= max < U,A >,

DeDj UeSh
since D% is a retract of S§ and since, as A is diagonal,
<U,A>=<7r(U),A>
for any U € S§. Now, since S§ is the convex hull of Sf, we conclude that
max < V,A >= max < U,A > .

veSy UeSk

16



Finally, since Sf and S§ are invariant with respect to conjugation by or-
thonormal matrices, we conclude that

SE N = max <V, M >= max <U,M >.
veSy UeS;

17



4 The generalized gradient of ¥% | \; : SR" — R
We now consider - | \; as a function sz defined on SR",
s SR — R.
For M € SR" and V € R"*" let us write
Ly(M)=<V,M > .
Then Ly is a linear functional on SR™ and by (3.6) we have

sp(M) = max Ly(M).
UeSE

We obtain the following characterization of the generalized gradient dsj; of
Sk

Theorem 4.1 For M € SR" we get
dsi(M) = {U € SR*|U = Q19T + Q.1,Q% )

where the eigenvalues of M satisfies (3.7),and Q = [Q1: Q2 : Q3] € O™ and
Iy € SR are as in theorem 3.9.

Proof: By [7, theorem 2.8.6, p. 92] and theorem 3.9, we know that
Osk(M) is the convex hull of

(U e SR |U = 0:QT + Q.,QF ).

So, we only need to observe that this set is already convex. It is sufficient
to prove that the set

A={VeSRI|0<V <L, TrV =p},
for some fixed p, is convex. But for V1, V; € A, s € [0,1], it is clear that

sVi+(1-3s)Vy e SR
0<sVi+(1—s)V, <L

Moreover,

Tr(sVi+(1—s)Vo) = sTrVi+ (1 —s)IrVy=p. O

18



Remark 4.2 Consider the special case £ = 1. Then r = 0 in (3.7) and
s1(M)=X(M) for M € SR". We get

OMM)={V eSR"|V=Q,UQF, U eSR", 0< U< I,,TrU =1}

where @, € O™, Qfﬂl@l = A (M)I;. Observe that the condition U < I;
is redundant, i.e.

UeSR,U>0,TrU =1 = U < I,.

Indeed, let {p1,...,u:} denote the eigenvalues of U. We have p; > 0 for all
isince U > 0. Then

£
TrU=1 = > p=1

=1
= w; <1, foralli
— U S It.

So we recover the characterization of dAi(M) derived in [16].

19



5 The differential of ¥y, : SR" x Q" — R

We may now apply the results of section 3 to a symmetric definite pencil
(A, B). So let G denote the Choleski factor of B and let () € Q™ be such
that
QT(GTAGTQ = A

where A = diag (A1,..., ;) and Ay > ... > A, are the eigenvalues of (A, B).
Let X = G~T(Q, so that

XTBX =1

XTAX =A

Let us write g; for Y5, A; viewed as a function on SR” x Q" and, for
Ve R et
Uy(A,B)=<V,GrAG™T > .

Since A(4, B) = A(GT'AG™T) and G7*AG™T is symmetric, we get (see (3.6))

gx(A, B) = max Yy (A, B) (5.1)
veSs
and
gr(A,B)= max < U/A>. (5.2)
UexSkxrT

Moreover, theorem 3.9 provides a description of those V € S¥ which realize
the maximum. Equation (5.2) is not a very useful representation of gx(A, B)
because the set over which the maximum is taken depends upon B. On
the other hand, in order to use equation (5.1) for computing generalized
gradients we need to be able to compute the derivative of the Choleski factor
(G as a function of B. Observe that the functions ¥y : SR" x Q" — R,
while linear in A, are not linear in B.
We now define maps a, 8, and v as follows.

a: Q9" — T
B — G

where 77 C R™*™ denotes the subset of lower triangular matrices with pos-
itive diagonal entries. Let V™ denote the linear space of all lower triangular
matrices. Then V™ = R"1t1)/2 and we view 7" as an open subset of V.
Similarly Q" is an open subset of SR™ = Rr(n+1)/2,



Observe that the inverse of an element of 7" is indeed an element of 7".

v: SR"x TP — SR
(A, L) +— LALT

Also, recall the map Ly defined in section 4,

Ly: S — R
M +— <V.M>

where V € S5. Then we have
Uy (4, B) = Lv(7((1x B) (1 x @) (4, B))))- (5.3)

Note that SR™ x Q™ is an open subset of SR" x SR”, so that the tangent
space to SR" x Q" at a point (A4, B) is

SR x SR =~ pr(nt1)/2 y pr(nt+1)/2
Similarly, the tangent space to 7™ at a point G is
VIS %n(n+1)/2‘

We do, however, write our matrices as square matrices; otherwise we should
modify the definition of the inner product < , > as follows : multiply the
terms corresponding to the entries lying below the diagonal by a factor of 2.
Now for (5,7) € SR" x SR", the chain rule gives the following expression
for the differential DUy (A, B) evaluated at (5,7).

DVy(A,B)(S,T) =

DLy (7 ((1x B) (1x @) (4, B))(Dly o (1x ) o (1xa)(A,B)(S,T).

But Ly is linear so that we get
DYy (A,B)(S,T)=<V,D[yo(1xp)o(1xa)l(A,B)(S,T)>. (54)

We compute the differentials of the maps a, § and v next.

The differential of 3. Given G € 7™ and L € V", we must compute
DB(G)(L). Since B(G)G =1, for 1 <1<k < n we have

OuB(G)G + B(G)Ey =0
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where Ejy; is the matrix with 1 in the (k,!)-entry and 0 everywhere else, so
that
3k1ﬁ(G) = —G_IEMG_I.

Hence, for L = {l;;} € V",

DB(G)(L) > dup(G)

1<I<k<n

= Z lkl(—G_lEle_l)

1<I<k<n
= -G D InEn)GT!
1<I<k<n
= -G'LGT' ey (5.5)

The differential of a.. It is clear that themap a : @ — 7" C V", a(B) = G,
is smooth; it involves only rational and square roots functions. Consider the
map
a: Vv — SR
L — LL7
The restriction of & to 7" maps 7" into Q". Indeed, given z € R, LTz # 0
when z # 0 since L' is nonsingular for L € 7". Thus,

eTLLT e = (LTa)T(LTz) > 0.

Moreover, & is obviously smooth. Hence a is a diffeomorphism of Q" onto
7" with inverse a=! = @&, and

Da(B) = [Da~ (a(B))] "
We shall not compute Da(B) (while straightforward, it is complicated and
unnecessary for our purposes); rather we will provide an algorithm for com-
puting Da(B)(M) for B € Q" and M € SR", which is,after all, what we
are interested in. Now

Da(B)(M)=L € V"

if and only if
Da Y a(B)(L)=M (5.6)

Hence we may compute Da(B)(M) by solving equation 5.6 for L. For (k,[)
with 1 <[ <k < n, we have

3k1a_1(G) = 3k1(GGT) = EleT + GEy.
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Hence
DQ_I(G)(L) = Z lstasta_l(G)
1<t<s<n

Z lst[EstGT ‘|’ GEL‘S]
1<t<s<n

= (Z lstEst) Gt+a (Z lstEts)

= LGT +GLT e SR (5.7)

Thus we must solve the equation LGT + GLT = M for the lower triangular
matrix L. This is accomplished by the following algorithm.

Algorithm.
fore=1,n
fory=1,1—-1
- ,
L Yt likgik = hen Ginlik (5.8)
9jj
mi; — 2507 likgs

li= = iz likdik (5.9)

2g:i
First observe that the algorithm is well defined.
1. g #0 for all ¢ = 1, n since G € T".

2. all the entries of L appearing on the right hand sides of (5.8) and (5.9)
have been computed during prior loop iterations.

Next note that (i)

min(i,j

(LGT)ij= D ligje-
k=1

To prove the algorithm correct, we order the entries /;; of L using the lex-
icographic order on (7,j), where 1 < j < ¢ < n, and show by induction
that, having computed ;s for all (¢, 5') < (4,7), we indeed obtain /;; by
formulas (5.8) and (5.9).
(i,7) = (1,1) : this is completely trivial; [LGT + GLT]11 = l11911 + g11la1,
so that

which is precisely (5.9) in this case.
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general case : we have

[LGT+GL ;= > lagie+ Y. ginlie: (%)
k=1 k=1

If i = 5, we get : 22};:1 litgir = my; and formula (5.9) follows. If j < 1,
then all [;z, 1 < k < min(i,j) = j, and all l;z, 1 < k < j have been
computed already according to the induction hypothesis, and formula (5.8)
follows from ().

The differential of v. The map v is defined on the space SR"™ x 7. We will
use indices (k,[) to refer to the variables in the first component and indices
(s,1) to refer to those in the second component. In all cases 1 <1<k <n

and 1 <¢ < s < n. Since v(A,L)= LALY for A € SR", L € T*, we have
ouv(A, L) = LEyLT
0s7(A, L) = E4ALT + LAE;,.
Thus for (M, N) € SR x V", we have
Dy(A, L) (M,N)=LMLT + NALT + LANT, (5.10)

Now, from (5.5), we readily obtain
D(1x B)A,G)YM,N)=(M,-G"'NG™) (5.11)

where Aec SR", GeT", M € SR", N € V" and

IXG:SR"XxT" — SR xT™.
Similarly, from (5.7), we get

D(1Xxa)A,B)(M,N)=(M,L) (5.12)
where A € SR", B € Q", M,N € SR",

IXa:SR"x Q" — SR x T"

and L € V" solves LGT + GIT = N.

Finally, combining (5.4), (5.10), (5.11) and (5.12), we obtain the following

expression for the differential of ¥y .

DUy (A,B)(M,N) <V,G'MGT -G LG AGTT — gt acTT LGt >
<V,G7YM - LG*A - AG"TT1G7T > (5.13)

where L € V" solves the equation 1GT +GLT = N.
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6 The generalized gradient of ©% | \;(x)
We now assume that we are given a smooth function

h: @ — SR*xQ"
r (A(x),B(m))

where  is an open set in R™, and we consider the composite

fk = gL © h: Q@ — R
r o— YE ().
We want to compute the generalized gradient of fi. We shall write A;(z),

Bj(z) for the partial derivatives of A(x), respectively B(z), with respect to
the variable z;. By equation 3.6, we know that

fe(z) = ma)% Uy (A(z), B(z)) (6.1)
veS;
where
Uy (A(z), B(z)) =< V,G(z) ' A(2)G(z)™ T >, (6.2)

with G(z) the Choleski factor of B(z).
Proposition 6.3 The function fi, : Q@ — R is reqular and locally Lipschitz.

Proof: Equation 6.1 gives fi(z) as a pointwise maximum over the com-
pact set S¥, so that the conclusion will follow from [7, theorem 2.8.2, p. 86]
if we show that the functions Wy (A(z), B(z)) are regular and locally Lips-
chitz of some rank [ for all V € S¥. They certainly are regular since they
are smooth functions of z. Moreover, the differentiability of ¥y (A(z), B(z))
implies that it is Lipschitz of rank [y in a neighborhood of . More precisely,
by the Mean Value Theorem,

Wy (A('), Ba') Wy (A(z"), B(a")| <|| VUv(A@"), Ba") | | 2'~a"]] .

!

for some z" on the line segment from z’ to z”. Now let AV be a convex

compact neighborhood of z in © and let
[ =maz || V¥y(A(y), B(y)) |

where the max is taken over all y € A and V € S§. Then, each ¥y (A(z), B(z)),
V € 8%, is Lipschitz of rank [ in V. O
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Recall that by theorem 3.9, the elements V € 8§ which achieve the
maximum in 6.1 are precisely those elements of U/ € 8§ of the form

U=Q1Q7 +Q:0Q3
where U, € Sé“_r(t) and @1 € O,,,, Q2 € Oy, ; are such that
Q=[Q1:Q2:Q3], @3€ Oy p_p_;
diagonalizes G(z) 1 A(z)G(z)™T, i.e.
QTG(2) ' A(2)G(2)TQ = A

where A = diag(Aq,...,A,) and the eigenvalues satisfy (3.7). Let us write
M(z) for the set of such matrices U. Following the terminology of [16] we
shall call the matrices U € M(z), as well as the matrices Uy € S§~"(1), dual
maftrices.

Theorem 6.4 The generalized gradient of fr at x € Q is given by

Ofe(z) = {v € R™ |v; =< U,G7[A;(2)-L;G" ' A(z)-A(x)GTLT]G™T >}
(6.5)
where G = G(x) is the Choleski factor of B(x), L; = L;(z) solves

L;GT + GLT = Bj(2)
and U € M(z).

Proof: Again this follows from [7, theorems 2.8.2, p.86 and 2.8.6, p. 92]
once we show that the set on the right hand side of equation 6.5 is convex.
Let A denote this set. Thus, given «a;, 1 < ¢ < s, with 0 < a; < 1 and
Sa;=1,and v' € A, 1 <i< s, we must show that

S
Z a;v' € A.
1=1

It is enough to check that 3 aw} is of the required form forall j = 1,..., m.
Let
Z =G A4(z) - LG A(z) — A(z)G~TLT)GT.

Then, v; =< U;,; Z >, 1 < j < m, and
S . S
Zaw} =< ZaiUhZ > .
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Now U; = Q1QT + Q,UiQT for U} € S;‘T(t), and

S

Sl = > ai(@iQf + Q2U5Q7)
=1 =1
= Q¥ +Q, (Zaivé) Q3.
=1

Thus, the result follows from the convexity of S¥="(1). O

Now let f?(z;d) denote the generalized directional derivative of fj at z
in the direction d, [7, p. 25]. Then

fi(z;d) = maz{<v,d>| veEdfi(z)}
by [7, Proposition 2.1.2, p. 27]. Since fj is regular at z, the usual one-
sided directional derivative f/(z;d) exists and is equal to f2(z;d), see [T,
Definition 2.3.4, p. 39], so that

fi(z;d) = maz{< v,d >| v € dfi(z) }.

Using our characterization of v € 0 fx(z) given in equation(6.5), we get
<wv,d> = Z vjd]-
7=1
= Y d; <U,G'Aj(z) - L;GT A(z) — A(2)GTTLTIG™T >
7=1

= < U, d;GMA(z) - L;G ' A(z) — A(z)G~TLTG™T >
7=1

with U € M(z),ie. U =Q:Q¥ + Q,U,Q%. Thus

<wv,d> = <I,,Mi(d)>+ < Uz, Ma(d) >
= TTﬂfl(d)+ < UQ,AJQ(d) >,

where

My(d) = f: d;Q1 GV [A;(z) — L;G7A(z) — A(2)G™TLTIGTTQ, € SR

1=1
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and

My(d) = ideg“G—l[Aj(x) — LG A(z) — A(2)GTLTIGTTQ, € SR

=1
We obtain the following result.
Proposition 6.6 The directional derivative f(z;d) is equal to
TrM(d) + sum of the (k — r) largest eigenvalues of My(d).
Proof: We have

fi(z;d) = maz{<v,d>|vedf(z)}

TrMi(d)+ max < Uy, My(d) >
V.85 (1)

But by the results of section 3,

max < U, My(d) >
.St (1)

is precisely the sum of the k& — r largest eigenvalues of My(d). O
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7 The ratio of the first two eigenvalues of a sym-
metric definite pencil

We now consider the following problem.

Problem : Given a smooth function
h:Q— SR*"x Q", Q CR™,

we want to find M(e)
1Lz
7.1
T8 N(2) (7-1)
where Aj(z) > Ag(z) are the two largest eigenvalues of the symmetric def-
inite pencil h(z) = (A(z), B(z)). Observe that the above problem is most
interesting when Aq(z) < 0. We will come back to this point below, but
first we recall Clarke’s characterization of the generalized gradient of a quo-
tient (see [7]). In the following discussion, the functions are assumed to be
Lipschitz near the point z.
By [7, Proposition 2.3.1, p. 38], we know that

I(tf)(z) =10 f(x)

for any ¢ € ®. In particular, 9(—f)(z) = —0f(z). We also have the chain
rule for generalized gradients, [7, theorem 2.3.9, p. 42]. More precisely, given
g:R*" — Rand h: R™ — R, with h; : R — R, 1 <1 < n, denoting
the components of h, let f = g o h denote the composite of g and h. Then
[ is Lipschitz near z if ¢ and h;, 1 < ¢ < n, are Lipschitz near z, and

df(x) C co {Z oi&;
1

Moreover, equality holds and f is regular at z if the following conditions

hold.

& € 0hi(x),0 = (01,...,0,),0 € dg(h(z)) } .

1. g is regular at h(z).

2. h; is regular at z, 1 <17 < n.

3. for every o € dg(h(z)), 0, > 0 for 1 < i < n.

The quotient rule is now a consequence of the chain rule. Consider the

map g(u,v) = u/v defined on {(u,v) € R2|v # 0}. This map is continuously
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differentiable, hence strictly differentiable, at any point. Thus ¢ and —g are
both regular everywhere, and the generalized gradient of ¢ at (u,v) is just

the gradient of g, i.e.
) 1 U
dg(u,v) = (=, —=).

v w2
Given a, § : R™ — R, we let h(z) denote the maps

h(z) = (a(z),+8(z)),
and apply the chain rule to the composite g o h. We get
Lemma 7.2 For a,f : R™ — R with §(z) # 0,

5 (@ B(x)da(z) — a(x)dp(x)
0 <—) (z) C ()

and equality holds in any of the following cases.

1. a(z) > 0,8(x) > 0, a, —f are regular at
2. a(z) <0,8(z) >0, a, 8 are reqular at x

3. a(z) >0,08(z) <0, —a, —f are regular at
4. a(z)<0,6(z) <0, —a, § are regular at x.

Thus we conclude that
q(& & a(z)
'(5) @ el G+ T

Since d(—pF)(z) = —08(x), the set on the right hand side is equal to

{ﬁ(ﬂﬂ)& — a(2)é
#(z)

Next, we observe that this set is convex since da(z) and 0f(z) are con-
vex ([7, Proposition 2.1.2,p. 27]). Finally, we easily verify that the equality
conditions are satisfied. We have

6 € dala), & € 0(-H)(x) |

& € da(x),& € 0B(x) }



so that h; is regular at z, for ¢ = 1,2, and

SN

clearly has nonnegative components. O

We now return to problem (7.1). We make the following assumptions on
the map h.

—A(z) € Q", forall z € Q (7.3)
A1(z) is a simple eigenvalue for all z € . (7.4)

Hypothesis (7.3) implies that A;(z), and hence all the other eigenvalues,
are strictly negative for all z € Q. Hypothesis (7.4) implies that A;(z) is a
smooth function of z. Thus so is —A;(z), and both are regular at z. We
point out, however, that (7.4) is not a very restrictive assumption. Indeed,
if * is a solution of (7.1) with A1(z*) < 0 then Ay(z*) < Ay(z*) unless Ay
has multiplicity at least 2 near z*.

Consider the following lemma, whose proof is completely obvious.

Lemma 7.5 Let a(z), B(z), = € @ C R™ denote two real valued functions
such that B(z) # 0 for all x € Q and

a(z)
p(z)

Then xg € Q minimizes %(% over ) if and only if xo mazimizes %(%

>0, for all z € ).

Thus, since i;—gg > 0, for all z € Q, by (7.3), we get that (7.1) is equivalent

to

R1E))
find iy M) (7.6)

Finally, it is obvious that (7.6) is equivalent to

find min M
z€Q —Al(.f)

So we have replaced problem 7.1 with the following one.
Problem : Given the smooth function

h: Q@ —  SR"xQ",
v+ (Az),B(z))
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let fi(z) = gr(h(x)), the sum of the k largest eigenvalues of h(z), and let

(=)
p(.f) - _fl(x)'

Then find
min p(z). (7.7)
Now, for z € Q, fa(z) < 0, —fi(z) > 0, f; is regular at @ by Proposi-
tion 6.3 and — f; is regular at « by 7.4. Hence we may apply lemma 7.2,
case 2, to the function p(z) and we have

[2(2)0/1(z) = f1(2)0 fa(2)
fi(z) '

We may apply the results of section 6 to the computation of the general-

ized gradient of p(z). Solet G = G(z) be the Choleski factor of B(z) and let
@ be an orthonormal matrix which diagonalizes G(z) "t A(z)G(z)~T. Let ¢
be the multiplicity of Az(z), and let

Q:[Ql : Q2 3@3] (7-9)

where Q1 = [¢1] € O™, Q3 € O™ and Q3 € O 171, For 1 < j < m, let
A;(z)and B;(z) denote the partial derivatives of A(z)and B(z) respectively,
and let L; = L;(z) be the lower triangular matrix which solves the equation

Ip(z) =

(7.8)

L;G" + GLT = Bj(v).
Write Z; for the matrix
G [Aj(2) - LG Aw) — A(2)GT LT G (7.10)
Then, theorem (6.4) gives
0fi(z) = {wE%m‘wj:<q1qlT,Zj >, 1§j§m},

0fa(w) = {veR™

where Uz rtuns over all matrices in S1(¢), namely those symmetric ¢ x ¢
matrices Uy with 0 < Uy < Iy and TrU; = 1. The following theorem follows
from equation (7.8).

Uj:<Q1Qf,Zj>+<QQLTQQg,Zj >, 1Sj§7n}7
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Theorem 7.11 The generalized gradient of p is given by

v = </\2(93)(]1Q1T - /\1($)Q2U2Q2T7Zj>} (7.12)

dp(z) = {vE%m o)

for1<j<m.

We also obtain the following characterization of the directional deriva-
tives of p(z). For d € R™, let

m(d) = Y diql Zjq € R, (7.13)
=1

M(d) = i 4;Q1 7;Q, € SR (7.14)
J=1

Proposition 7.15 For d € R™, we have

p(z;d) = i%gg m(d) — Aix)

Proof: As in Proposition 6.6, the directional derivative of p is given by

X (the largest eigenvalue of M(d) ).

pl(z;d) = maz{< v,d >| v e dp(z)}.

But

m
<v,d> = Z?)jd]'
j:

= X0 m(d) (o) < Uz, M(d)
Now, since ﬁ(ll,) > 0,
/! . _ A2('%) , 1 T k—r
pl(aid) = S5 mld) = 5y mas {< Uz, M(d)>| Uz € S5 (1)},

and the result follows from section 3. O
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8 The gap between the first two eigenvalues of a
symmetric definite pencil

The discussion of the previous section on the ratio of the first two eigenvalues
of the symmetric definite pencil h(z) = (A(z), B(z)), where

h:Q— SR"x Q" QCR™,

applies almost verbatim to the study of the gap between these eigenvalues.
More precisely, if A\i(z) > Ay(z) are the two largest eigenvalues of h(z),
we wish to maximize the gap between Ai(z) and Ay(z), or equivalently, to
minimize the difference

f2(z) = 2fi(z) = Aa(2) — Mi(2).

We assume as before that hypotheses (7.3) and (7.4) hold so that A1(z) < 0
is simple, and hence smooth, for all z. We may then apply Clarke’s result
on the generalized gradient of a sum, ([7, Corollary 3, p. 40]), and our
computations of the generalized gradient of fiz(z) to obtain the following
theorem.

Theorem 8.1 Let n(z) = fa(z) — 2f1(z). Then the generalized gradient of
1 is given by

on(z) = {verm

v = <Q2U2Q2T - Q1Q?7Zj>7 Jor1 <5< m}(8-2)

where Uy, Q2 and Z;, 1 < j < m, are as in theorem (7.11).

Similarly, we obtain the characterization of the directional derivative of
n(z).
Proposition 8.3 For d € R™, we have
n'(x;d) = ( the largest eigenvalue of M(d) ) — m(d),
where

M(d)=>"d;Q3 Z;Qs.

i=1

m(d) =Y diqi Z;q.
i=1
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9 Optimality Conditions

We now describe optimality conditions for the constrained minimization of
the functions p(z) and n(z) defined in the two previous sections.
Thus we let

C=lc1...cn] € Rnexm

b € R
l,u e R

and we consider the following two problems.

min p(z)

subject to
Cz = b
Il < z < u

min 7(z)

subject to

Cz = b

[ < 2 < u
We assume that the hypotheses (7.3) and (7.4) hold.

We now apply the Lagrange multiplier rule, see [7, Theorem 6.1.1, p.
228], to derive optimality conditions for problems (P1) and (P2).

(1)

and

(P2)

Theorem 9.1 Lel z € R™ be a feasible point for problems (P1) and (P2).
Then

1. a necessary condition for x to solve (P1) is that there exist a dual
matriz Uy € SR, where t is the multiplicity of Ay at x, and vectors of
Lagrange multipliers a € R, and v € R™ satisfying

i;g;(ﬁrzjfh - ﬁ< 727Q2TZ]‘Q2> = <a,¢>+7;
for 1<j<m (9.2)
Tr(Uy) = 1
0< U, £ 1
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and
7, =0 of l]‘<$]‘<u]‘
%20 i zi= (9.5)
7, <0 if T; = Uj
2. similarly a necessary condilion for x to be a solution of (P2) is that

there exist Uy, o, and v as above salisfying all of the above equations
but with (9.2) replaced by

<U2,QngQ2> —<qql Zi> = <o, >+,
for1<j<m (9.6)

Here the matrices Uy and Z; are as in theorems (7.11) and (8.1).

We devote the remainder of this section to showing how to derive a
descent direction for the functions p(z) and n(z) in the case that all the
optimality conditions are satisfied by Us, a, and v except possibly for con-
dition (9.4).

Theorem 9.7 Suppose that z, Uz, a, v satisfy conditions (9.2), (9.3) and
(9.5). Let 0 be an eigenvalue of Uy with normalized eigenvector v, and let
seR. IfdeR™, § € R solve the following system of equations

Y d;QIUQ2 - 61 = svol (9.8)
7=1

cd = 0 (9.9)

d;=0 of z;=10 orz;=u; (9.10)

then d is a feasible direction for (P1) and (P2) with directional derivatives
1.
% if >0

o i s<0

b ) =s(@=1) if s>0
n(x’d)_{—sﬁ if s<0
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Proof: Recall the definitions of the matrix M(d) = Y7, d;QF Z;Q, and
the number m(d) = Y7, d;qf Z;qu (see (7.14) and (7.13)). Equation (9.8)
gives

M(d) = 61 4 svol,
so that all the eigenvalues of M (d) are equal to ¢ except for one which equals

0+ s. Let | = max{6,6+s}. Now, taking the inner product of equation (9.8)
with the matrix U; yields

Zd]< T27 gZ]Q2> - 5( 727I> = < 7278IUUT>7
7=1
or, equivalently,
> d; (U2,Q1%;Q2) — 6Tr(U3) = 6. (9.11)
7=1
Recall from Proposition 7.15 that
)\g(w) {
= m(d) — .
HEM ey

If the optimality conditions (9.2) and (9.3) are satisfied, equation (9.11)
becomes

p'(z;d)

j=1

l.e.

AQ T
/\lgx;m(d) — 6= Mi(2) (aTCd +47d) = sb.

But C'd = 0 by assumption, and moreover, if optimality condition (9.5) is
satisfied, then v7'd = 0 as well. Hence

AQ(.’E)
m(d) — 6 = s8,
M) (d)
and we conclude that
AQ(%) {
"z;d) = m(d) —
s(6-1)




We consider the function 7(z) next. Recall from Proposition 8.3 that
0(z;d) = 1 —m(d).

Equation (9.11) becomes

Zdj[fﬁpzjfh-l- <a,c; > 47— 0 =50,

J=1

or equivalently

m(d) = aTCd+~Td -6 = 0,

and we get

m(d) — & = s8.
We conclude that
/ ) —s(0-1) if s>0
n(x,d)_{_se if s<0

O

It is now easy to generate a descent direction for p(z) or n(z) in the case
the matrix U; does not satisfy

0<U; £ 1.

Indeed, U; must have an eigenvalue 8 falling outside the interval [0, 1]. If
f < 0, we simply choose s to be negative, say s = —1, while if 8 > 1, we
choose s to be positive, e.g. s = 1.
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10 Perturbations of a disk

We now describe our families of perturbations of a disk. Consider a disk
D centered at the origin (for simplicity), and of fixed area. We write D as
the union of a disk Dg of radius By and an annulus D¢ of width R;. We
divide D; into sectors of angle § = 27 /M and we write Dy as a union of
isoparametric quadrilateral elements with 8 nodes as in the following picture.

where one rectangular element is shaded and the nodes are displayed. The

disk Dy is triangulated with isoparametric triangle of type 2 [5]. Now the
nodes of the rectangular elements are all of the form

k
(Ro+ —R1)(cosmb, sin mb)
n

where n is an even integer equal to twice the number of “layers” of rectangles
in Dy (n =4, M = 16 in the above picture), k is an integer between 0 and
n specifying a node along a single ray, # is the angle of a single sector and
m is an integer between 0 and M — 1 specifying a single sector.

We perturb the disk D by perturbing the annulus Dy while leaving the
disk Dy fixed as follows.

for each ray we introduce a parameter z,, and we perturb the
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nodes by
(Ro+ zm ERl)(cos mé, sin mé);
n

the parameter z,, is taken to lie in a small neighborhood of 1 (not
containing 0!).

Thus, writing z = (2g,...,Zam—1), we obtain a family Q(z) of deforma-
tions of our original disk D, parametrized by z lying in a neighborhood of
(1,...,1) in ®™. We need to derive sufficient conditions on the values of

Rg, Ry, the angle 8, and the parameters z;, to insure the nondegeneracy
of the rectangular elements. To this end, we describe in some details the
construction of these elements.

Consider the standard restricted biquadratic element K (see [5])

S
4
1
a3 as a1
-1 ag as 1
T
as az Gy
-1

equipped with the subspace of ()5 spanned by the following basis dual to the
nodes aq,...,as. (Recall that @), is the space of polynomials in 7, s spanned
by the monomials r"s™ with 0 < n,m < 2 [5]).

ap=(1,1) : Ay = Z[14+n)1+s)—(1—=7*)(1+s)— (14 7)(1—s?)
(=71 +5) = (1=rH) (1 +5) = (1=7)(1 =)

[(1=r)(1=s) = (A=) =s) = (1= 7)(1=s")]

ag = (—1,1) . AQ =

a3:(—1,—1) : Ag =

= s =
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ag=(1,-1) : Ay = i[(l +7)(1=5) = (1 =131 —=5) = (14 7)(1 - s%)]

1

=(0,1) : A5 = 5(1—r2)(1+s)
a6 = (=1,0) : A = %(1—r)(1—52)
ar=(0,=1) : A = %(1—7«2)(1—5)
as = (1,0) : Ag = %(1+T)(1—52)

If we let ag denote (0,0), then {Aq,..., As} spans the subspace Q) of Q2
consisting of those p(r,s) € Q3 such that

x(p) =0
where
4 8
x(p) = 4p(ag) + > pla;) =2 play).
i=1 =5
Then the corresponding isoparametric elements K are constructed as
follows. Given 8 points b',...,b% in 2, we define the map
F K — R?
8

and we set K = F(K). The element K is nondegenerate if the map F is
invertible. Let us write F' = (£}, F;) where

8
(r,s) :Z/\] rsb] 1=1,2.
Jj=1
Then the rows of the jacobian matrix JF of F are the gradients of Fi, Fy,
ZV)\] 1i=1,2.
We compute the gradients VA; for 1 < j <8.

VA= (0494, 0+ nEs +)
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VA = <i(1—|—s)(27‘—s),i(1—7')(28—'1"))
Vs = <%(1—5)(27’—}—5),%(1—7')(28—}—7"))
VA = (§0-9er-9, 0+ nes - n)
W = (~r1+9),50-1)
Ve = (-%(1—52),—5(1—r))
VA = <—T(1—5),—%(1—7‘2))
Vs = <%(1—52),—8(1+7‘))

Now let K denote one of the elements of the ring D;. The nodes b7,
1 <5 <8, of the perturbed K are of the form

k+1

b (Ro+ « (—) R1)(cosby,sinb;)
n

k
¥ = (Ro+a —) Rq)(cosby,sin6;)
n

b4 = (R0—|-Oé

3

n
k
b = (Ro+p ;) R1)(cosby,sin 6y)
E_

v o= (Ro+

R1)(cosby,sin ;)

(
(
¥ = (Ro+p <k - 1) R1)(cosf,sin 6y)
(
(
(

0.+ 0 0.+ 0
¥ = (Ro+7 Ry)(cos ( ! ; 2) ,8in (%))

E—1 0.+ 0 0.+ 0
b" = (Ro+7 <T> Rq)(cos < ! ; 2) ,8in (%))

where a, 3,7 are the deformation parameters, k is an odd integer, 0 < k < n.
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The jacobian determinant det JF of the map F is given by
Dbt | {2 )sby | = | 2ok | { Do(Ag)sbd
7=1 7=1 7=1 7=1

where (A;);, (A;)s denote the partial derivatives of A; with respect to r,s
respectively. Let ¢ = (62 — 61)/2. We have the following theorem whose
proof is given in the appendix.

Theorem 10.1 The jacobian determinant det JF of the map F is nonzero
Jor all Ry > 0, Ry > 0 and a, 3,7, ¢ such that

la—1] < ¢
| B-1] < ¢
l7-1] < e
where
11—coso
€=—-————
21+ coso

and 3/5 < cos ¢ < 1.

Remark 10.2

1. The condition on the angle ¢ gives
0 < ¢ < (approximately) 53°.
2. The corresponding range of values for € are :

e= 0.2 forcos¢=3/5
e= 0 for cos¢p = 1.

The above theorem shows that all the quadrilateral elements of the ring
Dy are nondegenerate if M is chosen larger than 8, and if the parameters
z;, 0 < M — 1, satisfy | ; — 1 |< €, where
2r

11—cosM
€e= ———4,
21—|—cos?ﬁ7T
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11 Description of the Algorithm

We present the algorithm we used to minimize the function the ratio Ay/A;
of the two smallest eigenvalues of the Laplacian as a function of the shape of
the domain 2. This is a suitably modified version of an algorithm developed
by M. Overton [16]. We briefly describe the changes that need to be made
and refer the reader to [16] for a detailed account.

First of all, we consider the family Q(z), z € R™, of deformations of a
disk constructed in section 10. The regions Q(z) are equipped with a trian-
gulation made of isoparametric rectangles and triangles of type 2 which is
uniform in z. By this we mean that the number of elements as well as their
relative position with respect to one another is independent of the choice
of x. Then, standard finite element techniques allow us to transform the
problem of computing the eigenvalues of the Laplacian on () into the fol-
lowing finite dimensional generalized eigenvalue problem [5,6,19]. Compute
the eigenvalues of the symmetric definite pencil (A(z), B(z)), where A(z)
and B(z) are the stiffness and mass matrix , respectively, of the Laplacian
associated to the given triangulation. (A(z), B(z))is a smooth function of
x, thanks to the independence of the triangulation upon the parameters.

Thus, following our discussion in section 7, we attempt to minimize the

p(e) = —'Al(xA)IxA)Q(x)

where Ay(z) < Ai(z) < 0 are the two largest eigenvalues of the pencil
(—=A(z),B(z)). The basic strategy is to generate a sequence of iterates
z” converging to a (local) minimizer of p(z). Hence, starting with an initial
guess z° near (1,...,1), so that the corresponding region Q(z) is near the
disk, the algorithm ought to produce a sequence z” converging to (1,...,1).
Now the point z**! is obtained as z” 4+ d and the primary task of the al-
gorithm is to generate the step d. The scheme implemented by Overton is
to get d by partially solving a linear program whose constraints are derived
from the optimality conditions for a minimizer of the function to be opti-
mized (see [16] for an explanation of partial solution of the linear program).

In our particular situation, the linear program that needs to be solved
has the following form. It depends upon the multiplicity ¢* of Ay at the
solution. We compute an estimate ¢ of {* based on our knowledge of the
current iterate ¥ and in terms of a tolerance 7 as follows.

function

Ag(@”) = Aya(2”) < Tmaz{l,|A(z")|}
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Aa(x”) = Aega(z”) > Tmaz{l,|r(z")]}.

We also normalize the problem of finding
min p(x)

by requiring that the area of the region (z) remains constant. Thus we
introduce a linear constraint on d of the form ¢!'d = 0, where the vector ¢
is the gradient of the area of Q(z¥) with respect to z. Also let §; = ¢;(zV),
1 <@ < n, form an orthonormal basis of eigenvectors for (A(z"), B(z")),
and let Z; = Z;(z¥) be as in (7.10). We write Q3 = [Ga ... G14¢], M1 = M (&),
Ao = Ao(#), and A; = A;(2¥) for the j"-partial derivative of A(z) at z".
The linear program is then given by
PR
min 2 Z (1qu1 Z]ql

(LPY) “0M S 1

subject to

Z )Y 7,02 = diag(0, X5 — g, ..., Ay — A2) (11.1)
=1

6 — Zdﬂql ]dl S Xl — &2 (112)
7=1

6 — Zdj(j]{ZAj(jk > ;\k — ;\2, 24+t<k<n (11.3)
7=1

Td=0 (11.4)

[<d<u (11.5)

ldllo < 7 (11.6)

where r is a trust region radius updated by the algorithm, and [, u are
determined by the neighborhood of (1,...,1) in ®™ over which p(z) is to
be optimized. The set of constraints (11.1) arise from a linearization of a
suitable system of nonlinear equations characterizing the conditions

Ao(z) = ... = M) = wy
constraints (11.2) and (11.3) ensure that, up to first order, the values of A\
and Agyy, ..., A, at the new iterate are still greater, respectively less, than
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that of A;. Note that the constraints (11.1) form a system of ¢(¢+1)/2 linear
equations; each equation has a Lagrange multiplier associated to it. These
Lagrange multipliers are assembled into a symmetric matrix U with diagonal
entries corresponding to the multipliers of the diagonal equations of (11.1)
and the off-diagonal elements of U corresponding to half the multipliers of
the corresponding off-diagonal equations of (11.1). (The factor 1/2 comes
from our definition of the inner product <,>). The symmetric matrix U
provides an estimate for the dual matrix U; described in section 9. More
precisely, we have

Uz = —\i(2)U.
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12 Numerical Results

We implemented the algorithm described above in Fortran 77. The pro-
gram includes a subroutine written by Overton to partially solve the linear
program presented in the previous section. The first few eigenvalues and
eigenvectors of the pencil (A(z), B(z)) are computed via subspace iteration
as described in [4], and subroutines from the Linpack [10] and Eispack [12] li-
braries are used to solve the resulting linear systems and reduced generalized
eigenvalue problems. The bulk of the code that was written specifically for
this problem is devoted to implementing the parametrization of the shape
Q as a function of a vector z of parameters as described in section 10 and
the computation of the matrices A(z) and B(z) as well as their partial
derivatives with respect to the parameters z;.

In order to test the quality of our discrete model of the geometry we
used our code to verify numerically the celebrated Faber-Krahn inequality,
namely that among all regions of the plane of a given area the disk is the
shape with the smallest first eigenvalue for the Laplacian. Of course, this
problem is much simpler than the Payne, Polya, Weinberger conjecture since
the function to be minimized, namely A;(z), is smooth at the solution. We
set the values of the radius of the disk Dg and the width of the annulus
Dy both equal to 0.6. The annulus was divided into 32 sectors, so that the
region {2 depends upon 32 parameters. There were four layers of rectangles
in Dy for a total of 64 rectangles, and there were 64 triangles in Dy. The
total number of vertices was 337, including the boundary vertices, resulting
in banded matrices A(z) and B(z) of size 305 by 305 with a bandwidth
equal to 59. Finally the initial value of the trust radius was set to 0.1.
The algorithm performed very well, converging to a disk in a few steps.
For example, starting with an ellipse as the initial shape, all 32 parameters
agreed to four significant digits after 10 iterations. (Recall that in our model
disks are represented by setting all parameters equal to a common value).
On the other hand, the next 15 iterations failed to produce agreement on
the next digit. These results show that our discretization of the geometry is
adequate, but at the same time reveal the limited ’resolution’ of our model,
namely only the first four or five digits of the parameters are geometrically
significant for the triangulation of Q given above.

The behavior of the algorithm on the main problems, namely that of
minimizing the ratio i;gg or maximizing the gap between A\j(z) and Az(z)
was much less satisfying. First, recall that the parameters with an even
index, x9;, correspond to rays that bisect the rectangles in the annulus Dy,
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while the odd indexed parameters x4;41 correspond to rays that coincide
with the sides of the rectangles (see section 10). We worked with the same
triangulation of Q(z) as that used for the Faber-Krahn inequality and we
used various initial shapes and several values for the multiplicity threshold
7 (see section 11). In all cases, we observed the following pattern as the
algorithm proceeds. At startup the multiplicity of A is 1 and the algorithm
makes moderate progress, that is the values of the parameters converge to
a common value but very slowly, the objective function, either p(z) or n(z),
is reduced by smaller and smaller steps, and the trust radius is steadily de-
creased. At the same time the gap between Ay and As narrows until the
threshold 7 forces the multiplicity of Ay to jump to 2. At this point the
algorithm goes through a few iterations without succeeding in producing a
decrease in the objective function. For each such failure the trust radius is
halved, and the algorithm eventually produces a descent direction. Then
the following happens for the next few iterations. The objective function
is being steadily reduced, but the parameters no longer converge to a com-
mon value. Instead, the even indexed parameters are being reduced, while
the odd ones are being increased. Thus (z) resembles a polygon whose
sides are caving in more and more toward the interior of the polygon. At
the same time the gap between Ay and Az widens and the trust radius is
steadily increasing. (At each iteration the trust radius is either doubled,
halved, or left unchanged, depending upon the ratio of the actual increase
in the objective function to the first order estimate of this increase; when
the multiplicity is 2 this ratio is usually close to 1 and the trust radius is
doubled, whereas when the multiplicity is 1 this ratio is small and the trust
radius is halved). Eventually, the threshold 7 forces the multiplicity back to
1, and the whole cycle starts again. The algorithm oscillates between these
two opposite behaviors for a while, the actual number of cycles depending
upon the value of the convergence tolerance (the algorithm stops when the
norm of the step produced falls below a convergence threshold, and when
the optimality conditions are satisfied, of course).

At present we still do not understand what is happening. The first guess
would be that there remains a bug in the program, but extensive checking
and testing of the code has failed to produce the source of the problem so
far. It is also possible that our geometric model, while adequate for the
optimization of A;(z), is not sensitive enough for the ratio p(z) or the gap
n(z). Finally, but least likely, the behavior of the algorithm may actually
reflect wild and unpleasant properties of p(z) and n(z) near their minimum.
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A Appendix

In this appendix we give the proof of theorem 10.1. So let K denote the
isoparametric rectangular element of the ring Dy with nodes

o= (R0+a<—
n

¥ = (Ro+a E) Ry)(1,0)

<n
k
vto= (R0+a< - )Rl)(l,o)
k41
v o= (R0+a< * )Rl)(cosﬁ,sinﬁ)
n
k
¥ = (Ro+a <—) R1)(cosB,sin )
n
3 k-1 ,
b = (Ro+a Rq)(cos@,sin )
n
k41 6 . 0
vo= (R0+a< . )Rl)(cosi,smi)
k-1 6 6
T _ 2 sin—
bt = (R0+a< - )Rl)(COSQ,SlI‘LQ)

where n is a positive even integer and k is an odd integer with 0 < k < n
and let

F(r,s) = E Aj(r, s)bj

be the map sending the standard rectangle K onto K (cf section 10). We
are going to determine bounds on the values of # and a,3,v which will
ensure the nonvanishing of the jacobian determinant, det JF, of F. These
conditions will apply also to the other elements of D since nondegeneracy
is clearly rotation invariant. So far we have 0 < § < 27, and we assume that

|a_1|7|ﬁ_1|7|7_1|§€

for some € to be determined.
The following abbreviations will be used below.

k R
A = Rota—Ri+a—s
n n
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k R
B = Ro+fB—Ry+[—s
n n
k R
C = Ro+y—Ri+7y—s
n n

We need to compute the following expressions.

0+ O 4 (M) = (20 41)
()= () = s(2r 4 1)
() + Oa)e + (s = 5(2r— 1)
Mde— (a)e = s(2r—1)

2
s = —=2r

s = —2rs

2

s = 0
1
s = —57'(1 —r)
s = 0
s = 1—7?

(A2)r = (As)
(As)r + (A7)
(As)r = (A7)
(As)s + (M)
(A)s = (Ma)s = gr(1+7)
(A6)s +(As)
(A2)s = (As)
(As)s + (A7)
(As)s = (A7)

We now compute the four entries of the jacobian matrix JF.
(1,1)-entry :

8
1 1 9
Z(Aj)'rb{ = 514(27" +1)+ §B(27‘ —1)cosf — 2Cr cos 2
7=1
(2,2)-entry :
8
> (A)sby = ——ﬁ&r(l —r)siné + 7&(1 —r?)sin 5
7=1

(2,1)-entry :

1 0
Db = ZB(2r —1)sinf — 20rsin§

Moo

]=1
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(1,2)-entry :

T
Aj)sbl = —a=2r(1 +
()b = gabr(i47)

1 R R 4
— 56717‘(1 —r)cosf + “;’71(1 - 7‘2) Cos B

8
J1=

Now :
1 1 0
[§A(2'r +1)+ §B(2'r —1)cosf — 2Cr cos 5] X

1 Ry . Ry 9y . 0
I fi S 0+ ~4—2(1— 2=
[—=p . r( r)sinf + v - ( r) sin 2]

2
1 Ry J . 1 R oy . 0
= —4Aﬂ " r(1—7)(2r+1)sinf + 2A/ " 2r+ 1)1 -7 )sm2
—%Bﬁﬁr(l —7)(2r — 1) cosfsinf
n

1 Ry 9 .6
—}—2B7 " 2r—-1)(1-r )c05051n2

0 . 0

Ry 2 0 . R’y 2 .
+Cp - r (1—7‘)c05251n0—207 . r(l—r )c05251n2.

and

[%a%r(l +7r)— %ﬂ%r(l —71)cosf + 7%(1 — %) cos g] X

1 6
[§B(27’ —1)sinf — 2C'rsin 5] =

1 Ry . Ry, .0
= 4Ba - 7'(1+7')(27‘—1)51110—C'an7' (1—|—7‘)sm2

1
—ZBﬁ&'r(l —7)(2r — 1) cosfsin b
n

6
_ . 7 - -1 P ., 2 P
+CB—r*(1 —r)cosfsin 5 + 2B’y - (2r — 1)(1 — r*) cos 5 sin 0

n
R
—2Cy=2r(1 — r?) cos = sin —.
n 2 2
Thus we have

1 Ry ’ . 1 R oy 0
det JF©' = —ZAﬁFr(l—r)(27‘—|—1)sm0—|—§14/7(2r+1)(1—r)51115

1 Ry 9 .6
—|—§B /7(27' — 1)(1 — %) cosfsin 3
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1 6
—§B"/%(2T —1)(1 = 7r%) cos 2 sin 6

R, , 0 . Ry .0
—|—Cﬂ77' (1—7)cos 2 sin @ — C’ﬁ7r (1 —17)cosfsin 2
1. Ry ’ ) Ry , .0
—ZBQTT(l +7)(2r —1)sin 8 + C’a7r (1+ 7)sin 7
But
cos@sin — — cos —sinf = —sin —
2 2
0 0 0
cos — sin # — cos @ sin — = sin —
2 2
. . 0
sin @ = 2sin — cos —
2 2
so that
1 1
det JF© = —ZAﬁ&r(l —r)(2r+1)sinf — ZBa& r(1+7)(2r—1)siné
n n
L. R’ I Ry , .8
—|—2A; . 2r+ 1)1 -r )sm2 +Ca it (1—|—r)sm2
1 Rl 2 . 0 Rl 2 . 0
—2B7 - 2r—1(1-r )sm2 +Cp ekl (1—7')51112
= [%% sin g] {-Apr(1 —r)(2r+1) cosg

—Bar(l+r)(2r-1) cosg + Ay(2r + 1D)(1 = %)
+2Car?(14 1) — By(2r — 1)(1 — r?) + 208r*(1 — r)}.

Now, sin% # 0 for 0 < @ < 27, so that det JF # 0 if and only if @ # 0,
where

Q = Avy(2r4+ 1)(1- 7‘2) — Bvy(2r—1)(1- 7‘2) + 20&7‘2(1 +7)
+2C3r*(1 — r) — cos g [Apr(1—r)(2r+ 1)+ Bar(l+r)(2r—1)].

We compute

k R
Ay(2r + 1)(1=1?) = <7Ro +ay— Ry + or/—nl s) [—2r% — 7% + 27 + 1]
9 k Ry 3 9
—By(2r—-1)(1—r*)= | —vRo — ﬁ*;;Rl — ﬁ’y?s [—2r° + 77 + 2r — 1]
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2Car*(1+r) = (2aRo + 2a~/le + 2a~/R ) [r® +77]
2087%(1 — 1) = <2ﬁR0 + Qﬁ'ngl + Qﬁ*/?ls) [—r® 4+ 77
k R, 3 2

AﬁT(l — T)(QT + 1) = | PRy + Oéﬂ;Rl + Oéﬂ?S [—2’1‘ +re 4+ r]

k
BCW’(l + 7‘)(27‘ — 1) = <aRO + aﬁ_Rl + aﬁ&‘s) [27‘3 1 T'2 N 7‘].
n n
Thus we get the following expressions for the various terms of ¢

Roterm s 2[%(a— §) + r*(a+ 5 —7) +1].

ERi-term :  ya(1+ 1)+ B(1-r)?.
%ls-term : 7 (1-|-7‘) (1_T)2]'

cosb-term :  Ro[2r%(a — B) + r*(a + B) — r(a — B)]
+2§R1aﬁr2 + 2&aﬁsr2.
n n
Hence we may rewrite () as
Q = 2Ry[r’(a =) +r¥(a+p-7)+7]
FERigla(14 1) 4 (0 - 1+ “Lsyla(1 4 1) 4 501 - 1)

—COSQ{Ro[QTS(a—ﬁ)‘}'T (a+8)—r(a—p5)]
—I—QiRlaﬁr —}—QR afsr }
= m(r)s+b(r)

0
m(r) = 22| (7a+ 98 - 2605 5a8) 1 + 2700 = By + 9(a + 9)

b(r) = [QRo(a — B)(1 — cos g)] 3
+ [QRo(a +06-7)+ %Rl'y(a + ) — cos gRo(Oé + ) — 2 cos g%Rlaﬁ] r

k ] k
+ [Q;Rﬂ(a — [3) + cos §R0(a — ﬂ)] r+ [QROA/ + Eley(a + ﬁ)] ,
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so that

where

e(r) = Rp {2(04 — B)(1 — cos g)'r?’ +[2(a+ 5 —-7)— (a+ §)cos g]’I‘Z

0
+[(a — ) cos 5]7‘ + 27} .
So we have obtained the following expression for ¢
Q = m(r)s+e(r)+ km(r).

Now Q(r,s) vanishes for some r,s € [—1, 1] precisely when either of the
following two conditions are met.

1. dr € [-1,1] such that m(r) =b(r) =0

2. m(r)#0and s = —%(% €[-1,1].

Remark 1.1 We consider the special case « = § = 7 = 1, i.e. the case of
the unperturbed element. Then

m(r) = 2%[(1 — cos g)rz + 1]

6
2Ro[(1 — cos 5)7'2 + 1]

[a]
—
~
S—
Il

b(r) = 2[(1— cos g)rz + 1] (RO + k%) .

Clearly m(r) > 0 for all » € ® and

2[(1 — cos g)'f‘) + 1] (Ro + SRl)
281[(1 — cos §)r2 + 1]

®
(

|
I
—~~
_|_
Eryl
~—

Since 0 < k < n, we have
k—|—n& > 1, if Ry > 0,
Ry

so that ) does not vanish on [—1,1] X [-1,1].
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Let us return to the general case. We proceed in two steps. First, we
show how to ensure that m(r) # 0 for r € [-1, 1]. Second, we show how to
force —b(r)/m(r) to lie outside of [—1,1] for r € [-1,1].

(1) First we force the coefficients of 7% in m(r) to be > 0. (Observe that
this is the case when o = f = = 1). Thus we want

0
*/a—l—'yﬁ—QcosiaﬁZO

or equivalently

ﬂ/(a—l_ﬁ) > 2COSQ.
af 2
Let g(a,8,7) = ﬁ,/(a;ﬁﬁ). We have
_ 7
Ja _E
g3 = _/@_,2 (by symmetry)
_atp
g’Y - aﬁ .

Let C denote the cube in R given by

C:{(avﬂvﬁfﬂ|a_1|7|ﬁ_1|7|7_1|§€}

for some € > 0 to be determined. Clearly, g does not have any critical points
in C, so to find the minimum of g on C it is enough to consider the boundary
0C. But actually, examining the restriction of g to the six faces of 9C, we
see that it suffices to consider the vertices of C. Moreover, as g(a, §,7) is
obviously symmetric in @ and 3, and

g(avﬂv 1+ 6) > g(avﬁv 1- 6)7
we only have three vertices to consider.

l.a=1-¢,=1—-€¢,7=1—¢.

0
g(a,ﬁ,7):2>2cos§ forany 0 < 6 < 27
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2.a=14¢,0=1—¢,y=1—c¢.

2
g(a7ﬁv 7)_ 14 ¢
Thus we get, provided that cosg #0,
< - —1.
€< sec g
J.a=14¢,0=14€e,y=1—c¢.
1—¢
- :2
gl ) =29
Thus we get
1—(:05%
€<79.
1—|—cos§
Observe that
l—cos? 1-—cos? 0 0
3_ 6,22866——1if cos — # 0,
1+ cos 5 €os 5 2 2

and thus a sufficient condition for the coefficient of 72 in m(r) to be positive
is

1—cos%
la—=11],|8—-1],]v—1]<e where €<17€. (1.2)
—|—cos§

Remark 1.3 We want ¢ < 1! This will follow from (1.2) if we restrict 6 to
lie in (0, ).

Now that the coefficient of 72 is positive, the critical point rq of m(r)
yields a global minimum of m(r) on R. We have

N 7(e—B)
0 ay + By — 2a0 cos %
Ry e -p)?
m(ro) = n e+ ) ay + By — 2af cos %

Thus
200 32
/“(a - B) 50
ay + By — 2aBcos 5
2y 0
> COoS —

a+p 2

m(rg) >0 <= ~y(a+p)-—
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Clearly for (o, 3,7) € C, we have

and we know that

so that we may conclude that m(r) > 0 for all » € ®, when (o, 3,7)€C
with € satisfying equation (1.2).

(2) Let us write ¢ = cos 2. We now choose

11—z

€= — .
2142z

(1.4)

We want to find a condition on 2 ensuring that

b(r)

m(r)

¢ [-1,1], for all r € [-1,1].

Recall that b(r) = e(r)+ km(r), so that
) el

m(r) m(r)

and —k < —1 since k is an odd integer with 0 < k£ < n. Thus it suffices to
show that

e(r) >0, for all r € [-1,1].
Now e(r) = Rop(r) where

p(r) =20 = B)(1 - a)r’ + [2(a+ B —7) = (a + B)a]r* + (a = f)ar + 27.

b = AatB-7)— (0t
b= 2Aa-p)i-1)
6 = (a-p

and observe that, writing p(r) = p(r, a, 5,7), we have

p(Tvﬁv a77) = p(_Tv avﬁvﬁf/)v
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so that, to show p(r) > 0 for all » € [—1,1] and for all (a,8,7) €C, it is
enough to consider r € [—1,1] and

(Oz,/@,"/) € é = {(avﬁvﬁfﬂa 2 ﬁ} nc.
When a = 3 we have
p(r)=2[a2—2)—y]r* +27> 27> 0

for all r € R, provided a(2 —z) -5 > 0. But,y <1+4+¢ a>1-¢€and
2 —a > 0, so it suffices to show that

1+ e<(1=-€)2-2),

i.e.

By our choice of €, (1.4), we have

11—z l1—=z
— <
2142~ 3—-=2

and we get
cosg > 1/3. (1.5)
We have shown that, when a = (3,
p(r) > 2y > 2(1—¢), forall r € R.

We now show that
_ 32 _
o> 3z +4x -1
1+ =z
We let g(a, 5,7)=2(a+ 5 —7)— (a + B)z, and we have

, for(a, 3,7) € C. (1.6)

ga = 2 — T > 0
gg = 2—x > 0 ; for values of a,3,7 € R.
gy = -2 < 0

It follows that the minimum of g on C occurs at the vertices of C. However
¢ is symmetric in «a, F and

g(a,B8,7) 2 g(a, 8,1+ ¢),

so there are only three vertices to consider.

58



l.a=14+e¢,0=1—-€,7y=1+4c¢€.

p=2(1—2x)— 2

2.a=14¢,0=14€,y=1+e.

p=2(1—2)—2¢(1—-2z)

J.a=1—-¢,=1—-€¢,y=1+e.

p=2(1-2z)—2¢3—z).

Now for 0 < € < 7, we have
l-z<1«<3-2

so that
(1.9) < (1.7) < (1.8).

By (1.4) again, we have

—3z2 44z -1

1.9) =
(19) = =2

and inequality (1.6) follows.
The roots of =322 + 4z — 1 are 1 and 1/3, so that

—3z2 44z -1

>0, forall 1/3 <z < 1.
1+z
Thus we have shown that for (a,3,7) € é,

32244z -1

>
p= 1+ =z

6
>0, for 1/3 < cos 5 < 1.

Moreover, if a > 3, then
0<pu<4el—=z) and 0< § < 2ex.

But
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Thus, for a > 3, we have
p(r) = ur® + pr® + 6r + 2y > 0, for all r € [0, 1],

so it suffices to comsider r € [~1,0]. Then 3 < 0, r < 0, so that

201 —2z)? 5 -3z +4z - 1';"2 z(l—z)

p(r) 2 14z ! 14z 14z rt 21—,
and
p(r) >0 <= 2(1—2)*r® +(-32* + 4z — 1)r?
z(1—z)r+2(1—¢€)(142z)>0.
Now
11—-=2 1+ 3z
l—e=1-= = ,
21+2 2(1+42)
so that

21+ z)(1—¢) =14 3z,
and we must show that
201 —2)*r® + (=32 + 4z — )r* +z(1 —a)r + 1+ 32 > 0, Vr € [-1,0]

ie.
(=32% + 42— D)r* + 1+ 32 > —r[2(1 — 2)*% 4+ 2(1 - 2)].

Since —r < 1 on [—1,0], it is enough to show that
20 —2)*r?* +2(l —2) < (=32* + 42 — )r* + 1 + 3z, Vr € [-1,0].
This will certainly be the case if
(a) z(1—2)< 143z
(b) 21 —2)? < -3a* +4z -1

But (a) holds if and only if (1 4+ )? > 0, which holds for all z # —1.
On the other hand, (b) holds if and only if —52? 4+ 8z — 3 > 0. The roots of
this polynomial are 1 and 3/5. Thus the inequality (b) holds for all

3/ <z < 1.
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To summarize, we have proved theore 10.1, namely that the jacobian
det JF does not vanish for all a,3,v and 8 such that

11—cos?
la-1]|8-1]|7-1|<5—=

T 214cosg

and
0
3/5 < cos 5 < 1.
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