Library iris.algebra.dec_agree
From iris.algebra Require Export cmra.
Local Arguments validN _ _ _ !_ /.
Local Arguments valid _ _ !_ /.
Local Arguments op _ _ _ !_ /.
Local Arguments pcore _ _ !_ /.
Inductive dec_agree (A : Type) : Type :=
| DecAgree : A → dec_agree A
| DecAgreeBot : dec_agree A.
Arguments DecAgree {_} _.
Arguments DecAgreeBot {_}.
Instance maybe_DecAgree {A} : Maybe (@DecAgree A) := λ x,
match x with DecAgree a ⇒ Some a | _ ⇒ None end.
Section dec_agree.
Context {A : Type} `{∀ x y : A, Decision (x = y)}.
Instance dec_agree_valid : Valid (dec_agree A) := λ x,
if x is DecAgree _ then True else False.
Canonical Structure dec_agreeC : cofeT := leibnizC (dec_agree A).
Instance dec_agree_op : Op (dec_agree A) := λ x y,
match x, y with
| DecAgree a, DecAgree b ⇒ if decide (a = b) then DecAgree a else DecAgreeBot
| _, _ ⇒ DecAgreeBot
end.
Instance dec_agree_pcore : PCore (dec_agree A) := Some.
Instance dec_agree_stepN : StepN (dec_agree A) := λ n x y, True.
Definition dec_agree_ra_mixin : RAMixin (dec_agree A).
Proof.
split.
- apply _.
- intros x y cx ? [=<-]; eauto.
- apply _.
- intros [?|] [?|] [?|]; by repeat (simplify_eq/= || case_match).
- intros [?|] [?|]; by repeat (simplify_eq/= || case_match).
- intros [?|] ? [=<-]; by repeat (simplify_eq/= || case_match).
- intros [?|]; by repeat (simplify_eq/= || case_match).
- intros [?|] [?|] ?? [=<-]; eauto.
- by intros [?|] [?|] ?.
- by intros [?|] [?|] ?.
- by intros ? ?.
Qed.
Canonical Structure dec_agreeR : cmraT :=
discreteR (dec_agree A) dec_agree_ra_mixin.
Global Instance dec_agree_persistent (x : dec_agreeR) : Persistent x.
Proof. by constructor. Qed.
Lemma dec_agree_ne a b : a ≠ b → DecAgree a ⋅ DecAgree b = DecAgreeBot.
Proof. intros. by rewrite /= decide_False. Qed.
Lemma dec_agree_idemp (x : dec_agree A) : x ⋅ x = x.
Proof. destruct x; by rewrite /= ?decide_True. Qed.
Lemma dec_agree_op_inv (x1 x2 : dec_agree A) : ✓ (x1 ⋅ x2) → x1 = x2.
Proof. destruct x1, x2; by repeat (simplify_eq/= || case_match). Qed.
End dec_agree.
Arguments dec_agreeC : clear implicits.
Arguments dec_agreeR _ {_}.
Local Arguments validN _ _ _ !_ /.
Local Arguments valid _ _ !_ /.
Local Arguments op _ _ _ !_ /.
Local Arguments pcore _ _ !_ /.
Inductive dec_agree (A : Type) : Type :=
| DecAgree : A → dec_agree A
| DecAgreeBot : dec_agree A.
Arguments DecAgree {_} _.
Arguments DecAgreeBot {_}.
Instance maybe_DecAgree {A} : Maybe (@DecAgree A) := λ x,
match x with DecAgree a ⇒ Some a | _ ⇒ None end.
Section dec_agree.
Context {A : Type} `{∀ x y : A, Decision (x = y)}.
Instance dec_agree_valid : Valid (dec_agree A) := λ x,
if x is DecAgree _ then True else False.
Canonical Structure dec_agreeC : cofeT := leibnizC (dec_agree A).
Instance dec_agree_op : Op (dec_agree A) := λ x y,
match x, y with
| DecAgree a, DecAgree b ⇒ if decide (a = b) then DecAgree a else DecAgreeBot
| _, _ ⇒ DecAgreeBot
end.
Instance dec_agree_pcore : PCore (dec_agree A) := Some.
Instance dec_agree_stepN : StepN (dec_agree A) := λ n x y, True.
Definition dec_agree_ra_mixin : RAMixin (dec_agree A).
Proof.
split.
- apply _.
- intros x y cx ? [=<-]; eauto.
- apply _.
- intros [?|] [?|] [?|]; by repeat (simplify_eq/= || case_match).
- intros [?|] [?|]; by repeat (simplify_eq/= || case_match).
- intros [?|] ? [=<-]; by repeat (simplify_eq/= || case_match).
- intros [?|]; by repeat (simplify_eq/= || case_match).
- intros [?|] [?|] ?? [=<-]; eauto.
- by intros [?|] [?|] ?.
- by intros [?|] [?|] ?.
- by intros ? ?.
Qed.
Canonical Structure dec_agreeR : cmraT :=
discreteR (dec_agree A) dec_agree_ra_mixin.
Global Instance dec_agree_persistent (x : dec_agreeR) : Persistent x.
Proof. by constructor. Qed.
Lemma dec_agree_ne a b : a ≠ b → DecAgree a ⋅ DecAgree b = DecAgreeBot.
Proof. intros. by rewrite /= decide_False. Qed.
Lemma dec_agree_idemp (x : dec_agree A) : x ⋅ x = x.
Proof. destruct x; by rewrite /= ?decide_True. Qed.
Lemma dec_agree_op_inv (x1 x2 : dec_agree A) : ✓ (x1 ⋅ x2) → x1 = x2.
Proof. destruct x1, x2; by repeat (simplify_eq/= || case_match). Qed.
End dec_agree.
Arguments dec_agreeC : clear implicits.
Arguments dec_agreeR _ {_}.