Library iris.program_logic.model

From iris.algebra Require Export upred.
From iris.program_logic Require Export resources.
From iris.algebra Require cofe_solver.

Structure iFunctor := IFunctor {
  iFunctor_F :> urFunctor;
  iFunctor_contractive : urFunctorContractive iFunctor_F
}.
Arguments IFunctor _ {_}.
Existing Instances iFunctor_contractive.

Module Type iProp_solution_sig.
Parameter iPreProp : language iFunctor cofeT.
Definition iGst (Λ : language) (Σ : iFunctor) : ucmraT := Σ (iPreProp Λ Σ).
Definition iRes Λ Σ := res Λ (laterC (iPreProp Λ Σ)) (iGst Λ Σ).
Definition iResUR Λ Σ := resUR Λ (laterC (iPreProp Λ Σ)) (iGst Λ Σ).
Definition iWld Λ Σ := gmap positive (agree (laterC (iPreProp Λ Σ))).
Definition iPst Λ := option (excl (state Λ)).
Definition iProp (Λ : language) (Σ : iFunctor) : cofeT := uPredC (iResUR Λ Σ).

Parameter iProp_unfold: {Λ Σ}, iProp Λ Σ -n> iPreProp Λ Σ.
Parameter iProp_fold: {Λ Σ}, iPreProp Λ Σ -n> iProp Λ Σ.
Parameter iProp_fold_unfold: {Λ Σ} (P : iProp Λ Σ),
  iProp_fold (iProp_unfold P) P.
Parameter iProp_unfold_fold: {Λ Σ} (P : iPreProp Λ Σ),
  iProp_unfold (iProp_fold P) P.
End iProp_solution_sig.

Module Export iProp_solution : iProp_solution_sig.
Import cofe_solver.
Definition iProp_result (Λ : language) (Σ : iFunctor) :
  solution (uPredCF (resURF Λ ( ) Σ)) := solver.result _.

Definition iPreProp (Λ : language) (Σ : iFunctor) : cofeT := iProp_result Λ Σ.
Definition iGst (Λ : language) (Σ : iFunctor) : ucmraT := Σ (iPreProp Λ Σ).
Definition iRes Λ Σ := res Λ (laterC (iPreProp Λ Σ)) (iGst Λ Σ).
Definition iResUR Λ Σ := resUR Λ (laterC (iPreProp Λ Σ)) (iGst Λ Σ).
Definition iWld Λ Σ := gmap positive (agree (laterC (iPreProp Λ Σ))).
Definition iPst Λ := option (excl (state Λ)).

Definition iProp (Λ : language) (Σ : iFunctor) : cofeT := uPredC (iResUR Λ Σ).
Definition iProp_unfold {Λ Σ} : iProp Λ Σ -n> iPreProp Λ Σ :=
  solution_fold (iProp_result Λ Σ).
Definition iProp_fold {Λ Σ} : iPreProp Λ Σ -n> iProp Λ Σ := solution_unfold _.
Lemma iProp_fold_unfold {Λ Σ} (P : iProp Λ Σ) : iProp_fold (iProp_unfold P) P.
Proof. apply solution_unfold_fold. Qed.
Lemma iProp_unfold_fold {Λ Σ} (P : iPreProp Λ Σ) :
  iProp_unfold (iProp_fold P) P.
Proof. apply solution_fold_unfold. Qed.
End iProp_solution.

Bind Scope uPred_scope with iProp.

Instance iProp_fold_inj n Λ Σ : Inj (dist n) (dist n) (@iProp_fold Λ Σ).
Proof. by intros X Y H; rewrite -(iProp_unfold_fold X) H iProp_unfold_fold. Qed.
Instance iProp_unfold_inj n Λ Σ : Inj (dist n) (dist n) (@iProp_unfold Λ Σ).
Proof. by intros X Y H; rewrite -(iProp_fold_unfold X) H iProp_fold_unfold. Qed.