A paper by Hintikka about the modified Ramsey theorem
K. P. Hart
k.p.hart at tudelft.nl
Sun Jul 25 17:49:08 EDT 2021
After mucking about a bit with the url:
https://eng.iph.ras.ru/page25958466.htm
A special issue of Logical Investigations
KP Hart
On 7/25/21 3:03 PM, Robert Rynasiewicz wrote:
> Does anyone have a citation for this Hintikka article? —RR
>
>> On Jul 24, 2021, at 11:48 AM, Giovanni Lagnese <giov.lagn at gmail.com
>> <mailto:giov.lagn at gmail.com>> wrote:
>>
>> *
>> ** External Email - Use Caution *
>>
>> *
>> *
>>
>> *
>> *
>>
>> Is this paper by Hintikka correct?
>> https://iphras.ru/uplfile/logic/log19/LI19_Hintikka.pdf
>> <https://urldefense.proofpoint.com/v2/url?u=https-3A__nam02.safelinks.protection.outlook.com_-3Furl-3Dhttps-253A-252F-252Fiphras.ru-252Fuplfile-252Flogic-252Flog19-252FLI19-5FHintikka.pdf-26data-3D04-257C01-257Cryno-2540jhu.edu-257Ca1c7a563d8ed4f3a709308d94ef4f327-257C9fa4f438b1e6473b803f86f8aedf0dec-257C0-257C0-257C637627636224687742-257CUnknown-257CTWFpbGZsb3d8eyJWIjoiMC4wLjAwMDAiLCJQIjoiV2luMzIiLCJBTiI6Ik1haWwiLCJXVCI6Mn0-253D-257C1000-26sdata-3Ddru3-252Bk29zHitAXBRxPamVNBG9HAE2RheolreORnHIu0-253D-26reserved-3D0&d=DwMGaQ&c=XYzUhXBD2cD-CornpT4QE19xOJBbRy-TBPLK0X9U2o8&r=Njq9lWmXsQy15FxPfQQqSYvTGOKAft9YDINmsrnBWVw&m=aPWcQVEuqv-BNkSqrczawVkoTybJd3eyzeplwdRVKmM&s=hSPZEG6agdimi7YaQKgsRqAjolFSQR8Ap2o9JXJASIM&e=>
>>
>> "Yet f is obviously computable by a mechanical process, for we can
>> simply by going through for a given m all the possible relations R
>> (different 'colorings') for n = m, m + 1, m + 2, . . . Hence MFRT
>> appears to be highly interesting even if it is not a Godel sentence.
>> It is a counterexample to Church's Thesis: in a pretheoretical sense
>> computable, but not general recursive nor therefore a Turing machine
>> computable function." (!!)
>
--
E-MAIL: K.P.Hart at TUDelft.NL PAPER: Faculty EEMCS
PHONE: +31-15-2784572 TU Delft
URL: https://fa.ewi.tudelft.nl/~hart Postbus 5031
2600 GA Delft
the Netherlands
-------------- next part --------------
An HTML attachment was scrubbed...
URL: </pipermail/fom/attachments/20210725/d4591a76/attachment-0001.html>
More information about the FOM
mailing list