Library iris.algebra.csum

From iris.algebra Require Export cmra.
From iris.algebra Require Import upred updates local_updates.
Local Arguments pcore _ _ !_ /.
Local Arguments cmra_pcore _ !_ /.
Local Arguments validN _ _ _ !_ /.
Local Arguments valid _ _ !_ /.
Local Arguments cmra_validN _ _ !_ /.
Local Arguments cmra_valid _ !_ /.

Inductive csum (A B : Type) :=
| Cinl : A csum A B
| Cinr : B csum A B
| CsumBot : csum A B.
Arguments Cinl {_ _} _.
Arguments Cinr {_ _} _.
Arguments CsumBot {_ _}.

Section cofe.
Context {A B : cofeT}.
Implicit Types a : A.
Implicit Types b : B.

Inductive csum_equiv : Equiv (csum A B) :=
  | Cinl_equiv a a' : a a' Cinl a Cinl a'
  | Cinlr_equiv b b' : b b' Cinr b Cinr b'
  | CsumBot_equiv : CsumBot CsumBot.
Existing Instance csum_equiv.
Inductive csum_dist : Dist (csum A B) :=
  | Cinl_dist n a a' : a ≡{n}≡ a' Cinl a ≡{n}≡ Cinl a'
  | Cinlr_dist n b b' : b ≡{n}≡ b' Cinr b ≡{n}≡ Cinr b'
  | CsumBot_dist n : CsumBot ≡{n}≡ CsumBot.
Existing Instance csum_dist.

Global Instance Cinl_ne n : Proper (dist n ==> dist n) (@Cinl A B).
Proof. by constructor. Qed.
Global Instance Cinl_proper : Proper ((≡) ==> (≡)) (@Cinl A B).
Proof. by constructor. Qed.
Global Instance Cinl_inj : Inj (≡) (≡) (@Cinl A B).
Proof. by inversion_clear 1. Qed.
Global Instance Cinl_inj_dist n : Inj (dist n) (dist n) (@Cinl A B).
Proof. by inversion_clear 1. Qed.
Global Instance Cinr_ne n : Proper (dist n ==> dist n) (@Cinr A B).
Proof. by constructor. Qed.
Global Instance Cinr_proper : Proper ((≡) ==> (≡)) (@Cinr A B).
Proof. by constructor. Qed.
Global Instance Cinr_inj : Inj (≡) (≡) (@Cinr A B).
Proof. by inversion_clear 1. Qed.
Global Instance Cinr_inj_dist n : Inj (dist n) (dist n) (@Cinr A B).
Proof. by inversion_clear 1. Qed.

Program Definition csum_chain_l (c : chain (csum A B)) (a : A) : chain A :=
  {| chain_car n := match c n return _ with Cinl a' a' | _ a end |}.
Next Obligation. intros c a n i ?; simpl. by destruct (chain_cauchy c n i). Qed.
Program Definition csum_chain_r (c : chain (csum A B)) (b : B) : chain B :=
  {| chain_car n := match c n return _ with Cinr b' b' | _ b end |}.
Next Obligation. intros c b n i ?; simpl. by destruct (chain_cauchy c n i). Qed.
Instance csum_compl : Compl (csum A B) := λ c,
  match c 0 with
  | Cinl aCinl (compl (csum_chain_l c a))
  | Cinr bCinr (compl (csum_chain_r c b))
  | CsumBotCsumBot
  end.
Definition csum_cofe_mixin : CofeMixin (csum A B).
Proof.
  split.
  - intros mx my; split.
    + by destruct 1; constructor; try apply equiv_dist.
    + intros Hxy; feed inversion (Hxy 0); subst; constructor; try done;
      apply equiv_distn; by feed inversion (Hxy n).
  - intros n; split.
    + by intros [|a|]; constructor.
    + by destruct 1; constructor.
    + destruct 1; inversion_clear 1; constructor; etrans; eauto.
  - by inversion_clear 1; constructor; apply dist_S.
  - intros n c; rewrite /compl /csum_compl.
    feed inversion (chain_cauchy c 0 n); first auto with lia; constructor.
    + rewrite (conv_compl n (csum_chain_l c a')) /=. destruct (c n); naive_solver.
    + rewrite (conv_compl n (csum_chain_r c b')) /=. destruct (c n); naive_solver.
Qed.
Canonical Structure csumC : cofeT := CofeT (csum A B) csum_cofe_mixin.
Global Instance csum_discrete : Discrete A Discrete B Discrete csumC.
Proof. by inversion_clear 3; constructor; apply (timeless _). Qed.
Global Instance csum_leibniz :
  LeibnizEquiv A LeibnizEquiv B LeibnizEquiv (csumC A B).
Proof. by destruct 3; f_equal; apply leibniz_equiv. Qed.

Global Instance Cinl_timeless a : Timeless a Timeless (Cinl a).
Proof. by inversion_clear 2; constructor; apply (timeless _). Qed.
Global Instance Cinr_timeless b : Timeless b Timeless (Cinr b).
Proof. by inversion_clear 2; constructor; apply (timeless _). Qed.
End cofe.

Arguments csumC : clear implicits.

Definition csum_map {A A' B B'} (fA : A A') (fB : B B')
                    (x : csum A B) : csum A' B' :=
  match x with
  | Cinl aCinl (fA a)
  | Cinr bCinr (fB b)
  | CsumBotCsumBot
  end.
Instance: Params (@csum_map) 4.

Lemma csum_map_id {A B} (x : csum A B) : csum_map id id x = x.
Proof. by destruct x. Qed.
Lemma csum_map_compose {A A' A'' B B' B''} (f : A A') (f' : A' A'')
                       (g : B B') (g' : B' B'') (x : csum A B) :
  csum_map (f' f) (g' g) x = csum_map f' g' (csum_map f g x).
Proof. by destruct x. Qed.
Lemma csum_map_ext {A A' B B' : cofeT} (f f' : A A') (g g' : B B') x :
  ( x, f x f' x) ( x, g x g' x) csum_map f g x csum_map f' g' x.
Proof. by destruct x; constructor. Qed.
Instance csum_map_cmra_ne {A A' B B' : cofeT} n :
  Proper ((dist n ==> dist n) ==> (dist n ==> dist n) ==> dist n ==> dist n)
         (@csum_map A A' B B').
Proof. intros f f' Hf g g' Hg []; destruct 1; constructor; by apply Hf || apply Hg. Qed.
Definition csumC_map {A A' B B'} (f : A -n> A') (g : B -n> B') :
  csumC A B -n> csumC A' B' :=
  CofeMor (csum_map f g).
Instance csumC_map_ne A A' B B' n :
  Proper (dist n ==> dist n ==> dist n) (@csumC_map A A' B B').
Proof. by intros f f' Hf g g' Hg []; constructor. Qed.

Section cmra.
Context {A B : cmraT}.
Implicit Types a : A.
Implicit Types b : B.

Instance csum_valid : Valid (csum A B) := λ x,
  match x with
  | Cinl a a
  | Cinr b b
  | CsumBotFalse
  end.
Instance csum_validN : ValidN (csum A B) := λ n x,
  match x with
  | Cinl a✓{n} a
  | Cinr b✓{n} b
  | CsumBotFalse
  end.
Instance csum_pcore : PCore (csum A B) := λ x,
  match x with
  | Cinl aCinl <$> pcore a
  | Cinr bCinr <$> pcore b
  | CsumBotSome CsumBot
  end.
Instance csum_op : Op (csum A B) := λ x y,
  match x, y with
  | Cinl a, Cinl a'Cinl (a a')
  | Cinr b, Cinr b'Cinr (b b')
  | _, _CsumBot
  end.
Instance csum_stepN : StepN (csum A B) := λ n x y, True.

Lemma Cinl_op a a' : Cinl a Cinl a' = Cinl (a a').
Proof. done. Qed.
Lemma Cinr_op b b' : Cinr b Cinr b' = Cinr (b b').
Proof. done. Qed.

Lemma csum_included x y :
  x y y = CsumBot ( a a', x = Cinl a y = Cinl a' a a')
                       ( b b', x = Cinr b y = Cinr b' b b').
Proof.
  split.
  - intros [z Hy]; destruct x as [a|b|], z as [a'|b'|]; inversion_clear Hy; auto.
    + right; left; eexists _, _; split_and!; eauto. eexists; eauto.
    + right; right; eexists _, _; split_and!; eauto. eexists; eauto.
  - intros [->|[(a&a'&->&->&c&?)|(b&b'&->&->&c&?)]].
    + destruct x; CsumBot; constructor.
    + (Cinl c); by constructor.
    + (Cinr c); by constructor.
Qed.

Lemma csum_cmra_mixin : CMRAMixin (csum A B).
Proof.
  split.
  - intros n []; destruct 1; constructor; by cofe_subst.
  - intros ???? [n a a' Ha|n b b' Hb|n] [=]; subst; eauto.
    + destruct (pcore a) as [ca|] eqn:?; simplify_option_eq.
      destruct (cmra_pcore_ne n a a' ca) as (ca'&->&?); auto.
       (Cinl ca'); by repeat constructor.
    + destruct (pcore b) as [cb|] eqn:?; simplify_option_eq.
      destruct (cmra_pcore_ne n b b' cb) as (cb'&->&?); auto.
       (Cinr cb'); by repeat constructor.
  - intros ? [a|b|] [a'|b'|] H; inversion_clear H; cofe_subst; done.
  - intros [a|b|]; rewrite /= ?cmra_valid_validN; naive_solver eauto using O.
  - intros n [a|b|]; simpl; auto using cmra_validN_S.
  - intros [a1|b1|] [a2|b2|] [a3|b3|]; constructor; by rewrite ?assoc.
  - intros [a1|b1|] [a2|b2|]; constructor; by rewrite 1?comm.
  - intros [a|b|] ? [=]; subst; auto.
    + destruct (pcore a) as [ca|] eqn:?; simplify_option_eq.
      constructor; eauto using cmra_pcore_l.
    + destruct (pcore b) as [cb|] eqn:?; simplify_option_eq.
      constructor; eauto using cmra_pcore_l.
  - intros [a|b|] ? [=]; subst; auto.
    + destruct (pcore a) as [ca|] eqn:?; simplify_option_eq.
      feed inversion (cmra_pcore_idemp a ca); repeat constructor; auto.
    + destruct (pcore b) as [cb|] eqn:?; simplify_option_eq.
      feed inversion (cmra_pcore_idemp b cb); repeat constructor; auto.
  - intros x y ? [->|[(a&a'&->&->&?)|(b&b'&->&->&?)]]%csum_included [=].
    + CsumBot. rewrite csum_included; eauto.
    + destruct (pcore a) as [ca|] eqn:?; simplify_option_eq.
      destruct (cmra_pcore_mono a a' ca) as (ca'&->&?); auto.
       (Cinl ca'). rewrite csum_included; eauto 10.
    + destruct (pcore b) as [cb|] eqn:?; simplify_option_eq.
      destruct (cmra_pcore_mono b b' cb) as (cb'&->&?); auto.
       (Cinr cb'). rewrite csum_included; eauto 10.
  - intros n [a|b|] [a'|b'|]; try (intros ??; inversion 1; done).
    + rewrite //=. intros ?? Hval.
       destruct (pcore a) as [ca|] eqn:?; simplify_option_eq; try congruence.
       destruct (pcore a') as [ca'|] eqn:?; simplify_option_eq; try congruence.
       eapply cmra_pcore_distrib in Hval as (caa'&Hcaa'&Heq); eauto.
       do 2 inversion 1; subst.
        (Cinl caa').
       rewrite //= Hcaa'; split; eauto.
       by rewrite Heq.
    + rewrite //=. intros ?? Hval.
       destruct (pcore b) as [cb|] eqn:?; simplify_option_eq; try congruence.
       destruct (pcore b') as [cb'|] eqn:?; simplify_option_eq; try congruence.
       eapply cmra_pcore_distrib in Hval as (cbb'&Hcbb'&Heq); eauto.
       do 2 inversion 1; subst.
        (Cinr cbb').
       rewrite //= Hcbb'; split; eauto.
       by rewrite Heq.
  - intros n [a1|b1|] [a2|b2|]; simpl; eauto using cmra_validN_op_l; done.
  - intros n [a|b|] y1 y2 Hx Hx'.
    + destruct y1 as [a1|b1|], y2 as [a2|b2|]; try (exfalso; by inversion_clear Hx').
      apply (inj Cinl) in Hx'.
      destruct (cmra_extend n a a1 a2) as ([z1 z2]&?&?&?); auto.
       (Cinl z1, Cinl z2). by repeat constructor.
    + destruct y1 as [a1|b1|], y2 as [a2|b2|]; try (exfalso; by inversion_clear Hx').
      apply (inj Cinr) in Hx'.
      destruct (cmra_extend n b b1 b2) as ([z1 z2]&?&?&?); auto.
       (Cinr z1, Cinr z2). by repeat constructor.
    + by (CsumBot, CsumBot); destruct y1, y2; inversion_clear Hx'.
  - by intros.
  - by intros.
Qed.
Canonical Structure csumR :=
  CMRAT (csum A B) csum_cofe_mixin csum_cmra_mixin.

Global Instance csum_cmra_discrete :
  CMRADiscrete A CMRADiscrete B CMRADiscrete csumR.
Proof.
  split; first apply _.
  by move=>[a|b|] HH /=; try apply cmra_discrete_valid.
Qed.

Global Instance Cinl_persistent a : Persistent a Persistent (Cinl a).
Proof. rewrite /Persistent /=. inversion_clear 1; by repeat constructor. Qed.
Global Instance Cinr_persistent b : Persistent b Persistent (Cinr b).
Proof. rewrite /Persistent /=. inversion_clear 1; by repeat constructor. Qed.

Global Instance Cinl_exclusive a : Exclusive a Exclusive (Cinl a).
Proof. by moveH[]? =>[/H||]. Qed.
Global Instance Cinr_exclusive b : Exclusive b Exclusive (Cinr b).
Proof. by moveH[]? =>[|/H|]. Qed.

Internalized properties
Lemma csum_equivI {M} (x y : csum A B) :
  x y ⊣⊢ (match x, y with
            | Cinl a, Cinl a'a a'
            | Cinr b, Cinr b'b b'
            | CsumBot, CsumBotTrue
            | _, _False
            end : uPred M).
Proof.
  uPred.unseal; do 2 split; first by destruct 1.
  by destruct x, y; try destruct 1; try constructor.
Qed.
Lemma csum_validI {M} (x : csum A B) :
   x ⊣⊢ (match x with
          | Cinl a a
          | Cinr b b
          | CsumBotFalse
          end : uPred M).
Proof. uPred.unseal. by destruct x. Qed.

Updates
Lemma csum_update_l (a1 a2 : A) : a1 ~~> a2 Cinl a1 ~~> Cinl a2.
Proof.
  intros Ha n [[a|b|]|] ?; simpl in *; auto.
  - by apply (Ha n (Some a)).
  - by apply (Ha n None).
Qed.
Lemma csum_update_r (b1 b2 : B) : b1 ~~> b2 Cinr b1 ~~> Cinr b2.
Proof.
  intros Hb n [[a|b|]|] ?; simpl in *; auto.
  - by apply (Hb n (Some b)).
  - by apply (Hb n None).
Qed.
Lemma csum_updateP_l (P : A Prop) (Q : csum A B Prop) a :
  a ~~>: P ( a', P a' Q (Cinl a')) Cinl a ~~>: Q.
Proof.
  intros Hx HP n mf Hm. destruct mf as [[a'|b'|]|]; try by destruct Hm.
  - destruct (Hx n (Some a')) as (c&?&?); naive_solver.
  - destruct (Hx n None) as (c&?&?); naive_solver eauto using cmra_validN_op_l.
Qed.
Lemma csum_updateP_r (P : B Prop) (Q : csum A B Prop) b :
  b ~~>: P ( b', P b' Q (Cinr b')) Cinr b ~~>: Q.
Proof.
  intros Hx HP n mf Hm. destruct mf as [[a'|b'|]|]; try by destruct Hm.
  - destruct (Hx n (Some b')) as (c&?&?); naive_solver.
  - destruct (Hx n None) as (c&?&?); naive_solver eauto using cmra_validN_op_l.
Qed.
Lemma csum_updateP'_l (P : A Prop) a :
  a ~~>: P Cinl a ~~>: λ m', a', m' = Cinl a' P a'.
Proof. eauto using csum_updateP_l. Qed.
Lemma csum_updateP'_r (P : B Prop) b :
  b ~~>: P Cinr b ~~>: λ m', b', m' = Cinr b' P b'.
Proof. eauto using csum_updateP_r. Qed.
Lemma csum_local_update_l (a1 a2 : A) af :
  ( af', af = Cinl <$> af' a1 ¬l~> a2 @ af') Cinl a1 ¬l~> Cinl a2 @ af.
Proof.
  intros Ha. split; destruct af as [[af'| |]|]=>//=.
  - by eapply (Ha (Some af')).
  - by eapply (Ha None).
  - destruct (Ha (Some af') (reflexivity _)) as [_ Ha'].
    intros n [[mz|mz|]|] ?; inversion 1; subst; constructor.
    by apply (Ha' n (Some mz)). by apply (Ha' n None).
  - destruct (Ha None (reflexivity _)) as [_ Ha'].
    intros n [[mz|mz|]|] ?; inversion 1; subst; constructor.
    by apply (Ha' n (Some mz)). by apply (Ha' n None).
Qed.
Lemma csum_local_update_r (b1 b2 : B) bf :
  ( bf', bf = Cinr <$> bf' b1 ¬l~> b2 @ bf') Cinr b1 ¬l~> Cinr b2 @ bf.
Proof.
  intros Hb. split; destruct bf as [[|bf'|]|]=>//=.
  - by eapply (Hb (Some bf')).
  - by eapply (Hb None).
  - destruct (Hb (Some bf') (reflexivity _)) as [_ Hb'].
    intros n [[mz|mz|]|] ?; inversion 1; subst; constructor.
    by apply (Hb' n (Some mz)). by apply (Hb' n None).
  - destruct (Hb None (reflexivity _)) as [_ Hb'].
    intros n [[mz|mz|]|] ?; inversion 1; subst; constructor.
    by apply (Hb' n (Some mz)). by apply (Hb' n None).
Qed.
End cmra.

Arguments csumR : clear implicits.

Instance csum_map_cmra_monotone {A A' B B' : cmraT} (f : A A') (g : B B') :
  CMRAMonotone f CMRAMonotone g CMRAMonotone (csum_map f g).
Proof.
  split; try apply _.
  - intros n [a|b|]; simpl; auto using validN_preserving.
  - intros x y; rewrite !csum_included.
    intros [->|[(a&a'&->&->&?)|(b&b'&->&->&?)]]; simpl;
    eauto 10 using cmra_monotone.
Qed.

Program Definition csumRF (Fa Fb : rFunctor) : rFunctor := {|
  rFunctor_car A B := csumR (rFunctor_car Fa A B) (rFunctor_car Fb A B);
  rFunctor_map A1 A2 B1 B2 fg := csumC_map (rFunctor_map Fa fg) (rFunctor_map Fb fg)
|}.
Next Obligation.
  by intros Fa Fb A1 A2 B1 B2 n f g Hfg; apply csumC_map_ne; try apply rFunctor_ne.
Qed.
Next Obligation.
  intros Fa Fb A B x. rewrite /= -{2}(csum_map_id x).
  apply csum_map_exty; apply rFunctor_id.
Qed.
Next Obligation.
  intros Fa Fb A1 A2 A3 B1 B2 B3 f g f' g' x. rewrite /= -csum_map_compose.
  apply csum_map_exty; apply rFunctor_compose.
Qed.

Instance csumRF_contractive Fa Fb :
  rFunctorContractive Fa rFunctorContractive Fb
  rFunctorContractive (csumRF Fa Fb).
Proof.
  by intros ?? A1 A2 B1 B2 n f g Hfg; apply csumC_map_ne; try apply rFunctor_contractive.
Qed.