Library iris.prelude.option

This file collects general purpose definitions and theorems on the option data type that are not in the Coq standard library.
From iris.prelude Require Export tactics.

Inductive option_reflect {A} (P : A Prop) (Q : Prop) : option A Type :=
  | ReflectSome x : P x option_reflect P Q (Some x)
  | ReflectNone : Q option_reflect P Q None.

General definitions and theorems

Basic properties about equality.
Lemma None_ne_Some {A} (x : A) : None Some x.
Proof. congruence. Qed.
Lemma Some_ne_None {A} (x : A) : Some x None.
Proof. congruence. Qed.
Lemma eq_None_ne_Some {A} (mx : option A) x : mx = None mx Some x.
Proof. congruence. Qed.
Instance Some_inj {A} : Inj (=) (=) (@Some A).
Proof. congruence. Qed.

The from_option is the eliminator for option.
Definition from_option {A B} (f : A B) (y : B) (mx : option A) : B :=
  match mx with Noney | Some xf x end.
Instance: Params (@from_option) 3.
Arguments from_option {_ _} _ _ !_ /.

Notation default y mx f := (from_option f y mx) (only parsing).

An alternative, but equivalent, definition of equality on the option data type. This theorem is useful to prove that two options are the same.
Lemma option_eq {A} (mx my: option A): mx = my x, mx = Some x my = Some x.
Proof. split; [by intros; by subst |]. destruct mx, my; naive_solver. Qed.
Lemma option_eq_1 {A} (mx my: option A) x : mx = my mx = Some x my = Some x.
Proof. congruence. Qed.
Lemma option_eq_1_alt {A} (mx my : option A) x :
  mx = my my = Some x mx = Some x.
Proof. congruence. Qed.

Definition is_Some {A} (mx : option A) := x, mx = Some x.
Instance: Params (@is_Some) 1.

Lemma mk_is_Some {A} (mx : option A) x : mx = Some x is_Some mx.
Proof. intros; red; subst; eauto. Qed.
Hint Resolve mk_is_Some.
Lemma is_Some_None {A} : ¬is_Some (@None A).
Proof. by destruct 1. Qed.
Hint Resolve is_Some_None.

Instance is_Some_pi {A} (mx : option A) : ProofIrrel (is_Some mx).
Proof.
  set (P (mx : option A) := match mx with Some _True | _False end).
  set (f mx := match mx return P mx is_Some mx with
    Some _λ _, ex_intro _ _ eq_refl | NoneFalse_rect _ end).
  set (g mx (H : is_Some mx) :=
    match H return P mx with ex_intro _ peq_rect _ _ I _ (eq_sym p) end).
  assert ( mx H, f mx (g mx H) = H) as f_g by (by intros ? [??]; subst).
  intros p1 p2. rewrite <-(f_g _ p1), <-(f_g _ p2). by destruct mx, p1.
Qed.
Instance is_Some_dec {A} (mx : option A) : Decision (is_Some mx) :=
  match mx with
  | Some xleft (ex_intro _ x eq_refl)
  | Noneright is_Some_None
  end.

Definition is_Some_proj {A} {mx : option A} : is_Some mx A :=
  match mx with Some xλ _, x | NoneFalse_rect _ is_Some_None end.
Definition Some_dec {A} (mx : option A) : { x | mx = Some x } + { mx = None } :=
  match mx return { x | mx = Some x } + { mx = None } with
  | Some xinleft (x eq_refl _)
  | Noneinright eq_refl
  end.

Lemma eq_None_not_Some {A} (mx : option A) : mx = None ¬is_Some mx.
Proof. destruct mx; unfold is_Some; naive_solver. Qed.
Lemma not_eq_None_Some {A} (mx : option A) : mx None is_Some mx.
Proof. rewrite eq_None_not_Some; apply dec_stable; tauto. Qed.

Lifting a relation point-wise to option
Inductive option_Forall2 {A B} (R: A B Prop) : option A option B Prop :=
  | Some_Forall2 x y : R x y option_Forall2 R (Some x) (Some y)
  | None_Forall2 : option_Forall2 R None None.
Definition option_relation {A B} (R: A B Prop) (P: A Prop) (Q: B Prop)
    (mx : option A) (my : option B) : Prop :=
  match mx, my with
  | Some x, Some yR x y
  | Some x, NoneP x
  | None, Some yQ y
  | None, NoneTrue
  end.

Section Forall2.
  Context {A} (R : relation A).

  Global Instance option_Forall2_refl : Reflexive R Reflexive (option_Forall2 R).
  Proof. intros ? [?|]; by constructor. Qed.
  Global Instance option_Forall2_sym : Symmetric R Symmetric (option_Forall2 R).
  Proof. destruct 2; by constructor. Qed.
  Global Instance option_Forall2_trans : Transitive R Transitive (option_Forall2 R).
  Proof. destruct 2; inversion_clear 1; constructor; etrans; eauto. Qed.
  Global Instance option_Forall2_equiv : Equivalence R Equivalence (option_Forall2 R).
  Proof. destruct 1; split; apply _. Qed.
End Forall2.

Setoids
Instance option_equiv `{Equiv A} : Equiv (option A) := option_Forall2 (≡).

Section setoids.
  Context `{Equiv A} `{!Equivalence ((≡) : relation A)}.
  Implicit Types mx my : option A.

  Lemma equiv_option_Forall2 mx my : mx my option_Forall2 (≡) mx my.
  Proof. done. Qed.

  Global Instance option_equivalence : Equivalence ((≡) : relation (option A)).
  Proof. apply _. Qed.
  Global Instance Some_proper : Proper ((≡) ==> (≡)) (@Some A).
  Proof. by constructor. Qed.
  Global Instance option_leibniz `{!LeibnizEquiv A} : LeibnizEquiv (option A).
  Proof. intros x y; destruct 1; fold_leibniz; congruence. Qed.

  Lemma equiv_None mx : mx None mx = None.
  Proof. split; [by inversion_clear 1|by intros ->]. Qed.
  Lemma equiv_Some_inv_l mx my x :
    mx my mx = Some x y, my = Some y x y.
  Proof. destruct 1; naive_solver. Qed.
  Lemma equiv_Some_inv_r mx my y :
    mx my my = Some y x, mx = Some x x y.
  Proof. destruct 1; naive_solver. Qed.
  Lemma equiv_Some_inv_l' my x : Some x my x', Some x' = my x x'.
  Proof. intros ?%(equiv_Some_inv_l _ _ x); naive_solver. Qed.
  Lemma equiv_Some_inv_r' mx y : mx Some y y', mx = Some y' y y'.
  Proof. intros ?%(equiv_Some_inv_r _ _ y); naive_solver. Qed.

  Global Instance is_Some_proper : Proper ((≡) ==> iff) (@is_Some A).
  Proof. inversion_clear 1; split; eauto. Qed.
  Global Instance from_option_proper {B} (R : relation B) (f : A B) :
    Proper ((≡) ==> R) f Proper (R ==> (≡) ==> R) (from_option f).
  Proof. destruct 3; simpl; auto. Qed.
End setoids.

Typeclasses Opaque option_equiv.

Equality on option is decidable.
Instance option_eq_None_dec {A} (mx : option A) : Decision (mx = None) :=
  match mx with Some _right (Some_ne_None _) | Noneleft eq_refl end.
Instance option_None_eq_dec {A} (mx : option A) : Decision (None = mx) :=
  match mx with Some _right (None_ne_Some _) | Noneleft eq_refl end.
Instance option_eq_dec {A} {dec : x y : A, Decision (x = y)}
  (mx my : option A) : Decision (mx = my).
Proof.
 refine
  match mx, my with
  | Some x, Some ycast_if (decide (x = y))
  | None, Noneleft _ | _, _right _
  end; clear dec; abstract congruence.
Defined.

Monadic operations

Instance option_ret: MRet option := @Some.
Instance option_bind: MBind option := λ A B f mx,
  match mx with Some xf x | NoneNone end.
Instance option_join: MJoin option := λ A mmx,
  match mmx with Some mxmx | NoneNone end.
Instance option_fmap: FMap option := @option_map.
Instance option_guard: MGuard option := λ P dec A f,
  match dec with left Hf H | _None end.

Lemma fmap_is_Some {A B} (f : A B) mx : is_Some (f <$> mx) is_Some mx.
Proof. unfold is_Some; destruct mx; naive_solver. Qed.
Lemma fmap_Some {A B} (f : A B) mx y :
  f <$> mx = Some y x, mx = Some x y = f x.
Proof. destruct mx; naive_solver. Qed.
Lemma fmap_None {A B} (f : A B) mx : f <$> mx = None mx = None.
Proof. by destruct mx. Qed.
Lemma option_fmap_id {A} (mx : option A) : id <$> mx = mx.
Proof. by destruct mx. Qed.
Lemma option_fmap_compose {A B} (f : A B) {C} (g : B C) mx :
  g f <$> mx = g <$> f <$> mx.
Proof. by destruct mx. Qed.
Lemma option_fmap_ext {A B} (f g : A B) mx :
  ( x, f x = g x) f <$> mx = g <$> mx.
Proof. intros; destruct mx; f_equal/=; auto. Qed.
Lemma option_fmap_setoid_ext `{Equiv A, Equiv B} (f g : A B) mx :
  ( x, f x g x) f <$> mx g <$> mx.
Proof. destruct mx; constructor; auto. Qed.
Lemma option_fmap_bind {A B C} (f : A B) (g : B option C) mx :
  (f <$> mx) ≫= g = mx ≫= g f.
Proof. by destruct mx. Qed.
Lemma option_bind_assoc {A B C} (f : A option B)
  (g : B option C) (mx : option A) : (mx ≫= f) ≫= g = mx ≫= (mbind g f).
Proof. by destruct mx; simpl. Qed.
Lemma option_bind_ext {A B} (f g : A option B) mx my :
  ( x, f x = g x) mx = my mx ≫= f = my ≫= g.
Proof. destruct mx, my; naive_solver. Qed.
Lemma option_bind_ext_fun {A B} (f g : A option B) mx :
  ( x, f x = g x) mx ≫= f = mx ≫= g.
Proof. intros. by apply option_bind_ext. Qed.
Lemma bind_Some {A B} (f : A option B) (mx : option A) y :
  mx ≫= f = Some y x, mx = Some x f x = Some y.
Proof. destruct mx; naive_solver. Qed.
Lemma bind_None {A B} (f : A option B) (mx : option A) :
  mx ≫= f = None mx = None x, mx = Some x f x = None.
Proof. destruct mx; naive_solver. Qed.
Lemma bind_with_Some {A} (mx : option A) : mx ≫= Some = mx.
Proof. by destruct mx. Qed.

Instance option_fmap_proper `{Equiv A, Equiv B} (f : A B) :
  Proper ((≡) ==> (≡)) f Proper ((≡) ==> (≡)) (fmap (M:=option) f).
Proof. destruct 2; constructor; auto. Qed.

Inverses of constructors

We can do this in a fancy way using dependent types, but rewrite does not particularly like type level reductions.
Class Maybe {A B : Type} (c : A B) :=
  maybe : B option A.
Arguments maybe {_ _} _ {_} !_ /.
Class Maybe2 {A1 A2 B : Type} (c : A1 A2 B) :=
  maybe2 : B option (A1 × A2).
Arguments maybe2 {_ _ _} _ {_} !_ /.
Class Maybe3 {A1 A2 A3 B : Type} (c : A1 A2 A3 B) :=
  maybe3 : B option (A1 × A2 × A3).
Arguments maybe3 {_ _ _ _} _ {_} !_ /.
Class Maybe4 {A1 A2 A3 A4 B : Type} (c : A1 A2 A3 A4 B) :=
  maybe4 : B option (A1 × A2 × A3 × A4).
Arguments maybe4 {_ _ _ _ _} _ {_} !_ /.

Instance maybe_comp `{Maybe B C c1, Maybe A B c2} : Maybe (c1 c2) := λ x,
  maybe c1 x ≫= maybe c2.
Arguments maybe_comp _ _ _ _ _ _ _ !_ /.

Instance maybe_inl {A B} : Maybe (@inl A B) := λ xy,
  match xy with inl xSome x | _None end.
Instance maybe_inr {A B} : Maybe (@inr A B) := λ xy,
  match xy with inr ySome y | _None end.
Instance maybe_Some {A} : Maybe (@Some A) := id.
Arguments maybe_Some _ !_ /.

Union, intersection and difference

Instance option_union_with {A} : UnionWith A (option A) := λ f mx my,
  match mx, my with
  | Some x, Some yf x y
  | Some x, NoneSome x
  | None, Some ySome y
  | None, NoneNone
  end.
Instance option_intersection_with {A} : IntersectionWith A (option A) :=
  λ f mx my, match mx, my with Some x, Some yf x y | _, _None end.
Instance option_difference_with {A} : DifferenceWith A (option A) := λ f mx my,
  match mx, my with
  | Some x, Some yf x y
  | Some x, NoneSome x
  | None, _None
  end.
Instance option_union {A} : Union (option A) := union_with (λ x _, Some x).

Lemma option_union_Some {A} (mx my : option A) z :
  mx my = Some z mx = Some z my = Some z.
Proof. destruct mx, my; naive_solver. Qed.

Class DiagNone {A B C} (f : option A option B option C) :=
  diag_none : f None None = None.

Section union_intersection_difference.
  Context {A} (f : A A option A).

  Global Instance union_with_diag_none : DiagNone (union_with f).
  Proof. reflexivity. Qed.
  Global Instance intersection_with_diag_none : DiagNone (intersection_with f).
  Proof. reflexivity. Qed.
  Global Instance difference_with_diag_none : DiagNone (difference_with f).
  Proof. reflexivity. Qed.
  Global Instance union_with_left_id : LeftId (=) None (union_with f).
  Proof. by intros [?|]. Qed.
  Global Instance union_with_right_id : RightId (=) None (union_with f).
  Proof. by intros [?|]. Qed.
  Global Instance union_with_comm : Comm (=) f Comm (=) (union_with f).
  Proof. by intros ? [?|] [?|]; compute; rewrite 1?(comm f). Qed.
  Global Instance intersection_with_left_ab : LeftAbsorb (=) None (intersection_with f).
  Proof. by intros [?|]. Qed.
  Global Instance intersection_with_right_ab : RightAbsorb (=) None (intersection_with f).
  Proof. by intros [?|]. Qed.
  Global Instance difference_with_comm : Comm (=) f Comm (=) (intersection_with f).
  Proof. by intros ? [?|] [?|]; compute; rewrite 1?(comm f). Qed.
  Global Instance difference_with_right_id : RightId (=) None (difference_with f).
  Proof. by intros [?|]. Qed.
End union_intersection_difference.

Tactics

Tactic Notation "case_option_guard" "as" ident(Hx) :=
  match goal with
  | H : appcontext C [@mguard option _ ?P ?dec] |- _
    change (@mguard option _ P dec) with (λ A (f : P option A),
      match @decide P dec with left H'f H' | _None end) in *;
    destruct_decide (@decide P dec) as Hx
  | |- appcontext C [@mguard option _ ?P ?dec] ⇒
    change (@mguard option _ P dec) with (λ A (f : P option A),
      match @decide P dec with left H'f H' | _None end) in *;
    destruct_decide (@decide P dec) as Hx
  end.
Tactic Notation "case_option_guard" :=
  let H := fresh in case_option_guard as H.

Lemma option_guard_True {A} P `{Decision P} (mx : option A) :
  P guard P; mx = mx.
Proof. intros. by case_option_guard. Qed.
Lemma option_guard_False {A} P `{Decision P} (mx : option A) :
  ¬P guard P; mx = None.
Proof. intros. by case_option_guard. Qed.
Lemma option_guard_iff {A} P Q `{Decision P, Decision Q} (mx : option A) :
  (P Q) guard P; mx = guard Q; mx.
Proof. intros [??]. repeat case_option_guard; intuition. Qed.

Tactic Notation "simpl_option" "by" tactic3(tac) :=
  let assert_Some_None A mx H := first
    [ let x := fresh in evar (x:A); let x' := eval unfold x in x in clear x;
      assert (mx = Some x') as H by tac
    | assert (mx = None) as H by tac ]
  in repeat match goal with
  | H : appcontext [@mret _ _ ?A] |- _
     change (@mret _ _ A) with (@Some A) in H
  | |- appcontext [@mret _ _ ?A] ⇒ change (@mret _ _ A) with (@Some A)
  | H : context [mbind (M:=option) (A:=?A) ?f ?mx] |- _
    let Hx := fresh in assert_Some_None A mx Hx; rewrite Hx in H; clear Hx
  | H : context [fmap (M:=option) (A:=?A) ?f ?mx] |- _
    let Hx := fresh in assert_Some_None A mx Hx; rewrite Hx in H; clear Hx
  | H : context [from_option (A:=?A) _ _ ?mx] |- _
    let Hx := fresh in assert_Some_None A mx Hx; rewrite Hx in H; clear Hx
  | H : context [ match ?mx with __ end ] |- _
    match type of mx with
    | option ?A
      let Hx := fresh in assert_Some_None A mx Hx; rewrite Hx in H; clear Hx
    end
  | |- context [mbind (M:=option) (A:=?A) ?f ?mx] ⇒
    let Hx := fresh in assert_Some_None A mx Hx; rewrite Hx; clear Hx
  | |- context [fmap (M:=option) (A:=?A) ?f ?mx] ⇒
    let Hx := fresh in assert_Some_None A mx Hx; rewrite Hx; clear Hx
  | |- context [from_option (A:=?A) _ _ ?mx] ⇒
    let Hx := fresh in assert_Some_None A mx Hx; rewrite Hx; clear Hx
  | |- context [ match ?mx with __ end ] ⇒
    match type of mx with
    | option ?A
      let Hx := fresh in assert_Some_None A mx Hx; rewrite Hx; clear Hx
    end
  | H : context [decide _] |- _rewrite decide_True in H by tac
  | H : context [decide _] |- _rewrite decide_False in H by tac
  | H : context [mguard _ _] |- _rewrite option_guard_False in H by tac
  | H : context [mguard _ _] |- _rewrite option_guard_True in H by tac
  | _rewrite decide_True by tac
  | _rewrite decide_False by tac
  | _rewrite option_guard_True by tac
  | _rewrite option_guard_False by tac
  | H : context [None _] |- _rewrite (left_id_L None (∪)) in H
  | H : context [_ None] |- _rewrite (right_id_L None (∪)) in H
  | |- context [None _] ⇒ rewrite (left_id_L None (∪))
  | |- context [_ None] ⇒ rewrite (right_id_L None (∪))
  end.
Tactic Notation "simplify_option_eq" "by" tactic3(tac) :=
  repeat match goal with
  | _progress simplify_eq/=
  | _progress simpl_option by tac
  | _ : maybe _ ?x = Some _ |- _is_var x; destruct x
  | _ : maybe2 _ ?x = Some _ |- _is_var x; destruct x
  | _ : maybe3 _ ?x = Some _ |- _is_var x; destruct x
  | _ : maybe4 _ ?x = Some _ |- _is_var x; destruct x
  | H : _ _ = Some _ |- _apply option_union_Some in H; destruct H
  | H : mbind (M:=option) ?f ?mx = ?my |- _
    match mx with Some _fail 1 | Nonefail 1 | _idtac end;
    match my with Some _idtac | Noneidtac | _fail 1 end;
    let x := fresh in destruct mx as [x|] eqn:?;
      [change (f x = my) in H|change (None = my) in H]
  | H : ?my = mbind (M:=option) ?f ?mx |- _
    match mx with Some _fail 1 | Nonefail 1 | _idtac end;
    match my with Some _idtac | Noneidtac | _fail 1 end;
    let x := fresh in destruct mx as [x|] eqn:?;
      [change (my = f x) in H|change (my = None) in H]
  | H : fmap (M:=option) ?f ?mx = ?my |- _
    match mx with Some _fail 1 | Nonefail 1 | _idtac end;
    match my with Some _idtac | Noneidtac | _fail 1 end;
    let x := fresh in destruct mx as [x|] eqn:?;
      [change (Some (f x) = my) in H|change (None = my) in H]
  | H : ?my = fmap (M:=option) ?f ?mx |- _
    match mx with Some _fail 1 | Nonefail 1 | _idtac end;
    match my with Some _idtac | Noneidtac | _fail 1 end;
    let x := fresh in destruct mx as [x|] eqn:?;
      [change (my = Some (f x)) in H|change (my = None) in H]
  | _progress case_decide
  | _progress case_option_guard
  end.
Tactic Notation "simplify_option_eq" := simplify_option_eq by eauto.