CVC3
Classes | Public Member Functions | Private Types | Private Member Functions | Private Attributes | Friends

CVC3::TheoryArithOld Class Reference

#include <theory_arith_old.h>

Inherits CVC3::TheoryArith.

Collaboration diagram for CVC3::TheoryArithOld:
Collaboration graph
[legend]

List of all members.

Classes

Public Member Functions

Private Types

Private Member Functions

Private Attributes

Friends


Detailed Description

Definition at line 30 of file theory_arith_old.h.


Member Typedef Documentation

typedef ExprMap< std::set< std::pair<Rational, Expr> > > CVC3::TheoryArithOld::AtomsMap [private]

Definition at line 445 of file theory_arith_old.h.


Member Enumeration Documentation

Enumerator:
QueryWithCacheLeaves 

Query the bounds/constrained using cache for leaves

QueryWithCacheLeavesAndConstrainedComputation 

Query the bounds/constrained using cashe for leaves, but also see if the value is constrained

QueryWithCacheAll 

Query the bounds/constrained by only querying the cache, don't try to figure it out

Definition at line 913 of file theory_arith_old.h.


Constructor & Destructor Documentation

TheoryArithOld::TheoryArithOld ( TheoryCore core)
TheoryArithOld::~TheoryArithOld ( )

Member Function Documentation

Theorem TheoryArithOld::isIntegerThm ( const Expr e) [private]

Check the term t for integrality.

Returns:
a theorem of IS_INTEGER(t) or Null.

Definition at line 70 of file theory_arith_old.cpp.

References CVC3::Expr::getType(), CVC3::IS_INTEGER, CVC3::isInt(), and CVC3::isReal().

Referenced by canPickEqMonomial(), checkIntegerEquality(), checkSat(), computeTermBounds(), isConstrained(), isInteger(), rafineInequalityToInteger(), and rewrite().

Theorem TheoryArithOld::isIntegerDerive ( const Expr isIntE,
const Theorem thm 
) [private]

A helper method for isIntegerThm()

Check if IS_INTEGER(e) is easily derivable from the given 'thm'

Definition at line 81 of file theory_arith_old.cpp.

References CVC3::Expr::arity(), CVC3::Theorem::getExpr(), CVC3::Expr::isAnd(), and CVC3::Theorem::isNull().

Referenced by rewrite().

const Rational & TheoryArithOld::freeConstIneq ( const Expr ineq,
bool  varOnRHS 
) [private]

Extract the free constant from an inequality.

Definition at line 98 of file theory_arith_old.cpp.

References DebugAssert, CVC3::isIneq(), CVC3::PLUS, RATIONAL_EXPR, and CVC3::Expr::toString().

const TheoryArithOld::FreeConst & TheoryArithOld::updateSubsumptionDB ( const Expr ineq,
bool  varOnRHS,
bool &  subsumed 
) [private]

Update the free constant subsumption database with new inequality.

Returns:
a reference to the max/min constant.

Also, sets 'subsumed' argument to true if the inequality is subsumed by an existing inequality.

Definition at line 116 of file theory_arith_old.cpp.

References CVC3::Expr::arity(), CVC3::Expr::begin(), DebugAssert, CVC3::Expr::end(), CVC3::CDMap< Key, Data, HashFcn >::find(), CVC3::CDOmap< Key, Data, HashFcn >::get(), CVC3::TheoryArithOld::FreeConst::getConst(), CVC3::Expr::getRational(), CVC3::int2string(), CVC3::isLE(), CVC3::isLT(), CVC3::isPlus(), CVC3::isRational(), CVC3::leExpr(), CVC3::plusExpr(), CVC3::TheoryArithOld::FreeConst::strict(), CVC3::Expr::toString(), and TRACE.

bool TheoryArithOld::kidsCanonical ( const Expr e) [private]

Check if the kids of e are fully simplified and canonized (for debugging)

Definition at line 186 of file theory_arith_old.cpp.

References CVC3::Expr::arity(), std::endl(), and IF_DEBUG.

Theorem TheoryArithOld::canon ( const Expr e) [private, virtual]

Canonize the expression e, assuming, all children are canonical.

Implements CVC3::TheoryArith.

Definition at line 218 of file theory_arith_old.cpp.

References CVC3::Expr::arity(), DebugAssert, CVC3::DIVIDE, CVC3::Expr::getKind(), CVC3::Theorem::getRHS(), CVC3::isRational(), CVC3::MINUS, CVC3::MULT, CVC3::PLUS, CVC3::POW, CVC3::Expr::toString(), TRACE, and CVC3::UMINUS.

Referenced by rewrite(), and tryPropagate().

Theorem TheoryArithOld::canonSimplify ( const Expr e) [private]

Canonize and reduce e w.r.t. union-find database; assume all children are canonical.

Definition at line 371 of file theory_arith_old.cpp.

References DebugAssert, CVC3::Theorem::getRHS(), CVC3::Expr::hasFind(), CVC3::Expr::toString(), and TRACE.

Referenced by canonSimplify().

Theorem CVC3::TheoryArithOld::canonSimplify ( const Theorem thm) [inline, private]

Composition of canonSimplify(const Expr&) by transitivity: take e0 = e1, canonize and simplify e1 to e2, return e0 = e2.

Definition at line 191 of file theory_arith_old.h.

References canonSimplify(), CVC3::Theorem::getRHS(), and CVC3::Theory::transitivityRule().

Theorem TheoryArithOld::canonPred ( const Theorem thm) [private]

Canonize predicate (x = y, x < y, etc.)

accepts a theorem, canonizes it, applies iffMP and substituvity to derive the canonized thm

Definition at line 401 of file theory_arith_old.cpp.

References CVC3::Expr::arity(), DebugAssert, CVC3::Theorem::getExpr(), CVC3::Expr::getOp(), and CVC3::Theorem::toString().

Referenced by rafineInequalityToInteger().

Theorem TheoryArithOld::canonPredEquiv ( const Theorem thm) [private]

Canonize predicate like canonPred except that the input theorem is an equivalent transformation.

accepts an equivalence theorem, canonizes it, applies iffMP and substituvity to derive the canonized thm

Definition at line 417 of file theory_arith_old.cpp.

References CVC3::Expr::arity(), DebugAssert, CVC3::Expr::getOp(), CVC3::Theorem::getRHS(), and CVC3::Theorem::toString().

Referenced by normalize(), rafineInequalityToInteger(), and rewrite().

Theorem TheoryArithOld::doSolve ( const Theorem thm) [private]

Solve an equation and return an equivalent Theorem in the solved form.

Pseudo-code for doSolve. (Input is an equation) (output is a Theorem)

  1. translate e to the form e' = 0
  2. if (e'.isRational()) then {if e' != 0 return false else true}
  3. a for loop checks if all the variables are integers.
    • if not isolate a suitable real variable and call processRealEq().
    • if all variables are integers then isolate suitable variable and call processIntEq().

Definition at line 447 of file theory_arith_old.cpp.

References DebugAssert, FatalAssert, CVC3::Theorem::getExpr(), CVC3::Expr::getRational(), CVC3::Expr::isFalse(), CVC3::isMult(), CVC3::isPow(), CVC3::Expr::isRational(), CVC3::isRational(), CVC3::Theorem::isRewrite(), CVC3::Expr::isTrue(), MiniSat::right(), CVC3::ArithException::toString(), CVC3::Theorem::toString(), and TRACE.

Referenced by solve().

Theorem TheoryArithOld::canonConjunctionEquiv ( const Theorem thm) [private]

takes in a conjunction equivalence Thm and canonizes it.

accepts an equivalence theorem whose RHS is a conjunction, canonizes it, applies iffMP and substituvity to derive the canonized thm

Definition at line 434 of file theory_arith_old.cpp.

bool TheoryArithOld::pickIntEqMonomial ( const Expr right,
Expr isolated,
bool &  nonlin 
) [private]

picks the monomial with the smallest abs(coeff) from the input

pick a monomial for the input equation. This function is used only if the equation is an integer equation. Choose the monomial with the smallest absolute value of coefficient.

Definition at line 563 of file theory_arith_old.cpp.

References CVC3::abs(), CVC3::Expr::arity(), CVC3::Expr::begin(), DebugAssert, CVC3::Expr::end(), CVC3::isMult(), CVC3::isPlus(), CVC3::isRational(), MiniSat::min(), and CVC3::Expr::toString().

Theorem TheoryArithOld::processRealEq ( const Theorem eqn) [private]

processes equalities with 1 or more vars of type REAL

input is 0=e' Theorem and some of the vars in e' are of type REAL. isolate one of them and send back to framework. output is "var = e''" Theorem.

Definition at line 615 of file theory_arith_old.cpp.

References CVC3::Expr::arity(), DebugAssert, EQ, CVC3::Theorem::getExpr(), CVC3::Theorem::getLHS(), CVC3::Expr::getRational(), CVC3::Theorem::getRHS(), CVC3::isMult(), CVC3::isPlus(), CVC3::isRational(), CVC3::Expr::isRational(), CVC3::isReal(), MiniSat::left(), MiniSat::right(), CVC3::Expr::toString(), CVC3::Theorem::toString(), and TRACE.

Theorem TheoryArithOld::processIntEq ( const Theorem eqn) [private]

processes equalities whose vars are all of type INT

input is 0=e' Theorem and all of the vars in e' are of type INT. isolate one of them and send back to framework. output is "var = e''" Theorem and some associated equations in solved form.

Definition at line 869 of file theory_arith_old.cpp.

References CVC3::Expr::arity(), DebugAssert, CVC3::Theorem::getExpr(), CVC3::Expr::isAnd(), CVC3::Expr::isBoolConst(), CVC3::Expr::isFalse(), CVC3::Theorem::isRewrite(), CVC3::Expr::toString(), and TRACE.

Theorem TheoryArithOld::processSimpleIntEq ( const Theorem eqn) [private]
void TheoryArithOld::processBuffer ( ) [private]
Theorem TheoryArithOld::isolateVariable ( const Theorem inputThm,
bool &  e1 
) [private]
void TheoryArithOld::updateStats ( const Rational c,
const Expr var 
) [private]

Update the statistics counters for the variable with a coeff. c.

Definition at line 1143 of file theory_arith_old.cpp.

References CVC3::ExprMap< Data >::end(), CVC3::ExprMap< Data >::find(), CVC3::Expr::getType(), CVC3::Expr::isRational(), CVC3::Rational::toString(), and TRACE.

void TheoryArithOld::updateStats ( const Expr monomial) [private]

Update the statistics counters for the monomial.

Definition at line 1189 of file theory_arith_old.cpp.

References CVC3::Expr::getRational().

bool TheoryArithOld::addToBuffer ( const Theorem thm,
bool  priority = false 
) [private]
Expr TheoryArithOld::computeNormalFactor ( const Expr rhs,
bool  normalizeConstants 
) [private]

Given a canonized term, compute a factor to make all coefficients integer and relatively prime.

Definition at line 1579 of file theory_arith_old.cpp.

References CVC3::abs(), CVC3::Expr::arity(), CVC3::Rational::getDenominator(), CVC3::Rational::getNumerator(), CVC3::Expr::getRational(), CVC3::isMult(), CVC3::isPlus(), CVC3::MULT, and RATIONAL_EXPR.

Referenced by normalize().

Theorem TheoryArithOld::normalize ( const Expr e) [private]

Normalize an equation (make all coefficients rel. prime integers)

accepts a rewrite theorem over eqn|ineqn and normalizes it and returns a theorem to that effect. assumes e is non-trivial i.e. e is not '0=const' or 'const=0' or '0 <= const' etc.

Definition at line 2994 of file theory_arith_old.cpp.

References canonPredEquiv(), checkIntegerEquality(), computeNormalFactor(), d_rules, DebugAssert, EQ, CVC3::GE, CVC3::Expr::getKind(), CVC3::Expr::getRational(), CVC3::GT, CVC3::Expr::isEq(), CVC3::isIneq(), CVC3::isRational(), CVC3::LE, CVC3::LT, CVC3::ArithProofRules::multEqn(), CVC3::ArithProofRules::multIneqn(), rafineInequalityToInteger(), CVC3::Theory::reflexivityRule(), CVC3::Expr::toString(), and TRACE.

Referenced by inequalityToFind(), normalize(), and rewrite().

Theorem TheoryArithOld::normalize ( const Theorem thm) [private]

Normalize an equation (make all coefficients rel. prime integers)

accepts a rewrite theorem over eqn|ineqn and normalizes it and returns a theorem to that effect.

Definition at line 3070 of file theory_arith_old.cpp.

References CVC3::Theorem::getExpr(), CVC3::Theorem::getRHS(), CVC3::Theory::iffMP(), CVC3::Theorem::isRewrite(), normalize(), and CVC3::Theory::transitivityRule().

Expr TheoryArithOld::pickMonomial ( const Expr right) [private]
void TheoryArithOld::getFactors ( const Expr e,
std::set< Expr > &  factors 
) [private]
void TheoryArithOld::separateMonomial ( const Expr e,
Expr c,
Expr var 
) [virtual]
bool CVC3::TheoryArithOld::isInteger ( const Expr e) [inline]
bool TheoryArithOld::lessThanVar ( const Expr isolatedVar,
const Expr var2 
) [private]

Definition at line 1623 of file theory_arith_old.cpp.

References DebugAssert, CVC3::isRational(), and CVC3::Expr::toString().

bool TheoryArithOld::isStale ( const Expr e) [private]

Check if the term expression is "stale".

"Stale" means it contains non-simplified subexpressions. For terms, it checks the expression's find pointer; for formulas it checks the children recursively (no caching!). So, apply it with caution, and only to simple atomic formulas (like inequality).

Definition at line 1639 of file theory_arith_old.cpp.

References CVC3::Expr::begin(), CVC3::Expr::end(), and CVC3::Expr::isTerm().

bool TheoryArithOld::isStale ( const Ineq ineq) [private]
void TheoryArithOld::projectInequalities ( const Theorem theInequality,
bool  isolatedVarOnRHS 
) [private]
void TheoryArithOld::assignVariables ( std::vector< Expr > &  v) [private]
void TheoryArithOld::findRationalBound ( const Expr varSide,
const Expr ratSide,
const Expr var,
Rational r 
) [private]
bool TheoryArithOld::findBounds ( const Expr e,
Rational lub,
Rational glb 
) [private]
Theorem TheoryArithOld::normalizeProjectIneqs ( const Theorem ineqThm1,
const Theorem ineqThm2 
) [private]
Theorem TheoryArithOld::solvedForm ( const std::vector< Theorem > &  solvedEqs) [private]

Take a system of equations and turn it into a solved form.

Takes a vector of equations and for every equation x_i=t_i substitutes t_j for x_j in t_i for all j>i. This turns the system of equations into a solved form.

Assumption: variables x_j may appear in the RHS terms t_i ONLY for i<j, but not for i>=j.

Definition at line 912 of file theory_arith_old.cpp.

References CVC3::ExprMap< Data >::begin(), DebugAssert, CVC3::ExprMap< Data >::end(), CVC3::Theorem::getExpr(), IF_DEBUG, TRACE, and TRACE_MSG.

Theorem TheoryArithOld::substAndCanonize ( const Expr t,
ExprMap< Theorem > &  subst 
) [private]

Substitute all vars in term 't' according to the substitution 'subst' and canonize the result.

ASSUMPTION: 't' is a fully canonized arithmetic term, and every element of subst is a fully canonized equation of the form x=e, indexed by the LHS variable.

Definition at line 966 of file theory_arith_old.cpp.

References CVC3::Expr::arity(), CVC3::ExprMap< Data >::empty(), CVC3::ExprMap< Data >::end(), CVC3::ExprMap< Data >::find(), CVC3::Theorem::getRHS(), and TRACE.

Theorem TheoryArithOld::substAndCanonize ( const Theorem eq,
ExprMap< Theorem > &  subst 
) [private]

Substitute all vars in the RHS of the equation 'eq' of the form (x = t) according to the substitution 'subst', and canonize the result.

ASSUMPTION: 't' is a fully canonized equation of the form x = t, and so is every element of subst, indexed by the LHS variable.

Definition at line 1017 of file theory_arith_old.cpp.

References DebugAssert, CVC3::ExprMap< Data >::empty(), CVC3::Theorem::getExpr(), CVC3::Theorem::getRHS(), CVC3::Theorem::isRewrite(), and CVC3::Expr::toString().

void TheoryArithOld::collectVars ( const Expr e,
std::vector< Expr > &  vars,
std::set< Expr > &  cache 
) [private]

Traverse 'e' and push all the i-leaves into 'vars' vector.

Definition at line 2359 of file theory_arith_old.cpp.

References CVC3::Expr::begin(), CVC3::Expr::end(), and CVC3::Theory::isLeaf().

void TheoryArithOld::processFiniteInterval ( const Theorem alphaLEax,
const Theorem bxLEbeta 
) [private]

Check if alpha <= ax & bx <= beta is a finite interval for integer var 'x', and assert the corresponding constraint.

Definition at line 2373 of file theory_arith_old.cpp.

References DebugAssert, CVC3::Theorem::getExpr(), CVC3::Expr::getRational(), CVC3::isLE(), CVC3::isMult(), CVC3::isPlus(), CVC3::Expr::isRational(), CVC3::isRational(), and CVC3::Expr::toString().

Referenced by processFiniteIntervals().

void TheoryArithOld::processFiniteIntervals ( const Expr x) [private]

For an integer var 'x', find and process all constraints A <= ax <= A+c.

Definition at line 2432 of file theory_arith_old.cpp.

References d_inequalitiesLeftDB, d_inequalitiesRightDB, CVC3::ExprMap< Data >::end(), CVC3::ExprMap< Data >::find(), isInteger(), processFiniteInterval(), and CVC3::CDList< T >::size().

void TheoryArithOld::setupRec ( const Expr e) [private]

Recursive setup for isolated inequalities (and other new expressions)

This function recursively decends expression tree without caching until it hits a node that is already setup. Be careful on what expressions you are calling it.

Definition at line 2458 of file theory_arith_old.cpp.

References CVC3::Expr::arity(), CVC3::Expr::hasFind(), CVC3::Theory::reflexivityRule(), CVC3::Expr::setEqNext(), CVC3::Expr::setFind(), and setup().

ArithProofRules * TheoryArithOld::createProofRulesOld ( )

Definition at line 44 of file arith_theorem_producer_old.cpp.

Referenced by TheoryArithOld().

void TheoryArithOld::addSharedTerm ( const Expr e) [virtual]

Notify theory of a new shared term.

When a term e associated with theory i occurs as a child of an expression associated with theory j, the framework calls i->addSharedTerm(e) and j->addSharedTerm(e)

Implements CVC3::TheoryArith.

Definition at line 2472 of file theory_arith_old.cpp.

References d_sharedTerms, d_sharedTermsList, CVC3::CDMap< Key, Data, HashFcn >::end(), CVC3::CDMap< Key, Data, HashFcn >::find(), and CVC3::CDList< T >::push_back().

Referenced by update().

void TheoryArithOld::assertFact ( const Theorem e) [virtual]
void TheoryArithOld::refineCounterExample ( ) [virtual]
void TheoryArithOld::computeModelBasic ( const std::vector< Expr > &  v) [virtual]

Assign concrete values to basic-type variables in v.

Implements CVC3::TheoryArith.

Definition at line 2882 of file theory_arith_old.cpp.

References assignVariables(), d_inModelCreation, CVC3::Theory::findExpr(), and TRACE.

void TheoryArithOld::computeModel ( const Expr e,
std::vector< Expr > &  vars 
) [virtual]

Compute the value of a compound variable from the more primitive ones.

The more primitive variables for e are already assigned concrete values, and are available through getModelValue().

The new value for e must be assigned using assignValue() method.

Parameters:
eis the compound type expression to assign a value;
varsare the variables actually assigned. Normally, 'e' is the only element of vars. However, e.g. in the case of uninterpreted functions, assigning 'f' means assigning all relevant applications of 'f' to constant values (f(0), f(5), etc.). Such applications might not be known before the model is constructed (they may be of the form f(x), f(y+z), etc., where x,y,z are still unassigned).

Populating 'vars' is an opportunity for a DP to change the set of top-level "variables" to assign, if needed. In particular, it may drop 'e' from the model entirely, if it is already a concrete value by itself.

Implements CVC3::TheoryArith.

Definition at line 2905 of file theory_arith_old.cpp.

References CVC3::Theory::assignValue(), DebugAssert, CVC3::Theory::findExpr(), CVC3::isRational(), CVC3::Theory::simplify(), and CVC3::Expr::toString().

void TheoryArithOld::checkSat ( bool  fullEffort) [virtual]

Check for satisfiability in the theory.

Parameters:
fullEffortwhen it is false, checkSat can do as much or as little work as it likes, though simple inferences and checks for consistency should be done to increase efficiency. If fullEffort is true, checkSat must check whether the set of facts given by assertFact together with the arrangement of shared terms (provided by addSharedTerm) induced by the global find database equivalence relation are satisfiable. If satisfiable, checkSat does nothing.

If satisfiability can be acheived by merging some of the shared terms, a new fact must be enqueued using enqueueFact (this fact need not be a literal). If there is no way to make things satisfiable, setInconsistent must be called.

Implements CVC3::TheoryArith.

Definition at line 2606 of file theory_arith_old.cpp.

References d_buffer_0, d_buffer_1, d_buffer_2, d_buffer_3, d_diseq, d_diseqIdx, d_inModelCreation, d_rules, DebugAssert, diseqSplitAlready, CVC3::ArithProofRules::diseqToIneq(), CVC3::CDMap< Key, Data, HashFcn >::end(), std::endl(), CVC3::Theory::enqueueFact(), CVC3::Expr::eqExpr(), CVC3::Theory::find(), CVC3::CDMap< Key, Data, HashFcn >::find(), CVC3::Theorem::getExpr(), CVC3::Theorem::getRHS(), CVC3::Expr::hasFind(), IF_DEBUG, CVC3::Theory::inconsistent(), isIntegerThm(), CVC3::Theorem::isNull(), CVC3::Expr::isRational(), isUnconstrained(), processBuffer(), CVC3::CDList< T >::size(), CVC3::Expr::toString(), and TRACE.

Theorem TheoryArithOld::rewrite ( const Expr e) [virtual]

Theory-specific rewrite rules.

By default, rewrite just returns a reflexive theorem stating that the input expression is equivalent to itself. However, rewrite is allowed to return any theorem which describes how the input expression is equivalent to some new expression. rewrite should be used to perform simplifications, normalization, and any other preprocessing on theory-specific expressions that needs to be done.

Implements CVC3::TheoryArith.

Definition at line 3076 of file theory_arith_old.cpp.

References CVC3::Expr::arity(), CVC3::Expr::begin(), canon(), canonPredEquiv(), canPickEqMonomial(), CVC3::ArithProofRules::constPredicate(), CVC3::Expr::containsTermITE(), d_rules, CVC3::DARK_SHADOW, DebugAssert, CVC3::ArithProofRules::divideEqnNonConst(), CVC3::ArithProofRules::elimPower(), CVC3::ArithProofRules::elimPowerConst(), CVC3::Expr::end(), EQ, CVC3::ArithProofRules::eqToIneq(), CVC3::ArithProofRules::evenPowerEqNegConst(), CVC3::ArithProofRules::flipInequality(), CVC3::GE, CVC3::Theory::getCommonRules(), getFactors(), CVC3::Expr::getKind(), CVC3::Expr::getRational(), CVC3::Theorem::getRHS(), CVC3::Expr::getSize(), CVC3::Rational::getUnsigned(), CVC3::GRAY_SHADOW, CVC3::GT, CVC3::CommonProofRules::iffTrue(), CVC3::ArithProofRules::intEqIrrational(), CVC3::IS_INTEGER, CVC3::Expr::isAbsLiteral(), CVC3::Expr::isAtomic(), CVC3::Expr::isBoolConst(), CVC3::Expr::isEq(), CVC3::isGE(), CVC3::isGT(), CVC3::isIneq(), isIntegerDerive(), isIntegerThm(), CVC3::Theory::isLeaf(), CVC3::isLT(), isNonlinearEq(), isNonlinearSumTerm(), CVC3::Theorem::isNull(), CVC3::isPlus(), isPowerEquality(), isPowersEquality(), CVC3::Expr::isPropAtom(), CVC3::Expr::isRational(), CVC3::isRational(), CVC3::Theorem::isRefl(), CVC3::Expr::isTerm(), CVC3::LE, CVC3::TheoryArith::leavesAreNumConst(), CVC3::Theory::leavesAreSimp(), MiniSat::left(), CVC3::ArithProofRules::lessThanToLERewrite(), CVC3::LT, CVC3::ArithProofRules::multEqZero(), CVC3::ArithProofRules::negatedInequality(), normalize(), NOT, CVC3::TheoryArith::rat(), CVC3::ratRoot(), CVC3::Theory::reflexivityRule(), CVC3::ArithProofRules::rewriteLeavesConst(), CVC3::CommonProofRules::rewriteUsingSymmetry(), MiniSat::right(), CVC3::ArithProofRules::rightMinusLeft(), CVC3::Expr::setRewriteNormal(), CVC3::Theory::simplify(), CVC3::Theory::theoryCore(), CVC3::Theory::theoryOf(), TRACE, CVC3::Theory::transitivityRule(), and CVC3::Theory::typePred().

Referenced by checkIntegerEquality(), and rafineInequalityToInteger().

void TheoryArithOld::setup ( const Expr e) [virtual]

Set up the term e for call-backs when e or its children change.

setup is called once for each expression associated with the theory. It is typically used to setup theory-specific data for an expression and to add call-back information for use with update.

See also:
update

Implements CVC3::TheoryArith.

Definition at line 3355 of file theory_arith_old.cpp.

References CVC3::Expr::addToNotify(), CVC3::Expr::arity(), DebugAssert, CVC3::int2string(), CVC3::isIneq(), CVC3::isLE(), CVC3::isLT(), CVC3::Expr::isNot(), CVC3::isRational(), CVC3::Expr::isTerm(), CVC3::Expr::toString(), and TRACE.

Referenced by setupRec().

void TheoryArithOld::update ( const Theorem e,
const Expr d 
) [virtual]

Notify a theory of a new equality.

update is a call-back used by the notify mechanism of the core theory. It works as follows. When an equation t1 = t2 makes it into the core framework, the two find equivalence classes for t1 and t2 are merged. The result is that t2 is the new equivalence class representative and t1 is no longer an equivalence class representative. When this happens, the notify list of t1 is traversed. Notify list entries consist of a theory and an expression d. For each entry (i,d), i->update(e, d) is called, where e is the theorem corresponding to the equality t1=t2.

To add the entry (i,d) to a term t1's notify list, a call must be made to t1.addNotify(i,d). This is typically done in setup.

See also:
setup

Implements CVC3::TheoryArith.

Definition at line 3390 of file theory_arith_old.cpp.

References addSharedTerm(), CVC3::Expr::addToNotify(), alreadyProjected, CVC3::Theory::assertEqualities(), bufferedInequalities, d_sharedTerms, DebugAssert, dontBuffer, CVC3::CDMap< Key, Data, HashFcn >::end(), CVC3::Theory::enqueueFact(), CVC3::Theory::falseExpr(), CVC3::CDMap< Key, Data, HashFcn >::find(), CVC3::Theory::find(), CVC3::Theory::findExpr(), CVC3::Theory::getCommonRules(), CVC3::Theorem::getExpr(), CVC3::Expr::getKind(), CVC3::Theorem::getLHS(), CVC3::Expr::getRational(), CVC3::Theorem::getRHS(), CVC3::Expr::hasFind(), IF_DEBUG, CVC3::Theory::iffMP(), CVC3::Theory::inconsistent(), CVC3::IS_INTEGER, CVC3::Expr::isAtomic(), CVC3::Expr::isEq(), CVC3::isIneq(), isInteger(), CVC3::isRational(), CVC3::Expr::isRational(), CVC3::Theory::setInconsistent(), CVC3::Theory::simplify(), CVC3::Theory::substitutivityRule(), CVC3::Theory::symmetryRule(), CVC3::Expr::toString(), TRACE, CVC3::Theory::transitivityRule(), and CVC3::Theory::trueExpr().

Theorem TheoryArithOld::solve ( const Theorem e) [virtual]

An optional solver.

The solve method can be used to implement a Shostak-style solver. Since solvers do not in general combine, the following technique is used. One theory is designated as the primary solver (in our case, it is the theory of arithmetic). For each equation that enters the core framework, the primary solver is called to ensure that the equation is in solved form with respect to the primary theory.

After the primary solver, the solver for the theory associated with the equation is called. This solver can do whatever it likes, as long as the result is still in solved form with respect to the primary solver. This is a slight generalization of what is described in my (Clark)'s PhD thesis.

Implements CVC3::TheoryArith.

Definition at line 3547 of file theory_arith_old.cpp.

References DebugAssert, doSolve(), CVC3::Theorem::getLHS(), CVC3::Theorem::getRHS(), isInteger(), CVC3::Theory::isLeaf(), CVC3::Theory::isLeafIn(), CVC3::Theorem::isRewrite(), CVC3::Expr::isTerm(), and CVC3::Theory::symmetryRule().

void TheoryArithOld::checkAssertEqInvariant ( const Theorem e) [virtual]
void TheoryArithOld::checkType ( const Expr e) [virtual]
Cardinality TheoryArithOld::finiteTypeInfo ( Expr e,
Unsigned n,
bool  enumerate,
bool  computeSize 
) [virtual]

Compute information related to finiteness of types.

Used by the TypeComputer defined in TheoryCore (theories should not call this funtion directly -- they should use the methods in Type instead). Each theory should implement this if it contains any types that could be non-infinite.

1. Returns Cardinality of the type (finite, infinite, or unknown) 2. If cardinality = finite and enumerate is true, sets e to the nth element of the type if it can sets e to NULL if n is out of bounds or if unable to compute nth element 3. If cardinality = finite and computeSize is true, sets n to the size of the type if it can sets n to 0 otherwise

Implements CVC3::TheoryArith.

Definition at line 3697 of file theory_arith_old.cpp.

References CVC3::CARD_FINITE, CVC3::CARD_INFINITE, CVC3::Expr::getKind(), CVC3::Expr::getRational(), CVC3::Rational::getUnsigned(), CVC3::TheoryArith::rat(), and CVC3::SUBRANGE.

void TheoryArithOld::computeType ( const Expr e) [virtual]
Type TheoryArithOld::computeBaseType ( const Type tp) [virtual]

Compute the base type of the top-level operator of an arbitrary type.

Implements CVC3::TheoryArith.

Definition at line 3808 of file theory_arith_old.cpp.

References DebugAssert, CVC3::Type::getExpr(), CVC3::Expr::getKind(), IF_DEBUG, CVC3::INT, CVC3::REAL, CVC3::TheoryArith::realType(), CVC3::SUBRANGE, and CVC3::Type::toString().

void TheoryArithOld::computeModelTerm ( const Expr e,
std::vector< Expr > &  v 
) [virtual]

Add variables from 'e' to 'v' for constructing a concrete model.

If e is already of primitive type, do NOT add it to v.

Implements CVC3::TheoryArith.

Definition at line 3575 of file theory_arith_old.cpp.

References CVC3::Expr::begin(), CVC3::DIVIDE, CVC3::Expr::end(), CVC3::Theory::findExpr(), CVC3::Expr::getKind(), CVC3::MULT, CVC3::PLUS, CVC3::POW, RATIONAL_EXPR, CVC3::Expr::toString(), and TRACE.

Expr TheoryArithOld::computeTypePred ( const Type t,
const Expr e 
) [virtual]

Theory specific computation of the subtyping predicate for type t applied to the expression e.

By default returns true. Each theory needs to compute subtype predicates for the types associated with it. So, for example, the theory of records will take a record type [# f1: T1, f2: T2 #] and an expression e and will return the subtyping predicate for e, namely: computeTypePred(T1, e.f1) AND computeTypePred(T2, e.f2)

Implements CVC3::TheoryArith.

Definition at line 3603 of file theory_arith_old.cpp.

References CVC3::andExpr(), CVC3::Expr::getEM(), CVC3::Type::getExpr(), CVC3::Expr::getKind(), CVC3::INT, CVC3::IS_INTEGER, CVC3::leExpr(), CVC3::SUBRANGE, and CVC3::ExprManager::trueExpr().

Expr TheoryArithOld::computeTCC ( const Expr e) [virtual]

Compute and cache the TCC of e.

Parameters:
eis an expression (term or formula). This function computes the TCC of e which is true iff the expression is defined.

This function computes the TCC or predicate of the top-level operator of e, and recurses into children using getTCC(), if necessary.

The default implementation is to compute TCCs recursively for all children, and return their conjunction.

Implements CVC3::TheoryArith.

Definition at line 3817 of file theory_arith_old.cpp.

References CVC3::Expr::andExpr(), CVC3::Expr::arity(), CVC3::Theory::computeTCC(), DebugAssert, CVC3::DIVIDE, CVC3::Expr::getKind(), and CVC3::TheoryArith::rat().

ExprStream & TheoryArithOld::print ( ExprStream os,
const Expr e 
) [virtual]

Theory-specific pretty-printing.

By default, print the top node in AST, and resume pretty-printing the children. The same call e.print(os) can be used in DP-specific printers to use AST printing for the given node. In fact, it is strongly recommended to add e.print(os) as the default for all the cases/kinds that are not handled by the particular pretty-printer.

Implements CVC3::TheoryArith.

Definition at line 3952 of file theory_arith_old.cpp.

References CVC3::Expr::arity(), CVC3::Expr::begin(), CVC3::DARK_SHADOW, CVC3::DIVIDE, CVC3::Expr::end(), std::endl(), CVC3::GE, CVC3::Rational::getInt(), CVC3::Expr::getKind(), CVC3::Expr::getRational(), CVC3::GRAY_SHADOW, CVC3::GT, CVC3::INT, CVC3::IS_INTEGER, CVC3::isInt(), CVC3::Rational::isInteger(), isInteger(), CVC3::isRational(), CVC3::ExprStream::lang(), CVC3::LE, CVC3::LISP_LANG, CVC3::LT, CVC3::MINUS, CVC3::MULT, CVC3::NEGINF, CVC3::PLUS, CVC3::POSINF, CVC3::POW, CVC3::PRESENTATION_LANG, CVC3::Expr::print(), CVC3::Expr::printAST(), CVC3::TheoryArith::printRational(), CVC3::push(), RATIONAL_EXPR, CVC3::REAL, CVC3::REAL_CONST, CVC3::SIMPLIFY_LANG, CVC3::SMTLIB_LANG, CVC3::SMTLIB_V2_LANG, CVC3::space(), CVC3::SPASS_LANG, CVC3::SUBRANGE, CVC3::Expr::toString(), CVC3::TPTP_LANG, and CVC3::UMINUS.

Expr TheoryArithOld::parseExprOp ( const Expr e) [virtual]
Rational TheoryArithOld::currentMaxCoefficient ( Expr  var) [private]

Returns the current maximal coefficient of the variable.

Parameters:
varthe variable.

Definition at line 1948 of file theory_arith_old.cpp.

References CVC3::ExprMap< Data >::end(), CVC3::ExprMap< Data >::find(), CVC3::Expr::getType(), CVC3::Rational::toString(), CVC3::Expr::toString(), and TRACE.

void TheoryArithOld::fixCurrentMaxCoefficient ( Expr  variable,
Rational  max 
) [private]

Fixes the current max coefficient to be used in the ordering. If the maximal coefficient changes in the future, it will not be used in the ordering.

Parameters:
variablethe variable
maxthe value to set it to

Definition at line 1980 of file theory_arith_old.cpp.

References CVC3::max().

void TheoryArithOld::selectSmallestByCoefficient ( const std::vector< Expr > &  input,
std::vector< Expr > &  output 
) [private]

Among given input variables, select the smallest ones with respect to the coefficients.

Definition at line 1984 of file theory_arith_old.cpp.

Theorem TheoryArithOld::rafineInequalityToInteger ( const Theorem thm) [private]
Theorem TheoryArithOld::checkIntegerEquality ( const Theorem thm) [private]
Theorem TheoryArithOld::inequalityToFind ( const Theorem inequalityThm,
bool  normalizeRHS 
) [private]
int TheoryArithOld::extractTermsFromInequality ( const Expr inequality,
Rational c1,
Expr t1,
Rational c2,
Expr t2 
) [private]

Take inequality of the form 0 op t and extract the c1, t1, c2 and t2, such that c1 <= t1 and t2 <= c2, where c1 and c2 are constants, and t1 and t2 are either sums of monomials or a monomial.

Returns:
the number of variables in terms t1 and t2

Definition at line 1196 of file theory_arith_old.cpp.

References DebugAssert, CVC3::Expr::getString(), CVC3::isIneq(), CVC3::isPlus(), CVC3::isRational(), CVC3::multExpr(), CVC3::plusExpr(), CVC3::Rational::toString(), CVC3::Expr::toString(), and TRACE.

Referenced by registerAtom().

void TheoryArithOld::registerAtom ( const Expr e) [private, virtual]
int TheoryArithOld::termDegree ( const Expr e) [private]
bool TheoryArithOld::canPickEqMonomial ( const Expr right) [private]
bool TheoryArithOld::isBounded ( const Expr t,
BoundsQueryType  queryType = QueryWithCacheLeaves 
) [private]

Check if the term is bounded. If the term is non-linear, just returns false.

Definition at line 5386 of file theory_arith_old.cpp.

References hasLowerBound(), hasUpperBound(), CVC3::Expr::toString(), and TRACE.

bool CVC3::TheoryArithOld::hasLowerBound ( const Expr t,
BoundsQueryType  queryType = QueryWithCacheLeaves 
) [inline, private]
bool CVC3::TheoryArithOld::hasUpperBound ( const Expr t,
BoundsQueryType  queryType = QueryWithCacheLeaves 
) [inline, private]
bool TheoryArithOld::isConstrained ( const Expr t,
bool  intOnly = true,
BoundsQueryType  queryType = QueryWithCacheLeaves 
) [private]
bool TheoryArithOld::isConstrainedAbove ( const Expr t,
BoundsQueryType  queryType = QueryWithCacheLeaves 
) [private]
bool TheoryArithOld::isConstrainedBelow ( const Expr t,
BoundsQueryType  queryType = QueryWithCacheLeaves 
) [private]
TheoryArithOld::DifferenceLogicGraph::EpsRational TheoryArithOld::getUpperBound ( const Expr t,
BoundsQueryType  queryType = QueryWithCacheLeaves 
) [private]
TheoryArithOld::DifferenceLogicGraph::EpsRational TheoryArithOld::getLowerBound ( const Expr t,
BoundsQueryType  queryType = QueryWithCacheLeaves 
) [private]
int TheoryArithOld::computeTermBounds ( ) [private]
void TheoryArithOld::updateConstrained ( const Expr t)
bool TheoryArithOld::isUnconstrained ( const Expr t)
void TheoryArithOld::tryPropagate ( const Expr x,
const Expr y,
const DifferenceLogicGraph::EdgeInfo x_y_edge,
int  kind 
)
void TheoryArithOld::addMultiplicativeSignSplit ( const Theorem case_split_thm) [virtual]

Reimplemented from CVC3::TheoryArith.

Definition at line 5194 of file theory_arith_old.cpp.

References multiplicativeSignSplits.

bool TheoryArithOld::addPairToArithOrder ( const Expr smaller,
const Expr bigger 
) [virtual]

Record that smaller should be smaller than bigger in the variable order. Should be implemented in decision procedures that support it.

Reimplemented from CVC3::TheoryArith.

Definition at line 5198 of file theory_arith_old.cpp.

References CVC3::TheoryArithOld::VarOrderGraph::addEdge(), d_graph, FatalAssert, CVC3::Expr::getType(), CVC3::isInt(), CVC3::isReal(), CVC3::TheoryArithOld::VarOrderGraph::lessThan(), CVC3::Expr::toString(), and TRACE.

bool CVC3::TheoryArithOld::nonlinearSignSplit ( ) const [inline]

Definition at line 959 of file theory_arith_old.h.

References d_splitSign.

bool TheoryArithOld::isNonlinearEq ( const Expr e)

Check if equation is nonlinear. An equation is nonlinear if there is at least one nonlinear term in the sum on either side of the equation.

Definition at line 5223 of file theory_arith_old.cpp.

References CVC3::Expr::arity(), DebugAssert, CVC3::Expr::isEq(), isNonlinearSumTerm(), and CVC3::Expr::toString().

Referenced by findRationalBound(), and rewrite().

bool TheoryArithOld::isNonlinearSumTerm ( const Expr term)
bool TheoryArithOld::isPowersEquality ( const Expr nonlinearEq,
Expr power1,
Expr power2 
)

Check if the equality is of the form c + power1^n - power2^n = 0;

Definition at line 5244 of file theory_arith_old.cpp.

References CVC3::Expr::arity(), DebugAssert, CVC3::Expr::getRational(), CVC3::Expr::isEq(), CVC3::isMult(), CVC3::isPlus(), CVC3::isPow(), CVC3::isRational(), and CVC3::Expr::toString().

Referenced by rewrite().

bool TheoryArithOld::isPowerEquality ( const Expr nonlinearEq,
Rational constant,
Expr power1 
)

Friends And Related Function Documentation

std::ostream& operator<< ( std::ostream &  os,
const FreeConst fc 
) [friend]

Printing.

Definition at line 46 of file theory_arith_old.cpp.

std::ostream& operator<< ( std::ostream &  os,
const Ineq ineq 
) [friend]

Printing.

Definition at line 56 of file theory_arith_old.cpp.


Member Data Documentation

Definition at line 31 of file theory_arith_old.h.

Referenced by assertFact(), checkSat(), and TheoryArithOld().

Definition at line 32 of file theory_arith_old.h.

Referenced by checkSat().

Definition at line 33 of file theory_arith_old.h.

Referenced by checkSat().

Database of inequalities with a variable isolated on the right.

Definition at line 78 of file theory_arith_old.h.

Referenced by computeTermBounds(), findBounds(), processFiniteIntervals(), and ~TheoryArithOld().

Database of inequalities with a variable isolated on the left.

Definition at line 81 of file theory_arith_old.h.

Referenced by computeTermBounds(), findBounds(), processFiniteIntervals(), and ~TheoryArithOld().

Mapping of inequalities to the largest/smallest free constant.

The Expr is the original inequality with the free constant removed and inequality converted to non-strict (for indexing purposes). I.e. ax<c+t becomes ax<=t. This inequality is mapped to a pair<c,strict>, the smallest (largest for c+t<ax) constant among inequalities with the same 'a', 'x', and 't', and a boolean flag indicating whether the strongest inequality is strict.

Definition at line 91 of file theory_arith_old.h.

Buffer of input inequalities (high priority)

Is the problem only difference logic

Definition at line 99 of file theory_arith_old.h.

Referenced by assertFact(), checkSat(), and TheoryArithOld().

Buffer of input inequalities (one variable)

Definition at line 100 of file theory_arith_old.h.

Referenced by assertFact(), checkSat(), and TheoryArithOld().

Buffer of input inequalities (small constraints)

Definition at line 101 of file theory_arith_old.h.

Referenced by assertFact(), checkSat(), and TheoryArithOld().

Buffer of input inequalities (big constraint)

Definition at line 102 of file theory_arith_old.h.

Referenced by assertFact(), checkSat(), and TheoryArithOld().

Buffer index of the next unprocessed inequality.

Definition at line 104 of file theory_arith_old.h.

Referenced by assertFact().

Buffer index of the next unprocessed inequality.

Definition at line 105 of file theory_arith_old.h.

Referenced by assertFact(), and TheoryArithOld().

Buffer index of the next unprocessed inequality.

Definition at line 106 of file theory_arith_old.h.

Referenced by assertFact(), and TheoryArithOld().

Buffer index of the next unprocessed inequality.

Definition at line 107 of file theory_arith_old.h.

Referenced by assertFact(), and TheoryArithOld().

Number of queries that are just difference logic.

Definition at line 109 of file theory_arith_old.h.

Threshold when the buffer must be processed.

Definition at line 111 of file theory_arith_old.h.

Referenced by assertFact().

const bool* CVC3::TheoryArithOld::d_splitSign [private]

Definition at line 113 of file theory_arith_old.h.

Referenced by nonlinearSignSplit().

Threshold on gray shadow size (ignore it and set incomplete)

Definition at line 115 of file theory_arith_old.h.

Referenced by assertFact().

Mapping of a variable to the number of inequalities where the variable would be isolated on the right.

Definition at line 121 of file theory_arith_old.h.

Mapping of a variable to the number of inequalities where the variable would be isolated on the left.

Definition at line 125 of file theory_arith_old.h.

Set of shared terms (for counterexample generation)

Definition at line 128 of file theory_arith_old.h.

Referenced by addSharedTerm(), refineCounterExample(), and update().

Definition at line 129 of file theory_arith_old.h.

Referenced by addSharedTerm().

Set of shared integer variables (i-leaves)

Definition at line 132 of file theory_arith_old.h.

Definition at line 155 of file theory_arith_old.h.

Referenced by addPairToArithOrder(), assignVariables(), and computeTermBounds().

Map from variables to the maximal (by absolute value) of one of it's coefficients

Definition at line 350 of file theory_arith_old.h.

Definition at line 351 of file theory_arith_old.h.

Map from variables to the fixed value of one of it's coefficients

Definition at line 354 of file theory_arith_old.h.

Keep the expressions that are already in the buffer

Definition at line 390 of file theory_arith_old.h.

Referenced by update().

Strict lower bounds on terms, so that we don't add inequalities to the buffer

Definition at line 393 of file theory_arith_old.h.

Referenced by registerAtom().

Definition at line 394 of file theory_arith_old.h.

Referenced by registerAtom().

Strict upper bounds on terms, so that we don't add inequalities to the buffer

Definition at line 396 of file theory_arith_old.h.

Referenced by registerAtom().

Definition at line 397 of file theory_arith_old.h.

Referenced by registerAtom().

Which inequalities have already been projected (on which monomial).

  • if we get an update of an inequality that's not been projected, we don't care it will get projected (it's find)
  • when projecting, project the finds, not the originals
  • when done projecting add here, both original and the find

Definition at line 406 of file theory_arith_old.h.

Referenced by update().

Sometimes we know an inequality is in the buffer (as a find of something) and we don't want it in the buffer, but we do want to pre-process it, so we put it here.

Definition at line 413 of file theory_arith_old.h.

Referenced by update().

Are we doing only difference logic?

Definition at line 418 of file theory_arith_old.h.

Referenced by assertFact(), assignVariables(), computeTermBounds(), and isUnconstrained().

Map from terms to their lower bound (and the original formula expression)

Definition at line 448 of file theory_arith_old.h.

Referenced by registerAtom(), and tryPropagate().

Map from terms to their upper bound (and the original formula expression)

Definition at line 451 of file theory_arith_old.h.

Referenced by registerAtom(), and tryPropagate().

Map of all the atoms in the formula

Definition at line 454 of file theory_arith_old.h.

Referenced by registerAtom().

The graph for difference logic

Definition at line 885 of file theory_arith_old.h.

Referenced by assignVariables(), computeTermBounds(), isUnconstrained(), TheoryArithOld(), and tryPropagate().

Definition at line 887 of file theory_arith_old.h.

Referenced by computeTermBounds(), TheoryArithOld(), and tryPropagate().

Index for expanding on shared term equalities

Definition at line 890 of file theory_arith_old.h.

Index for expanding on shared term equalities

Definition at line 892 of file theory_arith_old.h.

Definition at line 894 of file theory_arith_old.h.

Referenced by addMultiplicativeSignSplit(), and assertFact().

Definition at line 903 of file theory_arith_old.h.

Referenced by computeTermBounds(), and getUpperBound().

Definition at line 904 of file theory_arith_old.h.

Referenced by computeTermBounds(), and getLowerBound().

Definition at line 906 of file theory_arith_old.h.

Referenced by isUnconstrained(), and updateConstrained().

Definition at line 907 of file theory_arith_old.h.

Referenced by isUnconstrained(), and updateConstrained().

Definition at line 910 of file theory_arith_old.h.

Referenced by computeTermBounds(), getLowerBound(), and isConstrainedBelow().

Definition at line 911 of file theory_arith_old.h.

Referenced by computeTermBounds(), getUpperBound(), and isConstrainedAbove().


The documentation for this class was generated from the following files: