A paper by Hintikka about the modified Ramsey theorem

Ehrlich, Philip ehrlich at ohio.edu
Sun Jul 25 17:18:53 EDT 2021

The citation can be found at this cite.

Home Page<http://eng.iph.ras.ru/> » <http://eng.iph.ras.ru/.htm> » Logical Investigations<http://eng.iph.ras.ru/log_inv.htm> » Logical Investigations. Vol. 19 (Special Issue). M.­ Spb.: C.G.I., 2013. ­ 376 p. ­ ISBN 978-5-98712-143-6



On Jul 25, 2021, at 9:03 AM, Robert Rynasiewicz <ryno at jhu.edu<mailto:ryno at jhu.edu>> wrote:

Does anyone have a citation for this Hintikka article?  —RR

On Jul 24, 2021, at 11:48 AM, Giovanni Lagnese <giov.lagn at gmail.com<mailto:giov.lagn at gmail.com>> wrote:

      External Email - Use Caution

Is this paper by Hintikka correct? https://iphras.ru/uplfile/logic/log19/LI19_Hintikka.pdf<https://nam11.safelinks.protection.outlook.com/?url=https%3A%2F%2Fiphras.ru%2Fuplfile%2Flogic%2Flog19%2FLI19_Hintikka.pdf&data=04%7C01%7Cehrlich%40ohio.edu%7C4ce0ecc7b8854fd5f9fe08d94fa8f6b2%7Cf3308007477c4a70888934611817c55a%7C0%7C0%7C637628409824860863%7CUnknown%7CTWFpbGZsb3d8eyJWIjoiMC4wLjAwMDAiLCJQIjoiV2luMzIiLCJBTiI6Ik1haWwiLCJXVCI6Mn0%3D%7C2000&sdata=ic8Q1UDOIQM6D1PS6surwcMIGvOD2rbitkeWVpNgR2g%3D&reserved=0>

"Yet f is obviously computable by a mechanical process, for we can simply by going through for a given m all the possible relations R (different 'colorings') for n = m, m + 1, m + 2, . . . Hence MFRT appears to be highly interesting even if it is not a Godel sentence. It is a counterexample to Church's Thesis: in a pretheoretical sense computable, but not general recursive nor therefore a Turing machine computable function." (!!)

-------------- next part --------------
An HTML attachment was scrubbed...
URL: </pipermail/fom/attachments/20210725/6ba3253f/attachment-0001.html>

More information about the FOM mailing list