Library iris.prelude.pretty
From iris.prelude Require Export strings.
From iris.prelude Require Import relations.
From Coq Require Import Ascii.
Class Pretty A := pretty : A → string.
Definition pretty_N_char (x : N) : ascii :=
match x with
| 0 ⇒ "0" | 1 ⇒ "1" | 2 ⇒ "2" | 3 ⇒ "3" | 4 ⇒ "4"
| 5 ⇒ "5" | 6 ⇒ "6" | 7 ⇒ "7" | 8 ⇒ "8" | _ ⇒ "9"
end%char%N.
Fixpoint pretty_N_go_help (x : N) (acc : Acc (<)%N x) (s : string) : string :=
match decide (0 < x)%N with
| left H ⇒ pretty_N_go_help (x `div` 10)%N
(Acc_inv acc (N.div_lt x 10 H eq_refl))
(String (pretty_N_char (x `mod` 10)) s)
| right _ ⇒ s
end.
Definition pretty_N_go (x : N) : string → string :=
pretty_N_go_help x (wf_guard 32 N.lt_wf_0 x).
Lemma pretty_N_go_0 s : pretty_N_go 0 s = s.
Proof. done. Qed.
Lemma pretty_N_go_help_irrel x acc1 acc2 s :
pretty_N_go_help x acc1 s = pretty_N_go_help x acc2 s.
Proof.
revert x acc1 acc2 s; fix 2; intros x [acc1] [acc2] s; simpl.
destruct (decide (0 < x)%N); auto.
Qed.
Lemma pretty_N_go_step x s :
(0 < x)%N → pretty_N_go x s
= pretty_N_go (x `div` 10) (String (pretty_N_char (x `mod` 10)) s).
Proof.
unfold pretty_N_go; intros; destruct (wf_guard 32 N.lt_wf_0 x).
unfold pretty_N_go_help; fold pretty_N_go_help.
by destruct (decide (0 < x)%N); auto using pretty_N_go_help_irrel.
Qed.
Instance pretty_N : Pretty N := λ x, pretty_N_go x ""%string.
Instance pretty_N_inj : Inj (@eq N) (=) pretty.
Proof.
assert (∀ x y, x < 10 → y < 10 →
pretty_N_char x = pretty_N_char y → x = y)%N.
{ compute; intros. by repeat (discriminate || case_match). }
cut (∀ x y s s', pretty_N_go x s = pretty_N_go y s' →
String.length s = String.length s' → x = y ∧ s = s').
{ intros help x y ?. eapply help; eauto. }
assert (∀ x s, ¬String.length (pretty_N_go x s) < String.length s) as help.
{ setoid_rewrite <-Nat.le_ngt.
intros x; induction (N.lt_wf_0 x) as [x _ IH]; intros s.
assert (x = 0 ∨ 0 < x)%N as [->|?] by lia; [by rewrite pretty_N_go_0|].
rewrite pretty_N_go_step by done.
etrans; [|by eapply IH, N.div_lt]; simpl; lia. }
intros x; induction (N.lt_wf_0 x) as [x _ IH]; intros y s s'.
assert ((x = 0 ∨ 0 < x) ∧ (y = 0 ∨ 0 < y))%N as [[->|?] [->|?]] by lia;
rewrite ?pretty_N_go_0, ?pretty_N_go_step, ?(pretty_N_go_step y) by done.
{ done. }
{ intros → Hlen; edestruct help; rewrite Hlen; simpl; lia. }
{ intros <- Hlen; edestruct help; rewrite <-Hlen; simpl; lia. }
intros Hs Hlen; apply IH in Hs; destruct Hs;
simplify_eq/=; split_and?; auto using N.div_lt_upper_bound with lia.
rewrite (N.div_mod x 10), (N.div_mod y 10) by done.
auto using N.mod_lt with f_equal.
Qed.
Instance pretty_Z : Pretty Z := λ x,
match x with
| Z0 ⇒ "" | Zpos x ⇒ pretty (Npos x) | Zneg x ⇒ "-" +:+ pretty (Npos x)
end%string.
From iris.prelude Require Import relations.
From Coq Require Import Ascii.
Class Pretty A := pretty : A → string.
Definition pretty_N_char (x : N) : ascii :=
match x with
| 0 ⇒ "0" | 1 ⇒ "1" | 2 ⇒ "2" | 3 ⇒ "3" | 4 ⇒ "4"
| 5 ⇒ "5" | 6 ⇒ "6" | 7 ⇒ "7" | 8 ⇒ "8" | _ ⇒ "9"
end%char%N.
Fixpoint pretty_N_go_help (x : N) (acc : Acc (<)%N x) (s : string) : string :=
match decide (0 < x)%N with
| left H ⇒ pretty_N_go_help (x `div` 10)%N
(Acc_inv acc (N.div_lt x 10 H eq_refl))
(String (pretty_N_char (x `mod` 10)) s)
| right _ ⇒ s
end.
Definition pretty_N_go (x : N) : string → string :=
pretty_N_go_help x (wf_guard 32 N.lt_wf_0 x).
Lemma pretty_N_go_0 s : pretty_N_go 0 s = s.
Proof. done. Qed.
Lemma pretty_N_go_help_irrel x acc1 acc2 s :
pretty_N_go_help x acc1 s = pretty_N_go_help x acc2 s.
Proof.
revert x acc1 acc2 s; fix 2; intros x [acc1] [acc2] s; simpl.
destruct (decide (0 < x)%N); auto.
Qed.
Lemma pretty_N_go_step x s :
(0 < x)%N → pretty_N_go x s
= pretty_N_go (x `div` 10) (String (pretty_N_char (x `mod` 10)) s).
Proof.
unfold pretty_N_go; intros; destruct (wf_guard 32 N.lt_wf_0 x).
unfold pretty_N_go_help; fold pretty_N_go_help.
by destruct (decide (0 < x)%N); auto using pretty_N_go_help_irrel.
Qed.
Instance pretty_N : Pretty N := λ x, pretty_N_go x ""%string.
Instance pretty_N_inj : Inj (@eq N) (=) pretty.
Proof.
assert (∀ x y, x < 10 → y < 10 →
pretty_N_char x = pretty_N_char y → x = y)%N.
{ compute; intros. by repeat (discriminate || case_match). }
cut (∀ x y s s', pretty_N_go x s = pretty_N_go y s' →
String.length s = String.length s' → x = y ∧ s = s').
{ intros help x y ?. eapply help; eauto. }
assert (∀ x s, ¬String.length (pretty_N_go x s) < String.length s) as help.
{ setoid_rewrite <-Nat.le_ngt.
intros x; induction (N.lt_wf_0 x) as [x _ IH]; intros s.
assert (x = 0 ∨ 0 < x)%N as [->|?] by lia; [by rewrite pretty_N_go_0|].
rewrite pretty_N_go_step by done.
etrans; [|by eapply IH, N.div_lt]; simpl; lia. }
intros x; induction (N.lt_wf_0 x) as [x _ IH]; intros y s s'.
assert ((x = 0 ∨ 0 < x) ∧ (y = 0 ∨ 0 < y))%N as [[->|?] [->|?]] by lia;
rewrite ?pretty_N_go_0, ?pretty_N_go_step, ?(pretty_N_go_step y) by done.
{ done. }
{ intros → Hlen; edestruct help; rewrite Hlen; simpl; lia. }
{ intros <- Hlen; edestruct help; rewrite <-Hlen; simpl; lia. }
intros Hs Hlen; apply IH in Hs; destruct Hs;
simplify_eq/=; split_and?; auto using N.div_lt_upper_bound with lia.
rewrite (N.div_mod x 10), (N.div_mod y 10) by done.
auto using N.mod_lt with f_equal.
Qed.
Instance pretty_Z : Pretty Z := λ x,
match x with
| Z0 ⇒ "" | Zpos x ⇒ pretty (Npos x) | Zneg x ⇒ "-" +:+ pretty (Npos x)
end%string.