Library iris.prelude.strings

From Coq Require Import Ascii.
From Coq Require Export String.
From iris.prelude Require Export list.
From iris.prelude Require Import countable.

Notation length := List.length.

Fix scopes

Open Scope string_scope.
Open Scope list_scope.
Infix "+:+" := String.append (at level 60, right associativity) : C_scope.
Arguments String.append _ _ : simpl never.

Decision of equality

Instance assci_eq_dec : a1 a2, Decision (a1 = a2) := ascii_dec.
Instance string_eq_dec (s1 s2 : string) : Decision (s1 = s2).
Proof. solve_decision. Defined.
Instance: Inj (=) (=) (String.append s1).
Proof. intros s1 ???. induction s1; simplify_eq/=; f_equal/=; auto. Qed.

Fixpoint string_rev_app (s1 s2 : string) : string :=
  match s1 with
  | "" ⇒ s2
  | String a s1string_rev_app s1 (String a s2)
  end.
Definition string_rev (s : string) : string := string_rev_app s "".

Fixpoint words_go (cur : option string) (s : string) : list string :=
  match s with
  | "" ⇒ option_list (string_rev <$> cur)
  | String " " soption_list (string_rev <$> cur) ++ words_go None s
  | String a swords_go (Some (default (String a "") cur (String a))) s
  end.
Definition words : string list string := words_go None.

Ltac words s :=
  match type of s with
  | list strings
  | stringeval vm_compute in (words s)
  end.

Encoding and decoding

In order to reuse or existing implementation of radix-2 search trees over positive binary naturals positive, we define an injection string_to_pos from string into positive.
Fixpoint digits_to_pos (βs : list bool) : positive :=
  match βs with
  | []xH
  | false :: βs(digits_to_pos βs)~0
  | true :: βs(digits_to_pos βs)~1
  end%positive.
Definition ascii_to_digits (a : Ascii.ascii) : list bool :=
  match a with
  | Ascii.Ascii β1 β2 β3 β4 β5 β6 β7 β8[β1;β2;β3;β4;β5;β6;β7;β8]
  end.
Fixpoint string_to_pos (s : string) : positive :=
  match s with
  | EmptyStringxH
  | String a sstring_to_pos s ++ digits_to_pos (ascii_to_digits a)
  end%positive.
Fixpoint digits_of_pos (p : positive) : list bool :=
  match p with
  | xH[]
  | p~0false :: digits_of_pos p
  | p~1true :: digits_of_pos p
  end%positive.
Fixpoint ascii_of_digits (βs : list bool) : ascii :=
  match βs with
  | []zero
  | β :: βsAscii.shift β (ascii_of_digits βs)
  end.
Fixpoint string_of_digits (βs : list bool) : string :=
  match βs with
  | β1 :: β2 :: β3 :: β4 :: β5 :: β6 :: β7 :: β8 :: βs
     String (ascii_of_digits [β1;β2;β3;β4;β5;β6;β7;β8]) (string_of_digits βs)
  | _EmptyString
  end.
Definition string_of_pos (p : positive) : string :=
  string_of_digits (digits_of_pos p).
Lemma string_of_to_pos s : string_of_pos (string_to_pos s) = s.
Proof.
  unfold string_of_pos. by induction s as [|[[][][][][][][][]]]; f_equal/=.
Qed.
Program Instance string_countable : Countable string := {|
  encode := string_to_pos; decode p := Some (string_of_pos p)
|}.
Solve Obligations with naive_solver eauto using string_of_to_pos with f_equal.