Library iris.prelude.coPset

This files implements the type coPset of efficient finite/cofinite sets of positive binary naturals positive. These sets are:
  • Closed under union, intersection and set complement.
  • Closed under splitting of cofinite sets.
Also, they enjoy various nice properties, such as decidable equality and set membership, as well as extensional equality (i.e. X = Y x, x X x Y).
Since positives are bitstrings, we encode coPsets as trees that correspond to the decision function that map bitstrings to bools.
From iris.prelude Require Export collections.
From iris.prelude Require Import pmap gmap mapset.
Local Open Scope positive_scope.

The tree data structure

Inductive coPset_raw :=
  | coPLeaf : bool coPset_raw
  | coPNode : bool coPset_raw coPset_raw coPset_raw.
Instance coPset_raw_eq_dec (t1 t2 : coPset_raw) : Decision (t1 = t2).
Proof. solve_decision. Defined.

Fixpoint coPset_wf (t : coPset_raw) : bool :=
  match t with
  | coPLeaf _true
  | coPNode true (coPLeaf true) (coPLeaf true) ⇒ false
  | coPNode false (coPLeaf false) (coPLeaf false) ⇒ false
  | coPNode b l rcoPset_wf l && coPset_wf r
  end.
Arguments coPset_wf !_ / : simpl nomatch.

Lemma coPNode_wf_l b l r : coPset_wf (coPNode b l r) coPset_wf l.
Proof. destruct b, l as [[]|],r as [[]|]; simpl; rewrite ?andb_True; tauto. Qed.
Lemma coPNode_wf_r b l r : coPset_wf (coPNode b l r) coPset_wf r.
Proof. destruct b, l as [[]|],r as [[]|]; simpl; rewrite ?andb_True; tauto. Qed.
Local Hint Immediate coPNode_wf_l coPNode_wf_r.

Definition coPNode' (b : bool) (l r : coPset_raw) : coPset_raw :=
  match b, l, r with
  | true, coPLeaf true, coPLeaf truecoPLeaf true
  | false, coPLeaf false, coPLeaf falsecoPLeaf false
  | _, _, _coPNode b l r
  end.
Arguments coPNode' _ _ _ : simpl never.
Lemma coPNode_wf b l r : coPset_wf l coPset_wf r coPset_wf (coPNode' b l r).
Proof. destruct b, l as [[]|], r as [[]|]; simpl; auto. Qed.
Hint Resolve coPNode_wf.

Fixpoint coPset_elem_of_raw (p : positive) (t : coPset_raw) {struct t} : bool :=
  match t, p with
  | coPLeaf b, _b
  | coPNode b l r, 1 ⇒ b
  | coPNode _ l _, p~0coPset_elem_of_raw p l
  | coPNode _ _ r, p~1coPset_elem_of_raw p r
  end.
Local Notation e_of := coPset_elem_of_raw.
Arguments coPset_elem_of_raw _ !_ / : simpl nomatch.
Lemma coPset_elem_of_node b l r p :
  e_of p (coPNode' b l r) = e_of p (coPNode b l r).
Proof. by destruct p, b, l as [[]|], r as [[]|]. Qed.

Lemma coPLeaf_wf t b : ( p, e_of p t = b) coPset_wf t t = coPLeaf b.
Proof.
  induction t as [b'|b' l IHl r IHr]; intros Ht ?; [f_equal; apply (Ht 1)|].
  assert (b' = b) by (apply (Ht 1)); subst.
  assert (l = coPLeaf b) asby (apply IHl; try apply (λ p, Ht (p~0)); eauto).
  assert (r = coPLeaf b) asby (apply IHr; try apply (λ p, Ht (p~1)); eauto).
  by destruct b.
Qed.
Lemma coPset_eq t1 t2 :
  ( p, e_of p t1 = e_of p t2) coPset_wf t1 coPset_wf t2 t1 = t2.
Proof.
  revert t2.
  induction t1 as [b1|b1 l1 IHl r1 IHr]; intros [b2|b2 l2 r2] Ht ??; simpl in ×.
  - f_equal; apply (Ht 1).
  - by discriminate (coPLeaf_wf (coPNode b2 l2 r2) b1).
  - by discriminate (coPLeaf_wf (coPNode b1 l1 r1) b2).
  - f_equal; [apply (Ht 1)| |].
    + apply IHl; try apply (λ x, Ht (x~0)); eauto.
    + apply IHr; try apply (λ x, Ht (x~1)); eauto.
Qed.

Fixpoint coPset_singleton_raw (p : positive) : coPset_raw :=
  match p with
  | 1 ⇒ coPNode true (coPLeaf false) (coPLeaf false)
  | p~0coPNode' false (coPset_singleton_raw p) (coPLeaf false)
  | p~1coPNode' false (coPLeaf false) (coPset_singleton_raw p)
  end.
Instance coPset_union_raw : Union coPset_raw :=
  fix go t1 t2 := let _ : Union _ := @go in
  match t1, t2 with
  | coPLeaf false, coPLeaf falsecoPLeaf false
  | _, coPLeaf truecoPLeaf true
  | coPLeaf true, _coPLeaf true
  | coPNode b l r, coPLeaf falsecoPNode b l r
  | coPLeaf false, coPNode b l rcoPNode b l r
  | coPNode b1 l1 r1, coPNode b2 l2 r2coPNode' (b1||b2) (l1 l2) (r1 r2)
  end.
Local Arguments union _ _!_ !_ /.
Instance coPset_intersection_raw : Intersection coPset_raw :=
  fix go t1 t2 := let _ : Intersection _ := @go in
  match t1, t2 with
  | coPLeaf true, coPLeaf truecoPLeaf true
  | _, coPLeaf falsecoPLeaf false
  | coPLeaf false, _coPLeaf false
  | coPNode b l r, coPLeaf truecoPNode b l r
  | coPLeaf true, coPNode b l rcoPNode b l r
  | coPNode b1 l1 r1, coPNode b2 l2 r2coPNode' (b1&&b2) (l1 l2) (r1 r2)
  end.
Local Arguments intersection _ _!_ !_ /.
Fixpoint coPset_opp_raw (t : coPset_raw) : coPset_raw :=
  match t with
  | coPLeaf bcoPLeaf (negb b)
  | coPNode b l rcoPNode' (negb b) (coPset_opp_raw l) (coPset_opp_raw r)
  end.

Lemma coPset_singleton_wf p : coPset_wf (coPset_singleton_raw p).
Proof. induction p; simpl; eauto. Qed.
Lemma coPset_union_wf t1 t2 : coPset_wf t1 coPset_wf t2 coPset_wf (t1 t2).
Proof. revert t2; induction t1 as [[]|[]]; intros [[]|[] ??]; simpl; eauto. Qed.
Lemma coPset_intersection_wf t1 t2 :
  coPset_wf t1 coPset_wf t2 coPset_wf (t1 t2).
Proof. revert t2; induction t1 as [[]|[]]; intros [[]|[] ??]; simpl; eauto. Qed.
Lemma coPset_opp_wf t : coPset_wf (coPset_opp_raw t).
Proof. induction t as [[]|[]]; simpl; eauto. Qed.
Lemma elem_to_Pset_singleton p q : e_of p (coPset_singleton_raw q) p = q.
Proof.
  split; [|by intros <-; induction p; simpl; rewrite ?coPset_elem_of_node].
  by revert q; induction p; intros [?|?|]; simpl;
    rewrite ?coPset_elem_of_node; intros; f_equal/=; auto.
Qed.
Lemma elem_to_Pset_union t1 t2 p : e_of p (t1 t2) = e_of p t1 || e_of p t2.
Proof.
  by revert t2 p; induction t1 as [[]|[]]; intros [[]|[] ??] [?|?|]; simpl;
    rewrite ?coPset_elem_of_node; simpl;
    rewrite ?orb_true_l, ?orb_false_l, ?orb_true_r, ?orb_false_r.
Qed.
Lemma elem_to_Pset_intersection t1 t2 p :
  e_of p (t1 t2) = e_of p t1 && e_of p t2.
Proof.
  by revert t2 p; induction t1 as [[]|[]]; intros [[]|[] ??] [?|?|]; simpl;
    rewrite ?coPset_elem_of_node; simpl;
    rewrite ?andb_true_l, ?andb_false_l, ?andb_true_r, ?andb_false_r.
Qed.
Lemma elem_to_Pset_opp t p : e_of p (coPset_opp_raw t) = negb (e_of p t).
Proof.
  by revert p; induction t as [[]|[]]; intros [?|?|]; simpl;
    rewrite ?coPset_elem_of_node; simpl.
Qed.

Packed together + set operations

Definition coPset := { t | coPset_wf t }.

Instance coPset_singleton : Singleton positive coPset := λ p,
  coPset_singleton_raw p coPset_singleton_wf _.
Instance coPset_elem_of : ElemOf positive coPset := λ p X, e_of p (`X).
Instance coPset_empty : Empty coPset := coPLeaf false I.
Instance coPset_top : Top coPset := coPLeaf true I.
Instance coPset_union : Union coPset := λ X Y,
  let (t1,Ht1) := X in let (t2,Ht2) := Y in
  (t1 t2) coPset_union_wf _ _ Ht1 Ht2.
Instance coPset_intersection : Intersection coPset := λ X Y,
  let (t1,Ht1) := X in let (t2,Ht2) := Y in
  (t1 t2) coPset_intersection_wf _ _ Ht1 Ht2.
Instance coPset_difference : Difference coPset := λ X Y,
  let (t1,Ht1) := X in let (t2,Ht2) := Y in
  (t1 coPset_opp_raw t2) coPset_intersection_wf _ _ Ht1 (coPset_opp_wf _).

Instance coPset_collection : Collection positive coPset.
Proof.
  split; [split| |].
  - by intros ??.
  - intros p q. apply elem_to_Pset_singleton.
  - intros [t] [t'] p; unfold elem_of, coPset_elem_of, coPset_union; simpl.
    by rewrite elem_to_Pset_union, orb_True.
  - intros [t] [t'] p; unfold elem_of,coPset_elem_of,coPset_intersection; simpl.
    by rewrite elem_to_Pset_intersection, andb_True.
  - intros [t] [t'] p; unfold elem_of, coPset_elem_of, coPset_difference; simpl.
    by rewrite elem_to_Pset_intersection,
      elem_to_Pset_opp, andb_True, negb_True.
Qed.

Instance coPset_leibniz : LeibnizEquiv coPset.
Proof.
  intros X Y; rewrite elem_of_equiv; intros HXY.
  apply (sig_eq_pi _), coPset_eq; try apply proj2_sig.
  intros p; apply eq_bool_prop_intro, (HXY p).
Qed.

Instance coPset_elem_of_dec (p : positive) (X : coPset) : Decision (p X) := _.
Instance coPset_equiv_dec (X Y : coPset) : Decision (X Y).
Proof. refine (cast_if (decide (X = Y))); abstract (by fold_leibniz). Defined.
Instance mapset_disjoint_dec (X Y : coPset) : Decision (X Y).
Proof.
 refine (cast_if (decide (X Y = )));
  abstract (by rewrite disjoint_intersection_L).
Defined.
Instance mapset_subseteq_dec (X Y : coPset) : Decision (X Y).
Proof.
 refine (cast_if (decide (X Y = Y))); abstract (by rewrite subseteq_union_L).
Defined.

Top

Lemma coPset_top_subseteq (X : coPset) : X .
Proof. done. Qed.
Hint Resolve coPset_top_subseteq.

Finite sets

Fixpoint coPset_finite (t : coPset_raw) : bool :=
  match t with
  | coPLeaf bnegb b | coPNode b l rcoPset_finite l && coPset_finite r
  end.
Lemma coPset_finite_node b l r :
  coPset_finite (coPNode' b l r) = coPset_finite l && coPset_finite r.
Proof. by destruct b, l as [[]|], r as [[]|]. Qed.
Lemma coPset_finite_spec X : set_finite X coPset_finite (`X).
Proof.
  destruct X as [t Ht].
  unfold set_finite, elem_of at 1, coPset_elem_of; simpl; clear Ht; split.
  - induction t as [b|b l IHl r IHr]; simpl.
    { destruct b; simpl; [intros [l Hl]|done].
      by apply (is_fresh (of_list l : Pset)), elem_of_of_list, Hl. }
    intros [ll Hll]; rewrite andb_True; split.
    + apply IHl; (omap (maybe (~0)) ll); intros i.
      rewrite elem_of_list_omap; intros; (i~0); auto.
    + apply IHr; (omap (maybe (~1)) ll); intros i.
      rewrite elem_of_list_omap; intros; (i~1); auto.
  - induction t as [b|b l IHl r IHr]; simpl; [by []; destruct b|].
    rewrite andb_True; intros [??]; destruct IHl as [ll ?], IHr as [rl ?]; auto.
     ([1] ++ ((~0) <$> ll) ++ ((~1) <$> rl))%list; intros [i|i|]; simpl;
      rewrite elem_of_cons, elem_of_app, !elem_of_list_fmap; naive_solver.
Qed.
Instance coPset_finite_dec (X : coPset) : Decision (set_finite X).
Proof.
  refine (cast_if (decide (coPset_finite (`X)))); by rewrite coPset_finite_spec.
Defined.

Pick element from infinite sets

Fixpoint coPpick_raw (t : coPset_raw) : option positive :=
  match t with
  | coPLeaf true | coPNode true _ _Some 1
  | coPLeaf falseNone
  | coPNode false l r
     match coPpick_raw l with
     | Some iSome (i~0) | None(~1) <$> coPpick_raw r
     end
  end.
Definition coPpick (X : coPset) : positive := from_option id 1 (coPpick_raw (`X)).

Lemma coPpick_raw_elem_of t i : coPpick_raw t = Some i e_of i t.
Proof.
  revert i; induction t as [[]|[] l ? r]; intros i ?; simplify_eq/=; auto.
  destruct (coPpick_raw l); simplify_option_eq; auto.
Qed.
Lemma coPpick_raw_None t : coPpick_raw t = None coPset_finite t.
Proof.
  induction t as [[]|[] l ? r]; intros i; simplify_eq/=; auto.
  destruct (coPpick_raw l); simplify_option_eq; auto.
Qed.
Lemma coPpick_elem_of X : ¬set_finite X coPpick X X.
Proof.
  destruct X as [t ?]; unfold coPpick; destruct (coPpick_raw _) as [j|] eqn:?.
  - by intros; apply coPpick_raw_elem_of.
  - by intros []; apply coPset_finite_spec, coPpick_raw_None.
Qed.

Conversion to psets

Fixpoint to_Pset_raw (t : coPset_raw) : Pmap_raw () :=
  match t with
  | coPLeaf _PLeaf
  | coPNode false l rPNode' None (to_Pset_raw l) (to_Pset_raw r)
  | coPNode true l rPNode (Some ()) (to_Pset_raw l) (to_Pset_raw r)
  end.
Lemma to_Pset_wf t : coPset_wf t Pmap_wf (to_Pset_raw t).
Proof. induction t as [|[]]; simpl; eauto using PNode_wf. Qed.
Definition to_Pset (X : coPset) : Pset :=
  let (t,Ht) := X in Mapset (PMap (to_Pset_raw t) (to_Pset_wf _ Ht)).
Lemma elem_of_to_Pset X i : set_finite X i to_Pset X i X.
Proof.
  rewrite coPset_finite_spec; destruct X as [t Ht].
  change (coPset_finite t to_Pset_raw t !! i = Some () e_of i t).
  clear Ht; revert i; induction t as [[]|[] l IHl r IHr]; intros [i|i|];
    simpl; rewrite ?andb_True, ?PNode_lookup; naive_solver.
Qed.

Conversion from psets

Fixpoint of_Pset_raw (t : Pmap_raw ()) : coPset_raw :=
  match t with
  | PLeafcoPLeaf false
  | PNode None l rcoPNode false (of_Pset_raw l) (of_Pset_raw r)
  | PNode (Some _) l rcoPNode true (of_Pset_raw l) (of_Pset_raw r)
  end.
Lemma of_Pset_wf t : Pmap_wf t coPset_wf (of_Pset_raw t).
Proof.
  induction t as [|[] l IHl r IHr]; simpl; rewrite ?andb_True; auto.
  - intros [??]; destruct l as [|[]], r as [|[]]; simpl in *; auto.
  - destruct l as [|[]], r as [|[]]; simpl in *; rewrite ?andb_true_r;
      rewrite ?andb_True; rewrite ?andb_True in IHl, IHr; intuition.
Qed.
Lemma elem_of_of_Pset_raw i t : e_of i (of_Pset_raw t) t !! i = Some ().
Proof. by revert i; induction t as [|[[]|]]; intros []; simpl; auto; split. Qed.
Lemma of_Pset_raw_finite t : coPset_finite (of_Pset_raw t).
Proof. induction t as [|[[]|]]; simpl; rewrite ?andb_True; auto. Qed.

Definition of_Pset (X : Pset) : coPset :=
  let 'Mapset (PMap t Ht) := X in of_Pset_raw t of_Pset_wf _ Ht.
Lemma elem_of_of_Pset X i : i of_Pset X i X.
Proof. destruct X as [[t ?]]; apply elem_of_of_Pset_raw. Qed.
Lemma of_Pset_finite X : set_finite (of_Pset X).
Proof.
  apply coPset_finite_spec; destruct X as [[t ?]]; apply of_Pset_raw_finite.
Qed.

Conversion from gsets of positives

Definition of_gset (X : gset positive) : coPset :=
  let 'Mapset (GMap (PMap t Ht) _) := X in of_Pset_raw t of_Pset_wf _ Ht.
Lemma elem_of_of_gset X i : i of_gset X i X.
Proof. destruct X as [[[t ?]]]; apply elem_of_of_Pset_raw. Qed.
Lemma of_gset_finite X : set_finite (of_gset X).
Proof.
  apply coPset_finite_spec; destruct X as [[[t ?]]]; apply of_Pset_raw_finite.
Qed.

Domain of finite maps

Instance Pmap_dom_coPset {A} : Dom (Pmap A) coPset := λ m, of_Pset (dom _ m).
Instance Pmap_dom_coPset_spec: FinMapDom positive Pmap coPset.
Proof.
  split; try apply _; intros A m i; unfold dom, Pmap_dom_coPset.
  by rewrite elem_of_of_Pset, elem_of_dom.
Qed.
Instance gmap_dom_coPset {A} : Dom (gmap positive A) coPset := λ m,
  of_gset (dom _ m).
Instance gmap_dom_coPset_spec: FinMapDom positive (gmap positive) coPset.
Proof.
  split; try apply _; intros A m i; unfold dom, gmap_dom_coPset.
  by rewrite elem_of_of_gset, elem_of_dom.
Qed.

Suffix sets

Fixpoint coPset_suffixes_raw (p : positive) : coPset_raw :=
  match p with
  | 1 ⇒ coPLeaf true
  | p~0coPNode' false (coPset_suffixes_raw p) (coPLeaf false)
  | p~1coPNode' false (coPLeaf false) (coPset_suffixes_raw p)
  end.
Lemma coPset_suffixes_wf p : coPset_wf (coPset_suffixes_raw p).
Proof. induction p; simpl; eauto. Qed.
Definition coPset_suffixes (p : positive) : coPset :=
  coPset_suffixes_raw p coPset_suffixes_wf _.
Lemma elem_coPset_suffixes p q : p coPset_suffixes q q', p = q' ++ q.
Proof.
  unfold elem_of, coPset_elem_of; simpl; split.
  - revert p; induction q; intros [?|?|]; simpl;
      rewrite ?coPset_elem_of_node; naive_solver.
  - by intros [q' ->]; induction q; simpl; rewrite ?coPset_elem_of_node.
Qed.
Lemma coPset_suffixes_infinite p : ¬set_finite (coPset_suffixes p).
Proof.
  rewrite coPset_finite_spec; simpl.
  induction p; simpl; rewrite ?coPset_finite_node, ?andb_True; naive_solver.
Qed.

Splitting of infinite sets

Fixpoint coPset_l_raw (t : coPset_raw) : coPset_raw :=
  match t with
  | coPLeaf falsecoPLeaf false
  | coPLeaf truecoPNode true (coPLeaf true) (coPLeaf false)
  | coPNode b l rcoPNode' b (coPset_l_raw l) (coPset_l_raw r)
  end.
Fixpoint coPset_r_raw (t : coPset_raw) : coPset_raw :=
  match t with
  | coPLeaf falsecoPLeaf false
  | coPLeaf truecoPNode false (coPLeaf false) (coPLeaf true)
  | coPNode b l rcoPNode' false (coPset_r_raw l) (coPset_r_raw r)
  end.

Lemma coPset_l_wf t : coPset_wf (coPset_l_raw t).
Proof. induction t as [[]|]; simpl; auto. Qed.
Lemma coPset_r_wf t : coPset_wf (coPset_r_raw t).
Proof. induction t as [[]|]; simpl; auto. Qed.
Definition coPset_l (X : coPset) : coPset :=
  let (t,Ht) := X in coPset_l_raw t coPset_l_wf _.
Definition coPset_r (X : coPset) : coPset :=
  let (t,Ht) := X in coPset_r_raw t coPset_r_wf _.

Lemma coPset_lr_disjoint X : coPset_l X coPset_r X = .
Proof.
  apply elem_of_equiv_empty_L; intros p; apply Is_true_false.
  destruct X as [t Ht]; simpl; clear Ht; rewrite elem_to_Pset_intersection.
  revert p; induction t as [[]|[]]; intros [?|?|]; simpl;
    rewrite ?coPset_elem_of_node; simpl;
    rewrite ?orb_true_l, ?orb_false_l, ?orb_true_r, ?orb_false_r; auto.
Qed.
Lemma coPset_lr_union X : coPset_l X coPset_r X = X.
Proof.
  apply elem_of_equiv_L; intros p; apply eq_bool_prop_elim.
  destruct X as [t Ht]; simpl; clear Ht; rewrite elem_to_Pset_union.
  revert p; induction t as [[]|[]]; intros [?|?|]; simpl;
    rewrite ?coPset_elem_of_node; simpl;
    rewrite ?orb_true_l, ?orb_false_l, ?orb_true_r, ?orb_false_r; auto.
Qed.
Lemma coPset_l_finite X : set_finite (coPset_l X) set_finite X.
Proof.
  rewrite !coPset_finite_spec; destruct X as [t Ht]; simpl; clear Ht.
  induction t as [[]|]; simpl; rewrite ?coPset_finite_node, ?andb_True; tauto.
Qed.
Lemma coPset_r_finite X : set_finite (coPset_r X) set_finite X.
Proof.
  rewrite !coPset_finite_spec; destruct X as [t Ht]; simpl; clear Ht.
  induction t as [[]|]; simpl; rewrite ?coPset_finite_node, ?andb_True; tauto.
Qed.
Lemma coPset_split X :
  ¬set_finite X
   X1 X2, X = X1 X2 X1 X2 = ¬set_finite X1 ¬set_finite X2.
Proof.
   (coPset_l X), (coPset_r X); eauto 10 using coPset_lr_union,
    coPset_lr_disjoint, coPset_l_finite, coPset_r_finite.
Qed.