Library iris.program_logic.namespaces
From iris.prelude Require Export countable coPset.
From iris.algebra Require Export base.
Definition namespace := list positive.
Definition nroot : namespace := nil.
Definition ndot_def `{Countable A} (N : namespace) (x : A) : namespace :=
encode x :: N.
Definition ndot_aux : { x | x = @ndot_def }. by eexists. Qed.
Definition ndot {A A_dec A_count}:= proj1_sig ndot_aux A A_dec A_count.
Definition ndot_eq : @ndot = @ndot_def := proj2_sig ndot_aux.
Definition nclose_def (N : namespace) : coPset := coPset_suffixes (encode N).
Definition nclose_aux : { x | x = @nclose_def }. by eexists. Qed.
Coercion nclose := proj1_sig nclose_aux.
Definition nclose_eq : @nclose = @nclose_def := proj2_sig nclose_aux.
Infix ".@" := ndot (at level 19, left associativity) : C_scope.
Notation "(.@)" := ndot (only parsing) : C_scope.
Instance ndot_inj `{Countable A} : Inj2 (=) (=) (=) (@ndot A _ _).
Proof. intros N1 x1 N2 x2; rewrite !ndot_eq⇒ ?; by simplify_eq. Qed.
Lemma nclose_nroot : nclose nroot = ⊤.
Proof. rewrite nclose_eq. by apply (sig_eq_pi _). Qed.
Lemma encode_nclose N : encode N ∈ nclose N.
Proof.
rewrite nclose_eq.
by apply elem_coPset_suffixes; ∃ xH; rewrite (left_id_L _ _).
Qed.
Lemma nclose_subseteq `{Countable A} N x : nclose (N .@ x) ⊆ nclose N.
Proof.
intros p; rewrite nclose_eq /nclose !ndot_eq !elem_coPset_suffixes.
intros [q ->]. destruct (list_encode_suffix N (ndot_def N x)) as [q' ?].
{ by ∃ [encode x]. }
by ∃ (q ++ q')%positive; rewrite <-(assoc_L _); f_equal.
Qed.
Lemma ndot_nclose `{Countable A} N x : encode (N .@ x) ∈ nclose N.
Proof. apply nclose_subseteq with x, encode_nclose. Qed.
Lemma nclose_infinite N : ¬set_finite (nclose N).
Proof. rewrite nclose_eq. apply coPset_suffixes_infinite. Qed.
Instance ndisjoint : Disjoint namespace := λ N1 N2,
∃ N1' N2', N1' `suffix_of` N1 ∧ N2' `suffix_of` N2 ∧
length N1' = length N2' ∧ N1' ≠ N2'.
Typeclasses Opaque ndisjoint.
Section ndisjoint.
Context `{Countable A}.
Implicit Types x y : A.
Global Instance ndisjoint_symmetric : Symmetric ndisjoint.
Proof. intros N1 N2. rewrite /disjoint /ndisjoint; naive_solver. Qed.
Lemma ndot_ne_disjoint N x y : x ≠ y → N .@ x ⊥ N .@ y.
Proof. intros. ∃ (N .@ x), (N .@ y); rewrite ndot_eq; naive_solver. Qed.
Lemma ndot_preserve_disjoint_l N1 N2 x : N1 ⊥ N2 → N1 .@ x ⊥ N2.
Proof.
intros (N1' & N2' & Hpr1 & Hpr2 & Hl & Hne). ∃ N1', N2'.
split_and?; try done; []. rewrite ndot_eq. by apply suffix_of_cons_r.
Qed.
Lemma ndot_preserve_disjoint_r N1 N2 x : N1 ⊥ N2 → N1 ⊥ N2 .@ x .
Proof. intros. by apply symmetry, ndot_preserve_disjoint_l. Qed.
Lemma ndisj_disjoint N1 N2 : N1 ⊥ N2 → nclose N1 ⊥ nclose N2.
Proof.
intros (N1' & N2' & [N1'' ->] & [N2'' ->] & Hl & Hne) p.
rewrite nclose_eq /nclose.
rewrite !elem_coPset_suffixes; intros [q ->] [q' Hq]; destruct Hne.
by rewrite !list_encode_app !assoc in Hq; apply list_encode_suffix_eq in Hq.
Qed.
Lemma ndisj_subseteq_difference N1 N2 E :
N1 ⊥ N2 → nclose N1 ⊆ E → nclose N1 ⊆ E ∖ nclose N2.
Proof. intros ?%ndisj_disjoint. set_solver. Qed.
End ndisjoint.
Hint Resolve ndisj_subseteq_difference : ndisj.
Hint Extern 0 (_ ⊥ _) ⇒ apply ndot_ne_disjoint; congruence : ndisj.
Hint Resolve ndot_preserve_disjoint_l : ndisj.
Hint Resolve ndot_preserve_disjoint_r : ndisj.
Ltac solve_ndisj := solve [eauto with ndisj].
From iris.algebra Require Export base.
Definition namespace := list positive.
Definition nroot : namespace := nil.
Definition ndot_def `{Countable A} (N : namespace) (x : A) : namespace :=
encode x :: N.
Definition ndot_aux : { x | x = @ndot_def }. by eexists. Qed.
Definition ndot {A A_dec A_count}:= proj1_sig ndot_aux A A_dec A_count.
Definition ndot_eq : @ndot = @ndot_def := proj2_sig ndot_aux.
Definition nclose_def (N : namespace) : coPset := coPset_suffixes (encode N).
Definition nclose_aux : { x | x = @nclose_def }. by eexists. Qed.
Coercion nclose := proj1_sig nclose_aux.
Definition nclose_eq : @nclose = @nclose_def := proj2_sig nclose_aux.
Infix ".@" := ndot (at level 19, left associativity) : C_scope.
Notation "(.@)" := ndot (only parsing) : C_scope.
Instance ndot_inj `{Countable A} : Inj2 (=) (=) (=) (@ndot A _ _).
Proof. intros N1 x1 N2 x2; rewrite !ndot_eq⇒ ?; by simplify_eq. Qed.
Lemma nclose_nroot : nclose nroot = ⊤.
Proof. rewrite nclose_eq. by apply (sig_eq_pi _). Qed.
Lemma encode_nclose N : encode N ∈ nclose N.
Proof.
rewrite nclose_eq.
by apply elem_coPset_suffixes; ∃ xH; rewrite (left_id_L _ _).
Qed.
Lemma nclose_subseteq `{Countable A} N x : nclose (N .@ x) ⊆ nclose N.
Proof.
intros p; rewrite nclose_eq /nclose !ndot_eq !elem_coPset_suffixes.
intros [q ->]. destruct (list_encode_suffix N (ndot_def N x)) as [q' ?].
{ by ∃ [encode x]. }
by ∃ (q ++ q')%positive; rewrite <-(assoc_L _); f_equal.
Qed.
Lemma ndot_nclose `{Countable A} N x : encode (N .@ x) ∈ nclose N.
Proof. apply nclose_subseteq with x, encode_nclose. Qed.
Lemma nclose_infinite N : ¬set_finite (nclose N).
Proof. rewrite nclose_eq. apply coPset_suffixes_infinite. Qed.
Instance ndisjoint : Disjoint namespace := λ N1 N2,
∃ N1' N2', N1' `suffix_of` N1 ∧ N2' `suffix_of` N2 ∧
length N1' = length N2' ∧ N1' ≠ N2'.
Typeclasses Opaque ndisjoint.
Section ndisjoint.
Context `{Countable A}.
Implicit Types x y : A.
Global Instance ndisjoint_symmetric : Symmetric ndisjoint.
Proof. intros N1 N2. rewrite /disjoint /ndisjoint; naive_solver. Qed.
Lemma ndot_ne_disjoint N x y : x ≠ y → N .@ x ⊥ N .@ y.
Proof. intros. ∃ (N .@ x), (N .@ y); rewrite ndot_eq; naive_solver. Qed.
Lemma ndot_preserve_disjoint_l N1 N2 x : N1 ⊥ N2 → N1 .@ x ⊥ N2.
Proof.
intros (N1' & N2' & Hpr1 & Hpr2 & Hl & Hne). ∃ N1', N2'.
split_and?; try done; []. rewrite ndot_eq. by apply suffix_of_cons_r.
Qed.
Lemma ndot_preserve_disjoint_r N1 N2 x : N1 ⊥ N2 → N1 ⊥ N2 .@ x .
Proof. intros. by apply symmetry, ndot_preserve_disjoint_l. Qed.
Lemma ndisj_disjoint N1 N2 : N1 ⊥ N2 → nclose N1 ⊥ nclose N2.
Proof.
intros (N1' & N2' & [N1'' ->] & [N2'' ->] & Hl & Hne) p.
rewrite nclose_eq /nclose.
rewrite !elem_coPset_suffixes; intros [q ->] [q' Hq]; destruct Hne.
by rewrite !list_encode_app !assoc in Hq; apply list_encode_suffix_eq in Hq.
Qed.
Lemma ndisj_subseteq_difference N1 N2 E :
N1 ⊥ N2 → nclose N1 ⊆ E → nclose N1 ⊆ E ∖ nclose N2.
Proof. intros ?%ndisj_disjoint. set_solver. Qed.
End ndisjoint.
Hint Resolve ndisj_subseteq_difference : ndisj.
Hint Extern 0 (_ ⊥ _) ⇒ apply ndot_ne_disjoint; congruence : ndisj.
Hint Resolve ndot_preserve_disjoint_l : ndisj.
Hint Resolve ndot_preserve_disjoint_r : ndisj.
Ltac solve_ndisj := solve [eauto with ndisj].