Library iris.prelude.lexico
This files defines a lexicographic order on various common data structures
and proves that it is a partial order having a strong variant of trichotomy.
From iris.prelude Require Import numbers.
Notation cast_trichotomy T :=
match T with
| inleft (left _) ⇒ inleft (left _)
| inleft (right _) ⇒ inleft (right _)
| inright _ ⇒ inright _
end.
Instance prod_lexico `{Lexico A, Lexico B} : Lexico (A × B) := λ p1 p2,
lexico (p1.1) (p2.1) ∨
p1.1 = p2.1 ∧ lexico (p1.2) (p2.2).
Instance bool_lexico : Lexico bool := λ b1 b2,
match b1, b2 with false, true ⇒ True | _, _ ⇒ False end.
Instance nat_lexico : Lexico nat := (<).
Instance N_lexico : Lexico N := (<)%N.
Instance Z_lexico : Lexico Z := (<)%Z.
Typeclasses Opaque bool_lexico nat_lexico N_lexico Z_lexico.
Instance list_lexico `{Lexico A} : Lexico (list A) :=
fix go l1 l2 :=
let _ : Lexico (list A) := @go in
match l1, l2 with
| [], _ :: _ ⇒ True
| x1 :: l1, x2 :: l2 ⇒ lexico (x1,l1) (x2,l2)
| _, _ ⇒ False
end.
Instance sig_lexico `{Lexico A} (P : A → Prop) `{∀ x, ProofIrrel (P x)} :
Lexico (sig P) := λ x1 x2, lexico (`x1) (`x2).
Lemma prod_lexico_irreflexive `{Lexico A, Lexico B, !Irreflexive (@lexico A _)}
(x : A) (y : B) : complement lexico y y → complement lexico (x,y) (x,y).
Proof. intros ? [?|[??]]. by apply (irreflexivity lexico x). done. Qed.
Lemma prod_lexico_transitive `{Lexico A, Lexico B, !Transitive (@lexico A _)}
(x1 x2 x3 : A) (y1 y2 y3 : B) :
lexico (x1,y1) (x2,y2) → lexico (x2,y2) (x3,y3) →
(lexico y1 y2 → lexico y2 y3 → lexico y1 y3) → lexico (x1,y1) (x3,y3).
Proof.
intros Hx12 Hx23 ?; revert Hx12 Hx23. unfold lexico, prod_lexico.
intros [|[??]] [?|[??]]; simplify_eq/=; auto.
by left; trans x2.
Qed.
Instance prod_lexico_po `{Lexico A, Lexico B, !StrictOrder (@lexico A _)}
`{!StrictOrder (@lexico B _)} : StrictOrder (@lexico (A × B) _).
Proof.
split.
- intros [x y]. apply prod_lexico_irreflexive.
by apply (irreflexivity lexico y).
- intros [??] [??] [??] ??.
eapply prod_lexico_transitive; eauto. apply transitivity.
Qed.
Instance prod_lexico_trichotomyT `{Lexico A, tA : !TrichotomyT (@lexico A _)}
`{Lexico B, tB : !TrichotomyT (@lexico B _)}: TrichotomyT (@lexico (A × B) _).
Proof.
red; refine (λ p1 p2,
match trichotomyT lexico (p1.1) (p2.1) with
| inleft (left _) ⇒ inleft (left _)
| inleft (right _) ⇒ cast_trichotomy (trichotomyT lexico (p1.2) (p2.2))
| inright _ ⇒ inright _
end); clear tA tB;
abstract (unfold lexico, prod_lexico; auto using injective_projections).
Defined.
Instance bool_lexico_po : StrictOrder (@lexico bool _).
Proof. split. by intros [] ?. by intros [] [] [] ??. Qed.
Instance bool_lexico_trichotomy: TrichotomyT (@lexico bool _).
Proof.
red; refine (λ b1 b2,
match b1, b2 with
| false, false ⇒ inleft (right _)
| false, true ⇒ inleft (left _)
| true, false ⇒ inright _
| true, true ⇒ inleft (right _)
end); abstract (unfold strict, lexico, bool_lexico; naive_solver).
Defined.
Instance nat_lexico_po : StrictOrder (@lexico nat _).
Proof. unfold lexico, nat_lexico. apply _. Qed.
Instance nat_lexico_trichotomy: TrichotomyT (@lexico nat _).
Proof.
red; refine (λ n1 n2,
match Nat.compare n1 n2 as c return Nat.compare n1 n2 = c → _ with
| Lt ⇒ λ H, inleft (left (nat_compare_Lt_lt _ _ H))
| Eq ⇒ λ H, inleft (right (nat_compare_eq _ _ H))
| Gt ⇒ λ H, inright (nat_compare_Gt_gt _ _ H)
end eq_refl).
Defined.
Instance N_lexico_po : StrictOrder (@lexico N _).
Proof. unfold lexico, N_lexico. apply _. Qed.
Instance N_lexico_trichotomy: TrichotomyT (@lexico N _).
Proof.
red; refine (λ n1 n2,
match N.compare n1 n2 as c return N.compare n1 n2 = c → _ with
| Lt ⇒ λ H, inleft (left (proj2 (N.compare_lt_iff _ _) H))
| Eq ⇒ λ H, inleft (right (N.compare_eq _ _ H))
| Gt ⇒ λ H, inright (proj1 (N.compare_gt_iff _ _) H)
end eq_refl).
Defined.
Instance Z_lexico_po : StrictOrder (@lexico Z _).
Proof. unfold lexico, Z_lexico. apply _. Qed.
Instance Z_lexico_trichotomy: TrichotomyT (@lexico Z _).
Proof.
red; refine (λ n1 n2,
match Z.compare n1 n2 as c return Z.compare n1 n2 = c → _ with
| Lt ⇒ λ H, inleft (left (proj2 (Z.compare_lt_iff _ _) H))
| Eq ⇒ λ H, inleft (right (Z.compare_eq _ _ H))
| Gt ⇒ λ H, inright (proj1 (Z.compare_gt_iff _ _) H)
end eq_refl).
Defined.
Instance list_lexico_po `{Lexico A, !StrictOrder (@lexico A _)} :
StrictOrder (@lexico (list A) _).
Proof.
split.
- intros l. induction l. by intros ?. by apply prod_lexico_irreflexive.
- intros l1. induction l1 as [|x1 l1]; intros [|x2 l2] [|x3 l3] ??; try done.
eapply prod_lexico_transitive; eauto.
Qed.
Instance list_lexico_trichotomy `{Lexico A, tA : !TrichotomyT (@lexico A _)} :
TrichotomyT (@lexico (list A) _).
Proof.
refine (
fix go l1 l2 :=
let go' : TrichotomyT (@lexico (list A) _) := @go in
match l1, l2 with
| [], [] ⇒ inleft (right _)
| [], _ :: _ ⇒ inleft (left _)
| _ :: _, [] ⇒ inright _
| x1 :: l1, x2 :: l2 ⇒ cast_trichotomy (trichotomyT lexico (x1,l1) (x2,l2))
end); clear tA go go';
abstract (repeat (done || constructor || congruence || by inversion 1)).
Defined.
Instance sig_lexico_po `{Lexico A, !StrictOrder (@lexico A _)}
(P : A → Prop) `{∀ x, ProofIrrel (P x)} : StrictOrder (@lexico (sig P) _).
Proof.
unfold lexico, sig_lexico. split.
- intros [x ?] ?. by apply (irreflexivity lexico x).
- intros [x1 ?] [x2 ?] [x3 ?] ??. by trans x2.
Qed.
Instance sig_lexico_trichotomy `{Lexico A, tA : !TrichotomyT (@lexico A _)}
(P : A → Prop) `{∀ x, ProofIrrel (P x)} : TrichotomyT (@lexico (sig P) _).
Proof.
red; refine (λ x1 x2, cast_trichotomy (trichotomyT lexico (`x1) (`x2)));
abstract (repeat (done || constructor || apply (sig_eq_pi P))).
Defined.
Notation cast_trichotomy T :=
match T with
| inleft (left _) ⇒ inleft (left _)
| inleft (right _) ⇒ inleft (right _)
| inright _ ⇒ inright _
end.
Instance prod_lexico `{Lexico A, Lexico B} : Lexico (A × B) := λ p1 p2,
lexico (p1.1) (p2.1) ∨
p1.1 = p2.1 ∧ lexico (p1.2) (p2.2).
Instance bool_lexico : Lexico bool := λ b1 b2,
match b1, b2 with false, true ⇒ True | _, _ ⇒ False end.
Instance nat_lexico : Lexico nat := (<).
Instance N_lexico : Lexico N := (<)%N.
Instance Z_lexico : Lexico Z := (<)%Z.
Typeclasses Opaque bool_lexico nat_lexico N_lexico Z_lexico.
Instance list_lexico `{Lexico A} : Lexico (list A) :=
fix go l1 l2 :=
let _ : Lexico (list A) := @go in
match l1, l2 with
| [], _ :: _ ⇒ True
| x1 :: l1, x2 :: l2 ⇒ lexico (x1,l1) (x2,l2)
| _, _ ⇒ False
end.
Instance sig_lexico `{Lexico A} (P : A → Prop) `{∀ x, ProofIrrel (P x)} :
Lexico (sig P) := λ x1 x2, lexico (`x1) (`x2).
Lemma prod_lexico_irreflexive `{Lexico A, Lexico B, !Irreflexive (@lexico A _)}
(x : A) (y : B) : complement lexico y y → complement lexico (x,y) (x,y).
Proof. intros ? [?|[??]]. by apply (irreflexivity lexico x). done. Qed.
Lemma prod_lexico_transitive `{Lexico A, Lexico B, !Transitive (@lexico A _)}
(x1 x2 x3 : A) (y1 y2 y3 : B) :
lexico (x1,y1) (x2,y2) → lexico (x2,y2) (x3,y3) →
(lexico y1 y2 → lexico y2 y3 → lexico y1 y3) → lexico (x1,y1) (x3,y3).
Proof.
intros Hx12 Hx23 ?; revert Hx12 Hx23. unfold lexico, prod_lexico.
intros [|[??]] [?|[??]]; simplify_eq/=; auto.
by left; trans x2.
Qed.
Instance prod_lexico_po `{Lexico A, Lexico B, !StrictOrder (@lexico A _)}
`{!StrictOrder (@lexico B _)} : StrictOrder (@lexico (A × B) _).
Proof.
split.
- intros [x y]. apply prod_lexico_irreflexive.
by apply (irreflexivity lexico y).
- intros [??] [??] [??] ??.
eapply prod_lexico_transitive; eauto. apply transitivity.
Qed.
Instance prod_lexico_trichotomyT `{Lexico A, tA : !TrichotomyT (@lexico A _)}
`{Lexico B, tB : !TrichotomyT (@lexico B _)}: TrichotomyT (@lexico (A × B) _).
Proof.
red; refine (λ p1 p2,
match trichotomyT lexico (p1.1) (p2.1) with
| inleft (left _) ⇒ inleft (left _)
| inleft (right _) ⇒ cast_trichotomy (trichotomyT lexico (p1.2) (p2.2))
| inright _ ⇒ inright _
end); clear tA tB;
abstract (unfold lexico, prod_lexico; auto using injective_projections).
Defined.
Instance bool_lexico_po : StrictOrder (@lexico bool _).
Proof. split. by intros [] ?. by intros [] [] [] ??. Qed.
Instance bool_lexico_trichotomy: TrichotomyT (@lexico bool _).
Proof.
red; refine (λ b1 b2,
match b1, b2 with
| false, false ⇒ inleft (right _)
| false, true ⇒ inleft (left _)
| true, false ⇒ inright _
| true, true ⇒ inleft (right _)
end); abstract (unfold strict, lexico, bool_lexico; naive_solver).
Defined.
Instance nat_lexico_po : StrictOrder (@lexico nat _).
Proof. unfold lexico, nat_lexico. apply _. Qed.
Instance nat_lexico_trichotomy: TrichotomyT (@lexico nat _).
Proof.
red; refine (λ n1 n2,
match Nat.compare n1 n2 as c return Nat.compare n1 n2 = c → _ with
| Lt ⇒ λ H, inleft (left (nat_compare_Lt_lt _ _ H))
| Eq ⇒ λ H, inleft (right (nat_compare_eq _ _ H))
| Gt ⇒ λ H, inright (nat_compare_Gt_gt _ _ H)
end eq_refl).
Defined.
Instance N_lexico_po : StrictOrder (@lexico N _).
Proof. unfold lexico, N_lexico. apply _. Qed.
Instance N_lexico_trichotomy: TrichotomyT (@lexico N _).
Proof.
red; refine (λ n1 n2,
match N.compare n1 n2 as c return N.compare n1 n2 = c → _ with
| Lt ⇒ λ H, inleft (left (proj2 (N.compare_lt_iff _ _) H))
| Eq ⇒ λ H, inleft (right (N.compare_eq _ _ H))
| Gt ⇒ λ H, inright (proj1 (N.compare_gt_iff _ _) H)
end eq_refl).
Defined.
Instance Z_lexico_po : StrictOrder (@lexico Z _).
Proof. unfold lexico, Z_lexico. apply _. Qed.
Instance Z_lexico_trichotomy: TrichotomyT (@lexico Z _).
Proof.
red; refine (λ n1 n2,
match Z.compare n1 n2 as c return Z.compare n1 n2 = c → _ with
| Lt ⇒ λ H, inleft (left (proj2 (Z.compare_lt_iff _ _) H))
| Eq ⇒ λ H, inleft (right (Z.compare_eq _ _ H))
| Gt ⇒ λ H, inright (proj1 (Z.compare_gt_iff _ _) H)
end eq_refl).
Defined.
Instance list_lexico_po `{Lexico A, !StrictOrder (@lexico A _)} :
StrictOrder (@lexico (list A) _).
Proof.
split.
- intros l. induction l. by intros ?. by apply prod_lexico_irreflexive.
- intros l1. induction l1 as [|x1 l1]; intros [|x2 l2] [|x3 l3] ??; try done.
eapply prod_lexico_transitive; eauto.
Qed.
Instance list_lexico_trichotomy `{Lexico A, tA : !TrichotomyT (@lexico A _)} :
TrichotomyT (@lexico (list A) _).
Proof.
refine (
fix go l1 l2 :=
let go' : TrichotomyT (@lexico (list A) _) := @go in
match l1, l2 with
| [], [] ⇒ inleft (right _)
| [], _ :: _ ⇒ inleft (left _)
| _ :: _, [] ⇒ inright _
| x1 :: l1, x2 :: l2 ⇒ cast_trichotomy (trichotomyT lexico (x1,l1) (x2,l2))
end); clear tA go go';
abstract (repeat (done || constructor || congruence || by inversion 1)).
Defined.
Instance sig_lexico_po `{Lexico A, !StrictOrder (@lexico A _)}
(P : A → Prop) `{∀ x, ProofIrrel (P x)} : StrictOrder (@lexico (sig P) _).
Proof.
unfold lexico, sig_lexico. split.
- intros [x ?] ?. by apply (irreflexivity lexico x).
- intros [x1 ?] [x2 ?] [x3 ?] ??. by trans x2.
Qed.
Instance sig_lexico_trichotomy `{Lexico A, tA : !TrichotomyT (@lexico A _)}
(P : A → Prop) `{∀ x, ProofIrrel (P x)} : TrichotomyT (@lexico (sig P) _).
Proof.
red; refine (λ x1 x2, cast_trichotomy (trichotomyT lexico (`x1) (`x2)));
abstract (repeat (done || constructor || apply (sig_eq_pi P))).
Defined.