Library iris.program_logic.ectx_lifting

Some derived lemmas for ectx-based languages
From iris.program_logic Require Export ectx_language weakestpre lifting.
From iris.program_logic Require Import ownership.
From iris.proofmode Require Import weakestpre.

Section wp.
Context {expr val ectx state} {Λ : EctxLanguage expr val ectx state}.
Context {Σ : iFunctor}.
Implicit Types P : iProp (ectx_lang expr) Σ.
Implicit Types Φ : val iProp (ectx_lang expr) Σ.
Implicit Types v : val.
Implicit Types e : expr.
Hint Resolve head_prim_reducible head_reducible_prim_step.

Notation wp_fork ef := (default Emp ef (flip (wp ) (λ _, uPred_stopped)))%I.

Lemma wp_ectx_bind {E e} K Φ :
  WP e @ E {{ v, WP fill K (of_val v) @ E {{ Φ }} }} WP fill K e @ E {{ Φ }}.
Proof. apply: weakestpre.wp_bind. Qed.

Lemma wp_lift_head_step E1 E2 Φ e1 :
  E2 E1 to_val e1 = None
  (|={E1,E2}=> σ1, ⧆( head_reducible e1 σ1 ownP σ1)
                       e2 σ2 ef, ( head_step e1 σ1 e2 σ2 ef ownP σ2)
                                 -★ |={E2,E1}=>> WP e2 @ E1 {{ Φ }} wp_fork ef)
   WP e1 @ E1 {{ Φ }}.
Proof.
  iIntros (??) "H". iApply (wp_lift_step E1 E2); try done.
  setoid_rewrite uPred.affine_and.
  iPvs "H" as (σ1) "((%&Hσ1)&Hwp)". set_solver. iPvsIntro. iExists σ1.
  iSplitL "Hσ1". iSplit; first iPureIntro; eauto.
  iNext. iIntros (e2 σ2 ef) "[% ?]".
  iApply "Hwp". iSplit; first iPureIntro; eauto.
Qed.

Lemma wp_lift_pure_head_step E Φ e1 :
  to_val e1 = None
  ( σ1, head_reducible e1 σ1)
  ( σ1 e2 σ2 ef, head_step e1 σ1 e2 σ2 ef σ1 = σ2)
  ( e2 ef σ, head_step e1 σ e2 σ ef -★ |={E}=>> WP e2 @ E {{ Φ }} wp_fork ef)
   WP e1 @ E {{ Φ }}.
  iIntros (???) "H". iApply wp_lift_pure_step; eauto. iNext.
  iIntros (????). iApply "H". iPureIntro; eauto.
Qed.

Lemma wp_lift_atomic_head_step {E Φ} e1 σ1 :
  atomic e1
  head_reducible e1 σ1
   ownP σ1 ( v2 σ2 ef,
   head_step e1 σ1 (of_val v2) σ2 ef ownP σ2 -★ (|={E}=>> Φ v2 wp_fork ef))
   WP e1 @ E {{ Φ }}.
Proof.
  iIntros (??) "[? H]". iApply wp_lift_atomic_step; eauto. iFrame. iNext.
  iIntros (???) "[% ?]". iApply "H". eauto.
Qed.

Lemma wp_lift_atomic_det_head_step {E Φ e1} σ1 v2 σ2 ef :
  atomic e1
  head_reducible e1 σ1
  ( e2' σ2' ef', head_step e1 σ1 e2' σ2' ef'
    σ2 = σ2' to_val e2' = Some v2 ef = ef')
  ( ownP σ1 (ownP σ2 -★ |={E}=>> Φ v2 wp_fork ef)) WP e1 @ E {{ Φ }}.
Proof. eauto using wp_lift_atomic_det_step. Qed.

Lemma wp_lift_pure_det_head_step {E Φ} e1 e2 ef :
  to_val e1 = None
  ( σ1, head_reducible e1 σ1)
  ( σ1 e2' σ2 ef', head_step e1 σ1 e2' σ2 ef' σ1 = σ2 e2 = e2' ef = ef')→
   (|={E}=>> WP e2 @ E {{ Φ }} wp_fork ef) WP e1 @ E {{ Φ }}.
Proof. eauto using wp_lift_pure_det_step. Qed.
End wp.