Library iris.prelude.list

This file collects general purpose definitions and theorems on lists that are not in the Coq standard library.
From Coq Require Export Permutation.
From iris.prelude Require Export numbers base option.

Arguments length {_} _.
Arguments cons {_} _ _.
Arguments app {_} _ _.

Instance: Params (@length) 1.
Instance: Params (@cons) 1.
Instance: Params (@app) 1.

Notation tail := tl.
Notation take := firstn.
Notation drop := skipn.

Arguments tail {_} _.
Arguments take {_} !_ !_ /.
Arguments drop {_} !_ !_ /.

Instance: Params (@tail) 1.
Instance: Params (@take) 1.
Instance: Params (@drop) 1.

Arguments Permutation {_} _ _.
Arguments Forall_cons {_} _ _ _ _ _.
Remove Hints Permutation_cons : typeclass_instances.

Notation "(::)" := cons (only parsing) : C_scope.
Notation "( x ::)" := (cons x) (only parsing) : C_scope.
Notation "(:: l )" := (λ x, cons x l) (only parsing) : C_scope.
Notation "(++)" := app (only parsing) : C_scope.
Notation "( l ++)" := (app l) (only parsing) : C_scope.
Notation "(++ k )" := (λ l, app l k) (only parsing) : C_scope.

Infix "≡ₚ" := Permutation (at level 70, no associativity) : C_scope.
Notation "(≡ₚ)" := Permutation (only parsing) : C_scope.
Notation "( x ≡ₚ)" := (Permutation x) (only parsing) : C_scope.
Notation "(≡ₚ x )" := (λ y, y ≡ₚ x) (only parsing) : C_scope.
Notation "(≢ₚ)" := (λ x y, ¬x ≡ₚ y) (only parsing) : C_scope.
Notation "x ≢ₚ y":= (¬x ≡ₚ y) (at level 70, no associativity) : C_scope.
Notation "( x ≢ₚ)" := (λ y, x ≢ₚ y) (only parsing) : C_scope.
Notation "(≢ₚ x )" := (λ y, y ≢ₚ x) (only parsing) : C_scope.

Instance maybe_cons {A} : Maybe2 (@cons A) := λ l,
  match l with x :: lSome (x,l) | _None end.

Definitions

Setoid equality lifted to lists
Inductive list_equiv `{Equiv A} : Equiv (list A) :=
  | nil_equiv : [] []
  | cons_equiv x y l k : x y l k x :: l y :: k.
Existing Instance list_equiv.

The operation l !! i gives the ith element of the list l, or None in case i is out of bounds.
Instance list_lookup {A} : Lookup nat A (list A) :=
  fix go i l {struct l} : option A := let _ : Lookup _ _ _ := @go in
  match l with
  | []None | x :: lmatch i with 0 ⇒ Some x | S il !! i end
  end.

The operation alter f i l applies the function f to the ith element of l. In case i is out of bounds, the list is returned unchanged.
Instance list_alter {A} : Alter nat A (list A) := λ f,
  fix go i l {struct l} :=
  match l with
  | [][]
  | x :: lmatch i with 0 ⇒ f x :: l | S ix :: go i l end
  end.

The operation <[i:=x]> l overwrites the element at position i with the value x. In case i is out of bounds, the list is returned unchanged.
Instance list_insert {A} : Insert nat A (list A) :=
  fix go i y l {struct l} := let _ : Insert _ _ _ := @go in
  match l with
  | [][]
  | x :: lmatch i with 0 ⇒ y :: l | S ix :: <[i:=y]>l end
  end.
Fixpoint list_inserts {A} (i : nat) (k l : list A) : list A :=
  match k with
  | []l
  | y :: k<[i:=y]>(list_inserts (S i) k l)
  end.
Instance: Params (@list_inserts) 1.

The operation delete i l removes the ith element of l and moves all consecutive elements one position ahead. In case i is out of bounds, the list is returned unchanged.
Instance list_delete {A} : Delete nat (list A) :=
  fix go (i : nat) (l : list A) {struct l} : list A :=
  match l with
  | [][]
  | x :: lmatch i with 0 ⇒ l | S ix :: @delete _ _ go i l end
  end.

The function option_list o converts an element Some x into the singleton list [x], and None into the empty list [].
Definition option_list {A} : option A list A := option_rect _ (λ x, [x]) [].
Instance: Params (@option_list) 1.
Instance maybe_list_singleton {A} : Maybe (λ x : A, [x]) := λ l,
  match l with [x]Some x | _None end.

The function filter P l returns the list of elements of l that satisfies P. The order remains unchanged.
Instance list_filter {A} : Filter A (list A) :=
  fix go P _ l := let _ : Filter _ _ := @go in
  match l with
  | [][]
  | x :: lif decide (P x) then x :: filter P l else filter P l
  end.

The function list_find P l returns the first index i whose element satisfies the predicate P.
Definition list_find {A} P `{ x, Decision (P x)} : list A option (nat × A) :=
  fix go l :=
  match l with
  | []None
  | x :: lif decide (P x) then Some (0,x) else prod_map S id <$> go l
  end.
Instance: Params (@list_find) 3.

The function replicate n x generates a list with length n of elements with value x.
Fixpoint replicate {A} (n : nat) (x : A) : list A :=
  match n with 0 ⇒ [] | S nx :: replicate n x end.
Instance: Params (@replicate) 2.

The function reverse l returns the elements of l in reverse order.
Definition reverse {A} (l : list A) : list A := rev_append l [].
Instance: Params (@reverse) 1.

The function last l returns the last element of the list l, or None if the list l is empty.
Fixpoint last {A} (l : list A) : option A :=
  match l with []None | [x]Some x | _ :: llast l end.
Instance: Params (@last) 1.

The function resize n y l takes the first n elements of l in case length l n, and otherwise appends elements with value x to l to obtain a list of length n.
Fixpoint resize {A} (n : nat) (y : A) (l : list A) : list A :=
  match l with
  | []replicate n y
  | x :: lmatch n with 0 ⇒ [] | S nx :: resize n y l end
  end.
Arguments resize {_} !_ _ !_.
Instance: Params (@resize) 2.

The function reshape k l transforms l into a list of lists whose sizes are specified by k. In case l is too short, the resulting list will be padded with empty lists. In case l is too long, it will be truncated.
Fixpoint reshape {A} (szs : list nat) (l : list A) : list (list A) :=
  match szs with
  | [][] | sz :: szstake sz l :: reshape szs (drop sz l)
  end.
Instance: Params (@reshape) 2.

Definition sublist_lookup {A} (i n : nat) (l : list A) : option (list A) :=
  guard (i + n length l); Some (take n (drop i l)).
Definition sublist_alter {A} (f : list A list A)
    (i n : nat) (l : list A) : list A :=
  take i l ++ f (take n (drop i l)) ++ drop (i + n) l.

Functions to fold over a list. We redefine foldl with the arguments in the same order as in Haskell.
Notation foldr := fold_right.
Definition foldl {A B} (f : A B A) : A list B A :=
  fix go a l := match l with []a | x :: lgo (f a x) l end.

The monadic operations.
Instance list_ret: MRet list := λ A x, x :: @nil A.
Instance list_fmap : FMap list := λ A B f,
  fix go (l : list A) := match l with [][] | x :: lf x :: go l end.
Instance list_omap : OMap list := λ A B f,
  fix go (l : list A) :=
  match l with
  | [][]
  | x :: lmatch f x with Some yy :: go l | Nonego l end
  end.
Instance list_bind : MBind list := λ A B f,
  fix go (l : list A) := match l with [][] | x :: lf x ++ go l end.
Instance list_join: MJoin list :=
  fix go A (ls : list (list A)) : list A :=
  match ls with [][] | l :: lsl ++ @mjoin _ go _ ls end.
Definition mapM `{MBind M, MRet M} {A B} (f : A M B) : list A M (list B) :=
  fix go l :=
  match l with []mret [] | x :: ly f x; k go l; mret (y :: k) end.

We define stronger variants of map and fold that allow the mapped function to use the index of the elements.
Definition imap_go {A B} (f : nat A B) : nat list A list B :=
  fix go (n : nat) (l : list A) :=
  match l with [][] | x :: lf n x :: go (S n) l end.
Definition imap {A B} (f : nat A B) : list A list B := imap_go f 0.
Definition zipped_map {A B} (f : list A list A A B) :
  list A list A list B := fix go l k :=
  match k with [][] | x :: kf l k x :: go (x :: l) k end.

Definition imap2_go {A B C} (f : nat A B C) :
    nat list A list B list C:=
  fix go (n : nat) (l : list A) (k : list B) :=
  match l, k with
  | [], _ |_, [][] | x :: l, y :: kf n x y :: go (S n) l k
  end.
Definition imap2 {A B C} (f : nat A B C) :
  list A list B list C := imap2_go f 0.

Inductive zipped_Forall {A} (P : list A list A A Prop) :
    list A list A Prop :=
  | zipped_Forall_nil l : zipped_Forall P l []
  | zipped_Forall_cons l k x :
     P l k x zipped_Forall P (x :: l) k zipped_Forall P l (x :: k).
Arguments zipped_Forall_nil {_ _} _.
Arguments zipped_Forall_cons {_ _} _ _ _ _ _.

The function mask f βs l applies the function f to elements in l at positions that are true in βs.
Fixpoint mask {A} (f : A A) (βs : list bool) (l : list A) : list A :=
  match βs, l with
  | β :: βs, x :: l(if β then f x else x) :: mask f βs l
  | _, _l
  end.

The function permutations l yields all permutations of l.
Fixpoint interleave {A} (x : A) (l : list A) : list (list A) :=
  match l with
  | [][[x]]| y :: l(x :: y :: l) :: ((y ::) <$> interleave x l)
  end.
Fixpoint permutations {A} (l : list A) : list (list A) :=
  match l with [][[]] | x :: lpermutations l ≫= interleave x end.

The predicate suffix_of holds if the first list is a suffix of the second. The predicate prefix_of holds if the first list is a prefix of the second.
Definition suffix_of {A} : relation (list A) := λ l1 l2, k, l2 = k ++ l1.
Definition prefix_of {A} : relation (list A) := λ l1 l2, k, l2 = l1 ++ k.
Infix "`suffix_of`" := suffix_of (at level 70) : C_scope.
Infix "`prefix_of`" := prefix_of (at level 70) : C_scope.
Hint Extern 0 (_ `prefix_of` _) ⇒ reflexivity.
Hint Extern 0 (_ `suffix_of` _) ⇒ reflexivity.

Section prefix_suffix_ops.
  Context `{ x y : A, Decision (x = y)}.
  Definition max_prefix_of : list A list A list A × list A × list A :=
    fix go l1 l2 :=
    match l1, l2 with
    | [], l2([], l2, [])
    | l1, [](l1, [], [])
    | x1 :: l1, x2 :: l2
      if decide_rel (=) x1 x2
      then prod_map id (x1 ::) (go l1 l2) else (x1 :: l1, x2 :: l2, [])
    end.
  Definition max_suffix_of (l1 l2 : list A) : list A × list A × list A :=
    match max_prefix_of (reverse l1) (reverse l2) with
    | (k1, k2, k3)(reverse k1, reverse k2, reverse k3)
    end.
  Definition strip_prefix (l1 l2 : list A) := (max_prefix_of l1 l2).1.2.
  Definition strip_suffix (l1 l2 : list A) := (max_suffix_of l1 l2).1.2.
End prefix_suffix_ops.

A list l1 is a sublist of l2 if l2 is obtained by removing elements from l1 without changing the order.
Inductive sublist {A} : relation (list A) :=
  | sublist_nil : sublist [] []
  | sublist_skip x l1 l2 : sublist l1 l2 sublist (x :: l1) (x :: l2)
  | sublist_cons x l1 l2 : sublist l1 l2 sublist l1 (x :: l2).
Infix "`sublist`" := sublist (at level 70) : C_scope.
Hint Extern 0 (_ `sublist` _) ⇒ reflexivity.

A list l2 contains a list l1 if l2 is obtained by removing elements from l1 while possiblity changing the order.
Inductive contains {A} : relation (list A) :=
  | contains_nil : contains [] []
  | contains_skip x l1 l2 : contains l1 l2 contains (x :: l1) (x :: l2)
  | contains_swap x y l : contains (y :: x :: l) (x :: y :: l)
  | contains_cons x l1 l2 : contains l1 l2 contains l1 (x :: l2)
  | contains_trans l1 l2 l3 : contains l1 l2 contains l2 l3 contains l1 l3.
Infix "`contains`" := contains (at level 70) : C_scope.
Hint Extern 0 (_ `contains` _) ⇒ reflexivity.

Section contains_dec_help.
  Context {A} {dec : x y : A, Decision (x = y)}.
  Fixpoint list_remove (x : A) (l : list A) : option (list A) :=
    match l with
    | []None
    | y :: lif decide (x = y) then Some l else (y ::) <$> list_remove x l
    end.
  Fixpoint list_remove_list (k : list A) (l : list A) : option (list A) :=
    match k with
    | []Some l | x :: klist_remove x l ≫= list_remove_list k
    end.
End contains_dec_help.

Inductive Forall3 {A B C} (P : A B C Prop) :
     list A list B list C Prop :=
  | Forall3_nil : Forall3 P [] [] []
  | Forall3_cons x y z l k k' :
     P x y z Forall3 P l k k' Forall3 P (x :: l) (y :: k) (z :: k').

Inductive Forall4 {A B C D} (P : A B C D Prop) :
     list A list B list C list D Prop :=
  | Forall4_nil : Forall4 P [] [] [] []
  | Forall4_cons x y z a l k k' k'' :
     P x y z a Forall4 P l k k' k''
     Forall4 P (x :: l) (y :: k) (z :: k') (a :: k'').

Inductive Forall5 {A B C D E} (P : A B C D E Prop) :
     list A list B list C list D list E Prop :=
  | Forall5_nil : Forall5 P [] [] [] [] []
  | Forall5_cons x y z a b l k k' k'' k''' :
     P x y z a b Forall5 P l k k' k'' k'''
     Forall5 P (x :: l) (y :: k) (z :: k') (a :: k'') (b :: k''').

Set operations on lists
Definition included {A} (l1 l2 : list A) := x, x l1 x l2.
Infix "`included`" := included (at level 70) : C_scope.

Section list_set.
  Context {A} {dec : x y : A, Decision (x = y)}.
  Global Instance elem_of_list_dec {dec : x y : A, Decision (x = y)}
    (x : A) : l, Decision (x l).
  Proof.
   refine (
    fix go l :=
    match l return Decision (x l) with
    | []right _
    | y :: lcast_if_or (decide (x = y)) (go l)
    end); clear go dec; subst; try (by constructor); abstract by inversion 1.
  Defined.
  Fixpoint remove_dups (l : list A) : list A :=
    match l with
    | [][]
    | x :: l
      if decide_rel (∈) x l then remove_dups l else x :: remove_dups l
    end.
  Fixpoint list_difference (l k : list A) : list A :=
    match l with
    | [][]
    | x :: l
      if decide_rel (∈) x k
      then list_difference l k else x :: list_difference l k
    end.
  Definition list_union (l k : list A) : list A := list_difference l k ++ k.
  Fixpoint list_intersection (l k : list A) : list A :=
    match l with
    | [][]
    | x :: l
      if decide_rel (∈) x k
      then x :: list_intersection l k else list_intersection l k
    end.
  Definition list_intersection_with (f : A A option A) :
    list A list A list A := fix go l k :=
    match l with
    | [][]
    | x :: lfoldr (λ y,
        match f x y with Noneid | Some z(z ::) end) (go l k) k
    end.
End list_set.

Basic tactics on lists

The tactic discriminate_list discharges a goal if it contains a list equality involving (::) and (++) of two lists that have a different length as one of its hypotheses.
Tactic Notation "discriminate_list" hyp(H) :=
  apply (f_equal length) in H;
  repeat (csimpl in H || rewrite app_length in H); exfalso; lia.
Tactic Notation "discriminate_list" :=
  match goal with H : @eq (list _) _ _ |- _discriminate_list H end.

The tactic simplify_list_eq simplifies hypotheses involving equalities on lists using injectivity of (::) and (++). Also, it simplifies lookups in singleton lists.
Lemma app_inj_1 {A} (l1 k1 l2 k2 : list A) :
  length l1 = length k1 l1 ++ l2 = k1 ++ k2 l1 = k1 l2 = k2.
Proof. revert k1. induction l1; intros [|??]; naive_solver. Qed.
Lemma app_inj_2 {A} (l1 k1 l2 k2 : list A) :
  length l2 = length k2 l1 ++ l2 = k1 ++ k2 l1 = k1 l2 = k2.
Proof.
  intros ? Hl. apply app_inj_1; auto.
  apply (f_equal length) in Hl. rewrite !app_length in Hl. lia.
Qed.
Ltac simplify_list_eq :=
  repeat match goal with
  | _progress simplify_eq/=
  | H : _ ++ _ = _ ++ _ |- _first
    [ apply app_inv_head in H | apply app_inv_tail in H
    | apply app_inj_1 in H; [destruct H|done]
    | apply app_inj_2 in H; [destruct H|done] ]
  | H : [?x] !! ?i = Some ?y |- _
    destruct i; [change (Some x = Some y) in H | discriminate]
  end.

General theorems

Section general_properties.
Context {A : Type}.
Implicit Types x y z : A.
Implicit Types l k : list A.

Global Instance: Inj2 (=) (=) (=) (@cons A).
Proof. by injection 1. Qed.
Global Instance: k, Inj (=) (=) (k ++).
Proof. intros ???. apply app_inv_head. Qed.
Global Instance: k, Inj (=) (=) (++ k).
Proof. intros ???. apply app_inv_tail. Qed.
Global Instance: Assoc (=) (@app A).
Proof. intros ???. apply app_assoc. Qed.
Global Instance: LeftId (=) [] (@app A).
Proof. done. Qed.
Global Instance: RightId (=) [] (@app A).
Proof. intro. apply app_nil_r. Qed.

Lemma app_nil l1 l2 : l1 ++ l2 = [] l1 = [] l2 = [].
Proof. split. apply app_eq_nil. by intros [-> ->]. Qed.
Lemma app_singleton l1 l2 x :
  l1 ++ l2 = [x] l1 = [] l2 = [x] l1 = [x] l2 = [].
Proof. split. apply app_eq_unit. by intros [[-> ->]|[-> ->]]. Qed.
Lemma cons_middle x l1 l2 : l1 ++ x :: l2 = l1 ++ [x] ++ l2.
Proof. done. Qed.
Lemma list_eq l1 l2 : ( i, l1 !! i = l2 !! i) l1 = l2.
Proof.
  revert l2. induction l1 as [|x l1 IH]; intros [|y l2] H.
  - done.
  - discriminate (H 0).
  - discriminate (H 0).
  - f_equal; [by injection (H 0)|]. apply (IH _ $ λ i, H (S i)).
Qed.
Global Instance list_eq_dec {dec : x y, Decision (x = y)} : l k,
  Decision (l = k) := list_eq_dec dec.
Global Instance list_eq_nil_dec l : Decision (l = []).
Proof. by refine match l with []left _ | _right _ end. Defined.
Lemma list_singleton_reflect l :
  option_reflect (λ x, l = [x]) (length l 1) (maybe (λ x, [x]) l).
Proof. by destruct l as [|? []]; constructor. Defined.

Definition nil_length : length (@nil A) = 0 := eq_refl.
Definition cons_length x l : length (x :: l) = S (length l) := eq_refl.
Lemma nil_or_length_pos l : l = [] length l 0.
Proof. destruct l; simpl; auto with lia. Qed.
Lemma nil_length_inv l : length l = 0 l = [].
Proof. by destruct l. Qed.
Lemma lookup_nil i : @nil A !! i = None.
Proof. by destruct i. Qed.
Lemma lookup_tail l i : tail l !! i = l !! S i.
Proof. by destruct l. Qed.
Lemma lookup_lt_Some l i x : l !! i = Some x i < length l.
Proof. revert i. induction l; intros [|?] ?; naive_solver auto with arith. Qed.
Lemma lookup_lt_is_Some_1 l i : is_Some (l !! i) i < length l.
Proof. intros [??]; eauto using lookup_lt_Some. Qed.
Lemma lookup_lt_is_Some_2 l i : i < length l is_Some (l !! i).
Proof. revert i. induction l; intros [|?] ?; naive_solver eauto with lia. Qed.
Lemma lookup_lt_is_Some l i : is_Some (l !! i) i < length l.
Proof. split; auto using lookup_lt_is_Some_1, lookup_lt_is_Some_2. Qed.
Lemma lookup_ge_None l i : l !! i = None length l i.
Proof. rewrite eq_None_not_Some, lookup_lt_is_Some. lia. Qed.
Lemma lookup_ge_None_1 l i : l !! i = None length l i.
Proof. by rewrite lookup_ge_None. Qed.
Lemma lookup_ge_None_2 l i : length l i l !! i = None.
Proof. by rewrite lookup_ge_None. Qed.
Lemma list_eq_same_length l1 l2 n :
  length l2 = n length l1 = n
  ( i x y, i < n l1 !! i = Some x l2 !! i = Some y x = y) l1 = l2.
Proof.
  intros <- Hlen Hl; apply list_eq; intros i. destruct (l2 !! i) as [x|] eqn:Hx.
  - destruct (lookup_lt_is_Some_2 l1 i) as [y Hy].
    { rewrite Hlen; eauto using lookup_lt_Some. }
    rewrite Hy; f_equal; apply (Hl i); eauto using lookup_lt_Some.
  - by rewrite lookup_ge_None, Hlen, <-lookup_ge_None.
Qed.
Lemma lookup_app_l l1 l2 i : i < length l1 (l1 ++ l2) !! i = l1 !! i.
Proof. revert i. induction l1; intros [|?]; naive_solver auto with lia. Qed.
Lemma lookup_app_l_Some l1 l2 i x : l1 !! i = Some x (l1 ++ l2) !! i = Some x.
Proof. intros. rewrite lookup_app_l; eauto using lookup_lt_Some. Qed.
Lemma lookup_app_r l1 l2 i :
  length l1 i (l1 ++ l2) !! i = l2 !! (i - length l1).
Proof. revert i. induction l1; intros [|?]; simpl; auto with lia. Qed.
Lemma lookup_app_Some l1 l2 i x :
  (l1 ++ l2) !! i = Some x
    l1 !! i = Some x length l1 i l2 !! (i - length l1) = Some x.
Proof.
  split.
  - revert i. induction l1 as [|y l1 IH]; intros [|i] ?;
      simplify_eq/=; auto with lia.
    destruct (IH i) as [?|[??]]; auto with lia.
  - intros [?|[??]]; auto using lookup_app_l_Some. by rewrite lookup_app_r.
Qed.
Lemma list_lookup_middle l1 l2 x n :
  n = length l1 (l1 ++ x :: l2) !! n = Some x.
Proof. intros →. by induction l1. Qed.

Lemma list_insert_alter l i x : <[i:=x]>l = alter (λ _, x) i l.
Proof. by revert i; induction l; intros []; intros; f_equal/=. Qed.
Lemma alter_length f l i : length (alter f i l) = length l.
Proof. revert i. by induction l; intros [|?]; f_equal/=. Qed.
Lemma insert_length l i x : length (<[i:=x]>l) = length l.
Proof. revert i. by induction l; intros [|?]; f_equal/=. Qed.
Lemma list_lookup_alter f l i : alter f i l !! i = f <$> l !! i.
Proof. revert i. induction l. done. intros [|i]. done. apply (IHl i). Qed.
Lemma list_lookup_alter_ne f l i j : i j alter f i l !! j = l !! j.
Proof. revert i j. induction l; [done|]. intros [] []; naive_solver. Qed.
Lemma list_lookup_insert l i x : i < length l <[i:=x]>l !! i = Some x.
Proof. revert i. induction l; intros [|?] ?; f_equal/=; auto with lia. Qed.
Lemma list_lookup_insert_ne l i j x : i j <[i:=x]>l !! j = l !! j.
Proof. revert i j. induction l; [done|]. intros [] []; naive_solver. Qed.
Lemma list_lookup_insert_Some l i x j y :
  <[i:=x]>l !! j = Some y
    i = j x = y j < length l i j l !! j = Some y.
Proof.
  destruct (decide (i = j)) as [->|];
    [split|rewrite list_lookup_insert_ne by done; tauto].
  - intros Hy. assert (j < length l).
    { rewrite <-(insert_length l j x); eauto using lookup_lt_Some. }
    rewrite list_lookup_insert in Hy by done; naive_solver.
  - intros [(?&?&?)|[??]]; rewrite ?list_lookup_insert; naive_solver.
Qed.
Lemma list_insert_commute l i j x y :
  i j <[i:=x]>(<[j:=y]>l) = <[j:=y]>(<[i:=x]>l).
Proof. revert i j. by induction l; intros [|?] [|?] ?; f_equal/=; auto. Qed.
Lemma list_lookup_other l i x :
  length l 1 l !! i = Some x j y, j i l !! j = Some y.
Proof.
  intros. destruct i, l as [|x0 [|x1 l]]; simplify_eq/=.
  - by 1, x1.
  - by 0, x0.
Qed.
Lemma alter_app_l f l1 l2 i :
  i < length l1 alter f i (l1 ++ l2) = alter f i l1 ++ l2.
Proof. revert i. induction l1; intros [|?] ?; f_equal/=; auto with lia. Qed.
Lemma alter_app_r f l1 l2 i :
  alter f (length l1 + i) (l1 ++ l2) = l1 ++ alter f i l2.
Proof. revert i. induction l1; intros [|?]; f_equal/=; auto. Qed.
Lemma alter_app_r_alt f l1 l2 i :
  length l1 i alter f i (l1 ++ l2) = l1 ++ alter f (i - length l1) l2.
Proof.
  intros. assert (i = length l1 + (i - length l1)) as Hi by lia.
  rewrite Hi at 1. by apply alter_app_r.
Qed.
Lemma list_alter_id f l i : ( x, f x = x) alter f i l = l.
Proof. intros ?. revert i. induction l; intros [|?]; f_equal/=; auto. Qed.
Lemma list_alter_ext f g l k i :
  ( x, l !! i = Some x f x = g x) l = k alter f i l = alter g i k.
Proof. intros H →. revert i H. induction k; intros [|?] ?; f_equal/=; auto. Qed.
Lemma list_alter_compose f g l i :
  alter (f g) i l = alter f i (alter g i l).
Proof. revert i. induction l; intros [|?]; f_equal/=; auto. Qed.
Lemma list_alter_commute f g l i j :
  i j alter f i (alter g j l) = alter g j (alter f i l).
Proof. revert i j. induction l; intros [|?][|?] ?; f_equal/=; auto with lia. Qed.
Lemma insert_app_l l1 l2 i x :
  i < length l1 <[i:=x]>(l1 ++ l2) = <[i:=x]>l1 ++ l2.
Proof. revert i. induction l1; intros [|?] ?; f_equal/=; auto with lia. Qed.
Lemma insert_app_r l1 l2 i x : <[length l1+i:=x]>(l1 ++ l2) = l1 ++ <[i:=x]>l2.
Proof. revert i. induction l1; intros [|?]; f_equal/=; auto. Qed.
Lemma insert_app_r_alt l1 l2 i x :
  length l1 i <[i:=x]>(l1 ++ l2) = l1 ++ <[i - length l1:=x]>l2.
Proof.
  intros. assert (i = length l1 + (i - length l1)) as Hi by lia.
  rewrite Hi at 1. by apply insert_app_r.
Qed.
Lemma delete_middle l1 l2 x : delete (length l1) (l1 ++ x :: l2) = l1 ++ l2.
Proof. induction l1; f_equal/=; auto. Qed.

Lemma inserts_length l i k : length (list_inserts i k l) = length l.
Proof.
  revert i. induction k; intros ?; csimpl; rewrite ?insert_length; auto.
Qed.
Lemma list_lookup_inserts l i k j :
  i j < i + length k j < length l
  list_inserts i k l !! j = k !! (j - i).
Proof.
  revert i j. induction k as [|y k IH]; csimpl; intros i j ??; [lia|].
  destruct (decide (i = j)) as [->|].
  { by rewrite list_lookup_insert, Nat.sub_diag
      by (rewrite inserts_length; lia). }
  rewrite list_lookup_insert_ne, IH by lia.
  by replace (j - i) with (S (j - S i)) by lia.
Qed.
Lemma list_lookup_inserts_lt l i k j :
  j < i list_inserts i k l !! j = l !! j.
Proof.
  revert i j. induction k; intros i j ?; csimpl;
    rewrite ?list_lookup_insert_ne by lia; auto with lia.
Qed.
Lemma list_lookup_inserts_ge l i k j :
  i + length k j list_inserts i k l !! j = l !! j.
Proof.
  revert i j. induction k; csimpl; intros i j ?;
    rewrite ?list_lookup_insert_ne by lia; auto with lia.
Qed.
Lemma list_lookup_inserts_Some l i k j y :
  list_inserts i k l !! j = Some y
    (j < i i + length k j) l !! j = Some y
    i j < i + length k j < length l k !! (j - i) = Some y.
Proof.
  destruct (decide (j < i)).
  { rewrite list_lookup_inserts_lt by done; intuition lia. }
  destruct (decide (i + length k j)).
  { rewrite list_lookup_inserts_ge by done; intuition lia. }
  split.
  - intros Hy. assert (j < length l).
    { rewrite <-(inserts_length l i k); eauto using lookup_lt_Some. }
    rewrite list_lookup_inserts in Hy by lia. intuition lia.
  - intuition. by rewrite list_lookup_inserts by lia.
Qed.
Lemma list_insert_inserts_lt l i j x k :
  i < j <[i:=x]>(list_inserts j k l) = list_inserts j k (<[i:=x]>l).
Proof.
  revert i j. induction k; intros i j ?; simpl;
    rewrite 1?list_insert_commute by lia; auto with f_equal.
Qed.

Properties of the elem_of predicate

Lemma not_elem_of_nil x : x [].
Proof. by inversion 1. Qed.
Lemma elem_of_nil x : x [] False.
Proof. intuition. by destruct (not_elem_of_nil x). Qed.
Lemma elem_of_nil_inv l : ( x, x l) l = [].
Proof. destruct l. done. by edestruct 1; constructor. Qed.
Lemma elem_of_not_nil x l : x l l [].
Proof. intros ? →. by apply (elem_of_nil x). Qed.
Lemma elem_of_cons l x y : x y :: l x = y x l.
Proof. by split; [inversion 1; subst|intros [->|?]]; constructor. Qed.
Lemma not_elem_of_cons l x y : x y :: l x y x l.
Proof. rewrite elem_of_cons. tauto. Qed.
Lemma elem_of_app l1 l2 x : x l1 ++ l2 x l1 x l2.
Proof.
  induction l1.
  - split; [by right|]. intros [Hx|]; [|done]. by destruct (elem_of_nil x).
  - simpl. rewrite !elem_of_cons, IHl1. tauto.
Qed.
Lemma not_elem_of_app l1 l2 x : x l1 ++ l2 x l1 x l2.
Proof. rewrite elem_of_app. tauto. Qed.
Lemma elem_of_list_singleton x y : x [y] x = y.
Proof. rewrite elem_of_cons, elem_of_nil. tauto. Qed.
Global Instance elem_of_list_permutation_proper x : Proper ((≡ₚ) ==> iff) (x ∈).
Proof. induction 1; rewrite ?elem_of_nil, ?elem_of_cons; intuition. Qed.
Lemma elem_of_list_split l x : x l l1 l2, l = l1 ++ x :: l2.
Proof.
  induction 1 as [x l|x y l ? [l1 [l2 ->]]]; [by eexists [], l|].
  by (y :: l1), l2.
Qed.
Lemma elem_of_list_lookup_1 l x : x l i, l !! i = Some x.
Proof.
  induction 1 as [|???? IH]; [by 0 |].
  destruct IH as [i ?]; auto. by (S i).
Qed.
Lemma elem_of_list_lookup_2 l i x : l !! i = Some x x l.
Proof.
  revert i. induction l; intros [|i] ?; simplify_eq/=; constructor; eauto.
Qed.
Lemma elem_of_list_lookup l x : x l i, l !! i = Some x.
Proof. firstorder eauto using elem_of_list_lookup_1, elem_of_list_lookup_2. Qed.
Lemma elem_of_list_omap {B} (f : A option B) l (y : B) :
  y omap f l x, x l f x = Some y.
Proof.
  split.
  - induction l as [|x l]; csimpl; repeat case_match; inversion 1; subst;
      setoid_rewrite elem_of_cons; naive_solver.
  - intros (x&Hx&?). by induction Hx; csimpl; repeat case_match;
      simplify_eq; try constructor; auto.
Qed.

Properties of the NoDup predicate

Lemma NoDup_nil : NoDup (@nil A) True.
Proof. split; constructor. Qed.
Lemma NoDup_cons x l : NoDup (x :: l) x l NoDup l.
Proof. split. by inversion 1. intros [??]. by constructor. Qed.
Lemma NoDup_cons_11 x l : NoDup (x :: l) x l.
Proof. rewrite NoDup_cons. by intros [??]. Qed.
Lemma NoDup_cons_12 x l : NoDup (x :: l) NoDup l.
Proof. rewrite NoDup_cons. by intros [??]. Qed.
Lemma NoDup_singleton x : NoDup [x].
Proof. constructor. apply not_elem_of_nil. constructor. Qed.
Lemma NoDup_app l k : NoDup (l ++ k) NoDup l ( x, x l x k) NoDup k.
Proof.
  induction l; simpl.
  - rewrite NoDup_nil. setoid_rewrite elem_of_nil. naive_solver.
  - rewrite !NoDup_cons.
    setoid_rewrite elem_of_cons. setoid_rewrite elem_of_app. naive_solver.
Qed.
Global Instance NoDup_proper: Proper ((≡ₚ) ==> iff) (@NoDup A).
Proof.
  induction 1 as [|x l k Hlk IH | |].
  - by rewrite !NoDup_nil.
  - by rewrite !NoDup_cons, IH, Hlk.
  - rewrite !NoDup_cons, !elem_of_cons. intuition.
  - intuition.
Qed.
Lemma NoDup_lookup l i j x :
  NoDup l l !! i = Some x l !! j = Some x i = j.
Proof.
  intros Hl. revert i j. induction Hl as [|x' l Hx Hl IH].
  { intros; simplify_eq. }
  intros [|i] [|j] ??; simplify_eq/=; eauto with f_equal;
    exfalso; eauto using elem_of_list_lookup_2.
Qed.
Lemma NoDup_alt l :
  NoDup l i j x, l !! i = Some x l !! j = Some x i = j.
Proof.
  split; eauto using NoDup_lookup.
  induction l as [|x l IH]; intros Hl; constructor.
  - rewrite elem_of_list_lookup. intros [i ?].
    by feed pose proof (Hl (S i) 0 x); auto.
  - apply IH. intros i j x' ??. by apply (inj S), (Hl (S i) (S j) x').
Qed.

Section no_dup_dec.
  Context `{! x y, Decision (x = y)}.
  Global Instance NoDup_dec: l, Decision (NoDup l) :=
    fix NoDup_dec l :=
    match l return Decision (NoDup l) with
    | []left NoDup_nil_2
    | x :: l
      match decide_rel (∈) x l with
      | left Hinright (λ H, NoDup_cons_11 _ _ H Hin)
      | right Hin
        match NoDup_dec l with
        | left Hleft (NoDup_cons_2 _ _ Hin H)
        | right Hright (H NoDup_cons_12 _ _)
        end
      end
    end.
  Lemma elem_of_remove_dups l x : x remove_dups l x l.
  Proof.
    split; induction l; simpl; repeat case_decide;
      rewrite ?elem_of_cons; intuition (simplify_eq; auto).
  Qed.
  Lemma NoDup_remove_dups l : NoDup (remove_dups l).
  Proof.
    induction l; simpl; repeat case_decide; try constructor; auto.
    by rewrite elem_of_remove_dups.
  Qed.
End no_dup_dec.

Set operations on lists

Section list_set.
  Context {dec : x y, Decision (x = y)}.
  Lemma elem_of_list_difference l k x : x list_difference l k x l x k.
  Proof.
    split; induction l; simpl; try case_decide;
      rewrite ?elem_of_nil, ?elem_of_cons; intuition congruence.
  Qed.
  Lemma NoDup_list_difference l k : NoDup l NoDup (list_difference l k).
  Proof.
    induction 1; simpl; try case_decide.
    - constructor.
    - done.
    - constructor. rewrite elem_of_list_difference; intuition. done.
  Qed.
  Lemma elem_of_list_union l k x : x list_union l k x l x k.
  Proof.
    unfold list_union. rewrite elem_of_app, elem_of_list_difference.
    intuition. case (decide (x k)); intuition.
  Qed.
  Lemma NoDup_list_union l k : NoDup l NoDup k NoDup (list_union l k).
  Proof.
    intros. apply NoDup_app. repeat split.
    - by apply NoDup_list_difference.
    - intro. rewrite elem_of_list_difference. intuition.
    - done.
  Qed.
  Lemma elem_of_list_intersection l k x :
    x list_intersection l k x l x k.
  Proof.
    split; induction l; simpl; repeat case_decide;
      rewrite ?elem_of_nil, ?elem_of_cons; intuition congruence.
  Qed.
  Lemma NoDup_list_intersection l k : NoDup l NoDup (list_intersection l k).
  Proof.
    induction 1; simpl; try case_decide.
    - constructor.
    - constructor. rewrite elem_of_list_intersection; intuition. done.
    - done.
  Qed.
  Lemma elem_of_list_intersection_with f l k x :
    x list_intersection_with f l k x1 x2,
      x1 l x2 k f x1 x2 = Some x.
  Proof.
    split.
    - induction l as [|x1 l IH]; simpl; [by rewrite elem_of_nil|].
      intros Hx. setoid_rewrite elem_of_cons.
      cut (( x2, x2 k f x1 x2 = Some x)
         x list_intersection_with f l k); [naive_solver|].
      clear IH. revert Hx. generalize (list_intersection_with f l k).
      induction k; simpl; [by auto|].
      case_match; setoid_rewrite elem_of_cons; naive_solver.
    - intros (x1&x2&Hx1&Hx2&Hx). induction Hx1 as [x1|x1 ? l ? IH]; simpl.
      + generalize (list_intersection_with f l k).
        induction Hx2; simpl; [by rewrite Hx; left |].
        case_match; simpl; try setoid_rewrite elem_of_cons; auto.
      + generalize (IH Hx). clear Hx IH Hx2.
        generalize (list_intersection_with f l k).
        induction k; simpl; intros; [done|].
        case_match; simpl; rewrite ?elem_of_cons; auto.
  Qed.
End list_set.

Properties of the filter function

Section filter.
  Context (P : A Prop) `{ x, Decision (P x)}.
  Lemma elem_of_list_filter l x : x filter P l P x x l.
  Proof.
    unfold filter. induction l; simpl; repeat case_decide;
       rewrite ?elem_of_nil, ?elem_of_cons; naive_solver.
  Qed.
  Lemma NoDup_filter l : NoDup l NoDup (filter P l).
  Proof.
    unfold filter. induction 1; simpl; repeat case_decide;
      rewrite ?NoDup_nil, ?NoDup_cons, ?elem_of_list_filter; tauto.
  Qed.
End filter.

Properties of the find function

Section find.
  Context (P : A Prop) `{ x, Decision (P x)}.
  Lemma list_find_Some l i x :
    list_find P l = Some (i,x) l !! i = Some x P x.
  Proof.
    revert i; induction l; intros [] ?; repeat first
      [ match goal with x : prod _ _ |- _destruct x end
      | simplify_option_eq ]; eauto.
  Qed.
  Lemma list_find_elem_of l x : x l P x is_Some (list_find P l).
  Proof.
    induction 1 as [|x y l ? IH]; intros; simplify_option_eq; eauto.
    by destruct IH as [[i x'] ->]; [| (S i, x')].
  Qed.
End find.

Properties of the reverse function

Lemma reverse_nil : reverse [] = @nil A.
Proof. done. Qed.
Lemma reverse_singleton x : reverse [x] = [x].
Proof. done. Qed.
Lemma reverse_cons l x : reverse (x :: l) = reverse l ++ [x].
Proof. unfold reverse. by rewrite <-!rev_alt. Qed.
Lemma reverse_snoc l x : reverse (l ++ [x]) = x :: reverse l.
Proof. unfold reverse. by rewrite <-!rev_alt, rev_unit. Qed.
Lemma reverse_app l1 l2 : reverse (l1 ++ l2) = reverse l2 ++ reverse l1.
Proof. unfold reverse. rewrite <-!rev_alt. apply rev_app_distr. Qed.
Lemma reverse_length l : length (reverse l) = length l.
Proof. unfold reverse. rewrite <-!rev_alt. apply rev_length. Qed.
Lemma reverse_involutive l : reverse (reverse l) = l.
Proof. unfold reverse. rewrite <-!rev_alt. apply rev_involutive. Qed.
Lemma elem_of_reverse_2 x l : x l x reverse l.
Proof.
  induction 1; rewrite reverse_cons, elem_of_app,
    ?elem_of_list_singleton; intuition.
Qed.
Lemma elem_of_reverse x l : x reverse l x l.
Proof.
  split; auto using elem_of_reverse_2.
  intros. rewrite <-(reverse_involutive l). by apply elem_of_reverse_2.
Qed.
Global Instance: Inj (=) (=) (@reverse A).
Proof.
  intros l1 l2 Hl.
  by rewrite <-(reverse_involutive l1), <-(reverse_involutive l2), Hl.
Qed.
Lemma sum_list_with_app (f : A nat) l k :
  sum_list_with f (l ++ k) = sum_list_with f l + sum_list_with f k.
Proof. induction l; simpl; lia. Qed.
Lemma sum_list_with_reverse (f : A nat) l :
  sum_list_with f (reverse l) = sum_list_with f l.
Proof.
  induction l; simpl; rewrite ?reverse_cons, ?sum_list_with_app; simpl; lia.
Qed.

Properties of the last function

Lemma last_snoc x l : last (l ++ [x]) = Some x.
Proof. induction l as [|? []]; simpl; auto. Qed.
Lemma last_reverse l : last (reverse l) = head l.
Proof. by destruct l as [|x l]; rewrite ?reverse_cons, ?last_snoc. Qed.
Lemma head_reverse l : head (reverse l) = last l.
Proof. by rewrite <-last_reverse, reverse_involutive. Qed.

Properties of the take function

Definition take_drop i l : take i l ++ drop i l = l := firstn_skipn i l.
Lemma take_drop_middle l i x :
  l !! i = Some x take i l ++ x :: drop (S i) l = l.
Proof.
  revert i x. induction l; intros [|?] ??; simplify_eq/=; f_equal; auto.
Qed.
Lemma take_nil n : take n (@nil A) = [].
Proof. by destruct n. Qed.
Lemma take_app l k : take (length l) (l ++ k) = l.
Proof. induction l; f_equal/=; auto. Qed.
Lemma take_app_alt l k n : n = length l take n (l ++ k) = l.
Proof. intros →. by apply take_app. Qed.
Lemma take_app3_alt l1 l2 l3 n : n = length l1 take n ((l1 ++ l2) ++ l3) = l1.
Proof. intros →. by rewrite <-(assoc_L (++)), take_app. Qed.
Lemma take_app_le l k n : n length l take n (l ++ k) = take n l.
Proof. revert n. induction l; intros [|?] ?; f_equal/=; auto with lia. Qed.
Lemma take_plus_app l k n m :
  length l = n take (n + m) (l ++ k) = l ++ take m k.
Proof. intros <-. induction l; f_equal/=; auto. Qed.
Lemma take_app_ge l k n :
  length l n take n (l ++ k) = l ++ take (n - length l) k.
Proof. revert n. induction l; intros [|?] ?; f_equal/=; auto with lia. Qed.
Lemma take_ge l n : length l n take n l = l.
Proof. revert n. induction l; intros [|?] ?; f_equal/=; auto with lia. Qed.
Lemma take_take l n m : take n (take m l) = take (min n m) l.
Proof. revert n m. induction l; intros [|?] [|?]; f_equal/=; auto. Qed.
Lemma take_idemp l n : take n (take n l) = take n l.
Proof. by rewrite take_take, Min.min_idempotent. Qed.
Lemma take_length l n : length (take n l) = min n (length l).
Proof. revert n. induction l; intros [|?]; f_equal/=; done. Qed.
Lemma take_length_le l n : n length l length (take n l) = n.
Proof. rewrite take_length. apply Min.min_l. Qed.
Lemma take_length_ge l n : length l n length (take n l) = length l.
Proof. rewrite take_length. apply Min.min_r. Qed.
Lemma take_drop_commute l n m : take n (drop m l) = drop m (take (m + n) l).
Proof.
  revert n m. induction l; intros [|?][|?]; simpl; auto using take_nil with lia.
Qed.
Lemma lookup_take l n i : i < n take n l !! i = l !! i.
Proof. revert n i. induction l; intros [|n] [|i] ?; simpl; auto with lia. Qed.
Lemma lookup_take_ge l n i : n i take n l !! i = None.
Proof. revert n i. induction l; intros [|?] [|?] ?; simpl; auto with lia. Qed.
Lemma take_alter f l n i : n i take n (alter f i l) = take n l.
Proof.
  intros. apply list_eq. intros j. destruct (le_lt_dec n j).
  - by rewrite !lookup_take_ge.
  - by rewrite !lookup_take, !list_lookup_alter_ne by lia.
Qed.
Lemma take_insert l n i x : n i take n (<[i:=x]>l) = take n l.
Proof.
  intros. apply list_eq. intros j. destruct (le_lt_dec n j).
  - by rewrite !lookup_take_ge.
  - by rewrite !lookup_take, !list_lookup_insert_ne by lia.
Qed.

Properties of the drop function

Lemma drop_0 l : drop 0 l = l.
Proof. done. Qed.
Lemma drop_nil n : drop n (@nil A) = [].
Proof. by destruct n. Qed.
Lemma drop_length l n : length (drop n l) = length l - n.
Proof. revert n. by induction l; intros [|i]; f_equal/=. Qed.
Lemma drop_ge l n : length l n drop n l = [].
Proof. revert n. induction l; intros [|??]; simpl in *; auto with lia. Qed.
Lemma drop_all l : drop (length l) l = [].
Proof. by apply drop_ge. Qed.
Lemma drop_drop l n1 n2 : drop n1 (drop n2 l) = drop (n2 + n1) l.
Proof. revert n2. induction l; intros [|?]; simpl; rewrite ?drop_nil; auto. Qed.
Lemma drop_app_le l k n :
  n length l drop n (l ++ k) = drop n l ++ k.
Proof. revert n. induction l; intros [|?]; simpl; auto with lia. Qed.
Lemma drop_app l k : drop (length l) (l ++ k) = k.
Proof. by rewrite drop_app_le, drop_all. Qed.
Lemma drop_app_alt l k n : n = length l drop n (l ++ k) = k.
Proof. intros →. by apply drop_app. Qed.
Lemma drop_app3_alt l1 l2 l3 n :
  n = length l1 drop n ((l1 ++ l2) ++ l3) = l2 ++ l3.
Proof. intros →. by rewrite <-(assoc_L (++)), drop_app. Qed.
Lemma drop_app_ge l k n :
  length l n drop n (l ++ k) = drop (n - length l) k.
Proof.
  intros. rewrite <-(Nat.sub_add (length l) n) at 1 by done.
  by rewrite Nat.add_comm, <-drop_drop, drop_app.
Qed.
Lemma drop_plus_app l k n m :
  length l = n drop (n + m) (l ++ k) = drop m k.
Proof. intros <-. by rewrite <-drop_drop, drop_app. Qed.
Lemma lookup_drop l n i : drop n l !! i = l !! (n + i).
Proof. revert n i. induction l; intros [|i] ?; simpl; auto. Qed.
Lemma drop_alter f l n i : i < n drop n (alter f i l) = drop n l.
Proof.
  intros. apply list_eq. intros j.
  by rewrite !lookup_drop, !list_lookup_alter_ne by lia.
Qed.
Lemma drop_insert l n i x : i < n drop n (<[i:=x]>l) = drop n l.
Proof.
  intros. apply list_eq. intros j.
  by rewrite !lookup_drop, !list_lookup_insert_ne by lia.
Qed.
Lemma delete_take_drop l i : delete i l = take i l ++ drop (S i) l.
Proof. revert i. induction l; intros [|?]; f_equal/=; auto. Qed.
Lemma take_take_drop l n m : take n l ++ take m (drop n l) = take (n + m) l.
Proof. revert n m. induction l; intros [|?] [|?]; f_equal/=; auto. Qed.
Lemma drop_take_drop l n m : n m drop n (take m l) ++ drop m l = drop n l.
Proof.
  revert n m. induction l; intros [|?] [|?] ?;
    f_equal/=; auto using take_drop with lia.
Qed.

Properties of the replicate function

Lemma replicate_length n x : length (replicate n x) = n.
Proof. induction n; simpl; auto. Qed.
Lemma lookup_replicate n x y i :
  replicate n x !! i = Some y y = x i < n.
Proof.
  split.
  - revert i. induction n; intros [|?]; naive_solver auto with lia.
  - intros [-> Hi]. revert i Hi.
    induction n; intros [|?]; naive_solver auto with lia.
Qed.
Lemma elem_of_replicate n x y : y replicate n x y = x n 0.
Proof.
  rewrite elem_of_list_lookup, Nat.neq_0_lt_0.
  setoid_rewrite lookup_replicate; naive_solver eauto with lia.
Qed.
Lemma lookup_replicate_1 n x y i :
  replicate n x !! i = Some y y = x i < n.
Proof. by rewrite lookup_replicate. Qed.
Lemma lookup_replicate_2 n x i : i < n replicate n x !! i = Some x.
Proof. by rewrite lookup_replicate. Qed.
Lemma lookup_replicate_None n x i : n i replicate n x !! i = None.
Proof.
  rewrite eq_None_not_Some, Nat.le_ngt. split.
  - intros Hin [x' Hx']; destruct Hin. rewrite lookup_replicate in Hx'; tauto.
  - intros Hx ?. destruct Hx. x; auto using lookup_replicate_2.
Qed.
Lemma insert_replicate x n i : <[i:=x]>(replicate n x) = replicate n x.
Proof. revert i. induction n; intros [|?]; f_equal/=; auto. Qed.
Lemma elem_of_replicate_inv x n y : x replicate n y x = y.
Proof. induction n; simpl; rewrite ?elem_of_nil, ?elem_of_cons; intuition. Qed.
Lemma replicate_S n x : replicate (S n) x = x :: replicate n x.
Proof. done. Qed.
Lemma replicate_plus n m x :
  replicate (n + m) x = replicate n x ++ replicate m x.
Proof. induction n; f_equal/=; auto. Qed.
Lemma take_replicate n m x : take n (replicate m x) = replicate (min n m) x.
Proof. revert m. by induction n; intros [|?]; f_equal/=. Qed.
Lemma take_replicate_plus n m x : take n (replicate (n + m) x) = replicate n x.
Proof. by rewrite take_replicate, min_l by lia. Qed.
Lemma drop_replicate n m x : drop n (replicate m x) = replicate (m - n) x.
Proof. revert m. by induction n; intros [|?]; f_equal/=. Qed.
Lemma drop_replicate_plus n m x : drop n (replicate (n + m) x) = replicate m x.
Proof. rewrite drop_replicate. f_equal. lia. Qed.
Lemma replicate_as_elem_of x n l :
  replicate n x = l length l = n y, y l y = x.
Proof.
  split; [intros <-; eauto using elem_of_replicate_inv, replicate_length|].
  intros [<- Hl]. symmetry. induction l as [|y l IH]; f_equal/=.
  - apply Hl. by left.
  - apply IH. intros ??. apply Hl. by right.
Qed.
Lemma reverse_replicate n x : reverse (replicate n x) = replicate n x.
Proof.
  symmetry. apply replicate_as_elem_of.
  rewrite reverse_length, replicate_length. split; auto.
  intros y. rewrite elem_of_reverse. by apply elem_of_replicate_inv.
Qed.
Lemma replicate_false βs n : length βs = n replicate n false =.>* βs.
Proof. intros <-. by induction βs; simpl; constructor. Qed.

Properties of the resize function

Lemma resize_spec l n x : resize n x l = take n l ++ replicate (n - length l) x.
Proof. revert n. induction l; intros [|?]; f_equal/=; auto. Qed.
Lemma resize_0 l x : resize 0 x l = [].
Proof. by destruct l. Qed.
Lemma resize_nil n x : resize n x [] = replicate n x.
Proof. rewrite resize_spec. rewrite take_nil. f_equal/=. lia. Qed.
Lemma resize_ge l n x :
  length l n resize n x l = l ++ replicate (n - length l) x.
Proof. intros. by rewrite resize_spec, take_ge. Qed.
Lemma resize_le l n x : n length l resize n x l = take n l.
Proof.
  intros. rewrite resize_spec, (proj2 (Nat.sub_0_le _ _)) by done.
  simpl. by rewrite (right_id_L [] (++)).
Qed.
Lemma resize_all l x : resize (length l) x l = l.
Proof. intros. by rewrite resize_le, take_ge. Qed.
Lemma resize_all_alt l n x : n = length l resize n x l = l.
Proof. intros →. by rewrite resize_all. Qed.
Lemma resize_plus l n m x :
  resize (n + m) x l = resize n x l ++ resize m x (drop n l).
Proof.
  revert n m. induction l; intros [|?] [|?]; f_equal/=; auto.
  - by rewrite Nat.add_0_r, (right_id_L [] (++)).
  - by rewrite replicate_plus.
Qed.
Lemma resize_plus_eq l n m x :
  length l = n resize (n + m) x l = l ++ replicate m x.
Proof. intros <-. by rewrite resize_plus, resize_all, drop_all, resize_nil. Qed.
Lemma resize_app_le l1 l2 n x :
  n length l1 resize n x (l1 ++ l2) = resize n x l1.
Proof.
  intros. by rewrite !resize_le, take_app_le by (rewrite ?app_length; lia).
Qed.
Lemma resize_app l1 l2 n x : n = length l1 resize n x (l1 ++ l2) = l1.
Proof. intros →. by rewrite resize_app_le, resize_all. Qed.
Lemma resize_app_ge l1 l2 n x :
  length l1 n resize n x (l1 ++ l2) = l1 ++ resize (n - length l1) x l2.
Proof.
  intros. rewrite !resize_spec, take_app_ge, (assoc_L (++)) by done.
  do 2 f_equal. rewrite app_length. lia.
Qed.
Lemma resize_length l n x : length (resize n x l) = n.
Proof. rewrite resize_spec, app_length, replicate_length, take_length. lia. Qed.
Lemma resize_replicate x n m : resize n x (replicate m x) = replicate n x.
Proof. revert m. induction n; intros [|?]; f_equal/=; auto. Qed.
Lemma resize_resize l n m x : n m resize n x (resize m x l) = resize n x l.
Proof.
  revert n m. induction l; simpl.
  - intros. by rewrite !resize_nil, resize_replicate.
  - intros [|?] [|?] ?; f_equal/=; auto with lia.
Qed.
Lemma resize_idemp l n x : resize n x (resize n x l) = resize n x l.
Proof. by rewrite resize_resize. Qed.
Lemma resize_take_le l n m x : n m resize n x (take m l) = resize n x l.
Proof. revert n m. induction l; intros [|?][|?] ?; f_equal/=; auto with lia. Qed.
Lemma resize_take_eq l n x : resize n x (take n l) = resize n x l.
Proof. by rewrite resize_take_le. Qed.
Lemma take_resize l n m x : take n (resize m x l) = resize (min n m) x l.
Proof.
  revert n m. induction l; intros [|?][|?]; f_equal/=; auto using take_replicate.
Qed.
Lemma take_resize_le l n m x : n m take n (resize m x l) = resize n x l.
Proof. intros. by rewrite take_resize, Min.min_l. Qed.
Lemma take_resize_eq l n x : take n (resize n x l) = resize n x l.
Proof. intros. by rewrite take_resize, Min.min_l. Qed.
Lemma take_resize_plus l n m x : take n (resize (n + m) x l) = resize n x l.
Proof. by rewrite take_resize, min_l by lia. Qed.
Lemma drop_resize_le l n m x :
  n m drop n (resize m x l) = resize (m - n) x (drop n l).
Proof.
  revert n m. induction l; simpl.
  - intros. by rewrite drop_nil, !resize_nil, drop_replicate.
  - intros [|?] [|?] ?; simpl; try case_match; auto with lia.
Qed.
Lemma drop_resize_plus l n m x :
  drop n (resize (n + m) x l) = resize m x (drop n l).
Proof. rewrite drop_resize_le by lia. f_equal. lia. Qed.
Lemma lookup_resize l n x i : i < n i < length l resize n x l !! i = l !! i.
Proof.
  intros ??. destruct (decide (n < length l)).
  - by rewrite resize_le, lookup_take by lia.
  - by rewrite resize_ge, lookup_app_l by lia.
Qed.
Lemma lookup_resize_new l n x i :
  length l i i < n resize n x l !! i = Some x.
Proof.
  intros ??. rewrite resize_ge by lia.
  replace i with (length l + (i - length l)) by lia.
  by rewrite lookup_app_r, lookup_replicate_2 by lia.
Qed.
Lemma lookup_resize_old l n x i : n i resize n x l !! i = None.
Proof. intros ?. apply lookup_ge_None_2. by rewrite resize_length. Qed.

Properties of the reshape function

Lemma reshape_length szs l : length (reshape szs l) = length szs.
Proof. revert l. by induction szs; intros; f_equal/=. Qed.
Lemma join_reshape szs l :
  sum_list szs = length l mjoin (reshape szs l) = l.
Proof.
  revert l. induction szs as [|sz szs IH]; simpl; intros l Hl; [by destruct l|].
  by rewrite IH, take_drop by (rewrite drop_length; lia).
Qed.
Lemma sum_list_replicate n m : sum_list (replicate m n) = m × n.
Proof. induction m; simpl; auto. Qed.
End general_properties.

Section more_general_properties.
Context {A : Type}.
Implicit Types x y z : A.
Implicit Types l k : list A.

Properties of sublist_lookup and sublist_alter

Lemma sublist_lookup_length l i n k :
  sublist_lookup i n l = Some k length k = n.
Proof.
  unfold sublist_lookup; intros; simplify_option_eq.
  rewrite take_length, drop_length; lia.
Qed.
Lemma sublist_lookup_all l n : length l = n sublist_lookup 0 n l = Some l.
Proof.
  intros. unfold sublist_lookup; case_option_guard; [|lia].
  by rewrite take_ge by (rewrite drop_length; lia).
Qed.
Lemma sublist_lookup_Some l i n :
  i + n length l sublist_lookup i n l = Some (take n (drop i l)).
Proof. by unfold sublist_lookup; intros; simplify_option_eq. Qed.
Lemma sublist_lookup_None l i n :
  length l < i + n sublist_lookup i n l = None.
Proof. by unfold sublist_lookup; intros; simplify_option_eq by lia. Qed.
Lemma sublist_eq l k n :
  (n | length l) (n | length k)
  ( i, sublist_lookup (i × n) n l = sublist_lookup (i × n) n k) l = k.
Proof.
  revert l k. assert ( l i,
    n 0 (n | length l) ¬n × i `div` n + n length l length l i).
  { intros l i ? [j ->] Hjn. apply Nat.nlt_ge; contradict Hjn.
    rewrite <-Nat.mul_succ_r, (Nat.mul_comm n).
    apply Nat.mul_le_mono_r, Nat.le_succ_l, Nat.div_lt_upper_bound; lia. }
  intros l k Hl Hk Hlookup. destruct (decide (n = 0)) as [->|].
  { by rewrite (nil_length_inv l),
      (nil_length_inv k) by eauto using Nat.divide_0_l. }
  apply list_eq; intros i. specialize (Hlookup (i `div` n)).
  rewrite (Nat.mul_comm _ n) in Hlookup.
  unfold sublist_lookup in *; simplify_option_eq;
    [|by rewrite !lookup_ge_None_2 by auto].
  apply (f_equal (!! i `mod` n)) in Hlookup.
  by rewrite !lookup_take, !lookup_drop, <-!Nat.div_mod in Hlookup
    by (auto using Nat.mod_upper_bound with lia).
Qed.
Lemma sublist_eq_same_length l k j n :
  length l = j × n length k = j × n
  ( i,i < j sublist_lookup (i × n) n l = sublist_lookup (i × n) n k) l = k.
Proof.
  intros Hl Hk ?. destruct (decide (n = 0)) as [->|].
  { by rewrite (nil_length_inv l), (nil_length_inv k) by lia. }
  apply sublist_eq with n; [by j|by j|].
  intros i. destruct (decide (i < j)); [by auto|].
  assert ( m, m = j × n m < i × n + n).
  { intros ? →. replace (i × n + n) with (S i × n) by lia.
    apply Nat.mul_lt_mono_pos_r; lia. }
  by rewrite !sublist_lookup_None by auto.
Qed.
Lemma sublist_lookup_reshape l i n m :
  0 < n length l = m × n
  reshape (replicate m n) l !! i = sublist_lookup (i × n) n l.
Proof.
  intros Hn Hl. unfold sublist_lookup. apply option_eq; intros x; split.
  - intros Hx. case_option_guard as Hi.
    { f_equal. clear Hi. revert i l Hl Hx.
      induction m as [|m IH]; intros [|i] l ??; simplify_eq/=; auto.
      rewrite <-drop_drop. apply IH; rewrite ?drop_length; auto with lia. }
    destruct Hi. rewrite Hl, <-Nat.mul_succ_l.
    apply Nat.mul_le_mono_r, Nat.le_succ_l. apply lookup_lt_Some in Hx.
    by rewrite reshape_length, replicate_length in Hx.
  - intros Hx. case_option_guard as Hi; simplify_eq/=.
    revert i l Hl Hi. induction m as [|m IH]; [auto with lia|].
    intros [|i] l ??; simpl; [done|]. rewrite <-drop_drop.
    rewrite IH; rewrite ?drop_length; auto with lia.
Qed.
Lemma sublist_lookup_compose l1 l2 l3 i n j m :
  sublist_lookup i n l1 = Some l2 sublist_lookup j m l2 = Some l3
  sublist_lookup (i + j) m l1 = Some l3.
Proof.
  unfold sublist_lookup; intros; simplify_option_eq;
    repeat match goal with
    | H : _ length _ |- _rewrite take_length, drop_length in H
    end; rewrite ?take_drop_commute, ?drop_drop, ?take_take,
      ?Min.min_l, Nat.add_assoc by lia; auto with lia.
Qed.
Lemma sublist_alter_length f l i n k :
  sublist_lookup i n l = Some k length (f k) = n
  length (sublist_alter f i n l) = length l.
Proof.
  unfold sublist_alter, sublist_lookup. intros Hk ?; simplify_option_eq.
  rewrite !app_length, Hk, !take_length, !drop_length; lia.
Qed.
Lemma sublist_lookup_alter f l i n k :
  sublist_lookup i n l = Some k length (f k) = n
  sublist_lookup i n (sublist_alter f i n l) = f <$> sublist_lookup i n l.
Proof.
  unfold sublist_lookup. intros Hk ?. erewrite sublist_alter_length by eauto.
  unfold sublist_alter; simplify_option_eq.
  by rewrite Hk, drop_app_alt, take_app_alt by (rewrite ?take_length; lia).
Qed.
Lemma sublist_lookup_alter_ne f l i j n k :
  sublist_lookup j n l = Some k length (f k) = n i + n j j + n i
  sublist_lookup i n (sublist_alter f j n l) = sublist_lookup i n l.
Proof.
  unfold sublist_lookup. intros Hk Hi ?. erewrite sublist_alter_length by eauto.
  unfold sublist_alter; simplify_option_eq; f_equal; rewrite Hk.
  apply list_eq; intros ii.
  destruct (decide (ii < length (f k))); [|by rewrite !lookup_take_ge by lia].
  rewrite !lookup_take, !lookup_drop by done. destruct (decide (i + ii < j)).
  { by rewrite lookup_app_l, lookup_take by (rewrite ?take_length; lia). }
  rewrite lookup_app_r by (rewrite take_length; lia).
  rewrite take_length_le, lookup_app_r, lookup_drop by lia. f_equal; lia.
Qed.
Lemma sublist_alter_all f l n : length l = n sublist_alter f 0 n l = f l.
Proof.
  intros <-. unfold sublist_alter; simpl.
  by rewrite drop_all, (right_id_L [] (++)), take_ge.
Qed.
Lemma sublist_alter_compose f g l i n k :
  sublist_lookup i n l = Some k length (f k) = n length (g k) = n
  sublist_alter (f g) i n l = sublist_alter f i n (sublist_alter g i n l).
Proof.
  unfold sublist_alter, sublist_lookup. intros Hk ??; simplify_option_eq.
  by rewrite !take_app_alt, drop_app_alt, !(assoc_L (++)), drop_app_alt,
    take_app_alt by (rewrite ?app_length, ?take_length, ?Hk; lia).
Qed.

Properties of the imap function

Lemma imap_cons {B} (f : nat A B) x l :
  imap f (x :: l) = f 0 x :: imap (f S) l.
Proof.
  unfold imap. simpl. f_equal. generalize 0.
  induction l; intros n; simpl; repeat (auto||f_equal).
Qed.
Lemma imap_ext {B} (f g : nat A B) l :
  ( i x, f i x = g i x)
  imap f l = imap g l.
Proof.
  unfold imap. intro EQ. generalize 0.
  induction l; simpl; intros n; f_equal; auto.
Qed.

Properties of the mask function

Lemma mask_nil f βs : mask f βs (@nil A) = [].
Proof. by destruct βs. Qed.
Lemma mask_length f βs l : length (mask f βs l) = length l.
Proof. revert βs. induction l; intros [|??]; f_equal/=; auto. Qed.
Lemma mask_true f l n : length l n mask f (replicate n true) l = f <$> l.
Proof. revert n. induction l; intros [|?] ?; f_equal/=; auto with lia. Qed.
Lemma mask_false f l n : mask f (replicate n false) l = l.
Proof. revert l. induction n; intros [|??]; f_equal/=; auto. Qed.
Lemma mask_app f βs1 βs2 l :
  mask f (βs1 ++ βs2) l
  = mask f βs1 (take (length βs1) l) ++ mask f βs2 (drop (length βs1) l).
Proof. revert l. induction βs1;intros [|??]; f_equal/=; auto using mask_nil. Qed.
Lemma mask_app_2 f βs l1 l2 :
  mask f βs (l1 ++ l2)
  = mask f (take (length l1) βs) l1 ++ mask f (drop (length l1) βs) l2.
Proof. revert βs. induction l1; intros [|??]; f_equal/=; auto. Qed.
Lemma take_mask f βs l n : take n (mask f βs l) = mask f (take n βs) (take n l).
Proof. revert n βs. induction l; intros [|?] [|[] ?]; f_equal/=; auto. Qed.
Lemma drop_mask f βs l n : drop n (mask f βs l) = mask f (drop n βs) (drop n l).
Proof.
  revert n βs. induction l; intros [|?] [|[] ?]; f_equal/=; auto using mask_nil.
Qed.
Lemma sublist_lookup_mask f βs l i n :
  sublist_lookup i n (mask f βs l)
  = mask f (take n (drop i βs)) <$> sublist_lookup i n l.
Proof.
  unfold sublist_lookup; rewrite mask_length; simplify_option_eq; auto.
  by rewrite drop_mask, take_mask.
Qed.
Lemma mask_mask f g βs1 βs2 l :
  ( x, f (g x) = f x) βs1 =.>* βs2
  mask f βs2 (mask g βs1 l) = mask f βs2 l.
Proof.
  intros ? Hβs. revert l. by induction Hβs as [|[] []]; intros [|??]; f_equal/=.
Qed.
Lemma lookup_mask f βs l i :
  βs !! i = Some true mask f βs l !! i = f <$> l !! i.
Proof.
  revert i βs. induction l; intros [] [] ?; simplify_eq/=; f_equal; auto.
Qed.
Lemma lookup_mask_notin f βs l i :
  βs !! i Some true mask f βs l !! i = l !! i.
Proof.
  revert i βs. induction l; intros [] [|[]] ?; simplify_eq/=; auto.
Qed.

Properties of the seq function

Lemma fmap_seq j n : S <$> seq j n = seq (S j) n.
Proof. revert j. induction n; intros; f_equal/=; auto. Qed.
Lemma lookup_seq j n i : i < n seq j n !! i = Some (j + i).
Proof.
  revert j i. induction n as [|n IH]; intros j [|i] ?; simpl; auto with lia.
  rewrite IH; auto with lia.
Qed.
Lemma lookup_seq_ge j n i : n i seq j n !! i = None.
Proof. revert j i. induction n; intros j [|i] ?; simpl; auto with lia. Qed.
Lemma lookup_seq_inv j n i j' : seq j n !! i = Some j' j' = j + i i < n.
Proof.
  destruct (le_lt_dec n i); [by rewrite lookup_seq_ge|].
  rewrite lookup_seq by done. intuition congruence.
Qed.

Properties of the Permutation predicate

Lemma Permutation_nil l : l ≡ₚ [] l = [].
Proof. split. by intro; apply Permutation_nil. by intros →. Qed.
Lemma Permutation_singleton l x : l ≡ₚ [x] l = [x].
Proof. split. by intro; apply Permutation_length_1_inv. by intros →. Qed.
Definition Permutation_skip := @perm_skip A.
Definition Permutation_swap := @perm_swap A.
Definition Permutation_singleton_inj := @Permutation_length_1 A.

Global Instance Permutation_cons : Proper ((≡ₚ) ==> (≡ₚ)) (@cons A x).
Proof. by constructor. Qed.
Global Existing Instance Permutation_app'.

Global Instance: Proper ((≡ₚ) ==> (=)) (@length A).
Proof. induction 1; simpl; auto with lia. Qed.
Global Instance: Comm (≡ₚ) (@app A).
Proof.
  intros l1. induction l1 as [|x l1 IH]; intros l2; simpl.
  - by rewrite (right_id_L [] (++)).
  - rewrite Permutation_middle, IH. simpl. by rewrite Permutation_middle.
Qed.
Global Instance: x : A, Inj (≡ₚ) (≡ₚ) (x ::).
Proof. red. eauto using Permutation_cons_inv. Qed.
Global Instance: k : list A, Inj (≡ₚ) (≡ₚ) (k ++).
Proof.
  red. induction k as [|x k IH]; intros l1 l2; simpl; auto.
  intros. by apply IH, (inj (x ::)).
Qed.
Global Instance: k : list A, Inj (≡ₚ) (≡ₚ) (++ k).
Proof. intros k l1 l2. rewrite !(comm (++) _ k). by apply (inj (k ++)). Qed.
Lemma replicate_Permutation n x l : replicate n x ≡ₚ l replicate n x = l.
Proof.
  intros Hl. apply replicate_as_elem_of. split.
  - by rewrite <-Hl, replicate_length.
  - intros y. rewrite <-Hl. by apply elem_of_replicate_inv.
Qed.
Lemma reverse_Permutation l : reverse l ≡ₚ l.
Proof.
  induction l as [|x l IH]; [done|].
  by rewrite reverse_cons, (comm (++)), IH.
Qed.
Lemma delete_Permutation l i x : l !! i = Some x l ≡ₚ x :: delete i l.
Proof.
  revert i; induction l as [|y l IH]; intros [|i] ?; simplify_eq/=; auto.
  by rewrite Permutation_swap, <-(IH i).
Qed.

Properties of the prefix_of and suffix_of predicates

Global Instance: PreOrder (@prefix_of A).
Proof.
  split.
  - intros ?. eexists []. by rewrite (right_id_L [] (++)).
  - intros ???[k1->] [k2->]. (k1 ++ k2). by rewrite (assoc_L (++)).
Qed.
Lemma prefix_of_nil l : [] `prefix_of` l.
Proof. by l. Qed.
Lemma prefix_of_nil_not x l : ¬x :: l `prefix_of` [].
Proof. by intros [k ?]. Qed.
Lemma prefix_of_cons x l1 l2 : l1 `prefix_of` l2 x :: l1 `prefix_of` x :: l2.
Proof. intros [k ->]. by k. Qed.
Lemma prefix_of_cons_alt x y l1 l2 :
  x = y l1 `prefix_of` l2 x :: l1 `prefix_of` y :: l2.
Proof. intros →. apply prefix_of_cons. Qed.
Lemma prefix_of_cons_inv_1 x y l1 l2 : x :: l1 `prefix_of` y :: l2 x = y.
Proof. by intros [k ?]; simplify_eq/=. Qed.
Lemma prefix_of_cons_inv_2 x y l1 l2 :
  x :: l1 `prefix_of` y :: l2 l1 `prefix_of` l2.
Proof. intros [k ?]; simplify_eq/=. by k. Qed.
Lemma prefix_of_app k l1 l2 : l1 `prefix_of` l2 k ++ l1 `prefix_of` k ++ l2.
Proof. intros [k' ->]. k'. by rewrite (assoc_L (++)). Qed.
Lemma prefix_of_app_alt k1 k2 l1 l2 :
  k1 = k2 l1 `prefix_of` l2 k1 ++ l1 `prefix_of` k2 ++ l2.
Proof. intros →. apply prefix_of_app. Qed.
Lemma prefix_of_app_l l1 l2 l3 : l1 ++ l3 `prefix_of` l2 l1 `prefix_of` l2.
Proof. intros [k ->]. (l3 ++ k). by rewrite (assoc_L (++)). Qed.
Lemma prefix_of_app_r l1 l2 l3 : l1 `prefix_of` l2 l1 `prefix_of` l2 ++ l3.
Proof. intros [k ->]. (k ++ l3). by rewrite (assoc_L (++)). Qed.
Lemma prefix_of_length l1 l2 : l1 `prefix_of` l2 length l1 length l2.
Proof. intros [? ->]. rewrite app_length. lia. Qed.
Lemma prefix_of_snoc_not l x : ¬l ++ [x] `prefix_of` l.
Proof. intros [??]. discriminate_list. Qed.
Global Instance: PreOrder (@suffix_of A).
Proof.
  split.
  - intros ?. by eexists [].
  - intros ???[k1->] [k2->]. (k2 ++ k1). by rewrite (assoc_L (++)).
Qed.
Global Instance prefix_of_dec `{ x y, Decision (x = y)} : l1 l2,
    Decision (l1 `prefix_of` l2) := fix go l1 l2 :=
  match l1, l2 return { l1 `prefix_of` l2 } + { ¬l1 `prefix_of` l2 } with
  | [], _left (prefix_of_nil _)
  | _, []right (prefix_of_nil_not _ _)
  | x :: l1, y :: l2
    match decide_rel (=) x y with
    | left Hxy
      match go l1 l2 with
      | left Hl1l2left (prefix_of_cons_alt _ _ _ _ Hxy Hl1l2)
      | right Hl1l2right (Hl1l2 prefix_of_cons_inv_2 _ _ _ _)
      end
    | right Hxyright (Hxy prefix_of_cons_inv_1 _ _ _ _)
    end
  end.

Section prefix_ops.
  Context `{ x y, Decision (x = y)}.
  Lemma max_prefix_of_fst l1 l2 :
    l1 = (max_prefix_of l1 l2).2 ++ (max_prefix_of l1 l2).1.1.
  Proof.
    revert l2. induction l1; intros [|??]; simpl;
      repeat case_decide; f_equal/=; auto.
  Qed.
  Lemma max_prefix_of_fst_alt l1 l2 k1 k2 k3 :
    max_prefix_of l1 l2 = (k1, k2, k3) l1 = k3 ++ k1.
  Proof.
    intros. pose proof (max_prefix_of_fst l1 l2).
    by destruct (max_prefix_of l1 l2) as [[]?]; simplify_eq.
  Qed.
  Lemma max_prefix_of_fst_prefix l1 l2 : (max_prefix_of l1 l2).2 `prefix_of` l1.
  Proof. eexists. apply max_prefix_of_fst. Qed.
  Lemma max_prefix_of_fst_prefix_alt l1 l2 k1 k2 k3 :
    max_prefix_of l1 l2 = (k1, k2, k3) k3 `prefix_of` l1.
  Proof. eexists. eauto using max_prefix_of_fst_alt. Qed.
  Lemma max_prefix_of_snd l1 l2 :
    l2 = (max_prefix_of l1 l2).2 ++ (max_prefix_of l1 l2).1.2.
  Proof.
    revert l2. induction l1; intros [|??]; simpl;
      repeat case_decide; f_equal/=; auto.
  Qed.
  Lemma max_prefix_of_snd_alt l1 l2 k1 k2 k3 :
    max_prefix_of l1 l2 = (k1, k2, k3) l2 = k3 ++ k2.
  Proof.
    intro. pose proof (max_prefix_of_snd l1 l2).
    by destruct (max_prefix_of l1 l2) as [[]?]; simplify_eq.
  Qed.
  Lemma max_prefix_of_snd_prefix l1 l2 : (max_prefix_of l1 l2).2 `prefix_of` l2.
  Proof. eexists. apply max_prefix_of_snd. Qed.
  Lemma max_prefix_of_snd_prefix_alt l1 l2 k1 k2 k3 :
    max_prefix_of l1 l2 = (k1,k2,k3) k3 `prefix_of` l2.
  Proof. eexists. eauto using max_prefix_of_snd_alt. Qed.
  Lemma max_prefix_of_max l1 l2 k :
    k `prefix_of` l1 k `prefix_of` l2 k `prefix_of` (max_prefix_of l1 l2).2.
  Proof.
    intros [l1' ->] [l2' ->]. by induction k; simpl; repeat case_decide;
      simpl; auto using prefix_of_nil, prefix_of_cons.
  Qed.
  Lemma max_prefix_of_max_alt l1 l2 k1 k2 k3 k :
    max_prefix_of l1 l2 = (k1,k2,k3)
    k `prefix_of` l1 k `prefix_of` l2 k `prefix_of` k3.
  Proof.
    intro. pose proof (max_prefix_of_max l1 l2 k).
    by destruct (max_prefix_of l1 l2) as [[]?]; simplify_eq.
  Qed.
  Lemma max_prefix_of_max_snoc l1 l2 k1 k2 k3 x1 x2 :
    max_prefix_of l1 l2 = (x1 :: k1, x2 :: k2, k3) x1 x2.
  Proof.
    intros Hl →. destruct (prefix_of_snoc_not k3 x2).
    eapply max_prefix_of_max_alt; eauto.
    - rewrite (max_prefix_of_fst_alt _ _ _ _ _ Hl).
      apply prefix_of_app, prefix_of_cons, prefix_of_nil.
    - rewrite (max_prefix_of_snd_alt _ _ _ _ _ Hl).
      apply prefix_of_app, prefix_of_cons, prefix_of_nil.
  Qed.
End prefix_ops.

Lemma prefix_suffix_reverse l1 l2 :
  l1 `prefix_of` l2 reverse l1 `suffix_of` reverse l2.
Proof.
  split; intros [k E]; (reverse k).
  - by rewrite E, reverse_app.
  - by rewrite <-(reverse_involutive l2), E, reverse_app, reverse_involutive.
Qed.
Lemma suffix_prefix_reverse l1 l2 :
  l1 `suffix_of` l2 reverse l1 `prefix_of` reverse l2.
Proof. by rewrite prefix_suffix_reverse, !reverse_involutive. Qed.
Lemma suffix_of_nil l : [] `suffix_of` l.
Proof. l. by rewrite (right_id_L [] (++)). Qed.
Lemma suffix_of_nil_inv l : l `suffix_of` [] l = [].
Proof. by intros [[|?] ?]; simplify_list_eq. Qed.
Lemma suffix_of_cons_nil_inv x l : ¬x :: l `suffix_of` [].
Proof. by intros [[] ?]. Qed.
Lemma suffix_of_snoc l1 l2 x :
  l1 `suffix_of` l2 l1 ++ [x] `suffix_of` l2 ++ [x].
Proof. intros [k ->]. k. by rewrite (assoc_L (++)). Qed.
Lemma suffix_of_snoc_alt x y l1 l2 :
  x = y l1 `suffix_of` l2 l1 ++ [x] `suffix_of` l2 ++ [y].
Proof. intros →. apply suffix_of_snoc. Qed.
Lemma suffix_of_app l1 l2 k : l1 `suffix_of` l2 l1 ++ k `suffix_of` l2 ++ k.
Proof. intros [k' ->]. k'. by rewrite (assoc_L (++)). Qed.
Lemma suffix_of_app_alt l1 l2 k1 k2 :
  k1 = k2 l1 `suffix_of` l2 l1 ++ k1 `suffix_of` l2 ++ k2.
Proof. intros →. apply suffix_of_app. Qed.
Lemma suffix_of_snoc_inv_1 x y l1 l2 :
  l1 ++ [x] `suffix_of` l2 ++ [y] x = y.
Proof. intros [k' E]. rewrite (assoc_L (++)) in E. by simplify_list_eq. Qed.
Lemma suffix_of_snoc_inv_2 x y l1 l2 :
  l1 ++ [x] `suffix_of` l2 ++ [y] l1 `suffix_of` l2.
Proof.
  intros [k' E]. k'. rewrite (assoc_L (++)) in E. by simplify_list_eq.
Qed.
Lemma suffix_of_app_inv l1 l2 k :
  l1 ++ k `suffix_of` l2 ++ k l1 `suffix_of` l2.
Proof.
  intros [k' E]. k'. rewrite (assoc_L (++)) in E. by simplify_list_eq.
Qed.
Lemma suffix_of_cons_l l1 l2 x : x :: l1 `suffix_of` l2 l1 `suffix_of` l2.
Proof. intros [k ->]. (k ++ [x]). by rewrite <-(assoc_L (++)). Qed.
Lemma suffix_of_app_l l1 l2 l3 : l3 ++ l1 `suffix_of` l2 l1 `suffix_of` l2.
Proof. intros [k ->]. (k ++ l3). by rewrite <-(assoc_L (++)). Qed.
Lemma suffix_of_cons_r l1 l2 x : l1 `suffix_of` l2 l1 `suffix_of` x :: l2.
Proof. intros [k ->]. by (x :: k). Qed.
Lemma suffix_of_app_r l1 l2 l3 : l1 `suffix_of` l2 l1 `suffix_of` l3 ++ l2.
Proof. intros [k ->]. (l3 ++ k). by rewrite (assoc_L (++)). Qed.
Lemma suffix_of_cons_inv l1 l2 x y :
  x :: l1 `suffix_of` y :: l2 x :: l1 = y :: l2 x :: l1 `suffix_of` l2.
Proof.
  intros [[|? k] E]; [by left|]. right. simplify_eq/=. by apply suffix_of_app_r.
Qed.
Lemma suffix_of_length l1 l2 : l1 `suffix_of` l2 length l1 length l2.
Proof. intros [? ->]. rewrite app_length. lia. Qed.
Lemma suffix_of_cons_not x l : ¬x :: l `suffix_of` l.
Proof. intros [??]. discriminate_list. Qed.
Global Instance suffix_of_dec `{ x y, Decision (x = y)} l1 l2 :
  Decision (l1 `suffix_of` l2).
Proof.
  refine (cast_if (decide_rel prefix_of (reverse l1) (reverse l2)));
   abstract (by rewrite suffix_prefix_reverse).
Defined.

Section max_suffix_of.
  Context `{ x y, Decision (x = y)}.

  Lemma max_suffix_of_fst l1 l2 :
    l1 = (max_suffix_of l1 l2).1.1 ++ (max_suffix_of l1 l2).2.
  Proof.
    rewrite <-(reverse_involutive l1) at 1.
    rewrite (max_prefix_of_fst (reverse l1) (reverse l2)). unfold max_suffix_of.
    destruct (max_prefix_of (reverse l1) (reverse l2)) as ((?&?)&?); simpl.
    by rewrite reverse_app.
  Qed.
  Lemma max_suffix_of_fst_alt l1 l2 k1 k2 k3 :
    max_suffix_of l1 l2 = (k1, k2, k3) l1 = k1 ++ k3.
  Proof.
    intro. pose proof (max_suffix_of_fst l1 l2).
    by destruct (max_suffix_of l1 l2) as [[]?]; simplify_eq.
  Qed.
  Lemma max_suffix_of_fst_suffix l1 l2 : (max_suffix_of l1 l2).2 `suffix_of` l1.
  Proof. eexists. apply max_suffix_of_fst. Qed.
  Lemma max_suffix_of_fst_suffix_alt l1 l2 k1 k2 k3 :
    max_suffix_of l1 l2 = (k1, k2, k3) k3 `suffix_of` l1.
  Proof. eexists. eauto using max_suffix_of_fst_alt. Qed.
  Lemma max_suffix_of_snd l1 l2 :
    l2 = (max_suffix_of l1 l2).1.2 ++ (max_suffix_of l1 l2).2.
  Proof.
    rewrite <-(reverse_involutive l2) at 1.
    rewrite (max_prefix_of_snd (reverse l1) (reverse l2)). unfold max_suffix_of.
    destruct (max_prefix_of (reverse l1) (reverse l2)) as ((?&?)&?); simpl.
    by rewrite reverse_app.
  Qed.
  Lemma max_suffix_of_snd_alt l1 l2 k1 k2 k3 :
    max_suffix_of l1 l2 = (k1,k2,k3) l2 = k2 ++ k3.
  Proof.
    intro. pose proof (max_suffix_of_snd l1 l2).
    by destruct (max_suffix_of l1 l2) as [[]?]; simplify_eq.
  Qed.
  Lemma max_suffix_of_snd_suffix l1 l2 : (max_suffix_of l1 l2).2 `suffix_of` l2.
  Proof. eexists. apply max_suffix_of_snd. Qed.
  Lemma max_suffix_of_snd_suffix_alt l1 l2 k1 k2 k3 :
    max_suffix_of l1 l2 = (k1,k2,k3) k3 `suffix_of` l2.
  Proof. eexists. eauto using max_suffix_of_snd_alt. Qed.
  Lemma max_suffix_of_max l1 l2 k :
    k `suffix_of` l1 k `suffix_of` l2 k `suffix_of` (max_suffix_of l1 l2).2.
  Proof.
    generalize (max_prefix_of_max (reverse l1) (reverse l2)).
    rewrite !suffix_prefix_reverse. unfold max_suffix_of.
    destruct (max_prefix_of (reverse l1) (reverse l2)) as ((?&?)&?); simpl.
    rewrite reverse_involutive. auto.
  Qed.
  Lemma max_suffix_of_max_alt l1 l2 k1 k2 k3 k :
    max_suffix_of l1 l2 = (k1, k2, k3)
    k `suffix_of` l1 k `suffix_of` l2 k `suffix_of` k3.
  Proof.
    intro. pose proof (max_suffix_of_max l1 l2 k).
    by destruct (max_suffix_of l1 l2) as [[]?]; simplify_eq.
  Qed.
  Lemma max_suffix_of_max_snoc l1 l2 k1 k2 k3 x1 x2 :
    max_suffix_of l1 l2 = (k1 ++ [x1], k2 ++ [x2], k3) x1 x2.
  Proof.
    intros Hl →. destruct (suffix_of_cons_not x2 k3).
    eapply max_suffix_of_max_alt; eauto.
    - rewrite (max_suffix_of_fst_alt _ _ _ _ _ Hl).
      by apply (suffix_of_app [x2]), suffix_of_app_r.
    - rewrite (max_suffix_of_snd_alt _ _ _ _ _ Hl).
      by apply (suffix_of_app [x2]), suffix_of_app_r.
  Qed.
End max_suffix_of.

Properties of the sublist predicate

Lemma sublist_length l1 l2 : l1 `sublist` l2 length l1 length l2.
Proof. induction 1; simpl; auto with arith. Qed.
Lemma sublist_nil_l l : [] `sublist` l.
Proof. induction l; try constructor; auto. Qed.
Lemma sublist_nil_r l : l `sublist` [] l = [].
Proof. split. by inversion 1. intros →. constructor. Qed.
Lemma sublist_app l1 l2 k1 k2 :
  l1 `sublist` l2 k1 `sublist` k2 l1 ++ k1 `sublist` l2 ++ k2.
Proof. induction 1; simpl; try constructor; auto. Qed.
Lemma sublist_inserts_l k l1 l2 : l1 `sublist` l2 l1 `sublist` k ++ l2.
Proof. induction k; try constructor; auto. Qed.
Lemma sublist_inserts_r k l1 l2 : l1 `sublist` l2 l1 `sublist` l2 ++ k.
Proof. induction 1; simpl; try constructor; auto using sublist_nil_l. Qed.
Lemma sublist_cons_r x l k :
  l `sublist` x :: k l `sublist` k l', l = x :: l' l' `sublist` k.
Proof. split. inversion 1; eauto. intros [?|(?&->&?)]; constructor; auto. Qed.
Lemma sublist_cons_l x l k :
  x :: l `sublist` k k1 k2, k = k1 ++ x :: k2 l `sublist` k2.
Proof.
  split.
  - intros Hlk. induction k as [|y k IH]; inversion Hlk.
    + eexists [], k. by repeat constructor.
    + destruct IH as (k1&k2&->&?); auto. by (y :: k1), k2.
  - intros (k1&k2&->&?). by apply sublist_inserts_l, sublist_skip.
Qed.
Lemma sublist_app_r l k1 k2 :
  l `sublist` k1 ++ k2
     l1 l2, l = l1 ++ l2 l1 `sublist` k1 l2 `sublist` k2.
Proof.
  split.
  - revert l k2. induction k1 as [|y k1 IH]; intros l k2; simpl.
    { eexists [], l. by repeat constructor. }
    rewrite sublist_cons_r. intros [?|(l' & ? &?)]; subst.
    + destruct (IH l k2) as (l1&l2&?&?&?); trivial; subst.
       l1, l2. auto using sublist_cons.
    + destruct (IH l' k2) as (l1&l2&?&?&?); trivial; subst.
       (y :: l1), l2. auto using sublist_skip.
  - intros (?&?&?&?&?); subst. auto using sublist_app.
Qed.
Lemma sublist_app_l l1 l2 k :
  l1 ++ l2 `sublist` k
     k1 k2, k = k1 ++ k2 l1 `sublist` k1 l2 `sublist` k2.
Proof.
  split.
  - revert l2 k. induction l1 as [|x l1 IH]; intros l2 k; simpl.
    { eexists [], k. by repeat constructor. }
    rewrite sublist_cons_l. intros (k1 & k2 &?&?); subst.
    destruct (IH l2 k2) as (h1 & h2 &?&?&?); trivial; subst.
     (k1 ++ x :: h1), h2. rewrite <-(assoc_L (++)).
    auto using sublist_inserts_l, sublist_skip.
  - intros (?&?&?&?&?); subst. auto using sublist_app.
Qed.
Lemma sublist_app_inv_l k l1 l2 : k ++ l1 `sublist` k ++ l2 l1 `sublist` l2.
Proof.
  induction k as [|y k IH]; simpl; [done |].
  rewrite sublist_cons_r. intros [Hl12|(?&?&?)]; [|simplify_eq; eauto].
  rewrite sublist_cons_l in Hl12. destruct Hl12 as (k1&k2&Hk&?).
  apply IH. rewrite Hk. eauto using sublist_inserts_l, sublist_cons.
Qed.
Lemma sublist_app_inv_r k l1 l2 : l1 ++ k `sublist` l2 ++ k l1 `sublist` l2.
Proof.
  revert l1 l2. induction k as [|y k IH]; intros l1 l2.
  { by rewrite !(right_id_L [] (++)). }
  intros. feed pose proof (IH (l1 ++ [y]) (l2 ++ [y])) as Hl12.
  { by rewrite <-!(assoc_L (++)). }
  rewrite sublist_app_l in Hl12. destruct Hl12 as (k1&k2&E&?&Hk2).
  destruct k2 as [|z k2] using rev_ind; [inversion Hk2|].
  rewrite (assoc_L (++)) in E; simplify_list_eq.
  eauto using sublist_inserts_r.
Qed.
Global Instance: PartialOrder (@sublist A).
Proof.
  split; [split|].
  - intros l. induction l; constructor; auto.
  - intros l1 l2 l3 Hl12. revert l3. induction Hl12.
    + auto using sublist_nil_l.
    + intros ?. rewrite sublist_cons_l. intros (?&?&?&?); subst.
      eauto using sublist_inserts_l, sublist_skip.
    + intros ?. rewrite sublist_cons_l. intros (?&?&?&?); subst.
      eauto using sublist_inserts_l, sublist_cons.
  - intros l1 l2 Hl12 Hl21. apply sublist_length in Hl21.
    induction Hl12; f_equal/=; auto with arith.
    apply sublist_length in Hl12. lia.
Qed.
Lemma sublist_take l i : take i l `sublist` l.
Proof. rewrite <-(take_drop i l) at 2. by apply sublist_inserts_r. Qed.
Lemma sublist_drop l i : drop i l `sublist` l.
Proof. rewrite <-(take_drop i l) at 2. by apply sublist_inserts_l. Qed.
Lemma sublist_delete l i : delete i l `sublist` l.
Proof. revert i. by induction l; intros [|?]; simpl; constructor. Qed.
Lemma sublist_foldr_delete l is : foldr delete l is `sublist` l.
Proof.
  induction is as [|i is IH]; simpl; [done |].
  trans (foldr delete l is); auto using sublist_delete.
Qed.
Lemma sublist_alt l1 l2 : l1 `sublist` l2 is, l1 = foldr delete l2 is.
Proof.
  split; [|intros [is ->]; apply sublist_foldr_delete].
  intros Hl12. cut ( k, is, k ++ l1 = foldr delete (k ++ l2) is).
  { intros help. apply (help []). }
  induction Hl12 as [|x l1 l2 _ IH|x l1 l2 _ IH]; intros k.
  - by eexists [].
  - destruct (IH (k ++ [x])) as [is His]. is.
    by rewrite <-!(assoc_L (++)) in His.
  - destruct (IH k) as [is His]. (is ++ [length k]).
    rewrite fold_right_app. simpl. by rewrite delete_middle.
Qed.
Lemma Permutation_sublist l1 l2 l3 :
  l1 ≡ₚ l2 l2 `sublist` l3 l4, l1 `sublist` l4 l4 ≡ₚ l3.
Proof.
  intros Hl1l2. revert l3.
  induction Hl1l2 as [|x l1 l2 ? IH|x y l1|l1 l1' l2 ? IH1 ? IH2].
  - intros l3. by l3.
  - intros l3. rewrite sublist_cons_l. intros (l3'&l3''&?&?); subst.
    destruct (IH l3'') as (l4&?&Hl4); auto. (l3' ++ x :: l4).
    split. by apply sublist_inserts_l, sublist_skip. by rewrite Hl4.
  - intros l3. rewrite sublist_cons_l. intros (l3'&l3''&?& Hl3); subst.
    rewrite sublist_cons_l in Hl3. destruct Hl3 as (l5'&l5''&?& Hl5); subst.
     (l3' ++ y :: l5' ++ x :: l5''). split.
    + by do 2 apply sublist_inserts_l, sublist_skip.
    + by rewrite !Permutation_middle, Permutation_swap.
  - intros l3 ?. destruct (IH2 l3) as (l3'&?&?); trivial.
    destruct (IH1 l3') as (l3'' &?&?); trivial. l3''.
    split. done. etrans; eauto.
Qed.
Lemma sublist_Permutation l1 l2 l3 :
  l1 `sublist` l2 l2 ≡ₚ l3 l4, l1 ≡ₚ l4 l4 `sublist` l3.
Proof.
  intros Hl1l2 Hl2l3. revert l1 Hl1l2.
  induction Hl2l3 as [|x l2 l3 ? IH|x y l2|l2 l2' l3 ? IH1 ? IH2].
  - intros l1. by l1.
  - intros l1. rewrite sublist_cons_r. intros [?|(l1'&l1''&?)]; subst.
    { destruct (IH l1) as (l4&?&?); trivial.
       l4. split. done. by constructor. }
    destruct (IH l1') as (l4&?&Hl4); auto. (x :: l4).
    split. by constructor. by constructor.
  - intros l1. rewrite sublist_cons_r. intros [Hl1|(l1'&l1''&Hl1)]; subst.
    { l1. split; [done|]. rewrite sublist_cons_r in Hl1.
      destruct Hl1 as [?|(l1'&?&?)]; subst; by repeat constructor. }
    rewrite sublist_cons_r in Hl1. destruct Hl1 as [?|(l1''&?&?)]; subst.
    + (y :: l1'). by repeat constructor.
    + (x :: y :: l1''). by repeat constructor.
  - intros l1 ?. destruct (IH1 l1) as (l3'&?&?); trivial.
    destruct (IH2 l3') as (l3'' &?&?); trivial. l3''.
    split; [|done]. etrans; eauto.
Qed.

Properties of the contains predicate
Lemma contains_length l1 l2 : l1 `contains` l2 length l1 length l2.
Proof. induction 1; simpl; auto with lia. Qed.
Lemma contains_nil_l l : [] `contains` l.
Proof. induction l; constructor; auto. Qed.
Lemma contains_nil_r l : l `contains` [] l = [].
Proof.
  split; [|intros ->; constructor].
  intros Hl. apply contains_length in Hl. destruct l; simpl in *; auto with lia.
Qed.
Global Instance: PreOrder (@contains A).
Proof.
  split.
  - intros l. induction l; constructor; auto.
  - red. apply contains_trans.
Qed.
Lemma Permutation_contains l1 l2 : l1 ≡ₚ l2 l1 `contains` l2.
Proof. induction 1; econstructor; eauto. Qed.
Lemma sublist_contains l1 l2 : l1 `sublist` l2 l1 `contains` l2.
Proof. induction 1; constructor; auto. Qed.
Lemma contains_Permutation l1 l2 : l1 `contains` l2 k, l2 ≡ₚ l1 ++ k.
Proof.
  induction 1 as
    [|x y l ? [k Hk]| |x l1 l2 ? [k Hk]|l1 l2 l3 ? [k Hk] ? [k' Hk']].
  - by eexists [].
  - k. by rewrite Hk.
  - eexists []. rewrite (right_id_L [] (++)). by constructor.
  - (x :: k). by rewrite Hk, Permutation_middle.
  - (k ++ k'). by rewrite Hk', Hk, (assoc_L (++)).
Qed.
Lemma contains_Permutation_length_le l1 l2 :
  length l2 length l1 l1 `contains` l2 l1 ≡ₚ l2.
Proof.
  intros Hl21 Hl12. destruct (contains_Permutation l1 l2) as [[|??] Hk]; auto.
  - by rewrite Hk, (right_id_L [] (++)).
  - rewrite Hk, app_length in Hl21; simpl in Hl21; lia.
Qed.
Lemma contains_Permutation_length_eq l1 l2 :
  length l2 = length l1 l1 `contains` l2 l1 ≡ₚ l2.
Proof. intro. apply contains_Permutation_length_le. lia. Qed.
Global Instance: Proper ((≡ₚ) ==> (≡ₚ) ==> iff) (@contains A).
Proof.
  intros l1 l2 ? k1 k2 ?. split; intros.
  - trans l1. by apply Permutation_contains.
    trans k1. done. by apply Permutation_contains.
  - trans l2. by apply Permutation_contains.
    trans k2. done. by apply Permutation_contains.
Qed.
Global Instance: AntiSymm (≡ₚ) (@contains A).
Proof. red. auto using contains_Permutation_length_le, contains_length. Qed.
Lemma contains_take l i : take i l `contains` l.
Proof. auto using sublist_take, sublist_contains. Qed.
Lemma contains_drop l i : drop i l `contains` l.
Proof. auto using sublist_drop, sublist_contains. Qed.
Lemma contains_delete l i : delete i l `contains` l.
Proof. auto using sublist_delete, sublist_contains. Qed.
Lemma contains_foldr_delete l is : foldr delete l is `sublist` l.
Proof. auto using sublist_foldr_delete, sublist_contains. Qed.
Lemma contains_sublist_l l1 l3 :
  l1 `contains` l3 l2, l1 `sublist` l2 l2 ≡ₚ l3.
Proof.
  split.
  { intros Hl13. elim Hl13; clear l1 l3 Hl13.
    - by eexists [].
    - intros x l1 l3 ? (l2&?&?). (x :: l2). by repeat constructor.
    - intros x y l. (y :: x :: l). by repeat constructor.
    - intros x l1 l3 ? (l2&?&?). (x :: l2). by repeat constructor.
    - intros l1 l3 l5 ? (l2&?&?) ? (l4&?&?).
      destruct (Permutation_sublist l2 l3 l4) as (l3'&?&?); trivial.
       l3'. split; etrans; eauto. }
  intros (l2&?&?).
  trans l2; auto using sublist_contains, Permutation_contains.
Qed.
Lemma contains_sublist_r l1 l3 :
  l1 `contains` l3 l2, l1 ≡ₚ l2 l2 `sublist` l3.
Proof.
  rewrite contains_sublist_l.
  split; intros (l2&?&?); eauto using sublist_Permutation, Permutation_sublist.
Qed.
Lemma contains_inserts_l k l1 l2 : l1 `contains` l2 l1 `contains` k ++ l2.
Proof. induction k; try constructor; auto. Qed.
Lemma contains_inserts_r k l1 l2 : l1 `contains` l2 l1 `contains` l2 ++ k.
Proof. rewrite (comm (++)). apply contains_inserts_l. Qed.
Lemma contains_skips_l k l1 l2 : l1 `contains` l2 k ++ l1 `contains` k ++ l2.
Proof. induction k; try constructor; auto. Qed.
Lemma contains_skips_r k l1 l2 : l1 `contains` l2 l1 ++ k `contains` l2 ++ k.
Proof. rewrite !(comm (++) _ k). apply contains_skips_l. Qed.
Lemma contains_app l1 l2 k1 k2 :
  l1 `contains` l2 k1 `contains` k2 l1 ++ k1 `contains` l2 ++ k2.
Proof.
  trans (l1 ++ k2); auto using contains_skips_l, contains_skips_r.
Qed.
Lemma contains_cons_r x l k :
  l `contains` x :: k l `contains` k l', l ≡ₚ x :: l' l' `contains` k.
Proof.
  split.
  - rewrite contains_sublist_r. intros (l'&E&Hl').
    rewrite sublist_cons_r in Hl'. destruct Hl' as [?|(?&?&?)]; subst.
    + left. rewrite E. eauto using sublist_contains.
    + right. eauto using sublist_contains.
  - intros [?|(?&E&?)]; [|rewrite E]; by constructor.
Qed.
Lemma contains_cons_l x l k :
  x :: l `contains` k k', k ≡ₚ x :: k' l `contains` k'.
Proof.
  split.
  - rewrite contains_sublist_l. intros (l'&Hl'&E).
    rewrite sublist_cons_l in Hl'. destruct Hl' as (k1&k2&?&?); subst.
     (k1 ++ k2). split; eauto using contains_inserts_l, sublist_contains.
    by rewrite Permutation_middle.
  - intros (?&E&?). rewrite E. by constructor.
Qed.
Lemma contains_app_r l k1 k2 :
  l `contains` k1 ++ k2 l1 l2,
    l ≡ₚ l1 ++ l2 l1 `contains` k1 l2 `contains` k2.
Proof.
  split.
  - rewrite contains_sublist_r. intros (l'&E&Hl').
    rewrite sublist_app_r in Hl'. destruct Hl' as (l1&l2&?&?&?); subst.
     l1, l2. eauto using sublist_contains.
  - intros (?&?&E&?&?). rewrite E. eauto using contains_app.
Qed.
Lemma contains_app_l l1 l2 k :
  l1 ++ l2 `contains` k k1 k2,
    k ≡ₚ k1 ++ k2 l1 `contains` k1 l2 `contains` k2.
Proof.
  split.
  - rewrite contains_sublist_l. intros (l'&Hl'&E).
    rewrite sublist_app_l in Hl'. destruct Hl' as (k1&k2&?&?&?); subst.
     k1, k2. split. done. eauto using sublist_contains.
  - intros (?&?&E&?&?). rewrite E. eauto using contains_app.
Qed.
Lemma contains_app_inv_l l1 l2 k :
  k ++ l1 `contains` k ++ l2 l1 `contains` l2.
Proof.
  induction k as [|y k IH]; simpl; [done |]. rewrite contains_cons_l.
  intros (?&E&?). apply Permutation_cons_inv in E. apply IH. by rewrite E.
Qed.
Lemma contains_app_inv_r l1 l2 k :
  l1 ++ k `contains` l2 ++ k l1 `contains` l2.
Proof.
  revert l1 l2. induction k as [|y k IH]; intros l1 l2.
  { by rewrite !(right_id_L [] (++)). }
  intros. feed pose proof (IH (l1 ++ [y]) (l2 ++ [y])) as Hl12.
  { by rewrite <-!(assoc_L (++)). }
  rewrite contains_app_l in Hl12. destruct Hl12 as (k1&k2&E1&?&Hk2).
  rewrite contains_cons_l in Hk2. destruct Hk2 as (k2'&E2&?).
  rewrite E2, (Permutation_cons_append k2'), (assoc_L (++)) in E1.
  apply Permutation_app_inv_r in E1. rewrite E1. eauto using contains_inserts_r.
Qed.
Lemma contains_cons_middle x l k1 k2 :
  l `contains` k1 ++ k2 x :: l `contains` k1 ++ x :: k2.
Proof. rewrite <-Permutation_middle. by apply contains_skip. Qed.
Lemma contains_app_middle l1 l2 k1 k2 :
  l2 `contains` k1 ++ k2 l1 ++ l2 `contains` k1 ++ l1 ++ k2.
Proof.
  rewrite !(assoc (++)), (comm (++) k1 l1), <-(assoc_L (++)).
  by apply contains_skips_l.
Qed.
Lemma contains_middle l k1 k2 : l `contains` k1 ++ l ++ k2.
Proof. by apply contains_inserts_l, contains_inserts_r. Qed.

Lemma Permutation_alt l1 l2 :
  l1 ≡ₚ l2 length l1 = length l2 l1 `contains` l2.
Proof.
  split.
  - by intros Hl; rewrite Hl.
  - intros [??]; auto using contains_Permutation_length_eq.
Qed.

Lemma NoDup_contains l k : NoDup l ( x, x l x k) l `contains` k.
Proof.
  intros Hl. revert k. induction Hl as [|x l Hx ? IH].
  { intros k Hk. by apply contains_nil_l. }
  intros k Hlk. destruct (elem_of_list_split k x) as (l1&l2&?); subst.
  { apply Hlk. by constructor. }
  rewrite <-Permutation_middle. apply contains_skip, IH.
  intros y Hy. rewrite elem_of_app.
  specialize (Hlk y). rewrite elem_of_app, !elem_of_cons in Hlk.
  by destruct Hlk as [?|[?|?]]; subst; eauto.
Qed.
Lemma NoDup_Permutation l k : NoDup l NoDup k ( x, x l x k) l ≡ₚ k.
Proof.
  intros. apply (anti_symm contains); apply NoDup_contains; naive_solver.
Qed.

Section contains_dec.
  Context `{ x y, Decision (x = y)}.

  Lemma list_remove_Permutation l1 l2 k1 x :
    l1 ≡ₚ l2 list_remove x l1 = Some k1
     k2, list_remove x l2 = Some k2 k1 ≡ₚ k2.
  Proof.
    intros Hl. revert k1. induction Hl
      as [|y l1 l2 ? IH|y1 y2 l|l1 l2 l3 ? IH1 ? IH2]; simpl; intros k1 Hk1.
    - done.
    - case_decide; simplify_eq; eauto.
      destruct (list_remove x l1) as [l|] eqn:?; simplify_eq.
      destruct (IH l) as (?&?&?); simplify_option_eq; eauto.
    - simplify_option_eq; eauto using Permutation_swap.
    - destruct (IH1 k1) as (k2&?&?); trivial.
      destruct (IH2 k2) as (k3&?&?); trivial.
       k3. split; eauto. by trans k2.
  Qed.
  Lemma list_remove_Some l k x : list_remove x l = Some k l ≡ₚ x :: k.
  Proof.
    revert k. induction l as [|y l IH]; simpl; intros k ?; [done |].
    simplify_option_eq; auto. by rewrite Permutation_swap, <-IH.
  Qed.
  Lemma list_remove_Some_inv l k x :
    l ≡ₚ x :: k k', list_remove x l = Some k' k ≡ₚ k'.
  Proof.
    intros. destruct (list_remove_Permutation (x :: k) l k x) as (k'&?&?).
    - done.
    - simpl; by case_decide.
    - by k'.
  Qed.
  Lemma list_remove_list_contains l1 l2 :
    l1 `contains` l2 is_Some (list_remove_list l1 l2).
  Proof.
    split.
    - revert l2. induction l1 as [|x l1 IH]; simpl.
      { intros l2 _. by l2. }
      intros l2. rewrite contains_cons_l. intros (k&Hk&?).
      destruct (list_remove_Some_inv l2 k x) as (k2&?&Hk2); trivial.
      simplify_option_eq. apply IH. by rewrite <-Hk2.
    - intros [k Hk]. revert l2 k Hk.
      induction l1 as [|x l1 IH]; simpl; intros l2 k.
      { intros. apply contains_nil_l. }
      destruct (list_remove x l2) as [k'|] eqn:?; intros; simplify_eq.
      rewrite contains_cons_l. eauto using list_remove_Some.
  Qed.
  Global Instance contains_dec l1 l2 : Decision (l1 `contains` l2).
  Proof.
   refine (cast_if (decide (is_Some (list_remove_list l1 l2))));
    abstract (rewrite list_remove_list_contains; tauto).
  Defined.
  Global Instance Permutation_dec l1 l2 : Decision (l1 ≡ₚ l2).
  Proof.
   refine (cast_if_and
    (decide (length l1 = length l2)) (decide (l1 `contains` l2)));
    abstract (rewrite Permutation_alt; tauto).
  Defined.
End contains_dec.

Properties of included

Global Instance included_preorder : PreOrder (@included A).
Proof. split; firstorder. Qed.
Lemma included_nil l : [] `included` l.
Proof. intros x. by rewrite elem_of_nil. Qed.

Properties of the Forall and Exists predicate

Lemma Forall_Exists_dec {P Q : A Prop} (dec : x, {P x} + {Q x}) :
   l, {Forall P l} + {Exists Q l}.
Proof.
 refine (
  fix go l :=
  match l return {Forall P l} + {Exists Q l} with
  | []left _
  | x :: lcast_if_and (dec x) (go l)
  end); clear go; intuition.
Defined.

Section Forall_Exists.
  Context (P : A Prop).

  Definition Forall_nil_2 := @Forall_nil A.
  Definition Forall_cons_2 := @Forall_cons A.
  Lemma Forall_forall l : Forall P l x, x l P x.
  Proof.
    split; [induction 1; inversion 1; subst; auto|].
    intros Hin; induction l as [|x l IH]; constructor; [apply Hin; constructor|].
    apply IH. intros ??. apply Hin. by constructor.
  Qed.
  Lemma Forall_nil : Forall P [] True.
  Proof. done. Qed.
  Lemma Forall_cons_1 x l : Forall P (x :: l) P x Forall P l.
  Proof. by inversion 1. Qed.
  Lemma Forall_cons x l : Forall P (x :: l) P x Forall P l.
  Proof. split. by inversion 1. intros [??]. by constructor. Qed.
  Lemma Forall_singleton x : Forall P [x] P x.
  Proof. rewrite Forall_cons, Forall_nil; tauto. Qed.
  Lemma Forall_app_2 l1 l2 : Forall P l1 Forall P l2 Forall P (l1 ++ l2).
  Proof. induction 1; simpl; auto. Qed.
  Lemma Forall_app l1 l2 : Forall P (l1 ++ l2) Forall P l1 Forall P l2.
  Proof.
    split; [induction l1; inversion 1; intuition|].
    intros [??]; auto using Forall_app_2.
  Qed.
  Lemma Forall_true l : ( x, P x) Forall P l.
  Proof. induction l; auto. Qed.
  Lemma Forall_impl (Q : A Prop) l :
    Forall P l ( x, P x Q x) Forall Q l.
  Proof. intros H ?. induction H; auto. Defined.
  Global Instance Forall_proper:
    Proper (pointwise_relation _ (↔) ==> (=) ==> (↔)) (@Forall A).
  Proof. split; subst; induction 1; constructor; by firstorder auto. Qed.
  Lemma Forall_iff l (Q : A Prop) :
    ( x, P x Q x) Forall P l Forall Q l.
  Proof. intros H. apply Forall_proper. red; apply H. done. Qed.
  Lemma Forall_not l : length l 0 Forall (not P) l ¬Forall P l.
  Proof. by destruct 2; inversion 1. Qed.
  Lemma Forall_and {Q} l : Forall (λ x, P x Q x) l Forall P l Forall Q l.
  Proof.
    split; [induction 1; constructor; naive_solver|].
    intros [Hl Hl']; revert Hl'; induction Hl; inversion_clear 1; auto.
  Qed.
  Lemma Forall_and_l {Q} l : Forall (λ x, P x Q x) l Forall P l.
  Proof. rewrite Forall_and; tauto. Qed.
  Lemma Forall_and_r {Q} l : Forall (λ x, P x Q x) l Forall Q l.
  Proof. rewrite Forall_and; tauto. Qed.
  Lemma Forall_delete l i : Forall P l Forall P (delete i l).
  Proof. intros H. revert i. by induction H; intros [|i]; try constructor. Qed.
  Lemma Forall_lookup l : Forall P l i x, l !! i = Some x P x.
  Proof.
    rewrite Forall_forall. setoid_rewrite elem_of_list_lookup. naive_solver.
  Qed.
  Lemma Forall_lookup_1 l i x : Forall P l l !! i = Some x P x.
  Proof. rewrite Forall_lookup. eauto. Qed.
  Lemma Forall_lookup_2 l : ( i x, l !! i = Some x P x) Forall P l.
  Proof. by rewrite Forall_lookup. Qed.
  Lemma Forall_tail l : Forall P l Forall P (tail l).
  Proof. destruct 1; simpl; auto. Qed.
  Lemma Forall_alter f l i :
    Forall P l ( x, l!!i = Some x P x P (f x)) Forall P (alter f i l).
  Proof.
    intros Hl. revert i. induction Hl; simpl; intros [|i]; constructor; auto.
  Qed.
  Lemma Forall_alter_inv f l i :
    Forall P (alter f i l) ( x, l!!i = Some x P (f x) P x) Forall P l.
  Proof.
    revert i. induction l; intros [|?]; simpl;
      inversion_clear 1; constructor; eauto.
  Qed.
  Lemma Forall_insert l i x : Forall P l P x Forall P (<[i:=x]>l).
  Proof. rewrite list_insert_alter; auto using Forall_alter. Qed.
  Lemma Forall_inserts l i k :
    Forall P l Forall P k Forall P (list_inserts i k l).
  Proof.
    intros Hl Hk; revert i.
    induction Hk; simpl; auto using Forall_insert.
  Qed.
  Lemma Forall_replicate n x : P x Forall P (replicate n x).
  Proof. induction n; simpl; constructor; auto. Qed.
  Lemma Forall_replicate_eq n (x : A) : Forall (x =) (replicate n x).
  Proof. induction n; simpl; constructor; auto. Qed.
  Lemma Forall_take n l : Forall P l Forall P (take n l).
  Proof. intros Hl. revert n. induction Hl; intros [|?]; simpl; auto. Qed.
  Lemma Forall_drop n l : Forall P l Forall P (drop n l).
  Proof. intros Hl. revert n. induction Hl; intros [|?]; simpl; auto. Qed.
  Lemma Forall_resize n x l : P x Forall P l Forall P (resize n x l).
  Proof.
    intros ? Hl. revert n.
    induction Hl; intros [|?]; simpl; auto using Forall_replicate.
  Qed.
  Lemma Forall_resize_inv n x l :
    length l n Forall P (resize n x l) Forall P l.
  Proof. intros ?. rewrite resize_ge, Forall_app by done. by intros []. Qed.
  Lemma Forall_sublist_lookup l i n k :
    sublist_lookup i n l = Some k Forall P l Forall P k.
  Proof.
    unfold sublist_lookup. intros; simplify_option_eq.
    auto using Forall_take, Forall_drop.
  Qed.
  Lemma Forall_sublist_alter f l i n k :
    Forall P l sublist_lookup i n l = Some k Forall P (f k)
    Forall P (sublist_alter f i n l).
  Proof.
    unfold sublist_alter, sublist_lookup. intros; simplify_option_eq.
    auto using Forall_app_2, Forall_drop, Forall_take.
  Qed.
  Lemma Forall_sublist_alter_inv f l i n k :
    sublist_lookup i n l = Some k
    Forall P (sublist_alter f i n l) Forall P (f k).
  Proof.
    unfold sublist_alter, sublist_lookup. intros ?; simplify_option_eq.
    rewrite !Forall_app; tauto.
  Qed.
  Lemma Forall_reshape l szs : Forall P l Forall (Forall P) (reshape szs l).
  Proof.
    revert l. induction szs; simpl; auto using Forall_take, Forall_drop.
  Qed.
  Lemma Forall_rev_ind (Q : list A Prop) :
    Q [] ( x l, P x Forall P l Q l Q (l ++ [x]))
     l, Forall P l Q l.
  Proof.
    intros ?? l. induction l using rev_ind; auto.
    rewrite Forall_app, Forall_singleton; intros [??]; auto.
  Qed.
  Lemma Exists_exists l : Exists P l x, x l P x.
  Proof.
    split.
    - induction 1 as [x|y ?? [x [??]]]; x; by repeat constructor.
    - intros [x [Hin ?]]. induction l; [by destruct (not_elem_of_nil x)|].
      inversion Hin; subst. by left. right; auto.
  Qed.
  Lemma Exists_inv x l : Exists P (x :: l) P x Exists P l.
  Proof. inversion 1; intuition trivial. Qed.
  Lemma Exists_app l1 l2 : Exists P (l1 ++ l2) Exists P l1 Exists P l2.
  Proof.
    split.
    - induction l1; inversion 1; intuition.
    - intros [H|H]; [induction H | induction l1]; simpl; intuition.
  Qed.
  Lemma Exists_impl (Q : A Prop) l :
    Exists P l ( x, P x Q x) Exists Q l.
  Proof. intros H ?. induction H; auto. Defined.
  Global Instance Exists_proper:
    Proper (pointwise_relation _ (↔) ==> (=) ==> (↔)) (@Exists A).
  Proof. split; subst; induction 1; constructor; by firstorder auto. Qed.
  Lemma Exists_not_Forall l : Exists (not P) l ¬Forall P l.
  Proof. induction 1; inversion_clear 1; contradiction. Qed.
  Lemma Forall_not_Exists l : Forall (not P) l ¬Exists P l.
  Proof. induction 1; inversion_clear 1; contradiction. Qed.

  Lemma Forall_list_difference `{ x y : A, Decision (x = y)} l k :
    Forall P l Forall P (list_difference l k).
  Proof.
    rewrite !Forall_forall.
    intros ? x; rewrite elem_of_list_difference; naive_solver.
  Qed.
  Lemma Forall_list_union `{ x y : A, Decision (x = y)} l k :
    Forall P l Forall P k Forall P (list_union l k).
  Proof. intros. apply Forall_app; auto using Forall_list_difference. Qed.
  Lemma Forall_list_intersection `{ x y : A, Decision (x = y)} l k :
    Forall P l Forall P (list_intersection l k).
  Proof.
    rewrite !Forall_forall.
    intros ? x; rewrite elem_of_list_intersection; naive_solver.
  Qed.

  Context {dec : x, Decision (P x)}.
  Lemma not_Forall_Exists l : ¬Forall P l Exists (not P) l.
  Proof. intro. destruct (Forall_Exists_dec dec l); intuition. Qed.
  Lemma not_Exists_Forall l : ¬Exists P l Forall (not P) l.
  Proof. by destruct (Forall_Exists_dec (λ x, swap_if (decide (P x))) l). Qed.
  Global Instance Forall_dec l : Decision (Forall P l) :=
    match Forall_Exists_dec dec l with
    | left Hleft H
    | right Hright (Exists_not_Forall _ H)
    end.
  Global Instance Exists_dec l : Decision (Exists P l) :=
    match Forall_Exists_dec (λ x, swap_if (decide (P x))) l with
    | left Hright (Forall_not_Exists _ H)
    | right Hleft H
    end.
End Forall_Exists.

Lemma replicate_as_Forall (x : A) n l :
  replicate n x = l length l = n Forall (x =) l.
Proof. rewrite replicate_as_elem_of, Forall_forall. naive_solver. Qed.
Lemma replicate_as_Forall_2 (x : A) n l :
  length l = n Forall (x =) l replicate n x = l.
Proof. by rewrite replicate_as_Forall. Qed.
End more_general_properties.

Lemma Forall_swap {A B} (Q : A B Prop) l1 l2 :
  Forall (λ y, Forall (Q y) l1) l2 Forall (λ x, Forall (flip Q x) l2) l1.
Proof. repeat setoid_rewrite Forall_forall. simpl. split; eauto. Qed.
Lemma Forall_seq (P : nat Prop) i n :
  Forall P (seq i n) j, i j < i + n P j.
Proof.
  rewrite Forall_lookup. split.
  - intros H j [??]. apply (H (j - i)).
    rewrite lookup_seq; auto with f_equal lia.
  - intros H j x Hj. apply lookup_seq_inv in Hj.
    destruct Hj; subst. auto with lia.
Qed.

Properties of the Forall2 predicate

Section Forall2.
  Context {A B} (P : A B Prop).
  Implicit Types x : A.
  Implicit Types y : B.
  Implicit Types l : list A.
  Implicit Types k : list B.

  Lemma Forall2_same_length l k :
    Forall2 (λ _ _, True) l k length l = length k.
  Proof.
    split; [by induction 1; f_equal/=|].
    revert k. induction l; intros [|??] ?; simplify_eq/=; auto.
  Qed.
  Lemma Forall2_length l k : Forall2 P l k length l = length k.
  Proof. by induction 1; f_equal/=. Qed.
  Lemma Forall2_length_l l k n : Forall2 P l k length l = n length k = n.
  Proof. intros ? <-; symmetry. by apply Forall2_length. Qed.
  Lemma Forall2_length_r l k n : Forall2 P l k length k = n length l = n.
  Proof. intros ? <-. by apply Forall2_length. Qed.

  Lemma Forall2_true l k : ( x y, P x y) length l = length k Forall2 P l k.
  Proof. rewrite <-Forall2_same_length. induction 2; naive_solver. Qed.
  Lemma Forall2_flip l k : Forall2 (flip P) k l Forall2 P l k.
  Proof. split; induction 1; constructor; auto. Qed.
  Lemma Forall2_transitive {C} (Q : B C Prop) (R : A C Prop) l k lC :
    ( x y z, P x y Q y z R x z)
    Forall2 P l k Forall2 Q k lC Forall2 R l lC.
  Proof. intros ? Hl. revert lC. induction Hl; inversion_clear 1; eauto. Qed.
  Lemma Forall2_impl (Q : A B Prop) l k :
    Forall2 P l k ( x y, P x y Q x y) Forall2 Q l k.
  Proof. intros H ?. induction H; auto. Defined.
  Lemma Forall2_unique l k1 k2 :
    Forall2 P l k1 Forall2 P l k2
    ( x y1 y2, P x y1 P x y2 y1 = y2) k1 = k2.
  Proof.
    intros H. revert k2. induction H; inversion_clear 1; intros; f_equal; eauto.
  Qed.
  Lemma Forall2_forall `{Inhabited C} (Q : C A B Prop) l k :
    Forall2 (λ x y, z, Q z x y) l k z, Forall2 (Q z) l k.
  Proof.
    split; [induction 1; constructor; auto|].
    intros Hlk. induction (Hlk inhabitant) as [|x y l k _ _ IH]; constructor.
    - intros z. by feed inversion (Hlk z).
    - apply IH. intros z. by feed inversion (Hlk z).
  Qed.

  Lemma Forall_Forall2 (Q : A A Prop) l :
    Forall (λ x, Q x x) l Forall2 Q l l.
  Proof. induction 1; constructor; auto. Qed.
  Lemma Forall2_Forall_l (Q : A Prop) l k :
    Forall2 P l k Forall (λ y, x, P x y Q x) k Forall Q l.
  Proof. induction 1; inversion_clear 1; eauto. Qed.
  Lemma Forall2_Forall_r (Q : B Prop) l k :
    Forall2 P l k Forall (λ x, y, P x y Q y) l Forall Q k.
  Proof. induction 1; inversion_clear 1; eauto. Qed.

  Lemma Forall2_nil_inv_l k : Forall2 P [] k k = [].
  Proof. by inversion 1. Qed.
  Lemma Forall2_nil_inv_r l : Forall2 P l [] l = [].
  Proof. by inversion 1. Qed.

  Lemma Forall2_cons_inv x l y k :
    Forall2 P (x :: l) (y :: k) P x y Forall2 P l k.
  Proof. by inversion 1. Qed.
  Lemma Forall2_cons_inv_l x l k :
    Forall2 P (x :: l) k y k', P x y Forall2 P l k' k = y :: k'.
  Proof. inversion 1; subst; eauto. Qed.
  Lemma Forall2_cons_inv_r l k y :
    Forall2 P l (y :: k) x l', P x y Forall2 P l' k l = x :: l'.
  Proof. inversion 1; subst; eauto. Qed.
  Lemma Forall2_cons_nil_inv x l : Forall2 P (x :: l) [] False.
  Proof. by inversion 1. Qed.
  Lemma Forall2_nil_cons_inv y k : Forall2 P [] (y :: k) False.
  Proof. by inversion 1. Qed.

  Lemma Forall2_app_l l1 l2 k :
    Forall2 P l1 (take (length l1) k) Forall2 P l2 (drop (length l1) k)
    Forall2 P (l1 ++ l2) k.
  Proof. intros. rewrite <-(take_drop (length l1) k). by apply Forall2_app. Qed.
  Lemma Forall2_app_r l k1 k2 :
    Forall2 P (take (length k1) l) k1 Forall2 P (drop (length k1) l) k2
    Forall2 P l (k1 ++ k2).
  Proof. intros. rewrite <-(take_drop (length k1) l). by apply Forall2_app. Qed.
  Lemma Forall2_app_inv l1 l2 k1 k2 :
    length l1 = length k1
    Forall2 P (l1 ++ l2) (k1 ++ k2) Forall2 P l1 k1 Forall2 P l2 k2.
  Proof.
    rewrite <-Forall2_same_length. induction 1; inversion 1; naive_solver.
  Qed.
  Lemma Forall2_app_inv_l l1 l2 k :
    Forall2 P (l1 ++ l2) k
       k1 k2, Forall2 P l1 k1 Forall2 P l2 k2 k = k1 ++ k2.
  Proof.
    split; [|intros (?&?&?&?&->); by apply Forall2_app].
    revert k. induction l1; inversion 1; naive_solver.
  Qed.
  Lemma Forall2_app_inv_r l k1 k2 :
    Forall2 P l (k1 ++ k2)
       l1 l2, Forall2 P l1 k1 Forall2 P l2 k2 l = l1 ++ l2.
  Proof.
    split; [|intros (?&?&?&?&->); by apply Forall2_app].
    revert l. induction k1; inversion 1; naive_solver.
  Qed.

  Lemma Forall2_tail l k : Forall2 P l k Forall2 P (tail l) (tail k).
  Proof. destruct 1; simpl; auto. Qed.
  Lemma Forall2_take l k n : Forall2 P l k Forall2 P (take n l) (take n k).
  Proof. intros Hl. revert n. induction Hl; intros [|?]; simpl; auto. Qed.
  Lemma Forall2_drop l k n : Forall2 P l k Forall2 P (drop n l) (drop n k).
  Proof. intros Hl. revert n. induction Hl; intros [|?]; simpl; auto. Qed.

  Lemma Forall2_lookup l k :
    Forall2 P l k i, option_Forall2 P (l !! i) (k !! i).
  Proof.
    split; [induction 1; intros [|?]; simpl; try constructor; eauto|].
    revert k. induction l as [|x l IH]; intros [| y k] H.
    - done.
    - feed inversion (H 0).
    - feed inversion (H 0).
    - constructor; [by feed inversion (H 0)|]. apply (IH _ $ λ i, H (S i)).
  Qed.
  Lemma Forall2_lookup_lr l k i x y :
    Forall2 P l k l !! i = Some x k !! i = Some y P x y.
  Proof. rewrite Forall2_lookup; intros H; destruct (H i); naive_solver. Qed.
  Lemma Forall2_lookup_l l k i x :
    Forall2 P l k l !! i = Some x y, k !! i = Some y P x y.
  Proof. rewrite Forall2_lookup; intros H; destruct (H i); naive_solver. Qed.
  Lemma Forall2_lookup_r l k i y :
    Forall2 P l k k !! i = Some y x, l !! i = Some x P x y.
  Proof. rewrite Forall2_lookup; intros H; destruct (H i); naive_solver. Qed.
  Lemma Forall2_same_length_lookup_2 l k :
    length l = length k
    ( i x y, l !! i = Some x k !! i = Some y P x y) Forall2 P l k.
  Proof.
    rewrite <-Forall2_same_length. intros Hl Hlookup.
    induction Hl as [|?????? IH]; constructor; [by apply (Hlookup 0)|].
    apply IH. apply (λ i, Hlookup (S i)).
  Qed.
  Lemma Forall2_same_length_lookup l k :
    Forall2 P l k
      length l = length k
      ( i x y, l !! i = Some x k !! i = Some y P x y).
  Proof.
    naive_solver eauto using Forall2_length,
      Forall2_lookup_lr, Forall2_same_length_lookup_2.
  Qed.

  Lemma Forall2_alter_l f l k i :
    Forall2 P l k
    ( x y, l !! i = Some x k !! i = Some y P x y P (f x) y)
    Forall2 P (alter f i l) k.
  Proof. intros Hl. revert i. induction Hl; intros [|]; constructor; auto. Qed.
  Lemma Forall2_alter_r f l k i :
    Forall2 P l k
    ( x y, l !! i = Some x k !! i = Some y P x y P x (f y))
    Forall2 P l (alter f i k).
  Proof. intros Hl. revert i. induction Hl; intros [|]; constructor; auto. Qed.
  Lemma Forall2_alter f g l k i :
    Forall2 P l k
    ( x y, l !! i = Some x k !! i = Some y P x y P (f x) (g y))
    Forall2 P (alter f i l) (alter g i k).
  Proof. intros Hl. revert i. induction Hl; intros [|]; constructor; auto. Qed.

  Lemma Forall2_insert l k x y i :
    Forall2 P l k P x y Forall2 P (<[i:=x]> l) (<[i:=y]> k).
  Proof. intros Hl. revert i. induction Hl; intros [|]; constructor; auto. Qed.
  Lemma Forall2_inserts l k l' k' i :
    Forall2 P l k Forall2 P l' k'
    Forall2 P (list_inserts i l' l) (list_inserts i k' k).
  Proof. intros ? H. revert i. induction H; eauto using Forall2_insert. Qed.

  Lemma Forall2_delete l k i :
    Forall2 P l k Forall2 P (delete i l) (delete i k).
  Proof. intros Hl. revert i. induction Hl; intros [|]; simpl; intuition. Qed.
  Lemma Forall2_option_list mx my :
    option_Forall2 P mx my Forall2 P (option_list mx) (option_list my).
  Proof. destruct 1; by constructor. Qed.

  Lemma Forall2_filter Q1 Q2 `{ x, Decision (Q1 x), y, Decision (Q2 y)} l k:
    ( x y, P x y Q1 x Q2 y)
    Forall2 P l k Forall2 P (filter Q1 l) (filter Q2 k).
  Proof.
    intros HP; induction 1 as [|x y l k]; unfold filter; simpl; auto.
    simplify_option_eq by (by rewrite <-(HP x y)); repeat constructor; auto.
  Qed.

  Lemma Forall2_replicate_l k n x :
    length k = n Forall (P x) k Forall2 P (replicate n x) k.
  Proof. intros <-. induction 1; simpl; auto. Qed.
  Lemma Forall2_replicate_r l n y :
    length l = n Forall (flip P y) l Forall2 P l (replicate n y).
  Proof. intros <-. induction 1; simpl; auto. Qed.
  Lemma Forall2_replicate n x y :
    P x y Forall2 P (replicate n x) (replicate n y).
  Proof. induction n; simpl; constructor; auto. Qed.

  Lemma Forall2_reverse l k : Forall2 P l k Forall2 P (reverse l) (reverse k).
  Proof.
    induction 1; rewrite ?reverse_nil, ?reverse_cons; eauto using Forall2_app.
  Qed.
  Lemma Forall2_last l k : Forall2 P l k option_Forall2 P (last l) (last k).
  Proof. induction 1 as [|????? []]; simpl; repeat constructor; auto. Qed.

  Lemma Forall2_resize l k x y n :
    P x y Forall2 P l k Forall2 P (resize n x l) (resize n y k).
  Proof.
    intros. rewrite !resize_spec, (Forall2_length l k) by done.
    auto using Forall2_app, Forall2_take, Forall2_replicate.
  Qed.
  Lemma Forall2_resize_l l k x y n m :
    P x y Forall (flip P y) l
    Forall2 P (resize n x l) k Forall2 P (resize m x l) (resize m y k).
  Proof.
    intros. destruct (decide (m n)).
    { rewrite <-(resize_resize l m n) by done. by apply Forall2_resize. }
    intros. assert (n = length k); subst.
    { by rewrite <-(Forall2_length (resize n x l) k), resize_length. }
    rewrite (le_plus_minus (length k) m), !resize_plus,
      resize_all, drop_all, resize_nil by lia.
    auto using Forall2_app, Forall2_replicate_r,
      Forall_resize, Forall_drop, resize_length.
  Qed.
  Lemma Forall2_resize_r l k x y n m :
    P x y Forall (P x) k
    Forall2 P l (resize n y k) Forall2 P (resize m x l) (resize m y k).
  Proof.
    intros. destruct (decide (m n)).
    { rewrite <-(resize_resize k m n) by done. by apply Forall2_resize. }
    assert (n = length l); subst.
    { by rewrite (Forall2_length l (resize n y k)), resize_length. }
    rewrite (le_plus_minus (length l) m), !resize_plus,
      resize_all, drop_all, resize_nil by lia.
    auto using Forall2_app, Forall2_replicate_l,
      Forall_resize, Forall_drop, resize_length.
  Qed.
  Lemma Forall2_resize_r_flip l k x y n m :
    P x y Forall (P x) k
    length k = m Forall2 P l (resize n y k) Forall2 P (resize m x l) k.
  Proof.
    intros ?? <- ?. rewrite <-(resize_all k y) at 2.
    apply Forall2_resize_r with n; auto using Forall_true.
  Qed.

  Lemma Forall2_sublist_lookup_l l k n i l' :
    Forall2 P l k sublist_lookup n i l = Some l'
     k', sublist_lookup n i k = Some k' Forall2 P l' k'.
  Proof.
    unfold sublist_lookup. intros Hlk Hl.
     (take i (drop n k)); simplify_option_eq.
    - auto using Forall2_take, Forall2_drop.
    - apply Forall2_length in Hlk; lia.
  Qed.
  Lemma Forall2_sublist_lookup_r l k n i k' :
    Forall2 P l k sublist_lookup n i k = Some k'
     l', sublist_lookup n i l = Some l' Forall2 P l' k'.
  Proof.
    intro. unfold sublist_lookup.
    erewrite Forall2_length by eauto; intros; simplify_option_eq.
    eauto using Forall2_take, Forall2_drop.
  Qed.
  Lemma Forall2_sublist_alter f g l k i n l' k' :
    Forall2 P l k sublist_lookup i n l = Some l'
    sublist_lookup i n k = Some k' Forall2 P (f l') (g k')
    Forall2 P (sublist_alter f i n l) (sublist_alter g i n k).
  Proof.
    intro. unfold sublist_alter, sublist_lookup.
    erewrite Forall2_length by eauto; intros; simplify_option_eq.
    auto using Forall2_app, Forall2_drop, Forall2_take.
  Qed.
  Lemma Forall2_sublist_alter_l f l k i n l' k' :
    Forall2 P l k sublist_lookup i n l = Some l'
    sublist_lookup i n k = Some k' Forall2 P (f l') k'
    Forall2 P (sublist_alter f i n l) k.
  Proof.
    intro. unfold sublist_lookup, sublist_alter.
    erewrite <-Forall2_length by eauto; intros; simplify_option_eq.
    apply Forall2_app_l;
      rewrite ?take_length_le by lia; auto using Forall2_take.
    apply Forall2_app_l; erewrite Forall2_length, take_length,
      drop_length, <-Forall2_length, Min.min_l by eauto with lia; [done|].
    rewrite drop_drop; auto using Forall2_drop.
  Qed.

  Global Instance Forall2_dec `{dec : x y, Decision (P x y)} :
     l k, Decision (Forall2 P l k).
  Proof.
   refine (
    fix go l k : Decision (Forall2 P l k) :=
    match l, k with
    | [], []left _
    | x :: l, y :: kcast_if_and (decide (P x y)) (go l k)
    | _, _right _
    end); clear dec go; abstract first [by constructor | by inversion 1].
  Defined.
End Forall2.

Section Forall2_proper.
  Context {A} (R : relation A).

  Global Instance: Reflexive R Reflexive (Forall2 R).
  Proof. intros ? l. induction l; by constructor. Qed.
  Global Instance: Symmetric R Symmetric (Forall2 R).
  Proof. intros. induction 1; constructor; auto. Qed.
  Global Instance: Transitive R Transitive (Forall2 R).
  Proof. intros ????. apply Forall2_transitive. by apply @transitivity. Qed.
  Global Instance: Equivalence R Equivalence (Forall2 R).
  Proof. split; apply _. Qed.
  Global Instance: PreOrder R PreOrder (Forall2 R).
  Proof. split; apply _. Qed.
  Global Instance: AntiSymm (=) R AntiSymm (=) (Forall2 R).
  Proof. induction 2; inversion_clear 1; f_equal; auto. Qed.

  Global Instance: Proper (R ==> Forall2 R ==> Forall2 R) (::).
  Proof. by constructor. Qed.
  Global Instance: Proper (Forall2 R ==> Forall2 R ==> Forall2 R) (++).
  Proof. repeat intro. by apply Forall2_app. Qed.
  Global Instance: Proper (Forall2 R ==> (=)) length.
  Proof. repeat intro. eauto using Forall2_length. Qed.
  Global Instance: Proper (Forall2 R ==> Forall2 R) tail.
  Proof. repeat intro. eauto using Forall2_tail. Qed.
  Global Instance: Proper (Forall2 R ==> Forall2 R) (take n).
  Proof. repeat intro. eauto using Forall2_take. Qed.
  Global Instance: Proper (Forall2 R ==> Forall2 R) (drop n).
  Proof. repeat intro. eauto using Forall2_drop. Qed.

  Global Instance: Proper (Forall2 R ==> option_Forall2 R) (lookup i).
  Proof. repeat intro. by apply Forall2_lookup. Qed.
  Global Instance:
    Proper (R ==> R) f Proper (Forall2 R ==> Forall2 R) (alter f i).
  Proof. repeat intro. eauto using Forall2_alter. Qed.
  Global Instance: Proper (R ==> Forall2 R ==> Forall2 R) (insert i).
  Proof. repeat intro. eauto using Forall2_insert. Qed.
  Global Instance:
    Proper (Forall2 R ==> Forall2 R ==> Forall2 R) (list_inserts i).
  Proof. repeat intro. eauto using Forall2_inserts. Qed.
  Global Instance: Proper (Forall2 R ==> Forall2 R) (delete i).
  Proof. repeat intro. eauto using Forall2_delete. Qed.

  Global Instance: Proper (option_Forall2 R ==> Forall2 R) option_list.
  Proof. repeat intro. eauto using Forall2_option_list. Qed.
  Global Instance: P `{ x, Decision (P x)},
    Proper (R ==> iff) P Proper (Forall2 R ==> Forall2 R) (filter P).
  Proof. repeat intro; eauto using Forall2_filter. Qed.

  Global Instance: Proper (R ==> Forall2 R) (replicate n).
  Proof. repeat intro. eauto using Forall2_replicate. Qed.
  Global Instance: Proper (Forall2 R ==> Forall2 R) reverse.
  Proof. repeat intro. eauto using Forall2_reverse. Qed.
  Global Instance: Proper (Forall2 R ==> option_Forall2 R) last.
  Proof. repeat intro. eauto using Forall2_last. Qed.
  Global Instance: Proper (R ==> Forall2 R ==> Forall2 R) (resize n).
  Proof. repeat intro. eauto using Forall2_resize. Qed.
End Forall2_proper.

Section Forall3.
  Context {A B C} (P : A B C Prop).
  Hint Extern 0 (Forall3 _ _ _ _) ⇒ constructor.

  Lemma Forall3_app l1 l2 k1 k2 k1' k2' :
    Forall3 P l1 k1 k1' Forall3 P l2 k2 k2'
    Forall3 P (l1 ++ l2) (k1 ++ k2) (k1' ++ k2').
  Proof. induction 1; simpl; auto. Qed.
  Lemma Forall3_cons_inv_l x l k k' :
    Forall3 P (x :: l) k k' y k2 z k2',
      k = y :: k2 k' = z :: k2' P x y z Forall3 P l k2 k2'.
  Proof. inversion_clear 1; naive_solver. Qed.
  Lemma Forall3_app_inv_l l1 l2 k k' :
    Forall3 P (l1 ++ l2) k k' k1 k2 k1' k2',
     k = k1 ++ k2 k' = k1' ++ k2' Forall3 P l1 k1 k1' Forall3 P l2 k2 k2'.
  Proof.
    revert k k'. induction l1 as [|x l1 IH]; simpl; inversion_clear 1.
    - by repeat eexists; eauto.
    - by repeat eexists; eauto.
    - edestruct IH as (?&?&?&?&?&?&?&?); eauto; naive_solver.
  Qed.
  Lemma Forall3_cons_inv_m l y k k' :
    Forall3 P l (y :: k) k' x l2 z k2',
      l = x :: l2 k' = z :: k2' P x y z Forall3 P l2 k k2'.
  Proof. inversion_clear 1; naive_solver. Qed.
  Lemma Forall3_app_inv_m l k1 k2 k' :
    Forall3 P l (k1 ++ k2) k' l1 l2 k1' k2',
     l = l1 ++ l2 k' = k1' ++ k2' Forall3 P l1 k1 k1' Forall3 P l2 k2 k2'.
  Proof.
    revert l k'. induction k1 as [|x k1 IH]; simpl; inversion_clear 1.
    - by repeat eexists; eauto.
    - by repeat eexists; eauto.
    - edestruct IH as (?&?&?&?&?&?&?&?); eauto; naive_solver.
  Qed.
  Lemma Forall3_cons_inv_r l k z k' :
    Forall3 P l k (z :: k') x l2 y k2,
      l = x :: l2 k = y :: k2 P x y z Forall3 P l2 k2 k'.
  Proof. inversion_clear 1; naive_solver. Qed.
  Lemma Forall3_app_inv_r l k k1' k2' :
    Forall3 P l k (k1' ++ k2') l1 l2 k1 k2,
      l = l1 ++ l2 k = k1 ++ k2 Forall3 P l1 k1 k1' Forall3 P l2 k2 k2'.
  Proof.
    revert l k. induction k1' as [|x k1' IH]; simpl; inversion_clear 1.
    - by repeat eexists; eauto.
    - by repeat eexists; eauto.
    - edestruct IH as (?&?&?&?&?&?&?&?); eauto; naive_solver.
  Qed.
  Lemma Forall3_impl (Q : A B C Prop) l k k' :
    Forall3 P l k k' ( x y z, P x y z Q x y z) Forall3 Q l k k'.
  Proof. intros Hl ?; induction Hl; auto. Defined.
  Lemma Forall3_length_lm l k k' : Forall3 P l k k' length l = length k.
  Proof. by induction 1; f_equal/=. Qed.
  Lemma Forall3_length_lr l k k' : Forall3 P l k k' length l = length k'.
  Proof. by induction 1; f_equal/=. Qed.
  Lemma Forall3_lookup_lmr l k k' i x y z :
    Forall3 P l k k'
    l !! i = Some x k !! i = Some y k' !! i = Some z P x y z.
  Proof.
    intros H. revert i. induction H; intros [|?] ???; simplify_eq/=; eauto.
  Qed.
  Lemma Forall3_lookup_l l k k' i x :
    Forall3 P l k k' l !! i = Some x
     y z, k !! i = Some y k' !! i = Some z P x y z.
  Proof.
    intros H. revert i. induction H; intros [|?] ?; simplify_eq/=; eauto.
  Qed.
  Lemma Forall3_lookup_m l k k' i y :
    Forall3 P l k k' k !! i = Some y
     x z, l !! i = Some x k' !! i = Some z P x y z.
  Proof.
    intros H. revert i. induction H; intros [|?] ?; simplify_eq/=; eauto.
  Qed.
  Lemma Forall3_lookup_r l k k' i z :
    Forall3 P l k k' k' !! i = Some z
     x y, l !! i = Some x k !! i = Some y P x y z.
  Proof.
    intros H. revert i. induction H; intros [|?] ?; simplify_eq/=; eauto.
  Qed.
  Lemma Forall3_alter_lm f g l k k' i :
    Forall3 P l k k'
    ( x y z, l !! i = Some x k !! i = Some y k' !! i = Some z
      P x y z P (f x) (g y) z)
    Forall3 P (alter f i l) (alter g i k) k'.
  Proof. intros Hl. revert i. induction Hl; intros [|]; auto. Qed.
End Forall3.

Section Forall4.
  Context {A B C D} (P : A B C D Prop).
  Hint Extern 0 (Forall4 _ _ _ _ _) ⇒ constructor.
  Lemma Forall4_app l1 l2 k1 k2 k1' k2' j1 j2:
    Forall4 P l1 k1 k1' j1 Forall4 P l2 k2 k2' j2
    Forall4 P (l1 ++ l2) (k1 ++ k2) (k1' ++ k2') (j1 ++ j2).
  Proof. induction 1; simpl; auto. Qed.
  Lemma Forall4_cons_inv_l x l k k' j :
    Forall4 P (x :: l) k k' j y k2 z k2' a j2,
      k = y :: k2 k' = z :: k2' j = a :: j2
      P x y z a Forall4 P l k2 k2' j2.
  Proof. inversion_clear 1; naive_solver. Qed.
  Lemma Forall4_app_inv_l l1 l2 k k' j:
    Forall4 P (l1 ++ l2) k k' j k1 k2 k1' k2' j1 j2,
     k = k1 ++ k2 k' = k1' ++ k2' j = j1 ++ j2
     Forall4 P l1 k1 k1' j1 Forall4 P l2 k2 k2' j2.
  Proof.
    revert k k' j. induction l1 as [|x l1 IH]; simpl; inversion_clear 1.
    - by repeat eexists; eauto.
    - by repeat eexists; eauto.
    - edestruct IH as (?&?&?&?&?&?&?&?&?&?); eauto; naive_solver.
  Qed.
  Lemma Forall4_impl (Q : A B C D Prop) l k k' j:
    Forall4 P l k k' j ( x y z a, P x y z a Q x y z a) Forall4 Q l k k' j.
  Proof. intros Hl ?; induction Hl; auto. Defined.
  Lemma Forall4_length_lm l k k' j : Forall4 P l k k' j length l = length k.
  Proof. by induction 1; f_equal/=. Qed.
  Lemma Forall4_length_lr l k k' j : Forall4 P l k k' j length l = length k'.
  Proof. by induction 1; f_equal/=. Qed.
  Lemma Forall4_length_lrr l k k' j : Forall4 P l k k' j length l = length j.
  Proof. by induction 1; f_equal/=. Qed.
  Lemma Forall4_lookup_l l k k' j i x :
    Forall4 P l k k' j l !! i = Some x
     y z a, k !! i = Some y k' !! i = Some z j !! i = Some a
               P x y z a.
  Proof.
    intros H. revert i. induction H; intros [|?] ?; simplify_eq/=; eauto 15.
  Qed.
End Forall4.

Section Forall5.
  Context {A B C D E} (P : A B C D E Prop).
  Hint Extern 0 (Forall5 _ _ _ _ _ _) ⇒ constructor.
  Lemma Forall5_app l1 l2 k1 k2 k1' k2' j1 j2 j1' j2':
    Forall5 P l1 k1 k1' j1 j1' Forall5 P l2 k2 k2' j2 j2'
    Forall5 P (l1 ++ l2) (k1 ++ k2) (k1' ++ k2') (j1 ++ j2) (j1' ++ j2').
  Proof. induction 1; simpl; auto. Qed.
  Lemma Forall5_cons_inv_l x l k k' j j' :
    Forall5 P (x :: l) k k' j j' y k2 z k2' a j2 b j2',
      k = y :: k2 k' = z :: k2' j = a :: j2
      j' = b :: j2' P x y z a b Forall5 P l k2 k2' j2 j2'.
  Proof. inversion_clear 1; naive_solver. Qed.
  Lemma Forall5_app_inv_l l1 l2 k k' j j' :
    Forall5 P (l1 ++ l2) k k' j j' k1 k2 k1' k2' j1 j2 j1' j2',
     k = k1 ++ k2 k' = k1' ++ k2' j = j1 ++ j2 j' = j1' ++ j2'
     Forall5 P l1 k1 k1' j1 j1' Forall5 P l2 k2 k2' j2 j2'.
  Proof.
    revert k k' j j'. induction l1 as [|x l1 IH]; simpl; inversion_clear 1.
    - by repeat eexists; eauto.
    - by repeat eexists; eauto.
    - edestruct IH as (?&?&?&?&?&?&?&?&?&?&?&?); eauto; naive_solver.
  Qed.
  Lemma Forall5_impl (Q : A B C D E Prop) l k k' j j':
    Forall5 P l k k' j j' ( x y z a b, P x y z a b Q x y z a b) Forall5 Q l k k' j j'.
  Proof. intros Hl ?; induction Hl; auto. Defined.
  Lemma Forall5_length_lm l k k' j j' : Forall5 P l k k' j j' length l = length k.
  Proof. by induction 1; f_equal/=. Qed.
  Lemma Forall5_length_lr l k k' j j' : Forall5 P l k k' j j' length l = length k'.
  Proof. by induction 1; f_equal/=. Qed.
  Lemma Forall5_length_lrr l k k' j j' : Forall5 P l k k' j j' length l = length j.
  Proof. by induction 1; f_equal/=. Qed.
  Lemma Forall5_length_lrrr l k k' j j' : Forall5 P l k k' j j' length l = length j'.
  Proof. by induction 1; f_equal/=. Qed.
  Lemma Forall5_lookup_l l k k' j j' i x :
    Forall5 P l k k' j j' l !! i = Some x
     y z a b, k !! i = Some y k' !! i = Some z j !! i = Some a
               j' !! i = Some b P x y z a b.
  Proof.
    intros H. revert i. induction H; intros [|?] ?; simplify_eq/=; eauto 15.
  Qed.
End Forall5.

Setoids
Section setoid.
  Context `{Equiv A} `{!Equivalence ((≡) : relation A)}.
  Implicit Types l k : list A.

  Lemma equiv_Forall2 l k : l k Forall2 (≡) l k.
  Proof. split; induction 1; constructor; auto. Qed.
  Lemma list_equiv_lookup l k : l k i, l !! i k !! i.
  Proof.
    rewrite equiv_Forall2, Forall2_lookup.
    by setoid_rewrite equiv_option_Forall2.
  Qed.

  Global Instance list_equivalence : Equivalence ((≡) : relation (list A)).
  Proof.
    split.
    - intros l. by apply equiv_Forall2.
    - intros l k; rewrite !equiv_Forall2; by intros.
    - intros l1 l2 l3; rewrite !equiv_Forall2; intros; by trans l2.
  Qed.
  Global Instance list_leibniz `{!LeibnizEquiv A} : LeibnizEquiv (list A).
  Proof. induction 1; f_equal; fold_leibniz; auto. Qed.

  Global Instance cons_proper : Proper ((≡) ==> (≡) ==> (≡)) (@cons A).
  Proof. by constructor. Qed.
  Global Instance app_proper : Proper ((≡) ==> (≡) ==> (≡)) (@app A).
  Proof. induction 1; intros ???; simpl; try constructor; auto. Qed.
  Global Instance length_proper : Proper ((≡) ==> (=)) (@length A).
  Proof. induction 1; f_equal/=; auto. Qed.
  Global Instance tail_proper : Proper ((≡) ==> (≡)) (@tail A).
  Proof. by destruct 1. Qed.
  Global Instance take_proper n : Proper ((≡) ==> (≡)) (@take A n).
  Proof. induction n; destruct 1; constructor; auto. Qed.
  Global Instance drop_proper n : Proper ((≡) ==> (≡)) (@drop A n).
  Proof. induction n; destruct 1; simpl; try constructor; auto. Qed.
  Global Instance list_lookup_proper i :
    Proper ((≡) ==> (≡)) (lookup (M:=list A) i).
  Proof. induction i; destruct 1; simpl; f_equiv; auto. Qed.
  Global Instance list_alter_proper f i :
    Proper ((≡) ==> (≡)) f Proper ((≡) ==> (≡)) (alter (M:=list A) f i).
  Proof. intros. induction i; destruct 1; constructor; eauto. Qed.
  Global Instance list_insert_proper i :
    Proper ((≡) ==> (≡) ==> (≡)) (insert (M:=list A) i).
  Proof. intros ???; induction i; destruct 1; constructor; eauto. Qed.
  Global Instance list_inserts_proper i :
    Proper ((≡) ==> (≡) ==> (≡)) (@list_inserts A i).
  Proof.
    intros k1 k2 Hk; revert i.
    induction Hk; intros ????; simpl; try f_equiv; naive_solver.
  Qed.
  Global Instance list_delete_proper i :
    Proper ((≡) ==> (≡)) (delete (M:=list A) i).
  Proof. induction i; destruct 1; try constructor; eauto. Qed.
  Global Instance option_list_proper : Proper ((≡) ==> (≡)) (@option_list A).
  Proof. destruct 1; by constructor. Qed.
  Global Instance list_filter_proper P `{ x, Decision (P x)} :
    Proper ((≡) ==> iff) P Proper ((≡) ==> (≡)) (filter (B:=list A) P).
  Proof. intros ???. rewrite !equiv_Forall2. by apply Forall2_filter. Qed.
  Global Instance replicate_proper n : Proper ((≡) ==> (≡)) (@replicate A n).
  Proof. induction n; constructor; auto. Qed.
  Global Instance reverse_proper : Proper ((≡) ==> (≡)) (@reverse A).
  Proof. induction 1; rewrite ?reverse_cons; repeat (done || f_equiv). Qed.
  Global Instance last_proper : Proper ((≡) ==> (≡)) (@last A).
  Proof. induction 1 as [|????? []]; simpl; repeat (done || f_equiv). Qed.
  Global Instance resize_proper n : Proper ((≡) ==> (≡) ==> (≡)) (@resize A n).
  Proof. induction n; destruct 2; simpl; repeat (auto || f_equiv). Qed.
End setoid.

Properties of the monadic operations

Section fmap.
  Context {A B : Type} (f : A B).

  Lemma list_fmap_id (l : list A) : id <$> l = l.
  Proof. induction l; f_equal/=; auto. Qed.
  Lemma list_fmap_compose {C} (g : B C) l : g f <$> l = g <$> f <$> l.
  Proof. induction l; f_equal/=; auto. Qed.
  Lemma list_fmap_ext (g : A B) (l1 l2 : list A) :
    ( x, f x = g x) l1 = l2 fmap f l1 = fmap g l2.
  Proof. intros ? <-. induction l1; f_equal/=; auto. Qed.
  Lemma list_fmap_setoid_ext `{Equiv B} (g : A B) l :
    ( x, f x g x) f <$> l g <$> l.
  Proof. induction l; constructor; auto. Qed.

  Global Instance: Inj (=) (=) f Inj (=) (=) (fmap f).
  Proof.
    intros ? l1. induction l1 as [|x l1 IH]; [by intros [|??]|].
    intros [|??]; intros; f_equal/=; simplify_eq; auto.
  Qed.

  Definition fmap_nil : f <$> [] = [] := eq_refl.
  Definition fmap_cons x l : f <$> x :: l = f x :: f <$> l := eq_refl.

  Lemma fmap_app l1 l2 : f <$> l1 ++ l2 = (f <$> l1) ++ (f <$> l2).
  Proof. by induction l1; f_equal/=. Qed.
  Lemma fmap_nil_inv k : f <$> k = [] k = [].
  Proof. by destruct k. Qed.
  Lemma fmap_cons_inv y l k :
    f <$> l = y :: k x l', y = f x k = f <$> l' l = x :: l'.
  Proof. intros. destruct l; simplify_eq/=; eauto. Qed.
  Lemma fmap_app_inv l k1 k2 :
    f <$> l = k1 ++ k2 l1 l2, k1 = f <$> l1 k2 = f <$> l2 l = l1 ++ l2.
  Proof.
    revert l. induction k1 as [|y k1 IH]; simpl; [intros l ?; by eexists [],l|].
    intros [|x l] ?; simplify_eq/=.
    destruct (IH l) as (l1&l2&->&->&->); [done|]. by (x :: l1), l2.
  Qed.

  Lemma fmap_length l : length (f <$> l) = length l.
  Proof. by induction l; f_equal/=. Qed.
  Lemma fmap_reverse l : f <$> reverse l = reverse (f <$> l).
  Proof.
    induction l as [|?? IH]; csimpl; by rewrite ?reverse_cons, ?fmap_app, ?IH.
  Qed.
  Lemma fmap_tail l : f <$> tail l = tail (f <$> l).
  Proof. by destruct l. Qed.
  Lemma fmap_last l : last (f <$> l) = f <$> last l.
  Proof. induction l as [|? []]; simpl; auto. Qed.
  Lemma fmap_replicate n x : f <$> replicate n x = replicate n (f x).
  Proof. by induction n; f_equal/=. Qed.
  Lemma fmap_take n l : f <$> take n l = take n (f <$> l).
  Proof. revert n. by induction l; intros [|?]; f_equal/=. Qed.
  Lemma fmap_drop n l : f <$> drop n l = drop n (f <$> l).
  Proof. revert n. by induction l; intros [|?]; f_equal/=. Qed.
  Lemma fmap_resize n x l : f <$> resize n x l = resize n (f x) (f <$> l).
  Proof.
    revert n. induction l; intros [|?]; f_equal/=; auto using fmap_replicate.
  Qed.
  Lemma const_fmap (l : list A) (y : B) :
    ( x, f x = y) f <$> l = replicate (length l) y.
  Proof. intros; induction l; f_equal/=; auto. Qed.
  Lemma list_lookup_fmap l i : (f <$> l) !! i = f <$> (l !! i).
  Proof. revert i. induction l; by intros [|]. Qed.
  Lemma list_lookup_fmap_inv l i x :
    (f <$> l) !! i = Some x y, x = f y l !! i = Some y.
  Proof.
    intros Hi. rewrite list_lookup_fmap in Hi.
    destruct (l !! i) eqn:?; simplify_eq/=; eauto.
  Qed.
  Lemma list_alter_fmap (g : A A) (h : B B) l i :
    Forall (λ x, f (g x) = h (f x)) l f <$> alter g i l = alter h i (f <$> l).
  Proof. intros Hl. revert i. by induction Hl; intros [|i]; f_equal/=. Qed.

  Lemma elem_of_list_fmap_1 l x : x l f x f <$> l.
  Proof. induction 1; csimpl; rewrite elem_of_cons; intuition. Qed.
  Lemma elem_of_list_fmap_1_alt l x y : x l y = f x y f <$> l.
  Proof. intros. subst. by apply elem_of_list_fmap_1. Qed.
  Lemma elem_of_list_fmap_2 l x : x f <$> l y, x = f y y l.
  Proof.
    induction l as [|y l IH]; simpl; inversion_clear 1.
    - y. split; [done | by left].
    - destruct IH as [z [??]]. done. z. split; [done | by right].
  Qed.
  Lemma elem_of_list_fmap l x : x f <$> l y, x = f y y l.
  Proof.
    naive_solver eauto using elem_of_list_fmap_1_alt, elem_of_list_fmap_2.
  Qed.

  Lemma NoDup_fmap_1 l : NoDup (f <$> l) NoDup l.
  Proof.
    induction l; simpl; inversion_clear 1; constructor; auto.
    rewrite elem_of_list_fmap in ×. naive_solver.
  Qed.
  Lemma NoDup_fmap_2 `{!Inj (=) (=) f} l : NoDup l NoDup (f <$> l).
  Proof.
    induction 1; simpl; constructor; trivial. rewrite elem_of_list_fmap.
    intros [y [Hxy ?]]. apply (inj f) in Hxy. by subst.
  Qed.
  Lemma NoDup_fmap `{!Inj (=) (=) f} l : NoDup (f <$> l) NoDup l.
  Proof. split; auto using NoDup_fmap_1, NoDup_fmap_2. Qed.

  Global Instance fmap_sublist: Proper (sublist ==> sublist) (fmap f).
  Proof. induction 1; simpl; econstructor; eauto. Qed.
  Global Instance fmap_contains: Proper (contains ==> contains) (fmap f).
  Proof. induction 1; simpl; econstructor; eauto. Qed.
  Global Instance fmap_Permutation: Proper ((≡ₚ) ==> (≡ₚ)) (fmap f).
  Proof. induction 1; simpl; econstructor; eauto. Qed.

  Lemma Forall_fmap_ext_1 (g : A B) (l : list A) :
    Forall (λ x, f x = g x) l fmap f l = fmap g l.
  Proof. by induction 1; f_equal/=. Qed.
  Lemma Forall_fmap_ext (g : A B) (l : list A) :
    Forall (λ x, f x = g x) l fmap f l = fmap g l.
  Proof.
    split; [auto using Forall_fmap_ext_1|].
    induction l; simpl; constructor; simplify_eq; auto.
  Qed.
  Lemma Forall_fmap (P : B Prop) l : Forall P (f <$> l) Forall (P f) l.
  Proof. split; induction l; inversion_clear 1; constructor; auto. Qed.
  Lemma Exists_fmap (P : B Prop) l : Exists P (f <$> l) Exists (P f) l.
  Proof. split; induction l; inversion 1; constructor; by auto. Qed.

  Lemma Forall2_fmap_l {C} (P : B C Prop) l1 l2 :
    Forall2 P (f <$> l1) l2 Forall2 (P f) l1 l2.
  Proof.
    split; revert l2; induction l1; inversion_clear 1; constructor; auto.
  Qed.
  Lemma Forall2_fmap_r {C} (P : C B Prop) l1 l2 :
    Forall2 P l1 (f <$> l2) Forall2 (λ x, P x f) l1 l2.
  Proof.
    split; revert l1; induction l2; inversion_clear 1; constructor; auto.
  Qed.
  Lemma Forall2_fmap_1 {C D} (g : C D) (P : B D Prop) l1 l2 :
    Forall2 P (f <$> l1) (g <$> l2) Forall2 (λ x1 x2, P (f x1) (g x2)) l1 l2.
  Proof. revert l2; induction l1; intros [|??]; inversion_clear 1; auto. Qed.
  Lemma Forall2_fmap_2 {C D} (g : C D) (P : B D Prop) l1 l2 :
    Forall2 (λ x1 x2, P (f x1) (g x2)) l1 l2 Forall2 P (f <$> l1) (g <$> l2).
  Proof. induction 1; csimpl; auto. Qed.
  Lemma Forall2_fmap {C D} (g : C D) (P : B D Prop) l1 l2 :
    Forall2 P (f <$> l1) (g <$> l2) Forall2 (λ x1 x2, P (f x1) (g x2)) l1 l2.
  Proof. split; auto using Forall2_fmap_1, Forall2_fmap_2. Qed.

  Lemma list_fmap_bind {C} (g : B list C) l : (f <$> l) ≫= g = l ≫= g f.
  Proof. by induction l; f_equal/=. Qed.
End fmap.

Lemma list_alter_fmap_mono {A} (f : A A) (g : A A) l i :
  Forall (λ x, f (g x) = g (f x)) l f <$> alter g i l = alter g i (f <$> l).
Proof. auto using list_alter_fmap. Qed.
Lemma NoDup_fmap_fst {A B} (l : list (A × B)) :
  ( x y1 y2, (x,y1) l (x,y2) l y1 = y2) NoDup l NoDup (l.*1).
Proof.
  intros Hunique. induction 1 as [|[x1 y1] l Hin Hnodup IH]; csimpl; constructor.
  - rewrite elem_of_list_fmap.
    intros [[x2 y2] [??]]; simpl in *; subst. destruct Hin.
    rewrite (Hunique x2 y1 y2); rewrite ?elem_of_cons; auto.
  - apply IH. intros. eapply Hunique; rewrite ?elem_of_cons; eauto.
Qed.

Section bind.
  Context {A B : Type} (f : A list B).

  Lemma list_bind_ext (g : A list B) l1 l2 :
    ( x, f x = g x) l1 = l2 l1 ≫= f = l2 ≫= g.
  Proof. intros ? <-. by induction l1; f_equal/=. Qed.
  Lemma Forall_bind_ext (g : A list B) (l : list A) :
    Forall (λ x, f x = g x) l l ≫= f = l ≫= g.
  Proof. by induction 1; f_equal/=. Qed.
  Global Instance bind_sublist: Proper (sublist ==> sublist) (mbind f).
  Proof.
    induction 1; simpl; auto;
      [by apply sublist_app|by apply sublist_inserts_l].
  Qed.
  Global Instance bind_contains: Proper (contains ==> contains) (mbind f).
  Proof.
    induction 1; csimpl; auto.
    - by apply contains_app.
    - by rewrite !(assoc_L (++)), (comm (++) (f _)).
    - by apply contains_inserts_l.
    - etrans; eauto.
  Qed.
  Global Instance bind_Permutation: Proper ((≡ₚ) ==> (≡ₚ)) (mbind f).
  Proof.
    induction 1; csimpl; auto.
    - by f_equiv.
    - by rewrite !(assoc_L (++)), (comm (++) (f _)).
    - etrans; eauto.
  Qed.
  Lemma bind_cons x l : (x :: l) ≫= f = f x ++ l ≫= f.
  Proof. done. Qed.
  Lemma bind_singleton x : [x] ≫= f = f x.
  Proof. csimpl. by rewrite (right_id_L _ (++)). Qed.
  Lemma bind_app l1 l2 : (l1 ++ l2) ≫= f = (l1 ≫= f) ++ (l2 ≫= f).
  Proof. by induction l1; csimpl; rewrite <-?(assoc_L (++)); f_equal. Qed.
  Lemma elem_of_list_bind (x : B) (l : list A) :
    x l ≫= f y, x f y y l.
  Proof.
    split.
    - induction l as [|y l IH]; csimpl; [inversion 1|].
      rewrite elem_of_app. intros [?|?].
      + y. split; [done | by left].
      + destruct IH as [z [??]]. done. z. split; [done | by right].
    - intros [y [Hx Hy]]. induction Hy; csimpl; rewrite elem_of_app; intuition.
  Qed.
  Lemma Forall_bind (P : B Prop) l :
    Forall P (l ≫= f) Forall (Forall P f) l.
  Proof.
    split.
    - induction l; csimpl; rewrite ?Forall_app; constructor; csimpl; intuition.
    - induction 1; csimpl; rewrite ?Forall_app; auto.
  Qed.
  Lemma Forall2_bind {C D} (g : C list D) (P : B D Prop) l1 l2 :
    Forall2 (λ x1 x2, Forall2 P (f x1) (g x2)) l1 l2
    Forall2 P (l1 ≫= f) (l2 ≫= g).
  Proof. induction 1; csimpl; auto using Forall2_app. Qed.
End bind.

Section ret_join.
  Context {A : Type}.

  Lemma list_join_bind (ls : list (list A)) : mjoin ls = ls ≫= id.
  Proof. by induction ls; f_equal/=. Qed.
  Global Instance mjoin_Permutation:
    Proper (@Permutation (list A) ==> (≡ₚ)) mjoin.
  Proof. intros ?? E. by rewrite !list_join_bind, E. Qed.
  Lemma elem_of_list_ret (x y : A) : x @mret list _ A y x = y.
  Proof. apply elem_of_list_singleton. Qed.
  Lemma elem_of_list_join (x : A) (ls : list (list A)) :
    x mjoin ls l, x l l ls.
  Proof. by rewrite list_join_bind, elem_of_list_bind. Qed.
  Lemma join_nil (ls : list (list A)) : mjoin ls = [] Forall (= []) ls.
  Proof.
    split; [|by induction 1 as [|[|??] ?]].
    by induction ls as [|[|??] ?]; constructor; auto.
  Qed.
  Lemma join_nil_1 (ls : list (list A)) : mjoin ls = [] Forall (= []) ls.
  Proof. by rewrite join_nil. Qed.
  Lemma join_nil_2 (ls : list (list A)) : Forall (= []) ls mjoin ls = [].
  Proof. by rewrite join_nil. Qed.
  Lemma Forall_join (P : A Prop) (ls: list (list A)) :
    Forall (Forall P) ls Forall P (mjoin ls).
  Proof. induction 1; simpl; auto using Forall_app_2. Qed.
  Lemma Forall2_join {B} (P : A B Prop) ls1 ls2 :
    Forall2 (Forall2 P) ls1 ls2 Forall2 P (mjoin ls1) (mjoin ls2).
  Proof. induction 1; simpl; auto using Forall2_app. Qed.
End ret_join.

Section mapM.
  Context {A B : Type} (f : A option B).

  Lemma mapM_ext (g : A option B) l : ( x, f x = g x) mapM f l = mapM g l.
  Proof. intros Hfg. by induction l; simpl; rewrite ?Hfg, ?IHl. Qed.
  Lemma Forall2_mapM_ext (g : A option B) l k :
    Forall2 (λ x y, f x = g y) l k mapM f l = mapM g k.
  Proof. induction 1 as [|???? Hfg ? IH]; simpl. done. by rewrite Hfg, IH. Qed.
  Lemma Forall_mapM_ext (g : A option B) l :
    Forall (λ x, f x = g x) l mapM f l = mapM g l.
  Proof. induction 1 as [|?? Hfg ? IH]; simpl. done. by rewrite Hfg, IH. Qed.
  Lemma mapM_Some_1 l k : mapM f l = Some k Forall2 (λ x y, f x = Some y) l k.
  Proof.
    revert k. induction l as [|x l]; intros [|y k]; simpl; try done.
    - destruct (f x); simpl; [|discriminate]. by destruct (mapM f l).
    - destruct (f x) eqn:?; intros; simplify_option_eq; auto.
  Qed.
  Lemma mapM_Some_2 l k : Forall2 (λ x y, f x = Some y) l k mapM f l = Some k.
  Proof.
    induction 1 as [|???? Hf ? IH]; simpl; [done |].
    rewrite Hf. simpl. by rewrite IH.
  Qed.
  Lemma mapM_Some l k : mapM f l = Some k Forall2 (λ x y, f x = Some y) l k.
  Proof. split; auto using mapM_Some_1, mapM_Some_2. Qed.
  Lemma mapM_length l k : mapM f l = Some k length l = length k.
  Proof. intros. by eapply Forall2_length, mapM_Some_1. Qed.
  Lemma mapM_None_1 l : mapM f l = None Exists (λ x, f x = None) l.
  Proof.
    induction l as [|x l IH]; simpl; [done|].
    destruct (f x) eqn:?; simpl; eauto. by destruct (mapM f l); eauto.
  Qed.
  Lemma mapM_None_2 l : Exists (λ x, f x = None) l mapM f l = None.
  Proof.
    induction 1 as [x l Hx|x l ? IH]; simpl; [by rewrite Hx|].
    by destruct (f x); simpl; rewrite ?IH.
  Qed.
  Lemma mapM_None l : mapM f l = None Exists (λ x, f x = None) l.
  Proof. split; auto using mapM_None_1, mapM_None_2. Qed.
  Lemma mapM_is_Some_1 l : is_Some (mapM f l) Forall (is_Some f) l.
  Proof.
    unfold compose. setoid_rewrite <-not_eq_None_Some.
    rewrite mapM_None. apply (not_Exists_Forall _).
  Qed.
  Lemma mapM_is_Some_2 l : Forall (is_Some f) l is_Some (mapM f l).
  Proof.
    unfold compose. setoid_rewrite <-not_eq_None_Some.
    rewrite mapM_None. apply (Forall_not_Exists _).
  Qed.
  Lemma mapM_is_Some l : is_Some (mapM f l) Forall (is_Some f) l.
  Proof. split; auto using mapM_is_Some_1, mapM_is_Some_2. Qed.
  Lemma mapM_fmap_Some (g : B A) (l : list B) :
    ( x, f (g x) = Some x) mapM f (g <$> l) = Some l.
  Proof. intros. by induction l; simpl; simplify_option_eq. Qed.
  Lemma mapM_fmap_Some_inv (g : B A) (l : list B) (k : list A) :
    ( x y, f y = Some x y = g x) mapM f k = Some l k = g <$> l.
  Proof.
    intros Hgf. revert l; induction k as [|??]; intros [|??] ?;
      simplify_option_eq; f_equiv; eauto.
  Qed.
End mapM.

Properties of the permutations function

Section permutations.
  Context {A : Type}.
  Implicit Types x y z : A.
  Implicit Types l : list A.

  Lemma interleave_cons x l : x :: l interleave x l.
  Proof. destruct l; simpl; rewrite elem_of_cons; auto. Qed.
  Lemma interleave_Permutation x l l' : l' interleave x l l' ≡ₚ x :: l.
  Proof.
    revert l'. induction l as [|y l IH]; intros l'; simpl.
    - rewrite elem_of_list_singleton. by intros →.
    - rewrite elem_of_cons, elem_of_list_fmap. intros [->|[? [-> H]]]; [done|].
      rewrite (IH _ H). constructor.
  Qed.
  Lemma permutations_refl l : l permutations l.
  Proof.
    induction l; simpl; [by apply elem_of_list_singleton|].
    apply elem_of_list_bind. eauto using interleave_cons.
  Qed.
  Lemma permutations_skip x l l' :
    l permutations l' x :: l permutations (x :: l').
  Proof. intro. apply elem_of_list_bind; eauto using interleave_cons. Qed.
  Lemma permutations_swap x y l : y :: x :: l permutations (x :: y :: l).
  Proof.
    simpl. apply elem_of_list_bind. (y :: l). split; simpl.
    - destruct l; csimpl; rewrite !elem_of_cons; auto.
    - apply elem_of_list_bind. simpl.
      eauto using interleave_cons, permutations_refl.
  Qed.
  Lemma permutations_nil l : l permutations [] l = [].
  Proof. simpl. by rewrite elem_of_list_singleton. Qed.
  Lemma interleave_interleave_toggle x1 x2 l1 l2 l3 :
    l1 interleave x1 l2 l2 interleave x2 l3 l4,
      l1 interleave x2 l4 l4 interleave x1 l3.
  Proof.
    revert l1 l2. induction l3 as [|y l3 IH]; intros l1 l2; simpl.
    { rewrite !elem_of_list_singleton. intros ? →. [x1].
      change (interleave x2 [x1]) with ([[x2; x1]] ++ [[x1; x2]]).
      by rewrite (comm (++)), elem_of_list_singleton. }
    rewrite elem_of_cons, elem_of_list_fmap.
    intros Hl1 [? | [l2' [??]]]; simplify_eq/=.
    - rewrite !elem_of_cons, elem_of_list_fmap in Hl1.
      destruct Hl1 as [? | [? | [l4 [??]]]]; subst.
      + (x1 :: y :: l3). csimpl. rewrite !elem_of_cons. tauto.
      + (x1 :: y :: l3). csimpl. rewrite !elem_of_cons. tauto.
      + l4. simpl. rewrite elem_of_cons. auto using interleave_cons.
    - rewrite elem_of_cons, elem_of_list_fmap in Hl1.
      destruct Hl1 as [? | [l1' [??]]]; subst.
      + (x1 :: y :: l3). csimpl.
        rewrite !elem_of_cons, !elem_of_list_fmap.
        split; [| by auto]. right. right. (y :: l2').
        rewrite elem_of_list_fmap. naive_solver.
      + destruct (IH l1' l2') as [l4 [??]]; auto. (y :: l4). simpl.
        rewrite !elem_of_cons, !elem_of_list_fmap. naive_solver.
  Qed.
  Lemma permutations_interleave_toggle x l1 l2 l3 :
    l1 permutations l2 l2 interleave x l3 l4,
      l1 interleave x l4 l4 permutations l3.
  Proof.
    revert l1 l2. induction l3 as [|y l3 IH]; intros l1 l2; simpl.
    { rewrite elem_of_list_singleton. intros Hl1 →. eexists [].
      by rewrite elem_of_list_singleton. }
    rewrite elem_of_cons, elem_of_list_fmap.
    intros Hl1 [? | [l2' [? Hl2']]]; simplify_eq/=.
    - rewrite elem_of_list_bind in Hl1.
      destruct Hl1 as [l1' [??]]. by l1'.
    - rewrite elem_of_list_bind in Hl1. setoid_rewrite elem_of_list_bind.
      destruct Hl1 as [l1' [??]]. destruct (IH l1' l2') as (l1''&?&?); auto.
      destruct (interleave_interleave_toggle y x l1 l1' l1'') as (?&?&?); eauto.
  Qed.
  Lemma permutations_trans l1 l2 l3 :
    l1 permutations l2 l2 permutations l3 l1 permutations l3.
  Proof.
    revert l1 l2. induction l3 as [|x l3 IH]; intros l1 l2; simpl.
    - rewrite !elem_of_list_singleton. intros Hl1 ->; simpl in ×.
      by rewrite elem_of_list_singleton in Hl1.
    - rewrite !elem_of_list_bind. intros Hl1 [l2' [Hl2 Hl2']].
      destruct (permutations_interleave_toggle x l1 l2 l2') as [? [??]]; eauto.
  Qed.
  Lemma permutations_Permutation l l' : l' permutations l l ≡ₚ l'.
  Proof.
    split.
    - revert l'. induction l; simpl; intros l''.
      + rewrite elem_of_list_singleton. by intros →.
      + rewrite elem_of_list_bind. intros [l' [Hl'' ?]].
        rewrite (interleave_Permutation _ _ _ Hl''). constructor; auto.
    - induction 1; eauto using permutations_refl,
        permutations_skip, permutations_swap, permutations_trans.
  Qed.
End permutations.

Properties of the folding functions

Definition foldr_app := @fold_right_app.
Lemma foldl_app {A B} (f : A B A) (l k : list B) (a : A) :
  foldl f a (l ++ k) = foldl f (foldl f a l) k.
Proof. revert a. induction l; simpl; auto. Qed.
Lemma foldr_permutation {A B} (R : relation B) `{!Equivalence R}
    (f : A B B) (b : B) `{!Proper ((=) ==> R ==> R) f}
    (Hf : a1 a2 b, R (f a1 (f a2 b)) (f a2 (f a1 b))) :
  Proper ((≡ₚ) ==> R) (foldr f b).
Proof. induction 1; simpl; [done|by f_equiv|apply Hf|etrans; eauto]. Qed.

Properties of the zip_with and zip functions

Section zip_with.
  Context {A B C : Type} (f : A B C).
  Implicit Types x : A.
  Implicit Types y : B.
  Implicit Types l : list A.
  Implicit Types k : list B.

  Lemma zip_with_nil_r l : zip_with f l [] = [].
  Proof. by destruct l. Qed.
  Lemma zip_with_app l1 l2 k1 k2 :
    length l1 = length k1
    zip_with f (l1 ++ l2) (k1 ++ k2) = zip_with f l1 k1 ++ zip_with f l2 k2.
  Proof. rewrite <-Forall2_same_length. induction 1; f_equal/=; auto. Qed.
  Lemma zip_with_app_l l1 l2 k :
    zip_with f (l1 ++ l2) k
    = zip_with f l1 (take (length l1) k) ++ zip_with f l2 (drop (length l1) k).
  Proof.
    revert k. induction l1; intros [|??]; f_equal/=; auto. by destruct l2.
  Qed.
  Lemma zip_with_app_r l k1 k2 :
    zip_with f l (k1 ++ k2)
    = zip_with f (take (length k1) l) k1 ++ zip_with f (drop (length k1) l) k2.
  Proof. revert l. induction k1; intros [|??]; f_equal/=; auto. Qed.
  Lemma zip_with_flip l k : zip_with (flip f) k l = zip_with f l k.
  Proof. revert k. induction l; intros [|??]; f_equal/=; auto. Qed.
  Lemma zip_with_ext (g : A B C) l1 l2 k1 k2 :
    ( x y, f x y = g x y) l1 = l2 k1 = k2
    zip_with f l1 k1 = zip_with g l2 k2.
  Proof. intros ? <-<-. revert k1. by induction l1; intros [|??]; f_equal/=. Qed.
  Lemma Forall_zip_with_ext_l (g : A B C) l k1 k2 :
    Forall (λ x, y, f x y = g x y) l k1 = k2
    zip_with f l k1 = zip_with g l k2.
  Proof. intros Hl <-. revert k1. by induction Hl; intros [|??]; f_equal/=. Qed.
  Lemma Forall_zip_with_ext_r (g : A B C) l1 l2 k :
    l1 = l2 Forall (λ y, x, f x y = g x y) k
    zip_with f l1 k = zip_with g l2 k.
  Proof. intros <- Hk. revert l1. by induction Hk; intros [|??]; f_equal/=. Qed.
  Lemma zip_with_fmap_l {D} (g : D A) lD k :
    zip_with f (g <$> lD) k = zip_with (λ z, f (g z)) lD k.
  Proof. revert k. by induction lD; intros [|??]; f_equal/=. Qed.
  Lemma zip_with_fmap_r {D} (g : D B) l kD :
    zip_with f l (g <$> kD) = zip_with (λ x z, f x (g z)) l kD.
  Proof. revert kD. by induction l; intros [|??]; f_equal/=. Qed.
  Lemma zip_with_nil_inv l k : zip_with f l k = [] l = [] k = [].
  Proof. destruct l, k; intros; simplify_eq/=; auto. Qed.
  Lemma zip_with_cons_inv l k z lC :
    zip_with f l k = z :: lC
     x y l' k', z = f x y lC = zip_with f l' k' l = x :: l' k = y :: k'.
  Proof. intros. destruct l, k; simplify_eq/=; repeat eexists. Qed.
  Lemma zip_with_app_inv l k lC1 lC2 :
    zip_with f l k = lC1 ++ lC2
     l1 k1 l2 k2, lC1 = zip_with f l1 k1 lC2 = zip_with f l2 k2
      l = l1 ++ l2 k = k1 ++ k2 length l1 = length k1.
  Proof.
    revert l k. induction lC1 as [|z lC1 IH]; simpl.
    { intros l k ?. by eexists [], [], l, k. }
    intros [|x l] [|y k] ?; simplify_eq/=.
    destruct (IH l k) as (l1&k1&l2&k2&->&->&->&->&?); [done |].
     (x :: l1), (y :: k1), l2, k2; simpl; auto with congruence.
  Qed.
  Lemma zip_with_inj `{!Inj2 (=) (=) (=) f} l1 l2 k1 k2 :
    length l1 = length k1 length l2 = length k2
    zip_with f l1 k1 = zip_with f l2 k2 l1 = l2 k1 = k2.
  Proof.
    rewrite <-!Forall2_same_length. intros Hl. revert l2 k2.
    induction Hl; intros ?? [] ?; f_equal; naive_solver.
  Qed.
  Lemma zip_with_length l k :
    length (zip_with f l k) = min (length l) (length k).
  Proof. revert k. induction l; intros [|??]; simpl; auto with lia. Qed.
  Lemma zip_with_length_l l k :
    length l length k length (zip_with f l k) = length l.
  Proof. rewrite zip_with_length; lia. Qed.
  Lemma zip_with_length_l_eq l k :
    length l = length k length (zip_with f l k) = length l.
  Proof. rewrite zip_with_length; lia. Qed.
  Lemma zip_with_length_r l k :
    length k length l length (zip_with f l k) = length k.
  Proof. rewrite zip_with_length; lia. Qed.
  Lemma zip_with_length_r_eq l k :
    length k = length l length (zip_with f l k) = length k.
  Proof. rewrite zip_with_length; lia. Qed.
  Lemma zip_with_length_same_l P l k :
    Forall2 P l k length (zip_with f l k) = length l.
  Proof. induction 1; simpl; auto. Qed.
  Lemma zip_with_length_same_r P l k :
    Forall2 P l k length (zip_with f l k) = length k.
  Proof. induction 1; simpl; auto. Qed.
  Lemma lookup_zip_with l k i :
    zip_with f l k !! i = x l !! i; y k !! i; Some (f x y).
  Proof.
    revert k i. induction l; intros [|??] [|?]; f_equal/=; auto.
    by destruct (_ !! _).
  Qed.
  Lemma insert_zip_with l k i x y :
    <[i:=f x y]>(zip_with f l k) = zip_with f (<[i:=x]>l) (<[i:=y]>k).
  Proof. revert i k. induction l; intros [|?] [|??]; f_equal/=; auto. Qed.
  Lemma fmap_zip_with_l (g : C A) l k :
    ( x y, g (f x y) = x) length l length k g <$> zip_with f l k = l.
  Proof. revert k. induction l; intros [|??] ??; f_equal/=; auto with lia. Qed.
  Lemma fmap_zip_with_r (g : C B) l k :
    ( x y, g (f x y) = y) length k length l g <$> zip_with f l k = k.
  Proof. revert l. induction k; intros [|??] ??; f_equal/=; auto with lia. Qed.
  Lemma zip_with_zip l k : zip_with f l k = curry f <$> zip l k.
  Proof. revert k. by induction l; intros [|??]; f_equal/=. Qed.
  Lemma zip_with_fst_snd lk : zip_with f (lk.*1) (lk.*2) = curry f <$> lk.
  Proof. by induction lk as [|[]]; f_equal/=. Qed.
  Lemma zip_with_replicate n x y :
    zip_with f (replicate n x) (replicate n y) = replicate n (f x y).
  Proof. by induction n; f_equal/=. Qed.
  Lemma zip_with_replicate_l n x k :
    length k n zip_with f (replicate n x) k = f x <$> k.
  Proof. revert n. induction k; intros [|?] ?; f_equal/=; auto with lia. Qed.
  Lemma zip_with_replicate_r n y l :
    length l n zip_with f l (replicate n y) = flip f y <$> l.
  Proof. revert n. induction l; intros [|?] ?; f_equal/=; auto with lia. Qed.
  Lemma zip_with_replicate_r_eq n y l :
    length l = n zip_with f l (replicate n y) = flip f y <$> l.
  Proof. intros; apply zip_with_replicate_r; lia. Qed.
  Lemma zip_with_take n l k :
    take n (zip_with f l k) = zip_with f (take n l) (take n k).
  Proof. revert n k. by induction l; intros [|?] [|??]; f_equal/=. Qed.
  Lemma zip_with_drop n l k :
    drop n (zip_with f l k) = zip_with f (drop n l) (drop n k).
  Proof.
    revert n k. induction l; intros [] []; f_equal/=; auto using zip_with_nil_r.
  Qed.
  Lemma zip_with_take_l n l k :
    length k n zip_with f (take n l) k = zip_with f l k.
  Proof. revert n k. induction l; intros [] [] ?; f_equal/=; auto with lia. Qed.
  Lemma zip_with_take_r n l k :
    length l n zip_with f l (take n k) = zip_with f l k.
  Proof. revert n k. induction l; intros [] [] ?; f_equal/=; auto with lia. Qed.
  Lemma Forall_zip_with_fst (P : A Prop) (Q : C Prop) l k :
    Forall P l Forall (λ y, x, P x Q (f x y)) k
    Forall Q (zip_with f l k).
  Proof. intros Hl. revert k. induction Hl; destruct 1; simpl in *; auto. Qed.
  Lemma Forall_zip_with_snd (P : B Prop) (Q : C Prop) l k :
    Forall (λ x, y, P y Q (f x y)) l Forall P k
    Forall Q (zip_with f l k).
  Proof. intros Hl. revert k. induction Hl; destruct 1; simpl in *; auto. Qed.
End zip_with.

Lemma zip_with_sublist_alter {A B} (f : A B A) g l k i n l' k' :
  length l = length k
  sublist_lookup i n l = Some l' sublist_lookup i n k = Some k'
  length (g l') = length k' zip_with f (g l') k' = g (zip_with f l' k')
  zip_with f (sublist_alter g i n l) k = sublist_alter g i n (zip_with f l k).
Proof.
  unfold sublist_lookup, sublist_alter. intros Hlen; rewrite Hlen.
  intros ?? Hl' Hk'. simplify_option_eq.
  by rewrite !zip_with_app_l, !zip_with_drop, Hl', drop_drop, !zip_with_take,
    !take_length_le, Hk' by (rewrite ?drop_length; auto with lia).
Qed.

Section zip.
  Context {A B : Type}.
  Implicit Types l : list A.
  Implicit Types k : list B.
  Lemma fst_zip l k : length l length k (zip l k).*1 = l.
  Proof. by apply fmap_zip_with_l. Qed.
  Lemma snd_zip l k : length k length l (zip l k).*2 = k.
  Proof. by apply fmap_zip_with_r. Qed.
  Lemma zip_fst_snd (lk : list (A × B)) : zip (lk.*1) (lk.*2) = lk.
  Proof. by induction lk as [|[]]; f_equal/=. Qed.
  Lemma Forall2_fst P l1 l2 k1 k2 :
    length l2 = length k2 Forall2 P l1 k1
    Forall2 (λ x y, P (x.1) (y.1)) (zip l1 l2) (zip k1 k2).
  Proof.
    rewrite <-Forall2_same_length. intros Hlk2 Hlk1. revert l2 k2 Hlk2.
    induction Hlk1; intros ?? [|??????]; simpl; auto.
  Qed.
  Lemma Forall2_snd P l1 l2 k1 k2 :
    length l1 = length k1 Forall2 P l2 k2
    Forall2 (λ x y, P (x.2) (y.2)) (zip l1 l2) (zip k1 k2).
  Proof.
    rewrite <-Forall2_same_length. intros Hlk1 Hlk2. revert l1 k1 Hlk1.
    induction Hlk2; intros ?? [|??????]; simpl; auto.
  Qed.
End zip.

Lemma elem_of_zipped_map {A B} (f : list A list A A B) l k x :
  x zipped_map f l k
     k' k'' y, k = k' ++ [y] ++ k'' x = f (reverse k' ++ l) k'' y.
Proof.
  split.
  - revert l. induction k as [|z k IH]; simpl; intros l; inversion_clear 1.
    { by eexists [], k, z. }
    destruct (IH (z :: l)) as (k'&k''&y&->&->); [done |].
    eexists (z :: k'), k'', y. by rewrite reverse_cons, <-(assoc_L (++)).
  - intros (k'&k''&y&->&->). revert l. induction k' as [|z k' IH]; [by left|].
    intros l; right. by rewrite reverse_cons, <-!(assoc_L (++)).
Qed.
Section zipped_list_ind.
  Context {A} (P : list A list A Prop).
  Context (Pnil : l, P l []) (Pcons : l k x, P (x :: l) k P l (x :: k)).
  Fixpoint zipped_list_ind l k : P l k :=
    match k with
    | []Pnil _ | x :: kPcons _ _ _ (zipped_list_ind (x :: l) k)
    end.
End zipped_list_ind.
Lemma zipped_Forall_app {A} (P : list A list A A Prop) l k k' :
  zipped_Forall P l (k ++ k') zipped_Forall P (reverse k ++ l) k'.
Proof.
  revert l. induction k as [|x k IH]; simpl; [done |].
  inversion_clear 1. rewrite reverse_cons, <-(assoc_L (++)). by apply IH.
Qed.

Relection over lists

We define a simple data structure rlist to capture a syntactic representation of lists consisting of constants, applications and the nil list. Note that we represent (x ::) as rapp (rnode [x]). For now, we abstract over the type of constants, but later we use nats and a list representing a corresponding environment.
Inductive rlist (A : Type) :=
  rnil : rlist A | rnode : A rlist A | rapp : rlist A rlist A rlist A.
Arguments rnil {_}.
Arguments rnode {_} _.
Arguments rapp {_} _ _.

Module rlist.
Fixpoint to_list {A} (t : rlist A) : list A :=
  match t with
  | rnil[] | rnode l[l] | rapp t1 t2to_list t1 ++ to_list t2
  end.
Notation env A := (list (list A)) (only parsing).
Definition eval {A} (E : env A) : rlist nat list A :=
  fix go t :=
  match t with
  | rnil[]
  | rnode ifrom_option id [] (E !! i)
  | rapp t1 t2go t1 ++ go t2
  end.

A simple quoting mechanism using type classes. QuoteLookup E1 E2 x i means: starting in environment E1, look up the index i corresponding to the constant x. In case x has a corresponding index i in E1, the original environment is given back as E2. Otherwise, the environment E2 is extended with a binding i for x.
Section quote_lookup.
  Context {A : Type}.
  Class QuoteLookup (E1 E2 : list A) (x : A) (i : nat) := {}.
  Global Instance quote_lookup_here E x : QuoteLookup (x :: E) (x :: E) x 0.
  Global Instance quote_lookup_end x : QuoteLookup [] [x] x 0.
  Global Instance quote_lookup_further E1 E2 x i y :
    QuoteLookup E1 E2 x i QuoteLookup (y :: E1) (y :: E2) x (S i) | 1000.
End quote_lookup.

Section quote.
  Context {A : Type}.
  Class Quote (E1 E2 : env A) (l : list A) (t : rlist nat) := {}.
  Global Instance quote_nil: Quote E1 E1 [] rnil.
  Global Instance quote_node E1 E2 l i:
    QuoteLookup E1 E2 l i Quote E1 E2 l (rnode i) | 1000.
  Global Instance quote_cons E1 E2 E3 x l i t :
    QuoteLookup E1 E2 [x] i
    Quote E2 E3 l t Quote E1 E3 (x :: l) (rapp (rnode i) t).
  Global Instance quote_app E1 E2 E3 l1 l2 t1 t2 :
    Quote E1 E2 l1 t1 Quote E2 E3 l2 t2 Quote E1 E3 (l1 ++ l2) (rapp t1 t2).
End quote.

Section eval.
  Context {A} (E : env A).

  Lemma eval_alt t : eval E t = to_list t ≫= from_option id [] (E !!).
  Proof.
    induction t; csimpl.
    - done.
    - by rewrite (right_id_L [] (++)).
    - rewrite bind_app. by f_equal.
  Qed.
  Lemma eval_eq t1 t2 : to_list t1 = to_list t2 eval E t1 = eval E t2.
  Proof. intros Ht. by rewrite !eval_alt, Ht. Qed.
  Lemma eval_Permutation t1 t2 :
    to_list t1 ≡ₚ to_list t2 eval E t1 ≡ₚ eval E t2.
  Proof. intros Ht. by rewrite !eval_alt, Ht. Qed.
  Lemma eval_contains t1 t2 :
    to_list t1 `contains` to_list t2 eval E t1 `contains` eval E t2.
  Proof. intros Ht. by rewrite !eval_alt, Ht. Qed.
End eval.
End rlist.

Tactics

Ltac quote_Permutation :=
  match goal with
  | |- ?l1 ≡ₚ ?l2
    match type of (_ : rlist.Quote [] _ l1 _) with rlist.Quote _ ?E2 _ ?t1
    match type of (_ : rlist.Quote E2 _ l2 _) with rlist.Quote _ ?E3 _ ?t2
      change (rlist.eval E3 t1 ≡ₚ rlist.eval E3 t2)
    end end
  end.
Ltac solve_Permutation :=
  quote_Permutation; apply rlist.eval_Permutation;
  apply (bool_decide_unpack _); by vm_compute.

Ltac quote_contains :=
  match goal with
  | |- ?l1 `contains` ?l2
    match type of (_ : rlist.Quote [] _ l1 _) with rlist.Quote _ ?E2 _ ?t1
    match type of (_ : rlist.Quote E2 _ l2 _) with rlist.Quote _ ?E3 _ ?t2
      change (rlist.eval E3 t1 `contains` rlist.eval E3 t2)
    end end
  end.
Ltac solve_contains :=
  quote_contains; apply rlist.eval_contains;
  apply (bool_decide_unpack _); by vm_compute.

Ltac decompose_elem_of_list := repeat
  match goal with
  | H : ?x [] |- _by destruct (not_elem_of_nil x)
  | H : _ _ :: _ |- _apply elem_of_cons in H; destruct H
  | H : _ _ ++ _ |- _apply elem_of_app in H; destruct H
  end.
Ltac solve_length :=
  simplify_eq/=;
  repeat (rewrite fmap_length || rewrite app_length);
  repeat match goal with
  | H : @eq (list _) _ _ |- _apply (f_equal length) in H
  | H : Forall2 _ _ _ |- _apply Forall2_length in H
  | H : context[length (_ <$> _)] |- _rewrite fmap_length in H
  end; done || congruence.
Ltac simplify_list_eq ::= repeat
  match goal with
  | _progress simplify_eq/=
  | H : [?x] !! ?i = Some ?y |- _
    destruct i; [change (Some x = Some y) in H | discriminate]
  | H : _ <$> _ = [] |- _apply fmap_nil_inv in H
  | H : [] = _ <$> _ |- _symmetry in H; apply fmap_nil_inv in H
  | H : zip_with _ _ _ = [] |- _apply zip_with_nil_inv in H; destruct H
  | H : [] = zip_with _ _ _ |- _symmetry in H
  | |- context [(_ ++ _) ++ _] ⇒ rewrite <-(assoc_L (++))
  | H : context [(_ ++ _) ++ _] |- _rewrite <-(assoc_L (++)) in H
  | H : context [_ <$> (_ ++ _)] |- _rewrite fmap_app in H
  | |- context [_ <$> (_ ++ _)] ⇒ rewrite fmap_app
  | |- context [_ ++ []] ⇒ rewrite (right_id_L [] (++))
  | H : context [_ ++ []] |- _rewrite (right_id_L [] (++)) in H
  | |- context [take _ (_ <$> _)] ⇒ rewrite <-fmap_take
  | H : context [take _ (_ <$> _)] |- _rewrite <-fmap_take in H
  | |- context [drop _ (_ <$> _)] ⇒ rewrite <-fmap_drop
  | H : context [drop _ (_ <$> _)] |- _rewrite <-fmap_drop in H
  | H : _ ++ _ = _ ++ _ |- _
    repeat (rewrite <-app_comm_cons in H || rewrite <-(assoc_L (++)) in H);
    apply app_inj_1 in H; [destruct H|solve_length]
  | H : _ ++ _ = _ ++ _ |- _
    repeat (rewrite app_comm_cons in H || rewrite (assoc_L (++)) in H);
    apply app_inj_2 in H; [destruct H|solve_length]
  | |- context [zip_with _ (_ ++ _) (_ ++ _)] ⇒
    rewrite zip_with_app by solve_length
  | |- context [take _ (_ ++ _)] ⇒ rewrite take_app_alt by solve_length
  | |- context [drop _ (_ ++ _)] ⇒ rewrite drop_app_alt by solve_length
  | H : context [zip_with _ (_ ++ _) (_ ++ _)] |- _
    rewrite zip_with_app in H by solve_length
  | H : context [take _ (_ ++ _)] |- _
    rewrite take_app_alt in H by solve_length
  | H : context [drop _ (_ ++ _)] |- _
    rewrite drop_app_alt in H by solve_length
  | H : ?l !! ?i = _, H2 : context [(_ <$> ?l) !! ?i] |- _
     rewrite list_lookup_fmap, H in H2
  end.
Ltac decompose_Forall_hyps :=
  repeat match goal with
  | H : Forall _ [] |- _clear H
  | H : Forall _ (_ :: _) |- _rewrite Forall_cons in H; destruct H
  | H : Forall _ (_ ++ _) |- _rewrite Forall_app in H; destruct H
  | H : Forall2 _ [] [] |- _clear H
  | H : Forall2 _ (_ :: _) [] |- _destruct (Forall2_cons_nil_inv _ _ _ H)
  | H : Forall2 _ [] (_ :: _) |- _destruct (Forall2_nil_cons_inv _ _ _ H)
  | H : Forall2 _ [] ?k |- _apply Forall2_nil_inv_l in H
  | H : Forall2 _ ?l [] |- _apply Forall2_nil_inv_r in H
  | H : Forall2 _ (_ :: _) (_ :: _) |- _
    apply Forall2_cons_inv in H; destruct H
  | H : Forall2 _ (_ :: _) ?k |- _
    let k_hd := fresh k "_hd" in let k_tl := fresh k "_tl" in
    apply Forall2_cons_inv_l in H; destruct H as (k_hd&k_tl&?&?&->);
    rename k_tl into k
  | H : Forall2 _ ?l (_ :: _) |- _
    let l_hd := fresh l "_hd" in let l_tl := fresh l "_tl" in
    apply Forall2_cons_inv_r in H; destruct H as (l_hd&l_tl&?&?&->);
    rename l_tl into l
  | H : Forall2 _ (_ ++ _) ?k |- _
    let k1 := fresh k "_1" in let k2 := fresh k "_2" in
    apply Forall2_app_inv_l in H; destruct H as (k1&k2&?&?&->)
  | H : Forall2 _ ?l (_ ++ _) |- _
    let l1 := fresh l "_1" in let l2 := fresh l "_2" in
    apply Forall2_app_inv_r in H; destruct H as (l1&l2&?&?&->)
  | _progress simplify_eq/=
  | H : Forall3 _ _ (_ :: _) _ |- _
    apply Forall3_cons_inv_m in H; destruct H as (?&?&?&?&?&?&?&?)
  | H : Forall2 _ (_ :: _) ?k |- _
    apply Forall2_cons_inv_l in H; destruct H as (?&?&?&?&?)
  | H : Forall2 _ ?l (_ :: _) |- _
    apply Forall2_cons_inv_r in H; destruct H as (?&?&?&?&?)
  | H : Forall2 _ (_ ++ _) (_ ++ _) |- _
    apply Forall2_app_inv in H; [destruct H|solve_length]
  | H : Forall2 _ ?l (_ ++ _) |- _
    apply Forall2_app_inv_r in H; destruct H as (?&?&?&?&?)
  | H : Forall2 _ (_ ++ _) ?k |- _
    apply Forall2_app_inv_l in H; destruct H as (?&?&?&?&?)
  | H : Forall3 _ _ (_ ++ _) _ |- _
    apply Forall3_app_inv_m in H; destruct H as (?&?&?&?&?&?&?&?)
  | H : Forall ?P ?l, H1 : ?l !! _ = Some ?x |- _
    
    unless (P x) by auto using Forall_app_2, Forall_nil_2;
    let E := fresh in
    assert (P x) as E by (apply (Forall_lookup_1 P _ _ _ H H1)); lazy beta in E
  | H : Forall2 ?P ?l ?k |- _
    match goal with
    | H1 : l !! ?i = Some ?x, H2 : k !! ?i = Some ?y |- _
      unless (P x y) by done; let E := fresh in
      assert (P x y) as E by (by apply (Forall2_lookup_lr P l k i x y));
      lazy beta in E
    | H1 : l !! ?i = Some ?x |- _
      try (match goal with _ : k !! i = Some _ |- _fail 2 end);
      destruct (Forall2_lookup_l P _ _ _ _ H H1) as (?&?&?)
    | H2 : k !! ?i = Some ?y |- _
      try (match goal with _ : l !! i = Some _ |- _fail 2 end);
      destruct (Forall2_lookup_r P _ _ _ _ H H2) as (?&?&?)
    end
  | H : Forall3 ?P ?l ?l' ?k |- _
    lazymatch goal with
    | H1:l !! ?i = Some ?x, H2:l' !! ?i = Some ?y, H3:k !! ?i = Some ?z |- _
      unless (P x y z) by done; let E := fresh in
      assert (P x y z) as E by (by apply (Forall3_lookup_lmr P l l' k i x y z));
      lazy beta in E
    | H1 : l !! _ = Some ?x |- _
      destruct (Forall3_lookup_l P _ _ _ _ _ H H1) as (?&?&?&?&?)
    | H2 : l' !! _ = Some ?y |- _
      destruct (Forall3_lookup_m P _ _ _ _ _ H H2) as (?&?&?&?&?)
    | H3 : k !! _ = Some ?z |- _
      destruct (Forall3_lookup_r P _ _ _ _ _ H H3) as (?&?&?&?&?)
    end
  end.
Ltac list_simplifier :=
  simplify_eq/=;
  repeat match goal with
  | _progress decompose_Forall_hyps
  | _progress simplify_list_eq
  | H : _ <$> _ = _ :: _ |- _
    apply fmap_cons_inv in H; destruct H as (?&?&?&?&?)
  | H : _ :: _ = _ <$> _ |- _symmetry in H
  | H : _ <$> _ = _ ++ _ |- _
    apply fmap_app_inv in H; destruct H as (?&?&?&?&?)
  | H : _ ++ _ = _ <$> _ |- _symmetry in H
  | H : zip_with _ _ _ = _ :: _ |- _
    apply zip_with_cons_inv in H; destruct H as (?&?&?&?&?&?&?&?)
  | H : _ :: _ = zip_with _ _ _ |- _symmetry in H
  | H : zip_with _ _ _ = _ ++ _ |- _
    apply zip_with_app_inv in H; destruct H as (?&?&?&?&?&?&?&?&?)
  | H : _ ++ _ = zip_with _ _ _ |- _symmetry in H
  end.
Ltac decompose_Forall := repeat
  match goal with
  | |- Forall _ _by apply Forall_true
  | |- Forall _ []constructor
  | |- Forall _ (_ :: _) ⇒ constructor
  | |- Forall _ (_ ++ _) ⇒ apply Forall_app_2
  | |- Forall _ (_ <$> _) ⇒ apply Forall_fmap
  | |- Forall _ (_ ≫= _) ⇒ apply Forall_bind
  | |- Forall2 _ _ _apply Forall_Forall2
  | |- Forall2 _ [] []constructor
  | |- Forall2 _ (_ :: _) (_ :: _) ⇒ constructor
  | |- Forall2 _ (_ ++ _) (_ ++ _) ⇒ first
    [ apply Forall2_app; [by decompose_Forall |]
    | apply Forall2_app; [| by decompose_Forall]]
| |- Forall2 _ (_ <$> _) _apply Forall2_fmap_l
  | |- Forall2 _ _ (_ <$> _) ⇒ apply Forall2_fmap_r
  | _progress decompose_Forall_hyps
  | H : Forall _ (_ <$> _) |- _rewrite Forall_fmap in H
  | H : Forall _ (_ ≫= _) |- _rewrite Forall_bind in H
  | |- Forall _ _
    apply Forall_lookup_2; intros ???; progress decompose_Forall_hyps
  | |- Forall2 _ _ _
    apply Forall2_same_length_lookup_2; [solve_length|];
    intros ?????; progress decompose_Forall_hyps
  end.

The simplify_suffix_of tactic removes suffix_of hypotheses that are tautologies, and simplifies suffix_of hypotheses involving (::) and (++).
Ltac simplify_suffix_of := repeat
  match goal with
  | H : suffix_of (_ :: _) _ |- _destruct (suffix_of_cons_not _ _ H)
  | H : suffix_of (_ :: _) [] |- _apply suffix_of_nil_inv in H
  | H : suffix_of (_ ++ _) (_ ++ _) |- _apply suffix_of_app_inv in H
  | H : suffix_of (_ :: _) (_ :: _) |- _
    destruct (suffix_of_cons_inv _ _ _ _ H); clear H
  | H : suffix_of ?x ?x |- _clear H
  | H : suffix_of ?x (_ :: ?x) |- _clear H
  | H : suffix_of ?x (_ ++ ?x) |- _clear H
  | _progress simplify_eq/=
  end.

The solve_suffix_of tactic tries to solve goals involving suffix_of. It uses simplify_suffix_of to simplify hypotheses and tries to solve suffix_of conclusions. This tactic either fails or proves the goal.
Ltac solve_suffix_of := by intuition (repeat
  match goal with
  | _done
  | _progress simplify_suffix_of
  | |- suffix_of [] _apply suffix_of_nil
  | |- suffix_of _ _reflexivity
  | |- suffix_of _ (_ :: _) ⇒ apply suffix_of_cons_r
  | |- suffix_of _ (_ ++ _) ⇒ apply suffix_of_app_r
  | H : suffix_of _ _ False |- _destruct H
  end).