A framework for optimistic program optimization

Candidate: Pechtchanski,Igor


The problem of program optimization is a non-trivial one. Compilers do a fair job, but can't always deliver the best performance. The expressibility of general-purpose languages is limited, not allowing programmers to describe expected run time behavior, for example, and some programs are thus more amenable to optimization than others, depending on what the compiler expects to see. We present a generic framework that allows addressing this problem in two ways: through specifying verifiable source annotations to guide compiler analyses, and through optimistically using some assumptions and analysis results for the subset of the program seen so far. Two novel applications are presented, one for each of the above approaches: a dynamic optimistic interprocedural type analysis algorithm, and a mechanism for specifying immutability assertions. Both applications result in measurable speedups, demonstrating the feasibility of each approach.