Library iris.prelude.coPset
This files implements the type coPset of efficient finite/cofinite sets
of positive binary naturals positive. These sets are:
Since positives are bitstrings, we encode coPsets as trees that correspond
to the decision function that map bitstrings to bools.
- Closed under union, intersection and set complement.
- Closed under splitting of cofinite sets.
From iris.prelude Require Export collections.
From iris.prelude Require Import pmap gmap mapset.
Local Open Scope positive_scope.
From iris.prelude Require Import pmap gmap mapset.
Local Open Scope positive_scope.
Inductive coPset_raw :=
| coPLeaf : bool → coPset_raw
| coPNode : bool → coPset_raw → coPset_raw → coPset_raw.
Instance coPset_raw_eq_dec (t1 t2 : coPset_raw) : Decision (t1 = t2).
Proof. solve_decision. Defined.
Fixpoint coPset_wf (t : coPset_raw) : bool :=
match t with
| coPLeaf _ ⇒ true
| coPNode true (coPLeaf true) (coPLeaf true) ⇒ false
| coPNode false (coPLeaf false) (coPLeaf false) ⇒ false
| coPNode b l r ⇒ coPset_wf l && coPset_wf r
end.
Arguments coPset_wf !_ / : simpl nomatch.
Lemma coPNode_wf_l b l r : coPset_wf (coPNode b l r) → coPset_wf l.
Proof. destruct b, l as [[]|],r as [[]|]; simpl; rewrite ?andb_True; tauto. Qed.
Lemma coPNode_wf_r b l r : coPset_wf (coPNode b l r) → coPset_wf r.
Proof. destruct b, l as [[]|],r as [[]|]; simpl; rewrite ?andb_True; tauto. Qed.
Local Hint Immediate coPNode_wf_l coPNode_wf_r.
Definition coPNode' (b : bool) (l r : coPset_raw) : coPset_raw :=
match b, l, r with
| true, coPLeaf true, coPLeaf true ⇒ coPLeaf true
| false, coPLeaf false, coPLeaf false ⇒ coPLeaf false
| _, _, _ ⇒ coPNode b l r
end.
Arguments coPNode' _ _ _ : simpl never.
Lemma coPNode_wf b l r : coPset_wf l → coPset_wf r → coPset_wf (coPNode' b l r).
Proof. destruct b, l as [[]|], r as [[]|]; simpl; auto. Qed.
Hint Resolve coPNode_wf.
Fixpoint coPset_elem_of_raw (p : positive) (t : coPset_raw) {struct t} : bool :=
match t, p with
| coPLeaf b, _ ⇒ b
| coPNode b l r, 1 ⇒ b
| coPNode _ l _, p~0 ⇒ coPset_elem_of_raw p l
| coPNode _ _ r, p~1 ⇒ coPset_elem_of_raw p r
end.
Local Notation e_of := coPset_elem_of_raw.
Arguments coPset_elem_of_raw _ !_ / : simpl nomatch.
Lemma coPset_elem_of_node b l r p :
e_of p (coPNode' b l r) = e_of p (coPNode b l r).
Proof. by destruct p, b, l as [[]|], r as [[]|]. Qed.
Lemma coPLeaf_wf t b : (∀ p, e_of p t = b) → coPset_wf t → t = coPLeaf b.
Proof.
induction t as [b'|b' l IHl r IHr]; intros Ht ?; [f_equal; apply (Ht 1)|].
assert (b' = b) by (apply (Ht 1)); subst.
assert (l = coPLeaf b) as → by (apply IHl; try apply (λ p, Ht (p~0)); eauto).
assert (r = coPLeaf b) as → by (apply IHr; try apply (λ p, Ht (p~1)); eauto).
by destruct b.
Qed.
Lemma coPset_eq t1 t2 :
(∀ p, e_of p t1 = e_of p t2) → coPset_wf t1 → coPset_wf t2 → t1 = t2.
Proof.
revert t2.
induction t1 as [b1|b1 l1 IHl r1 IHr]; intros [b2|b2 l2 r2] Ht ??; simpl in ×.
- f_equal; apply (Ht 1).
- by discriminate (coPLeaf_wf (coPNode b2 l2 r2) b1).
- by discriminate (coPLeaf_wf (coPNode b1 l1 r1) b2).
- f_equal; [apply (Ht 1)| |].
+ apply IHl; try apply (λ x, Ht (x~0)); eauto.
+ apply IHr; try apply (λ x, Ht (x~1)); eauto.
Qed.
Fixpoint coPset_singleton_raw (p : positive) : coPset_raw :=
match p with
| 1 ⇒ coPNode true (coPLeaf false) (coPLeaf false)
| p~0 ⇒ coPNode' false (coPset_singleton_raw p) (coPLeaf false)
| p~1 ⇒ coPNode' false (coPLeaf false) (coPset_singleton_raw p)
end.
Instance coPset_union_raw : Union coPset_raw :=
fix go t1 t2 := let _ : Union _ := @go in
match t1, t2 with
| coPLeaf false, coPLeaf false ⇒ coPLeaf false
| _, coPLeaf true ⇒ coPLeaf true
| coPLeaf true, _ ⇒ coPLeaf true
| coPNode b l r, coPLeaf false ⇒ coPNode b l r
| coPLeaf false, coPNode b l r ⇒ coPNode b l r
| coPNode b1 l1 r1, coPNode b2 l2 r2 ⇒ coPNode' (b1||b2) (l1 ∪ l2) (r1 ∪ r2)
end.
Local Arguments union _ _!_ !_ /.
Instance coPset_intersection_raw : Intersection coPset_raw :=
fix go t1 t2 := let _ : Intersection _ := @go in
match t1, t2 with
| coPLeaf true, coPLeaf true ⇒ coPLeaf true
| _, coPLeaf false ⇒ coPLeaf false
| coPLeaf false, _ ⇒ coPLeaf false
| coPNode b l r, coPLeaf true ⇒ coPNode b l r
| coPLeaf true, coPNode b l r ⇒ coPNode b l r
| coPNode b1 l1 r1, coPNode b2 l2 r2 ⇒ coPNode' (b1&&b2) (l1 ∩ l2) (r1 ∩ r2)
end.
Local Arguments intersection _ _!_ !_ /.
Fixpoint coPset_opp_raw (t : coPset_raw) : coPset_raw :=
match t with
| coPLeaf b ⇒ coPLeaf (negb b)
| coPNode b l r ⇒ coPNode' (negb b) (coPset_opp_raw l) (coPset_opp_raw r)
end.
Lemma coPset_singleton_wf p : coPset_wf (coPset_singleton_raw p).
Proof. induction p; simpl; eauto. Qed.
Lemma coPset_union_wf t1 t2 : coPset_wf t1 → coPset_wf t2 → coPset_wf (t1 ∪ t2).
Proof. revert t2; induction t1 as [[]|[]]; intros [[]|[] ??]; simpl; eauto. Qed.
Lemma coPset_intersection_wf t1 t2 :
coPset_wf t1 → coPset_wf t2 → coPset_wf (t1 ∩ t2).
Proof. revert t2; induction t1 as [[]|[]]; intros [[]|[] ??]; simpl; eauto. Qed.
Lemma coPset_opp_wf t : coPset_wf (coPset_opp_raw t).
Proof. induction t as [[]|[]]; simpl; eauto. Qed.
Lemma elem_to_Pset_singleton p q : e_of p (coPset_singleton_raw q) ↔ p = q.
Proof.
split; [|by intros <-; induction p; simpl; rewrite ?coPset_elem_of_node].
by revert q; induction p; intros [?|?|]; simpl;
rewrite ?coPset_elem_of_node; intros; f_equal/=; auto.
Qed.
Lemma elem_to_Pset_union t1 t2 p : e_of p (t1 ∪ t2) = e_of p t1 || e_of p t2.
Proof.
by revert t2 p; induction t1 as [[]|[]]; intros [[]|[] ??] [?|?|]; simpl;
rewrite ?coPset_elem_of_node; simpl;
rewrite ?orb_true_l, ?orb_false_l, ?orb_true_r, ?orb_false_r.
Qed.
Lemma elem_to_Pset_intersection t1 t2 p :
e_of p (t1 ∩ t2) = e_of p t1 && e_of p t2.
Proof.
by revert t2 p; induction t1 as [[]|[]]; intros [[]|[] ??] [?|?|]; simpl;
rewrite ?coPset_elem_of_node; simpl;
rewrite ?andb_true_l, ?andb_false_l, ?andb_true_r, ?andb_false_r.
Qed.
Lemma elem_to_Pset_opp t p : e_of p (coPset_opp_raw t) = negb (e_of p t).
Proof.
by revert p; induction t as [[]|[]]; intros [?|?|]; simpl;
rewrite ?coPset_elem_of_node; simpl.
Qed.
| coPLeaf : bool → coPset_raw
| coPNode : bool → coPset_raw → coPset_raw → coPset_raw.
Instance coPset_raw_eq_dec (t1 t2 : coPset_raw) : Decision (t1 = t2).
Proof. solve_decision. Defined.
Fixpoint coPset_wf (t : coPset_raw) : bool :=
match t with
| coPLeaf _ ⇒ true
| coPNode true (coPLeaf true) (coPLeaf true) ⇒ false
| coPNode false (coPLeaf false) (coPLeaf false) ⇒ false
| coPNode b l r ⇒ coPset_wf l && coPset_wf r
end.
Arguments coPset_wf !_ / : simpl nomatch.
Lemma coPNode_wf_l b l r : coPset_wf (coPNode b l r) → coPset_wf l.
Proof. destruct b, l as [[]|],r as [[]|]; simpl; rewrite ?andb_True; tauto. Qed.
Lemma coPNode_wf_r b l r : coPset_wf (coPNode b l r) → coPset_wf r.
Proof. destruct b, l as [[]|],r as [[]|]; simpl; rewrite ?andb_True; tauto. Qed.
Local Hint Immediate coPNode_wf_l coPNode_wf_r.
Definition coPNode' (b : bool) (l r : coPset_raw) : coPset_raw :=
match b, l, r with
| true, coPLeaf true, coPLeaf true ⇒ coPLeaf true
| false, coPLeaf false, coPLeaf false ⇒ coPLeaf false
| _, _, _ ⇒ coPNode b l r
end.
Arguments coPNode' _ _ _ : simpl never.
Lemma coPNode_wf b l r : coPset_wf l → coPset_wf r → coPset_wf (coPNode' b l r).
Proof. destruct b, l as [[]|], r as [[]|]; simpl; auto. Qed.
Hint Resolve coPNode_wf.
Fixpoint coPset_elem_of_raw (p : positive) (t : coPset_raw) {struct t} : bool :=
match t, p with
| coPLeaf b, _ ⇒ b
| coPNode b l r, 1 ⇒ b
| coPNode _ l _, p~0 ⇒ coPset_elem_of_raw p l
| coPNode _ _ r, p~1 ⇒ coPset_elem_of_raw p r
end.
Local Notation e_of := coPset_elem_of_raw.
Arguments coPset_elem_of_raw _ !_ / : simpl nomatch.
Lemma coPset_elem_of_node b l r p :
e_of p (coPNode' b l r) = e_of p (coPNode b l r).
Proof. by destruct p, b, l as [[]|], r as [[]|]. Qed.
Lemma coPLeaf_wf t b : (∀ p, e_of p t = b) → coPset_wf t → t = coPLeaf b.
Proof.
induction t as [b'|b' l IHl r IHr]; intros Ht ?; [f_equal; apply (Ht 1)|].
assert (b' = b) by (apply (Ht 1)); subst.
assert (l = coPLeaf b) as → by (apply IHl; try apply (λ p, Ht (p~0)); eauto).
assert (r = coPLeaf b) as → by (apply IHr; try apply (λ p, Ht (p~1)); eauto).
by destruct b.
Qed.
Lemma coPset_eq t1 t2 :
(∀ p, e_of p t1 = e_of p t2) → coPset_wf t1 → coPset_wf t2 → t1 = t2.
Proof.
revert t2.
induction t1 as [b1|b1 l1 IHl r1 IHr]; intros [b2|b2 l2 r2] Ht ??; simpl in ×.
- f_equal; apply (Ht 1).
- by discriminate (coPLeaf_wf (coPNode b2 l2 r2) b1).
- by discriminate (coPLeaf_wf (coPNode b1 l1 r1) b2).
- f_equal; [apply (Ht 1)| |].
+ apply IHl; try apply (λ x, Ht (x~0)); eauto.
+ apply IHr; try apply (λ x, Ht (x~1)); eauto.
Qed.
Fixpoint coPset_singleton_raw (p : positive) : coPset_raw :=
match p with
| 1 ⇒ coPNode true (coPLeaf false) (coPLeaf false)
| p~0 ⇒ coPNode' false (coPset_singleton_raw p) (coPLeaf false)
| p~1 ⇒ coPNode' false (coPLeaf false) (coPset_singleton_raw p)
end.
Instance coPset_union_raw : Union coPset_raw :=
fix go t1 t2 := let _ : Union _ := @go in
match t1, t2 with
| coPLeaf false, coPLeaf false ⇒ coPLeaf false
| _, coPLeaf true ⇒ coPLeaf true
| coPLeaf true, _ ⇒ coPLeaf true
| coPNode b l r, coPLeaf false ⇒ coPNode b l r
| coPLeaf false, coPNode b l r ⇒ coPNode b l r
| coPNode b1 l1 r1, coPNode b2 l2 r2 ⇒ coPNode' (b1||b2) (l1 ∪ l2) (r1 ∪ r2)
end.
Local Arguments union _ _!_ !_ /.
Instance coPset_intersection_raw : Intersection coPset_raw :=
fix go t1 t2 := let _ : Intersection _ := @go in
match t1, t2 with
| coPLeaf true, coPLeaf true ⇒ coPLeaf true
| _, coPLeaf false ⇒ coPLeaf false
| coPLeaf false, _ ⇒ coPLeaf false
| coPNode b l r, coPLeaf true ⇒ coPNode b l r
| coPLeaf true, coPNode b l r ⇒ coPNode b l r
| coPNode b1 l1 r1, coPNode b2 l2 r2 ⇒ coPNode' (b1&&b2) (l1 ∩ l2) (r1 ∩ r2)
end.
Local Arguments intersection _ _!_ !_ /.
Fixpoint coPset_opp_raw (t : coPset_raw) : coPset_raw :=
match t with
| coPLeaf b ⇒ coPLeaf (negb b)
| coPNode b l r ⇒ coPNode' (negb b) (coPset_opp_raw l) (coPset_opp_raw r)
end.
Lemma coPset_singleton_wf p : coPset_wf (coPset_singleton_raw p).
Proof. induction p; simpl; eauto. Qed.
Lemma coPset_union_wf t1 t2 : coPset_wf t1 → coPset_wf t2 → coPset_wf (t1 ∪ t2).
Proof. revert t2; induction t1 as [[]|[]]; intros [[]|[] ??]; simpl; eauto. Qed.
Lemma coPset_intersection_wf t1 t2 :
coPset_wf t1 → coPset_wf t2 → coPset_wf (t1 ∩ t2).
Proof. revert t2; induction t1 as [[]|[]]; intros [[]|[] ??]; simpl; eauto. Qed.
Lemma coPset_opp_wf t : coPset_wf (coPset_opp_raw t).
Proof. induction t as [[]|[]]; simpl; eauto. Qed.
Lemma elem_to_Pset_singleton p q : e_of p (coPset_singleton_raw q) ↔ p = q.
Proof.
split; [|by intros <-; induction p; simpl; rewrite ?coPset_elem_of_node].
by revert q; induction p; intros [?|?|]; simpl;
rewrite ?coPset_elem_of_node; intros; f_equal/=; auto.
Qed.
Lemma elem_to_Pset_union t1 t2 p : e_of p (t1 ∪ t2) = e_of p t1 || e_of p t2.
Proof.
by revert t2 p; induction t1 as [[]|[]]; intros [[]|[] ??] [?|?|]; simpl;
rewrite ?coPset_elem_of_node; simpl;
rewrite ?orb_true_l, ?orb_false_l, ?orb_true_r, ?orb_false_r.
Qed.
Lemma elem_to_Pset_intersection t1 t2 p :
e_of p (t1 ∩ t2) = e_of p t1 && e_of p t2.
Proof.
by revert t2 p; induction t1 as [[]|[]]; intros [[]|[] ??] [?|?|]; simpl;
rewrite ?coPset_elem_of_node; simpl;
rewrite ?andb_true_l, ?andb_false_l, ?andb_true_r, ?andb_false_r.
Qed.
Lemma elem_to_Pset_opp t p : e_of p (coPset_opp_raw t) = negb (e_of p t).
Proof.
by revert p; induction t as [[]|[]]; intros [?|?|]; simpl;
rewrite ?coPset_elem_of_node; simpl.
Qed.
Definition coPset := { t | coPset_wf t }.
Instance coPset_singleton : Singleton positive coPset := λ p,
coPset_singleton_raw p ↾ coPset_singleton_wf _.
Instance coPset_elem_of : ElemOf positive coPset := λ p X, e_of p (`X).
Instance coPset_empty : Empty coPset := coPLeaf false ↾ I.
Instance coPset_top : Top coPset := coPLeaf true ↾ I.
Instance coPset_union : Union coPset := λ X Y,
let (t1,Ht1) := X in let (t2,Ht2) := Y in
(t1 ∪ t2) ↾ coPset_union_wf _ _ Ht1 Ht2.
Instance coPset_intersection : Intersection coPset := λ X Y,
let (t1,Ht1) := X in let (t2,Ht2) := Y in
(t1 ∩ t2) ↾ coPset_intersection_wf _ _ Ht1 Ht2.
Instance coPset_difference : Difference coPset := λ X Y,
let (t1,Ht1) := X in let (t2,Ht2) := Y in
(t1 ∩ coPset_opp_raw t2) ↾ coPset_intersection_wf _ _ Ht1 (coPset_opp_wf _).
Instance coPset_collection : Collection positive coPset.
Proof.
split; [split| |].
- by intros ??.
- intros p q. apply elem_to_Pset_singleton.
- intros [t] [t'] p; unfold elem_of, coPset_elem_of, coPset_union; simpl.
by rewrite elem_to_Pset_union, orb_True.
- intros [t] [t'] p; unfold elem_of,coPset_elem_of,coPset_intersection; simpl.
by rewrite elem_to_Pset_intersection, andb_True.
- intros [t] [t'] p; unfold elem_of, coPset_elem_of, coPset_difference; simpl.
by rewrite elem_to_Pset_intersection,
elem_to_Pset_opp, andb_True, negb_True.
Qed.
Instance coPset_leibniz : LeibnizEquiv coPset.
Proof.
intros X Y; rewrite elem_of_equiv; intros HXY.
apply (sig_eq_pi _), coPset_eq; try apply proj2_sig.
intros p; apply eq_bool_prop_intro, (HXY p).
Qed.
Instance coPset_elem_of_dec (p : positive) (X : coPset) : Decision (p ∈ X) := _.
Instance coPset_equiv_dec (X Y : coPset) : Decision (X ≡ Y).
Proof. refine (cast_if (decide (X = Y))); abstract (by fold_leibniz). Defined.
Instance mapset_disjoint_dec (X Y : coPset) : Decision (X ⊥ Y).
Proof.
refine (cast_if (decide (X ∩ Y = ∅)));
abstract (by rewrite disjoint_intersection_L).
Defined.
Instance mapset_subseteq_dec (X Y : coPset) : Decision (X ⊆ Y).
Proof.
refine (cast_if (decide (X ∪ Y = Y))); abstract (by rewrite subseteq_union_L).
Defined.
Instance coPset_singleton : Singleton positive coPset := λ p,
coPset_singleton_raw p ↾ coPset_singleton_wf _.
Instance coPset_elem_of : ElemOf positive coPset := λ p X, e_of p (`X).
Instance coPset_empty : Empty coPset := coPLeaf false ↾ I.
Instance coPset_top : Top coPset := coPLeaf true ↾ I.
Instance coPset_union : Union coPset := λ X Y,
let (t1,Ht1) := X in let (t2,Ht2) := Y in
(t1 ∪ t2) ↾ coPset_union_wf _ _ Ht1 Ht2.
Instance coPset_intersection : Intersection coPset := λ X Y,
let (t1,Ht1) := X in let (t2,Ht2) := Y in
(t1 ∩ t2) ↾ coPset_intersection_wf _ _ Ht1 Ht2.
Instance coPset_difference : Difference coPset := λ X Y,
let (t1,Ht1) := X in let (t2,Ht2) := Y in
(t1 ∩ coPset_opp_raw t2) ↾ coPset_intersection_wf _ _ Ht1 (coPset_opp_wf _).
Instance coPset_collection : Collection positive coPset.
Proof.
split; [split| |].
- by intros ??.
- intros p q. apply elem_to_Pset_singleton.
- intros [t] [t'] p; unfold elem_of, coPset_elem_of, coPset_union; simpl.
by rewrite elem_to_Pset_union, orb_True.
- intros [t] [t'] p; unfold elem_of,coPset_elem_of,coPset_intersection; simpl.
by rewrite elem_to_Pset_intersection, andb_True.
- intros [t] [t'] p; unfold elem_of, coPset_elem_of, coPset_difference; simpl.
by rewrite elem_to_Pset_intersection,
elem_to_Pset_opp, andb_True, negb_True.
Qed.
Instance coPset_leibniz : LeibnizEquiv coPset.
Proof.
intros X Y; rewrite elem_of_equiv; intros HXY.
apply (sig_eq_pi _), coPset_eq; try apply proj2_sig.
intros p; apply eq_bool_prop_intro, (HXY p).
Qed.
Instance coPset_elem_of_dec (p : positive) (X : coPset) : Decision (p ∈ X) := _.
Instance coPset_equiv_dec (X Y : coPset) : Decision (X ≡ Y).
Proof. refine (cast_if (decide (X = Y))); abstract (by fold_leibniz). Defined.
Instance mapset_disjoint_dec (X Y : coPset) : Decision (X ⊥ Y).
Proof.
refine (cast_if (decide (X ∩ Y = ∅)));
abstract (by rewrite disjoint_intersection_L).
Defined.
Instance mapset_subseteq_dec (X Y : coPset) : Decision (X ⊆ Y).
Proof.
refine (cast_if (decide (X ∪ Y = Y))); abstract (by rewrite subseteq_union_L).
Defined.
Fixpoint coPset_finite (t : coPset_raw) : bool :=
match t with
| coPLeaf b ⇒ negb b | coPNode b l r ⇒ coPset_finite l && coPset_finite r
end.
Lemma coPset_finite_node b l r :
coPset_finite (coPNode' b l r) = coPset_finite l && coPset_finite r.
Proof. by destruct b, l as [[]|], r as [[]|]. Qed.
Lemma coPset_finite_spec X : set_finite X ↔ coPset_finite (`X).
Proof.
destruct X as [t Ht].
unfold set_finite, elem_of at 1, coPset_elem_of; simpl; clear Ht; split.
- induction t as [b|b l IHl r IHr]; simpl.
{ destruct b; simpl; [intros [l Hl]|done].
by apply (is_fresh (of_list l : Pset)), elem_of_of_list, Hl. }
intros [ll Hll]; rewrite andb_True; split.
+ apply IHl; ∃ (omap (maybe (~0)) ll); intros i.
rewrite elem_of_list_omap; intros; ∃ (i~0); auto.
+ apply IHr; ∃ (omap (maybe (~1)) ll); intros i.
rewrite elem_of_list_omap; intros; ∃ (i~1); auto.
- induction t as [b|b l IHl r IHr]; simpl; [by ∃ []; destruct b|].
rewrite andb_True; intros [??]; destruct IHl as [ll ?], IHr as [rl ?]; auto.
∃ ([1] ++ ((~0) <$> ll) ++ ((~1) <$> rl))%list; intros [i|i|]; simpl;
rewrite elem_of_cons, elem_of_app, !elem_of_list_fmap; naive_solver.
Qed.
Instance coPset_finite_dec (X : coPset) : Decision (set_finite X).
Proof.
refine (cast_if (decide (coPset_finite (`X)))); by rewrite coPset_finite_spec.
Defined.
match t with
| coPLeaf b ⇒ negb b | coPNode b l r ⇒ coPset_finite l && coPset_finite r
end.
Lemma coPset_finite_node b l r :
coPset_finite (coPNode' b l r) = coPset_finite l && coPset_finite r.
Proof. by destruct b, l as [[]|], r as [[]|]. Qed.
Lemma coPset_finite_spec X : set_finite X ↔ coPset_finite (`X).
Proof.
destruct X as [t Ht].
unfold set_finite, elem_of at 1, coPset_elem_of; simpl; clear Ht; split.
- induction t as [b|b l IHl r IHr]; simpl.
{ destruct b; simpl; [intros [l Hl]|done].
by apply (is_fresh (of_list l : Pset)), elem_of_of_list, Hl. }
intros [ll Hll]; rewrite andb_True; split.
+ apply IHl; ∃ (omap (maybe (~0)) ll); intros i.
rewrite elem_of_list_omap; intros; ∃ (i~0); auto.
+ apply IHr; ∃ (omap (maybe (~1)) ll); intros i.
rewrite elem_of_list_omap; intros; ∃ (i~1); auto.
- induction t as [b|b l IHl r IHr]; simpl; [by ∃ []; destruct b|].
rewrite andb_True; intros [??]; destruct IHl as [ll ?], IHr as [rl ?]; auto.
∃ ([1] ++ ((~0) <$> ll) ++ ((~1) <$> rl))%list; intros [i|i|]; simpl;
rewrite elem_of_cons, elem_of_app, !elem_of_list_fmap; naive_solver.
Qed.
Instance coPset_finite_dec (X : coPset) : Decision (set_finite X).
Proof.
refine (cast_if (decide (coPset_finite (`X)))); by rewrite coPset_finite_spec.
Defined.
Fixpoint coPpick_raw (t : coPset_raw) : option positive :=
match t with
| coPLeaf true | coPNode true _ _ ⇒ Some 1
| coPLeaf false ⇒ None
| coPNode false l r ⇒
match coPpick_raw l with
| Some i ⇒ Some (i~0) | None ⇒ (~1) <$> coPpick_raw r
end
end.
Definition coPpick (X : coPset) : positive := from_option id 1 (coPpick_raw (`X)).
Lemma coPpick_raw_elem_of t i : coPpick_raw t = Some i → e_of i t.
Proof.
revert i; induction t as [[]|[] l ? r]; intros i ?; simplify_eq/=; auto.
destruct (coPpick_raw l); simplify_option_eq; auto.
Qed.
Lemma coPpick_raw_None t : coPpick_raw t = None → coPset_finite t.
Proof.
induction t as [[]|[] l ? r]; intros i; simplify_eq/=; auto.
destruct (coPpick_raw l); simplify_option_eq; auto.
Qed.
Lemma coPpick_elem_of X : ¬set_finite X → coPpick X ∈ X.
Proof.
destruct X as [t ?]; unfold coPpick; destruct (coPpick_raw _) as [j|] eqn:?.
- by intros; apply coPpick_raw_elem_of.
- by intros []; apply coPset_finite_spec, coPpick_raw_None.
Qed.
match t with
| coPLeaf true | coPNode true _ _ ⇒ Some 1
| coPLeaf false ⇒ None
| coPNode false l r ⇒
match coPpick_raw l with
| Some i ⇒ Some (i~0) | None ⇒ (~1) <$> coPpick_raw r
end
end.
Definition coPpick (X : coPset) : positive := from_option id 1 (coPpick_raw (`X)).
Lemma coPpick_raw_elem_of t i : coPpick_raw t = Some i → e_of i t.
Proof.
revert i; induction t as [[]|[] l ? r]; intros i ?; simplify_eq/=; auto.
destruct (coPpick_raw l); simplify_option_eq; auto.
Qed.
Lemma coPpick_raw_None t : coPpick_raw t = None → coPset_finite t.
Proof.
induction t as [[]|[] l ? r]; intros i; simplify_eq/=; auto.
destruct (coPpick_raw l); simplify_option_eq; auto.
Qed.
Lemma coPpick_elem_of X : ¬set_finite X → coPpick X ∈ X.
Proof.
destruct X as [t ?]; unfold coPpick; destruct (coPpick_raw _) as [j|] eqn:?.
- by intros; apply coPpick_raw_elem_of.
- by intros []; apply coPset_finite_spec, coPpick_raw_None.
Qed.
Fixpoint to_Pset_raw (t : coPset_raw) : Pmap_raw () :=
match t with
| coPLeaf _ ⇒ PLeaf
| coPNode false l r ⇒ PNode' None (to_Pset_raw l) (to_Pset_raw r)
| coPNode true l r ⇒ PNode (Some ()) (to_Pset_raw l) (to_Pset_raw r)
end.
Lemma to_Pset_wf t : coPset_wf t → Pmap_wf (to_Pset_raw t).
Proof. induction t as [|[]]; simpl; eauto using PNode_wf. Qed.
Definition to_Pset (X : coPset) : Pset :=
let (t,Ht) := X in Mapset (PMap (to_Pset_raw t) (to_Pset_wf _ Ht)).
Lemma elem_of_to_Pset X i : set_finite X → i ∈ to_Pset X ↔ i ∈ X.
Proof.
rewrite coPset_finite_spec; destruct X as [t Ht].
change (coPset_finite t → to_Pset_raw t !! i = Some () ↔ e_of i t).
clear Ht; revert i; induction t as [[]|[] l IHl r IHr]; intros [i|i|];
simpl; rewrite ?andb_True, ?PNode_lookup; naive_solver.
Qed.
match t with
| coPLeaf _ ⇒ PLeaf
| coPNode false l r ⇒ PNode' None (to_Pset_raw l) (to_Pset_raw r)
| coPNode true l r ⇒ PNode (Some ()) (to_Pset_raw l) (to_Pset_raw r)
end.
Lemma to_Pset_wf t : coPset_wf t → Pmap_wf (to_Pset_raw t).
Proof. induction t as [|[]]; simpl; eauto using PNode_wf. Qed.
Definition to_Pset (X : coPset) : Pset :=
let (t,Ht) := X in Mapset (PMap (to_Pset_raw t) (to_Pset_wf _ Ht)).
Lemma elem_of_to_Pset X i : set_finite X → i ∈ to_Pset X ↔ i ∈ X.
Proof.
rewrite coPset_finite_spec; destruct X as [t Ht].
change (coPset_finite t → to_Pset_raw t !! i = Some () ↔ e_of i t).
clear Ht; revert i; induction t as [[]|[] l IHl r IHr]; intros [i|i|];
simpl; rewrite ?andb_True, ?PNode_lookup; naive_solver.
Qed.
Fixpoint of_Pset_raw (t : Pmap_raw ()) : coPset_raw :=
match t with
| PLeaf ⇒ coPLeaf false
| PNode None l r ⇒ coPNode false (of_Pset_raw l) (of_Pset_raw r)
| PNode (Some _) l r ⇒ coPNode true (of_Pset_raw l) (of_Pset_raw r)
end.
Lemma of_Pset_wf t : Pmap_wf t → coPset_wf (of_Pset_raw t).
Proof.
induction t as [|[] l IHl r IHr]; simpl; rewrite ?andb_True; auto.
- intros [??]; destruct l as [|[]], r as [|[]]; simpl in *; auto.
- destruct l as [|[]], r as [|[]]; simpl in *; rewrite ?andb_true_r;
rewrite ?andb_True; rewrite ?andb_True in IHl, IHr; intuition.
Qed.
Lemma elem_of_of_Pset_raw i t : e_of i (of_Pset_raw t) ↔ t !! i = Some ().
Proof. by revert i; induction t as [|[[]|]]; intros []; simpl; auto; split. Qed.
Lemma of_Pset_raw_finite t : coPset_finite (of_Pset_raw t).
Proof. induction t as [|[[]|]]; simpl; rewrite ?andb_True; auto. Qed.
Definition of_Pset (X : Pset) : coPset :=
let 'Mapset (PMap t Ht) := X in of_Pset_raw t ↾ of_Pset_wf _ Ht.
Lemma elem_of_of_Pset X i : i ∈ of_Pset X ↔ i ∈ X.
Proof. destruct X as [[t ?]]; apply elem_of_of_Pset_raw. Qed.
Lemma of_Pset_finite X : set_finite (of_Pset X).
Proof.
apply coPset_finite_spec; destruct X as [[t ?]]; apply of_Pset_raw_finite.
Qed.
match t with
| PLeaf ⇒ coPLeaf false
| PNode None l r ⇒ coPNode false (of_Pset_raw l) (of_Pset_raw r)
| PNode (Some _) l r ⇒ coPNode true (of_Pset_raw l) (of_Pset_raw r)
end.
Lemma of_Pset_wf t : Pmap_wf t → coPset_wf (of_Pset_raw t).
Proof.
induction t as [|[] l IHl r IHr]; simpl; rewrite ?andb_True; auto.
- intros [??]; destruct l as [|[]], r as [|[]]; simpl in *; auto.
- destruct l as [|[]], r as [|[]]; simpl in *; rewrite ?andb_true_r;
rewrite ?andb_True; rewrite ?andb_True in IHl, IHr; intuition.
Qed.
Lemma elem_of_of_Pset_raw i t : e_of i (of_Pset_raw t) ↔ t !! i = Some ().
Proof. by revert i; induction t as [|[[]|]]; intros []; simpl; auto; split. Qed.
Lemma of_Pset_raw_finite t : coPset_finite (of_Pset_raw t).
Proof. induction t as [|[[]|]]; simpl; rewrite ?andb_True; auto. Qed.
Definition of_Pset (X : Pset) : coPset :=
let 'Mapset (PMap t Ht) := X in of_Pset_raw t ↾ of_Pset_wf _ Ht.
Lemma elem_of_of_Pset X i : i ∈ of_Pset X ↔ i ∈ X.
Proof. destruct X as [[t ?]]; apply elem_of_of_Pset_raw. Qed.
Lemma of_Pset_finite X : set_finite (of_Pset X).
Proof.
apply coPset_finite_spec; destruct X as [[t ?]]; apply of_Pset_raw_finite.
Qed.
Definition of_gset (X : gset positive) : coPset :=
let 'Mapset (GMap (PMap t Ht) _) := X in of_Pset_raw t ↾ of_Pset_wf _ Ht.
Lemma elem_of_of_gset X i : i ∈ of_gset X ↔ i ∈ X.
Proof. destruct X as [[[t ?]]]; apply elem_of_of_Pset_raw. Qed.
Lemma of_gset_finite X : set_finite (of_gset X).
Proof.
apply coPset_finite_spec; destruct X as [[[t ?]]]; apply of_Pset_raw_finite.
Qed.
let 'Mapset (GMap (PMap t Ht) _) := X in of_Pset_raw t ↾ of_Pset_wf _ Ht.
Lemma elem_of_of_gset X i : i ∈ of_gset X ↔ i ∈ X.
Proof. destruct X as [[[t ?]]]; apply elem_of_of_Pset_raw. Qed.
Lemma of_gset_finite X : set_finite (of_gset X).
Proof.
apply coPset_finite_spec; destruct X as [[[t ?]]]; apply of_Pset_raw_finite.
Qed.
Instance Pmap_dom_coPset {A} : Dom (Pmap A) coPset := λ m, of_Pset (dom _ m).
Instance Pmap_dom_coPset_spec: FinMapDom positive Pmap coPset.
Proof.
split; try apply _; intros A m i; unfold dom, Pmap_dom_coPset.
by rewrite elem_of_of_Pset, elem_of_dom.
Qed.
Instance gmap_dom_coPset {A} : Dom (gmap positive A) coPset := λ m,
of_gset (dom _ m).
Instance gmap_dom_coPset_spec: FinMapDom positive (gmap positive) coPset.
Proof.
split; try apply _; intros A m i; unfold dom, gmap_dom_coPset.
by rewrite elem_of_of_gset, elem_of_dom.
Qed.
Instance Pmap_dom_coPset_spec: FinMapDom positive Pmap coPset.
Proof.
split; try apply _; intros A m i; unfold dom, Pmap_dom_coPset.
by rewrite elem_of_of_Pset, elem_of_dom.
Qed.
Instance gmap_dom_coPset {A} : Dom (gmap positive A) coPset := λ m,
of_gset (dom _ m).
Instance gmap_dom_coPset_spec: FinMapDom positive (gmap positive) coPset.
Proof.
split; try apply _; intros A m i; unfold dom, gmap_dom_coPset.
by rewrite elem_of_of_gset, elem_of_dom.
Qed.
Fixpoint coPset_suffixes_raw (p : positive) : coPset_raw :=
match p with
| 1 ⇒ coPLeaf true
| p~0 ⇒ coPNode' false (coPset_suffixes_raw p) (coPLeaf false)
| p~1 ⇒ coPNode' false (coPLeaf false) (coPset_suffixes_raw p)
end.
Lemma coPset_suffixes_wf p : coPset_wf (coPset_suffixes_raw p).
Proof. induction p; simpl; eauto. Qed.
Definition coPset_suffixes (p : positive) : coPset :=
coPset_suffixes_raw p ↾ coPset_suffixes_wf _.
Lemma elem_coPset_suffixes p q : p ∈ coPset_suffixes q ↔ ∃ q', p = q' ++ q.
Proof.
unfold elem_of, coPset_elem_of; simpl; split.
- revert p; induction q; intros [?|?|]; simpl;
rewrite ?coPset_elem_of_node; naive_solver.
- by intros [q' ->]; induction q; simpl; rewrite ?coPset_elem_of_node.
Qed.
Lemma coPset_suffixes_infinite p : ¬set_finite (coPset_suffixes p).
Proof.
rewrite coPset_finite_spec; simpl.
induction p; simpl; rewrite ?coPset_finite_node, ?andb_True; naive_solver.
Qed.
match p with
| 1 ⇒ coPLeaf true
| p~0 ⇒ coPNode' false (coPset_suffixes_raw p) (coPLeaf false)
| p~1 ⇒ coPNode' false (coPLeaf false) (coPset_suffixes_raw p)
end.
Lemma coPset_suffixes_wf p : coPset_wf (coPset_suffixes_raw p).
Proof. induction p; simpl; eauto. Qed.
Definition coPset_suffixes (p : positive) : coPset :=
coPset_suffixes_raw p ↾ coPset_suffixes_wf _.
Lemma elem_coPset_suffixes p q : p ∈ coPset_suffixes q ↔ ∃ q', p = q' ++ q.
Proof.
unfold elem_of, coPset_elem_of; simpl; split.
- revert p; induction q; intros [?|?|]; simpl;
rewrite ?coPset_elem_of_node; naive_solver.
- by intros [q' ->]; induction q; simpl; rewrite ?coPset_elem_of_node.
Qed.
Lemma coPset_suffixes_infinite p : ¬set_finite (coPset_suffixes p).
Proof.
rewrite coPset_finite_spec; simpl.
induction p; simpl; rewrite ?coPset_finite_node, ?andb_True; naive_solver.
Qed.
Fixpoint coPset_l_raw (t : coPset_raw) : coPset_raw :=
match t with
| coPLeaf false ⇒ coPLeaf false
| coPLeaf true ⇒ coPNode true (coPLeaf true) (coPLeaf false)
| coPNode b l r ⇒ coPNode' b (coPset_l_raw l) (coPset_l_raw r)
end.
Fixpoint coPset_r_raw (t : coPset_raw) : coPset_raw :=
match t with
| coPLeaf false ⇒ coPLeaf false
| coPLeaf true ⇒ coPNode false (coPLeaf false) (coPLeaf true)
| coPNode b l r ⇒ coPNode' false (coPset_r_raw l) (coPset_r_raw r)
end.
Lemma coPset_l_wf t : coPset_wf (coPset_l_raw t).
Proof. induction t as [[]|]; simpl; auto. Qed.
Lemma coPset_r_wf t : coPset_wf (coPset_r_raw t).
Proof. induction t as [[]|]; simpl; auto. Qed.
Definition coPset_l (X : coPset) : coPset :=
let (t,Ht) := X in coPset_l_raw t ↾ coPset_l_wf _.
Definition coPset_r (X : coPset) : coPset :=
let (t,Ht) := X in coPset_r_raw t ↾ coPset_r_wf _.
Lemma coPset_lr_disjoint X : coPset_l X ∩ coPset_r X = ∅.
Proof.
apply elem_of_equiv_empty_L; intros p; apply Is_true_false.
destruct X as [t Ht]; simpl; clear Ht; rewrite elem_to_Pset_intersection.
revert p; induction t as [[]|[]]; intros [?|?|]; simpl;
rewrite ?coPset_elem_of_node; simpl;
rewrite ?orb_true_l, ?orb_false_l, ?orb_true_r, ?orb_false_r; auto.
Qed.
Lemma coPset_lr_union X : coPset_l X ∪ coPset_r X = X.
Proof.
apply elem_of_equiv_L; intros p; apply eq_bool_prop_elim.
destruct X as [t Ht]; simpl; clear Ht; rewrite elem_to_Pset_union.
revert p; induction t as [[]|[]]; intros [?|?|]; simpl;
rewrite ?coPset_elem_of_node; simpl;
rewrite ?orb_true_l, ?orb_false_l, ?orb_true_r, ?orb_false_r; auto.
Qed.
Lemma coPset_l_finite X : set_finite (coPset_l X) → set_finite X.
Proof.
rewrite !coPset_finite_spec; destruct X as [t Ht]; simpl; clear Ht.
induction t as [[]|]; simpl; rewrite ?coPset_finite_node, ?andb_True; tauto.
Qed.
Lemma coPset_r_finite X : set_finite (coPset_r X) → set_finite X.
Proof.
rewrite !coPset_finite_spec; destruct X as [t Ht]; simpl; clear Ht.
induction t as [[]|]; simpl; rewrite ?coPset_finite_node, ?andb_True; tauto.
Qed.
Lemma coPset_split X :
¬set_finite X →
∃ X1 X2, X = X1 ∪ X2 ∧ X1 ∩ X2 = ∅ ∧ ¬set_finite X1 ∧ ¬set_finite X2.
Proof.
∃ (coPset_l X), (coPset_r X); eauto 10 using coPset_lr_union,
coPset_lr_disjoint, coPset_l_finite, coPset_r_finite.
Qed.
match t with
| coPLeaf false ⇒ coPLeaf false
| coPLeaf true ⇒ coPNode true (coPLeaf true) (coPLeaf false)
| coPNode b l r ⇒ coPNode' b (coPset_l_raw l) (coPset_l_raw r)
end.
Fixpoint coPset_r_raw (t : coPset_raw) : coPset_raw :=
match t with
| coPLeaf false ⇒ coPLeaf false
| coPLeaf true ⇒ coPNode false (coPLeaf false) (coPLeaf true)
| coPNode b l r ⇒ coPNode' false (coPset_r_raw l) (coPset_r_raw r)
end.
Lemma coPset_l_wf t : coPset_wf (coPset_l_raw t).
Proof. induction t as [[]|]; simpl; auto. Qed.
Lemma coPset_r_wf t : coPset_wf (coPset_r_raw t).
Proof. induction t as [[]|]; simpl; auto. Qed.
Definition coPset_l (X : coPset) : coPset :=
let (t,Ht) := X in coPset_l_raw t ↾ coPset_l_wf _.
Definition coPset_r (X : coPset) : coPset :=
let (t,Ht) := X in coPset_r_raw t ↾ coPset_r_wf _.
Lemma coPset_lr_disjoint X : coPset_l X ∩ coPset_r X = ∅.
Proof.
apply elem_of_equiv_empty_L; intros p; apply Is_true_false.
destruct X as [t Ht]; simpl; clear Ht; rewrite elem_to_Pset_intersection.
revert p; induction t as [[]|[]]; intros [?|?|]; simpl;
rewrite ?coPset_elem_of_node; simpl;
rewrite ?orb_true_l, ?orb_false_l, ?orb_true_r, ?orb_false_r; auto.
Qed.
Lemma coPset_lr_union X : coPset_l X ∪ coPset_r X = X.
Proof.
apply elem_of_equiv_L; intros p; apply eq_bool_prop_elim.
destruct X as [t Ht]; simpl; clear Ht; rewrite elem_to_Pset_union.
revert p; induction t as [[]|[]]; intros [?|?|]; simpl;
rewrite ?coPset_elem_of_node; simpl;
rewrite ?orb_true_l, ?orb_false_l, ?orb_true_r, ?orb_false_r; auto.
Qed.
Lemma coPset_l_finite X : set_finite (coPset_l X) → set_finite X.
Proof.
rewrite !coPset_finite_spec; destruct X as [t Ht]; simpl; clear Ht.
induction t as [[]|]; simpl; rewrite ?coPset_finite_node, ?andb_True; tauto.
Qed.
Lemma coPset_r_finite X : set_finite (coPset_r X) → set_finite X.
Proof.
rewrite !coPset_finite_spec; destruct X as [t Ht]; simpl; clear Ht.
induction t as [[]|]; simpl; rewrite ?coPset_finite_node, ?andb_True; tauto.
Qed.
Lemma coPset_split X :
¬set_finite X →
∃ X1 X2, X = X1 ∪ X2 ∧ X1 ∩ X2 = ∅ ∧ ¬set_finite X1 ∧ ¬set_finite X2.
Proof.
∃ (coPset_l X), (coPset_r X); eauto 10 using coPset_lr_union,
coPset_lr_disjoint, coPset_l_finite, coPset_r_finite.
Qed.