CVC3
Public Member Functions | Static Public Member Functions | Private Attributes

CVC3::ArithTheoremProducerOld Class Reference

#include <arith_theorem_producer_old.h>

Inherits CVC3::ArithProofRules, and CVC3::TheoremProducer.

Collaboration diagram for CVC3::ArithTheoremProducerOld:
Collaboration graph
[legend]

List of all members.

Public Member Functions

Static Public Member Functions

Private Member Functions

Auxiliary functions for eqElimIntRule()

Methods that compute the subterms used in eqElimIntRule()

Private Attributes


Detailed Description

Definition at line 31 of file arith_theorem_producer_old.h.


Constructor & Destructor Documentation

CVC3::ArithTheoremProducerOld::ArithTheoremProducerOld ( TheoremManager tm,
TheoryArithOld theoryArith 
) [inline]

Constructor.

Definition at line 66 of file arith_theorem_producer_old.h.


Member Function Documentation

Rational ArithTheoremProducerOld::modEq ( const Rational i,
const Rational m 
) [private]

Compute the special modulus: i - m*floor(i/m+1/2)

Definition at line 2429 of file arith_theorem_producer_old.cpp.

References DebugAssert, CVC3::Rational::toString(), and TRACE.

Expr ArithTheoremProducerOld::create_t ( const Expr eqn) [private]
Expr ArithTheoremProducerOld::create_t2 ( const Expr lhs,
const Expr rhs,
const Expr t 
) [private]
Expr ArithTheoremProducerOld::create_t3 ( const Expr lhs,
const Expr rhs,
const Expr t 
) [private]
void ArithTheoremProducerOld::sumModM ( std::vector< Expr > &  summands,
const Expr sum,
const Rational m,
const Rational divisor 
) [private]

Takes sum = a_0 + a_1*x_1+...+a_n*x_n and returns the vector of similar monomials (in 'summands') with coefficients mod(a_i, m). If divide flag is true, the coefficients will be mod(a_i,m)/m.

Definition at line 2445 of file arith_theorem_producer_old.cpp.

References CVC3::Expr::begin(), CLASS_NAME, DebugAssert, CVC3::Expr::end(), CVC3::Expr::getRational(), CVC3::Expr::isRational(), and CVC3::Rational::toString().

Expr ArithTheoremProducerOld::monomialModM ( const Expr e,
const Rational m,
const Rational divisor 
) [private]
void ArithTheoremProducerOld::sumMulF ( std::vector< Expr > &  summands,
const Expr sum,
const Rational m,
const Rational divisor 
) [private]
Expr ArithTheoremProducerOld::monomialMulF ( const Expr e,
const Rational m,
const Rational divisor 
) [private]

Compute the special modulus: i - m*floor(i/m+1/2)

Definition at line 2513 of file arith_theorem_producer_old.cpp.

References DebugAssert, CVC3::isMult(), CVC3::multExpr(), and CVC3::Rational::toString().

Rational ArithTheoremProducerOld::f ( const Rational i,
const Rational m 
) [private]

Compute floor(i/m+1/2) + mod(i,m)

Definition at line 2438 of file arith_theorem_producer_old.cpp.

References DebugAssert, and CVC3::Rational::toString().

Expr ArithTheoremProducerOld::substitute ( const Expr term,
ExprMap< Expr > &  eMap 
) [private]
void ArithTheoremProducerOld::getLeaves ( const Expr e,
std::set< Rational > &  s,
ExprHashMap< bool > &  cache 
) [private]
Expr CVC3::ArithTheoremProducerOld::rat ( Rational  r) [inline]

Create Expr from Rational (for convenience)

Definition at line 70 of file arith_theorem_producer_old.h.

References CVC3::TheoremProducer::d_em, and CVC3::ExprManager::newRatExpr().

Type CVC3::ArithTheoremProducerOld::realType ( ) [inline]

Definition at line 71 of file arith_theorem_producer_old.h.

References d_theoryArith, and CVC3::TheoryArith::realType().

Type CVC3::ArithTheoremProducerOld::intType ( ) [inline]

Definition at line 72 of file arith_theorem_producer_old.h.

References d_theoryArith, and CVC3::TheoryArith::intType().

Expr CVC3::ArithTheoremProducerOld::darkShadow ( const Expr lhs,
const Expr rhs 
) [inline]

Construct the dark shadow expression representing lhs <= rhs.

Definition at line 74 of file arith_theorem_producer_old.h.

References d_theoryArith, and CVC3::TheoryArith::darkShadow().

Expr CVC3::ArithTheoremProducerOld::grayShadow ( const Expr v,
const Expr e,
const Rational c1,
const Rational c2 
) [inline]

Construct the gray shadow expression representing c1 <= v - e <= c2.

Alternatively, v = e + i for some i s.t. c1 <= i <= c2

Definition at line 80 of file arith_theorem_producer_old.h.

References d_theoryArith, and CVC3::TheoryArith::grayShadow().

Theorem ArithTheoremProducerOld::varToMult ( const Expr e) [virtual]

==> e = 1 * e

Implements CVC3::ArithProofRules.

Definition at line 57 of file arith_theorem_producer_old.cpp.

Theorem ArithTheoremProducerOld::uMinusToMult ( const Expr e) [virtual]

==> -(e) = (-1) * e

Implements CVC3::ArithProofRules.

Definition at line 65 of file arith_theorem_producer_old.cpp.

Theorem ArithTheoremProducerOld::minusToPlus ( const Expr x,
const Expr y 
) [virtual]

==> x - y = x + (-1) * y

Implements CVC3::ArithProofRules.

Definition at line 73 of file arith_theorem_producer_old.cpp.

Theorem ArithTheoremProducerOld::canonUMinusToDivide ( const Expr e) [virtual]

-(e) ==> e / (-1); takes 'e'

Canon Rule for unary minus: it just converts it to division by -1, the result is not yet canonical:

Implements CVC3::ArithProofRules.

Definition at line 83 of file arith_theorem_producer_old.cpp.

Theorem ArithTheoremProducerOld::canonDivideConst ( const Expr c,
const Expr d 
) [virtual]

(c) / d ==> (c/d), takes c and d

Canon Rules for division by constant 'd'

Implements CVC3::ArithProofRules.

Definition at line 92 of file arith_theorem_producer_old.cpp.

References CHECK_PROOFS, CHECK_SOUND, CLASS_NAME, CVC3::Expr::getRational(), CVC3::isRational(), and CVC3::Expr::toString().

Theorem ArithTheoremProducerOld::canonDivideMult ( const Expr cx,
const Expr d 
) [virtual]

(c * x) / d ==> (c/d) * x, takes (c*x) and d

Implements CVC3::ArithProofRules.

Definition at line 111 of file arith_theorem_producer_old.cpp.

References CHECK_PROOFS, CHECK_SOUND, CLASS_NAME, CVC3::Expr::getRational(), CVC3::isMult(), CVC3::isRational(), and CVC3::Expr::toString().

Theorem ArithTheoremProducerOld::canonDividePlus ( const Expr e,
const Expr d 
) [virtual]

(+ c ...)/d ==> push division to all the coefficients.

The result is not canonical, but canonizing the summands will make it canonical. Takes (+ c ...) and d

Implements CVC3::ArithProofRules.

Definition at line 139 of file arith_theorem_producer_old.cpp.

References CVC3::Expr::arity(), CVC3::Expr::begin(), CHECK_PROOFS, CHECK_SOUND, CLASS_NAME, CVC3::Expr::end(), CVC3::isPlus(), CVC3::isRational(), CVC3::plusExpr(), and CVC3::Expr::toString().

Theorem ArithTheoremProducerOld::canonDivideVar ( const Expr e,
const Expr d 
) [virtual]

x / d ==> (1/d) * x, takes x and d

Implements CVC3::ArithProofRules.

Definition at line 162 of file arith_theorem_producer_old.cpp.

References CHECK_PROOFS, CHECK_SOUND, CLASS_NAME, CVC3::Expr::getRational(), CVC3::isRational(), and CVC3::Expr::toString().

bool ArithTheoremProducerOld::greaterthan ( const Expr l,
const Expr r 
) [static]
Expr ArithTheoremProducerOld::simplifiedMultExpr ( std::vector< Expr > &  mulKids) [virtual]

Definition at line 197 of file arith_theorem_producer_old.cpp.

References DebugAssert, and CVC3::multExpr().

Expr ArithTheoremProducerOld::canonMultConstMult ( const Expr c,
const Expr e 
) [virtual]
Expr ArithTheoremProducerOld::canonMultConstPlus ( const Expr e1,
const Expr e2 
) [virtual]
Expr ArithTheoremProducerOld::canonMultPowPow ( const Expr e1,
const Expr e2 
) [virtual]
Expr ArithTheoremProducerOld::canonMultPowLeaf ( const Expr e1,
const Expr e2 
) [virtual]
Expr ArithTheoremProducerOld::canonMultLeafLeaf ( const Expr e1,
const Expr e2 
) [virtual]

Definition at line 330 of file arith_theorem_producer_old.cpp.

References CVC3::powExpr().

Expr ArithTheoremProducerOld::canonMultLeafOrPowMult ( const Expr e1,
const Expr e2 
) [virtual]
Expr ArithTheoremProducerOld::canonCombineLikeTerms ( const std::vector< Expr > &  sumExprs) [virtual]
Expr ArithTheoremProducerOld::canonMultLeafOrPowOrMultPlus ( const Expr e1,
const Expr e2 
) [virtual]
Expr ArithTheoremProducerOld::canonMultPlusPlus ( const Expr e1,
const Expr e2 
) [virtual]
Theorem ArithTheoremProducerOld::canonMultMtermMterm ( const Expr e) [virtual]
Theorem ArithTheoremProducerOld::canonPlus ( const Expr e) [virtual]

Canonize (PLUS t1 ... tn)

Implements CVC3::ArithProofRules.

Definition at line 719 of file arith_theorem_producer_old.cpp.

References CVC3::Expr::begin(), DebugAssert, CVC3::Expr::end(), CVC3::Expr::getKind(), and CVC3::PLUS.

Theorem ArithTheoremProducerOld::canonInvertConst ( const Expr e) [virtual]
Theorem ArithTheoremProducerOld::canonInvertLeaf ( const Expr e) [virtual]

Definition at line 835 of file arith_theorem_producer_old.cpp.

References CVC3::powExpr().

Theorem ArithTheoremProducerOld::canonInvertPow ( const Expr e) [virtual]
Theorem ArithTheoremProducerOld::canonInvertMult ( const Expr e) [virtual]
Theorem ArithTheoremProducerOld::canonInvert ( const Expr e) [virtual]

==> 1/e = e' where e' is canonical; takes e.

Implements CVC3::ArithProofRules.

Definition at line 889 of file arith_theorem_producer_old.cpp.

References DebugAssert, CVC3::Expr::getKind(), CVC3::MULT, CVC3::PLUS, CVC3::POW, RATIONAL_EXPR, and CVC3::Expr::toString().

Theorem ArithTheoremProducerOld::moveSumConstantRight ( const Expr e) [virtual]

Transform e = (SUM r t1 ... tn) @ 0 into (SUM t1 ... tn) @ -r. The first sum term (r) must be a rational and t1 ... tn terms must be canonised.

Parameters:
ethe expression to transform
Returns:
rewrite theorem representing the transformation

Implements CVC3::ArithProofRules.

Definition at line 911 of file arith_theorem_producer_old.cpp.

References CVC3::Expr::begin(), CHECK_PROOFS, CHECK_SOUND, CVC3::Expr::end(), CVC3::Expr::getKind(), CVC3::Expr::isEq(), CVC3::isIneq(), CVC3::isPlus(), CVC3::Expr::isRational(), CVC3::isRational(), CVC3::plusExpr(), MiniSat::right(), and CVC3::Expr::toString().

Theorem ArithTheoremProducerOld::canonDivide ( const Expr e) [virtual]

e[0]/e[1] ==> e[0]*(e[1])^-1

Implements CVC3::ArithProofRules.

Definition at line 957 of file arith_theorem_producer_old.cpp.

References DebugAssert, CVC3::DIVIDE, CVC3::Expr::getKind(), CVC3::Theorem::getRHS(), and CVC3::Expr::toString().

Theorem ArithTheoremProducerOld::canonMult ( const Expr e) [virtual]
Theorem ArithTheoremProducerOld::canonMultTermConst ( const Expr c,
const Expr t 
) [virtual]

t*c ==> c*t, takes constant c and term t

Implements CVC3::ArithProofRules.

Definition at line 975 of file arith_theorem_producer_old.cpp.

References CHECK_PROOFS, CHECK_SOUND, CLASS_NAME, CVC3::isRational(), and CVC3::Expr::toString().

Theorem ArithTheoremProducerOld::canonMultTerm1Term2 ( const Expr t1,
const Expr t2 
) [virtual]

t1*t2 ==> Error, takes t1 and t2 where both are non-constants

Implements CVC3::ArithProofRules.

Definition at line 989 of file arith_theorem_producer_old.cpp.

References CHECK_PROOFS, CHECK_SOUND, and CVC3::Expr::toString().

Theorem ArithTheoremProducerOld::canonMultZero ( const Expr e) [virtual]

0*t ==> 0, takes 0*t

Implements CVC3::ArithProofRules.

Definition at line 1002 of file arith_theorem_producer_old.cpp.

Theorem ArithTheoremProducerOld::canonMultOne ( const Expr e) [virtual]

1*t ==> t, takes 1*t

Implements CVC3::ArithProofRules.

Definition at line 1010 of file arith_theorem_producer_old.cpp.

Theorem ArithTheoremProducerOld::canonMultConstConst ( const Expr c1,
const Expr c2 
) [virtual]

c1*c2 ==> c', takes constant c1*c2

Implements CVC3::ArithProofRules.

Definition at line 1019 of file arith_theorem_producer_old.cpp.

References CHECK_PROOFS, CHECK_SOUND, CLASS_NAME, CVC3::Expr::getRational(), CVC3::isRational(), and CVC3::Expr::toString().

Theorem ArithTheoremProducerOld::canonMultConstTerm ( const Expr c1,
const Expr c2,
const Expr t 
) [virtual]

c1*(c2*t) ==> c'*t, takes c1 and c2 and t

Implements CVC3::ArithProofRules.

Definition at line 1037 of file arith_theorem_producer_old.cpp.

References CHECK_PROOFS, CHECK_SOUND, CLASS_NAME, CVC3::Expr::getRational(), CVC3::isRational(), and CVC3::Expr::toString().

Theorem ArithTheoremProducerOld::canonMultConstSum ( const Expr c1,
const Expr sum 
) [virtual]
Theorem ArithTheoremProducerOld::canonPowConst ( const Expr pow) [virtual]
Theorem ArithTheoremProducerOld::canonFlattenSum ( const Expr e) [virtual]
Theorem ArithTheoremProducerOld::canonComboLikeTerms ( const Expr e) [virtual]
Theorem ArithTheoremProducerOld::multEqZero ( const Expr expr) [virtual]
Theorem ArithTheoremProducerOld::powEqZero ( const Expr expr) [virtual]
Theorem ArithTheoremProducerOld::elimPower ( const Expr expr) [virtual]
Theorem ArithTheoremProducerOld::elimPowerConst ( const Expr expr,
const Rational root 
) [virtual]
Theorem ArithTheoremProducerOld::evenPowerEqNegConst ( const Expr expr) [virtual]
Theorem ArithTheoremProducerOld::intEqIrrational ( const Expr expr,
const Theorem isInt 
) [virtual]
Theorem ArithTheoremProducerOld::constPredicate ( const Expr e) [virtual]

e0 @ e1 <==> true | false, where @ is {=,<,<=,>,>=}

Parameters:
etakes e is (e0@e1) where e0 and e1 are constants

Implements CVC3::ArithProofRules.

Definition at line 1355 of file arith_theorem_producer_old.cpp.

References CVC3::Expr::arity(), CHECK_PROOFS, CHECK_SOUND, CLASS_NAME, EQ, CVC3::GE, CVC3::Expr::getKind(), CVC3::Expr::getRational(), CVC3::GT, CVC3::isRational(), CVC3::LE, CVC3::LT, and CVC3::Expr::toString().

Theorem ArithTheoremProducerOld::rightMinusLeft ( const Expr e) [virtual]

e[0] @ e[1] <==> 0 @ e[1] - e[0], where @ is {=,<,<=,>,>=}

Implements CVC3::ArithProofRules.

Definition at line 1394 of file arith_theorem_producer_old.cpp.

References CHECK_PROOFS, CHECK_SOUND, EQ, CVC3::GE, CVC3::Expr::getKind(), CVC3::Expr::getOp(), CVC3::GT, CVC3::LE, and CVC3::LT.

Theorem ArithTheoremProducerOld::leftMinusRight ( const Expr e) [virtual]

e[0] @ e[1] <==> e[0] - e[1] @ 0, where @ is {=,<,<=,>,>=}

Implements CVC3::ArithProofRules.

Definition at line 1412 of file arith_theorem_producer_old.cpp.

References CHECK_PROOFS, CHECK_SOUND, EQ, CVC3::GE, CVC3::Expr::getKind(), CVC3::Expr::getOp(), CVC3::GT, CVC3::LE, and CVC3::LT.

Theorem ArithTheoremProducerOld::plusPredicate ( const Expr x,
const Expr y,
const Expr z,
int  kind 
) [virtual]

x @ y <==> x + z @ y + z, where @ is {=,<,<=,>,>=} (given as 'kind')

Implements CVC3::ArithProofRules.

Definition at line 1430 of file arith_theorem_producer_old.cpp.

References CHECK_PROOFS, CHECK_SOUND, EQ, CVC3::GE, CVC3::GT, CVC3::LE, MiniSat::left(), CVC3::LT, and MiniSat::right().

Theorem ArithTheoremProducerOld::multEqn ( const Expr x,
const Expr y,
const Expr z 
) [virtual]

x = y <==> x * z = y * z, where z is a non-zero constant

Implements CVC3::ArithProofRules.

Definition at line 1449 of file arith_theorem_producer_old.cpp.

References CHECK_PROOFS, CHECK_SOUND, CVC3::Expr::eqExpr(), CVC3::Expr::getRational(), and CVC3::Expr::isRational().

Theorem ArithTheoremProducerOld::divideEqnNonConst ( const Expr x,
const Expr y,
const Expr z 
) [virtual]

Implements CVC3::ArithProofRules.

Definition at line 1462 of file arith_theorem_producer_old.cpp.

References CVC3::Expr::eqExpr(), and CVC3::orExpr().

Theorem ArithTheoremProducerOld::multIneqn ( const Expr e,
const Expr z 
) [virtual]

Multiplying inequation by a non-zero constant.

z>0 ==> e[0] @ e[1] <==> e[0]*z @ e[1]*z

z<0 ==> e[0] @ e[1] <==> e[1]*z @ e[0]*z

for @ in {<,<=,>,>=}:

Implements CVC3::ArithProofRules.

Definition at line 1474 of file arith_theorem_producer_old.cpp.

References CHECK_PROOFS, CHECK_SOUND, CVC3::GE, CVC3::Expr::getKind(), CVC3::Expr::getOp(), CVC3::Expr::getRational(), CVC3::GT, CVC3::Expr::isRational(), CVC3::LE, CVC3::LT, and CVC3::Expr::toString().

Theorem ArithTheoremProducerOld::eqToIneq ( const Expr e) [virtual]
Theorem ArithTheoremProducerOld::flipInequality ( const Expr e) [virtual]

"op1 GE|GT op2" <==> op2 LE|LT op1

Implements CVC3::ArithProofRules.

Definition at line 1653 of file arith_theorem_producer_old.cpp.

References CHECK_PROOFS, CHECK_SOUND, CVC3::isGE(), CVC3::isGT(), CVC3::LE, CVC3::LT, and CVC3::Expr::toString().

Theorem ArithTheoremProducerOld::negatedInequality ( const Expr e) [virtual]

Propagating negation over <,<=,>,>=.

NOT (op1 < op2) <==> (op1 >= op2)

NOT (op1 <= op2) <==> (op1 > op2)

NOT (op1 > op2) <==> (op1 <= op2)

NOT (op1 >= op2) <==> (op1 < op2)

Implements CVC3::ArithProofRules.

Definition at line 1673 of file arith_theorem_producer_old.cpp.

References CHECK_PROOFS, CHECK_SOUND, CVC3::GE, CVC3::GT, CVC3::isGT(), CVC3::isIneq(), CVC3::isLE(), CVC3::isLT(), CVC3::Expr::isNot(), CVC3::LE, CVC3::LT, and CVC3::Expr::toString().

Theorem ArithTheoremProducerOld::realShadow ( const Theorem alphaLTt,
const Theorem tLTbeta 
) [virtual]
Theorem ArithTheoremProducerOld::realShadowEq ( const Theorem alphaLEt,
const Theorem tLEalpha 
) [virtual]

alpha <= t <= alpha ==> t = alpha

takes two ineqs "|- alpha LE t" and "|- t LE alpha" and returns "|- t = alpha"

Implements CVC3::ArithProofRules.

Definition at line 1737 of file arith_theorem_producer_old.cpp.

References CHECK_PROOFS, CHECK_SOUND, CVC3::Theorem::getExpr(), CVC3::Theorem::getProof(), CVC3::isLE(), and CVC3::Theorem::toString().

Theorem ArithTheoremProducerOld::finiteInterval ( const Theorem aLEt,
const Theorem tLEac,
const Theorem isInta,
const Theorem isIntt 
) [virtual]

Finite interval for integers: a <= t <= a + c ==> G(t, a, 0, c)

Implements CVC3::ArithProofRules.

Definition at line 1769 of file arith_theorem_producer_old.cpp.

References CHECK_PROOFS, CHECK_SOUND, CVC3::Theorem::getExpr(), CVC3::Theorem::getProof(), CVC3::isIntPred(), CVC3::isLE(), CVC3::isPlus(), CVC3::isRational(), and CVC3::Expr::toString().

Theorem ArithTheoremProducerOld::darkGrayShadow2ab ( const Theorem betaLEbx,
const Theorem axLEalpha,
const Theorem isIntAlpha,
const Theorem isIntBeta,
const Theorem isIntx 
) [virtual]

Dark & Gray shadows when a <= b.

takes two integer ineqs (i.e. all vars are ints) "|- beta <= b.x" and "|- a.x <= alpha" and checks if "1 <= a <= b" and returns (D or G) and (!D or !G), where D = Dark_Shadow(ab-1, b.alpha - a.beta), G = Gray_Shadow(a.x, alpha, -(a-1), 0).

Implements CVC3::ArithProofRules.

Definition at line 1833 of file arith_theorem_producer_old.cpp.

References CHECK_PROOFS, CHECK_SOUND, CVC3::geExpr(), CVC3::Theorem::getExpr(), CVC3::Theorem::getProof(), CVC3::Expr::getRational(), CVC3::isIntPred(), CVC3::isLE(), CVC3::minusExpr(), CVC3::multExpr(), CVC3::Expr::toString(), and CVC3::Theorem::toString().

Theorem ArithTheoremProducerOld::darkGrayShadow2ba ( const Theorem betaLEbx,
const Theorem axLEalpha,
const Theorem isIntAlpha,
const Theorem isIntBeta,
const Theorem isIntx 
) [virtual]

Dark & Gray shadows when b <= a.

takes two integer ineqs (i.e. all vars are ints) "|- beta <= b.x" and "|- a.x <= alpha" and checks if "1 <= b < a" and returns (D or G) and (!D or !G), where D = Dark_Shadow(ab-1, b.alpha - a.beta), G = Gray_Shadow(b.x, beta, 0, b-1).

Implements CVC3::ArithProofRules.

Definition at line 1926 of file arith_theorem_producer_old.cpp.

References CHECK_PROOFS, CHECK_SOUND, CVC3::geExpr(), CVC3::Theorem::getExpr(), CVC3::Theorem::getProof(), CVC3::Expr::getRational(), CVC3::isIntPred(), CVC3::isLE(), CVC3::minusExpr(), CVC3::multExpr(), CVC3::Expr::toString(), and CVC3::Theorem::toString().

Theorem ArithTheoremProducerOld::expandDarkShadow ( const Theorem darkShadow) [virtual]
Theorem ArithTheoremProducerOld::expandGrayShadow0 ( const Theorem g) [virtual]
Theorem ArithTheoremProducerOld::splitGrayShadow ( const Theorem g) [virtual]

G(x, e, c1, c2) ==> (G1 or G2) and (!G1 or !G2)

Here G1 = G(x,e,c1,c), G2 = G(x,e,c+1,c2), and c = floor((c1+c2)/2).

Implements CVC3::ArithProofRules.

Definition at line 2054 of file arith_theorem_producer_old.cpp.

References CHECK_PROOFS, CHECK_SOUND, CVC3::Theorem::getAssumptionsRef(), CVC3::Theorem::getExpr(), CVC3::Theorem::getProof(), CVC3::Expr::getRational(), CVC3::isGrayShadow(), CVC3::Rational::isInteger(), and CVC3::Expr::toString().

Theorem ArithTheoremProducerOld::splitGrayShadowSmall ( const Theorem grayShadow) [virtual]
Theorem ArithTheoremProducerOld::expandGrayShadow ( const Theorem g) [virtual]
Theorem ArithTheoremProducerOld::expandGrayShadowConst ( const Theorem g) [virtual]

Optimized rules: GRAY_SHADOW(a*x, c, c1, c2) ==> [expansion].

Implements three versions of the rule:

\[\frac{\mathrm{GRAY\_SHADOW}(ax,c,c1,c2)} {ax = c + i - \mathrm{sign}(i)\cdot j(c,i,a) \lor GRAY\_SHADOW(ax, c, i-\mathrm{sign}(i)\cdot (a+j(c,i,a)))}\]

where the conclusion may become FALSE or without the GRAY_SHADOW part, depending on the values of a, c and i.

Implements CVC3::ArithProofRules.

Definition at line 2122 of file arith_theorem_producer_old.cpp.

References CVC3::abs(), CHECK_PROOFS, CHECK_SOUND, CVC3::Expr::eqExpr(), CVC3::Theorem::getAssumptionsRef(), CVC3::Theorem::getExpr(), CVC3::Theorem::getProof(), CVC3::Expr::getRational(), CVC3::GRAY_SHADOW, CVC3::isGrayShadow(), CVC3::Rational::isInteger(), CVC3::isMult(), CVC3::Expr::isRational(), CVC3::isRational(), CVC3::Expr::orExpr(), and CVC3::Expr::toString().

Theorem ArithTheoremProducerOld::grayShadowConst ( const Theorem g) [virtual]

|- G(ax, c, c1, c2) ==> |- G(x, 0, ceil((c1+c)/a), floor((c2+c)/a))

In the case the new c1 > c2, return |- FALSE

Implements CVC3::ArithProofRules.

Definition at line 2187 of file arith_theorem_producer_old.cpp.

References CHECK_PROOFS, CHECK_SOUND, CVC3::Theorem::getAssumptionsRef(), CVC3::Theorem::getExpr(), CVC3::Theorem::getProof(), CVC3::Expr::getRational(), CVC3::isGrayShadow(), CVC3::Rational::isInteger(), CVC3::Expr::isRational(), and CVC3::Expr::toString().

Rational ArithTheoremProducerOld::constRHSGrayShadow ( const Rational c,
const Rational b,
const Rational a 
)

Implements j(c,b,a)

accepts 3 integers a,b,c and returns (b > 0)? (c+b) mod a : (a - (c+b)) mod a

Definition at line 2227 of file arith_theorem_producer_old.cpp.

References DebugAssert, and CVC3::Rational::isInteger().

Theorem ArithTheoremProducerOld::lessThanToLE ( const Theorem less,
const Theorem isIntLHS,
const Theorem isIntRHS,
bool  changeRight 
) [virtual]

Takes a Theorem(\alpha < \beta) and returns Theorem(\alpha < \beta <==> \alpha <= \beta -1) where \alpha and \beta are integer expressions

Implements CVC3::ArithProofRules.

Definition at line 2245 of file arith_theorem_producer_old.cpp.

References CHECK_PROOFS, CHECK_SOUND, CVC3::Theorem::getExpr(), CVC3::Theorem::getProof(), CVC3::isIntPred(), CVC3::isLT(), CVC3::leExpr(), and CVC3::Expr::toString().

Theorem ArithTheoremProducerOld::lessThanToLERewrite ( const Expr ineq,
const Theorem isIntLHS,
const Theorem isIntRHS,
bool  changeRight 
) [virtual]

Takes a Theorem(\alpha < \beta) and returns Theorem(\alpha < \beta <==> \alpha <= \beta -1) where \alpha and \beta are integer expressions

Implements CVC3::ArithProofRules.

Definition at line 3416 of file arith_theorem_producer_old.cpp.

References CHECK_PROOFS, CHECK_SOUND, CVC3::Theorem::getExpr(), CVC3::Theorem::getProof(), CVC3::isIntPred(), CVC3::isLT(), CVC3::leExpr(), and CVC3::Expr::toString().

Theorem ArithTheoremProducerOld::intVarEqnConst ( const Expr eqn,
const Theorem isIntx 
) [virtual]
Parameters:
eqnis an equation 0 = a.x or 0 = c + a.x
isIntxis a proof of IS_INTEGER(x)
Returns:
the theorem 0 = c + a.x <==> x=-c/a if -c/a is int else return the theorem 0 = c + a.x <==> false.

It also handles the special case of 0 = a.x <==> x = 0

Implements CVC3::ArithProofRules.

Definition at line 2297 of file arith_theorem_producer_old.cpp.

References CVC3::Expr::arity(), CHECK_PROOFS, CHECK_SOUND, CVC3::Expr::eqExpr(), CVC3::Theorem::getAssumptionsRef(), CVC3::Theorem::getExpr(), CVC3::Theorem::getProof(), CVC3::Expr::getRational(), CVC3::Rational::isInteger(), CVC3::isIntPred(), CVC3::isMult(), CVC3::isPlus(), CVC3::Expr::isRational(), CVC3::isRational(), MiniSat::left(), MiniSat::right(), and CVC3::Expr::toString().

Theorem ArithTheoremProducerOld::IsIntegerElim ( const Theorem isIntx) [virtual]

IS_INTEGER(x) |= EXISTS (y : INT) y = x where x is not already known to be an integer.

Implements CVC3::ArithProofRules.

Definition at line 2682 of file arith_theorem_producer_old.cpp.

References CHECK_PROOFS, CHECK_SOUND, DebugAssert, CVC3::Expr::eqExpr(), EXISTS, CVC3::Theorem::getExpr(), CVC3::Expr::getKind(), CVC3::Theorem::getProof(), and CVC3::IS_INTEGER.

Theorem ArithTheoremProducerOld::eqElimIntRule ( const Theorem eqn,
const Theorem isIntx,
const std::vector< Theorem > &  isIntVars 
) [virtual]

Equality elimination rule for integers:

\[\frac{\mathsf{int}(a\cdot x)\quad \mathsf{int}(C+\sum_{i=1}^{n}a_{i}\cdot x_{i})} {a\cdot x=C+\sum_{i=1}^{n}a_{i}\cdot x_{i} \quad\equiv\quad x=t_{2}\wedge 0=t_{3}} \]

See the detailed description for explanations.

This rule implements a step in the iterative algorithm for eliminating integer equality. The terms in the rule are defined as follows:

\[\begin{array}{rcl} t_{2} & = & -(C\ \mathbf{mod}\ m+\sum_{i=1}^{n}(a_{i}\ \mathbf{mod}\ m) \cdot x_{i}-m\cdot\sigma(t))\\ & & \\ t_{3} & = & \mathbf{f}(C,m)+\sum_{i=1}^{n}\mathbf{f}(a_{i},m)\cdot x_{i} -a\cdot\sigma(t)\\ & & \\ t & = & (C\ \mathbf{mod}\ m+\sum_{i=1}^{n}(a_{i}\ \mathbf{mod}\ m) \cdot x_{i}+x)/m\\ & & \\ m & = & a+1\\ & & \\ \mathbf{f}(i,m) & = & \left\lfloor \frac{i}{m} +\frac{1}{2}\right\rfloor +i\ \mathbf{mod}\ m\\ & & \\ i\ \mathbf{mod}\ m & = & i-m\left\lfloor\frac{i}{m} +\frac{1}{2}\right\rfloor \end{array} \]

All the variables and coefficients are integer, and a >= 2.

Parameters:
eqnis the equation

\[a\cdot x = C + \sum_{i=1}^n a_i\cdot x_i.\]

\[\frac{\Gamma\models ax=t\quad \Gamma'\models\mathsf{int}(x)\quad \{\Gamma_i\models\mathsf{int}(x_i) | x_i\mbox{ is var in }t\}} {\Gamma,\Gamma',\bigcup_i\Gamma_i\models \exists (y:\mathrm{int}).\ x=t_2(y)\wedge 0=t_3(y)} \]

See detailed docs for more information.

This rule implements a step in the iterative algorithm for eliminating integer equality. The terms in the rule are defined as follows:

\[\begin{array}{rcl} t & = & C+\sum_{i=1}^na_{i}\cdot x_{i}\\ t_{2}(y) & = & -(C\ \mathbf{mod}\ m+\sum_{i=1}^{n}(a_{i}\ \mathbf{mod}\ m) \cdot x_{i}-m\cdot y)\\ & & \\ t_{3}(y) & = & \mathbf{f}(C,m)+\sum_{i=1}^{n}\mathbf{f}(a_{i},m)\cdot x_{i} -a\cdot y\\ & & \\ m & = & a+1\\ & & \\ \mathbf{f}(i,m) & = & \left\lfloor \frac{i}{m} +\frac{1}{2}\right\rfloor +i\ \mathbf{mod}\ m\\ & & \\ i\ \mathbf{mod}\ m & = & i-m\left\lfloor\frac{i}{m} +\frac{1}{2}\right\rfloor \end{array} \]

All the variables and coefficients are integer, and a >= 2.

Parameters:
eqnis the equation ax=t:

\[a\cdot x = C + \sum_{i=1}^n a_i\cdot x_i.\]

isIntxis a Theorem deriving the integrality of the LHS variable: IS_INTEGER(x)
isIntVarsis a vector of Theorems deriving the integrality of all variables on the RHS

Implements CVC3::ArithProofRules.

Definition at line 2708 of file arith_theorem_producer_old.cpp.

References CVC3::Expr::arity(), CHECK_PROOFS, CHECK_SOUND, CVC3::Expr::eqExpr(), EXISTS, CVC3::Theorem::getExpr(), CVC3::Theorem::getLHS(), CVC3::Theorem::getProof(), CVC3::Expr::getRational(), CVC3::Theorem::getRHS(), CVC3::int2string(), CVC3::isDivide(), CVC3::isInt(), CVC3::Rational::isInteger(), CVC3::isIntPred(), CVC3::isPlus(), CVC3::isRational(), CVC3::Theorem::isRewrite(), CVC3::Expr::setType(), CVC3::Rational::toString(), CVC3::Expr::toString(), CVC3::Theorem::toString(), and TRACE.

Theorem ArithTheoremProducerOld::isIntConst ( const Expr e) [virtual]

return e <=> TRUE/FALSE for e == IS_INTEGER(c), where c is a constant

Parameters:
eis a predicate IS_INTEGER(c) where c is a rational constant

Implements CVC3::ArithProofRules.

Definition at line 2800 of file arith_theorem_producer_old.cpp.

References CHECK_PROOFS, CHECK_SOUND, CVC3::Expr::getRational(), CVC3::isInt(), CVC3::Rational::isInteger(), CVC3::isIntPred(), CVC3::isRational(), and CVC3::Expr::toString().

Theorem ArithTheoremProducerOld::equalLeaves1 ( const Theorem e) [virtual]
Theorem ArithTheoremProducerOld::equalLeaves2 ( const Theorem e) [virtual]
Theorem ArithTheoremProducerOld::equalLeaves3 ( const Theorem e) [virtual]
Theorem ArithTheoremProducerOld::equalLeaves4 ( const Theorem e) [virtual]
Theorem ArithTheoremProducerOld::diseqToIneq ( const Theorem diseq) [virtual]
Theorem ArithTheoremProducerOld::dummyTheorem ( const Expr e) [virtual]

Implements CVC3::ArithProofRules.

Definition at line 2950 of file arith_theorem_producer_old.cpp.

Theorem ArithTheoremProducerOld::oneElimination ( const Expr x) [virtual]
Theorem ArithTheoremProducerOld::clashingBounds ( const Theorem lowerBound,
const Theorem upperBound 
) [virtual]
Theorem ArithTheoremProducerOld::addInequalities ( const Theorem thm1,
const Theorem thm2 
) [virtual]
Theorem ArithTheoremProducerOld::addInequalities ( const std::vector< Theorem > &  thms) [virtual]
Theorem ArithTheoremProducerOld::implyWeakerInequality ( const Expr expr1,
const Expr expr2 
) [virtual]
Theorem ArithTheoremProducerOld::implyNegatedInequality ( const Expr expr1,
const Expr expr2 
) [virtual]
Theorem ArithTheoremProducerOld::integerSplit ( const Expr intVar,
const Rational intPoint 
) [virtual]
Theorem ArithTheoremProducerOld::trustedRewrite ( const Expr expr1,
const Expr expr2 
) [virtual]

Implements CVC3::ArithProofRules.

Definition at line 3217 of file arith_theorem_producer_old.cpp.

Theorem ArithTheoremProducerOld::rafineStrictInteger ( const Theorem isIntConstrThm,
const Expr constr 
) [virtual]
Theorem ArithTheoremProducerOld::simpleIneqInt ( const Expr ineq,
const Theorem isIntRHS 
) [virtual]
Theorem ArithTheoremProducerOld::intEqualityRationalConstant ( const Theorem isIntConstrThm,
const Expr constr 
) [virtual]
Theorem ArithTheoremProducerOld::cycleConflict ( const std::vector< Theorem > &  inequalitites) [virtual]

Implements CVC3::ArithProofRules.

Definition at line 3369 of file arith_theorem_producer_old.cpp.

References CVC3::Assumptions::add().

Theorem ArithTheoremProducerOld::implyEqualities ( const std::vector< Theorem > &  inequalities) [virtual]
Theorem ArithTheoremProducerOld::implyWeakerInequalityDiffLogic ( const std::vector< Theorem > &  antecedentThms,
const Expr implied 
) [virtual]

Implements CVC3::ArithProofRules.

Definition at line 3494 of file arith_theorem_producer_old.cpp.

References CVC3::Assumptions::add(), and RAW_LIST.

Theorem ArithTheoremProducerOld::implyNegatedInequalityDiffLogic ( const std::vector< Theorem > &  antecedentThms,
const Expr implied 
) [virtual]
Theorem ArithTheoremProducerOld::expandGrayShadowRewrite ( const Expr theShadow) [virtual]
Theorem ArithTheoremProducerOld::compactNonLinearTerm ( const Expr nonLinear) [virtual]
Theorem ArithTheoremProducerOld::nonLinearIneqSignSplit ( const Theorem ineqThm) [virtual]
Theorem ArithTheoremProducerOld::implyDiffLogicBothBounds ( const Expr x,
std::vector< Theorem > &  c1_le_x,
Rational  c1,
std::vector< Theorem > &  x_le_c2,
Rational  c2 
) [virtual]

Implements CVC3::ArithProofRules.

Definition at line 3742 of file arith_theorem_producer_old.cpp.

References CVC3::Assumptions::add().

Theorem ArithTheoremProducerOld::powerOfOne ( const Expr e) [virtual]
Theorem ArithTheoremProducerOld::rewriteLeavesConst ( const Expr e) [virtual]

Member Data Documentation

Definition at line 32 of file arith_theorem_producer_old.h.

Referenced by darkShadow(), grayShadow(), intType(), and realType().


The documentation for this class was generated from the following files: