CVC3
Public Member Functions | Static Public Member Functions | Private Attributes

CVC3::ArithTheoremProducer Class Reference

#include <arith_theorem_producer.h>

Inherits CVC3::ArithProofRules, and CVC3::TheoremProducer.

Collaboration diagram for CVC3::ArithTheoremProducer:
Collaboration graph
[legend]

List of all members.

Public Member Functions

Static Public Member Functions

Private Member Functions

Auxiliary functions for eqElimIntRule()

Methods that compute the subterms used in eqElimIntRule()

Private Attributes


Detailed Description

Definition at line 32 of file arith_theorem_producer.h.


Constructor & Destructor Documentation

CVC3::ArithTheoremProducer::ArithTheoremProducer ( TheoremManager tm,
TheoryArithNew theoryArith 
) [inline]

Constructor.

Definition at line 67 of file arith_theorem_producer.h.


Member Function Documentation

Rational ArithTheoremProducer::modEq ( const Rational i,
const Rational m 
) [private]

Compute the special modulus: i - m*floor(i/m+1/2)

Definition at line 2252 of file arith_theorem_producer.cpp.

References DebugAssert, CVC3::Rational::toString(), and TRACE.

Expr ArithTheoremProducer::create_t ( const Expr eqn) [private]
Expr ArithTheoremProducer::create_t2 ( const Expr lhs,
const Expr rhs,
const Expr t 
) [private]
Expr ArithTheoremProducer::create_t3 ( const Expr lhs,
const Expr rhs,
const Expr t 
) [private]
void ArithTheoremProducer::sumModM ( std::vector< Expr > &  summands,
const Expr sum,
const Rational m,
const Rational divisor 
) [private]

Takes sum = a_0 + a_1*x_1+...+a_n*x_n and returns the vector of similar monomials (in 'summands') with coefficients mod(a_i, m). If divide flag is true, the coefficients will be mod(a_i,m)/m.

Definition at line 2268 of file arith_theorem_producer.cpp.

References CVC3::Expr::begin(), CLASS_NAME, DebugAssert, CVC3::Expr::end(), CVC3::Expr::getRational(), CVC3::Expr::isRational(), and CVC3::Rational::toString().

Expr ArithTheoremProducer::monomialModM ( const Expr e,
const Rational m,
const Rational divisor 
) [private]
void ArithTheoremProducer::sumMulF ( std::vector< Expr > &  summands,
const Expr sum,
const Rational m,
const Rational divisor 
) [private]

Compute the special modulus: i - m*floor(i/m+1/2)

Definition at line 2316 of file arith_theorem_producer.cpp.

References CVC3::Expr::begin(), CLASS_NAME, DebugAssert, CVC3::Expr::end(), CVC3::Expr::getRational(), CVC3::Expr::isRational(), and CVC3::Rational::toString().

Expr ArithTheoremProducer::monomialMulF ( const Expr e,
const Rational m,
const Rational divisor 
) [private]

Compute the special modulus: i - m*floor(i/m+1/2)

Definition at line 2336 of file arith_theorem_producer.cpp.

References DebugAssert, CVC3::isMult(), CVC3::multExpr(), and CVC3::Rational::toString().

Rational ArithTheoremProducer::f ( const Rational i,
const Rational m 
) [private]

Compute floor(i/m+1/2) + mod(i,m)

Definition at line 2261 of file arith_theorem_producer.cpp.

References DebugAssert, and CVC3::Rational::toString().

Expr ArithTheoremProducer::substitute ( const Expr term,
ExprMap< Expr > &  eMap 
) [private]
Expr CVC3::ArithTheoremProducer::rat ( Rational  r) [inline]

Create Expr from Rational (for convenience)

Definition at line 71 of file arith_theorem_producer.h.

References CVC3::TheoremProducer::d_em, and CVC3::ExprManager::newRatExpr().

Type CVC3::ArithTheoremProducer::realType ( ) [inline]

Definition at line 72 of file arith_theorem_producer.h.

References d_theoryArith, and CVC3::TheoryArith::realType().

Type CVC3::ArithTheoremProducer::intType ( ) [inline]

Definition at line 73 of file arith_theorem_producer.h.

References d_theoryArith, and CVC3::TheoryArith::intType().

Expr CVC3::ArithTheoremProducer::darkShadow ( const Expr lhs,
const Expr rhs 
) [inline]

Construct the dark shadow expression representing lhs <= rhs.

Definition at line 75 of file arith_theorem_producer.h.

References d_theoryArith, and CVC3::TheoryArith::darkShadow().

Expr CVC3::ArithTheoremProducer::grayShadow ( const Expr v,
const Expr e,
const Rational c1,
const Rational c2 
) [inline]

Construct the gray shadow expression representing c1 <= v - e <= c2.

Alternatively, v = e + i for some i s.t. c1 <= i <= c2

Definition at line 81 of file arith_theorem_producer.h.

References d_theoryArith, and CVC3::TheoryArith::grayShadow().

Theorem ArithTheoremProducer::varToMult ( const Expr e) [virtual]

==> e = 1 * e

Implements CVC3::ArithProofRules.

Definition at line 55 of file arith_theorem_producer.cpp.

Theorem ArithTheoremProducer::uMinusToMult ( const Expr e) [virtual]

==> -(e) = (-1) * e

Implements CVC3::ArithProofRules.

Definition at line 62 of file arith_theorem_producer.cpp.

Theorem ArithTheoremProducer::minusToPlus ( const Expr x,
const Expr y 
) [virtual]

==> x - y = x + (-1) * y

Implements CVC3::ArithProofRules.

Definition at line 75 of file arith_theorem_producer.cpp.

Theorem ArithTheoremProducer::canonUMinusToDivide ( const Expr e) [virtual]

-(e) ==> e / (-1); takes 'e'

Canon Rule for unary minus: it just converts it to division by -1, the result is not yet canonical:

Implements CVC3::ArithProofRules.

Definition at line 89 of file arith_theorem_producer.cpp.

Theorem ArithTheoremProducer::canonDivideConst ( const Expr c,
const Expr d 
) [virtual]

(c) / d ==> (c/d), takes c and d

Canon Rules for division by constant 'd'

Implements CVC3::ArithProofRules.

Definition at line 98 of file arith_theorem_producer.cpp.

References CHECK_PROOFS, CHECK_SOUND, CLASS_NAME, CVC3::Expr::getRational(), CVC3::isRational(), and CVC3::Expr::toString().

Theorem ArithTheoremProducer::canonDivideMult ( const Expr cx,
const Expr d 
) [virtual]

(c * x) / d ==> (c/d) * x, takes (c*x) and d

Implements CVC3::ArithProofRules.

Definition at line 117 of file arith_theorem_producer.cpp.

References CHECK_PROOFS, CHECK_SOUND, CLASS_NAME, CVC3::Expr::getRational(), CVC3::isMult(), CVC3::isRational(), and CVC3::Expr::toString().

Theorem ArithTheoremProducer::canonDividePlus ( const Expr e,
const Expr d 
) [virtual]

(+ c ...)/d ==> push division to all the coefficients.

The result is not canonical, but canonizing the summands will make it canonical. Takes (+ c ...) and d

Implements CVC3::ArithProofRules.

Definition at line 145 of file arith_theorem_producer.cpp.

References CVC3::Expr::arity(), CVC3::Expr::begin(), CHECK_PROOFS, CHECK_SOUND, CLASS_NAME, CVC3::Expr::end(), CVC3::isPlus(), CVC3::isRational(), CVC3::plusExpr(), and CVC3::Expr::toString().

Theorem ArithTheoremProducer::canonDivideVar ( const Expr e,
const Expr d 
) [virtual]

x / d ==> (1/d) * x, takes x and d

Implements CVC3::ArithProofRules.

Definition at line 168 of file arith_theorem_producer.cpp.

References CHECK_PROOFS, CHECK_SOUND, CLASS_NAME, CVC3::Expr::getRational(), CVC3::isRational(), and CVC3::Expr::toString().

bool ArithTheoremProducer::greaterthan ( const Expr l,
const Expr r 
) [static]
Expr ArithTheoremProducer::simplifiedMultExpr ( std::vector< Expr > &  mulKids) [virtual]

Definition at line 203 of file arith_theorem_producer.cpp.

References DebugAssert, and CVC3::multExpr().

Expr ArithTheoremProducer::canonMultConstMult ( const Expr c,
const Expr e 
) [virtual]
Expr ArithTheoremProducer::canonMultConstPlus ( const Expr e1,
const Expr e2 
) [virtual]
Expr ArithTheoremProducer::canonMultPowPow ( const Expr e1,
const Expr e2 
) [virtual]
Expr ArithTheoremProducer::canonMultPowLeaf ( const Expr e1,
const Expr e2 
) [virtual]
Expr ArithTheoremProducer::canonMultLeafLeaf ( const Expr e1,
const Expr e2 
) [virtual]

Definition at line 335 of file arith_theorem_producer.cpp.

References CVC3::powExpr().

Expr ArithTheoremProducer::canonMultLeafOrPowMult ( const Expr e1,
const Expr e2 
) [virtual]
Expr ArithTheoremProducer::canonCombineLikeTerms ( const std::vector< Expr > &  sumExprs) [virtual]
Expr ArithTheoremProducer::canonMultLeafOrPowOrMultPlus ( const Expr e1,
const Expr e2 
) [virtual]
Expr ArithTheoremProducer::canonMultPlusPlus ( const Expr e1,
const Expr e2 
) [virtual]
Theorem ArithTheoremProducer::canonMultMtermMterm ( const Expr e) [virtual]
Theorem ArithTheoremProducer::canonPlus ( const Expr e) [virtual]

Canonize (PLUS t1 ... tn)

Implements CVC3::ArithProofRules.

Definition at line 746 of file arith_theorem_producer.cpp.

References CVC3::Expr::begin(), DebugAssert, CVC3::Expr::end(), CVC3::Expr::getKind(), and CVC3::PLUS.

Theorem ArithTheoremProducer::canonInvertConst ( const Expr e) [virtual]
Theorem ArithTheoremProducer::canonInvertLeaf ( const Expr e) [virtual]

Definition at line 831 of file arith_theorem_producer.cpp.

References CVC3::powExpr().

Theorem ArithTheoremProducer::canonInvertPow ( const Expr e) [virtual]
Theorem ArithTheoremProducer::canonInvertMult ( const Expr e) [virtual]
Theorem ArithTheoremProducer::canonInvert ( const Expr e) [virtual]

==> 1/e = e' where e' is canonical; takes e.

Implements CVC3::ArithProofRules.

Definition at line 885 of file arith_theorem_producer.cpp.

References DebugAssert, CVC3::Expr::getKind(), CVC3::MULT, CVC3::PLUS, CVC3::POW, RATIONAL_EXPR, and CVC3::Expr::toString().

Theorem ArithTheoremProducer::moveSumConstantRight ( const Expr e) [virtual]

Transform e = (SUM r t1 ... tn) @ 0 into (SUM t1 ... tn) @ -r. The first sum term (r) must be a rational and t1 ... tn terms must be canonised.

Parameters:
ethe expression to transform
Returns:
rewrite theorem representing the transformation

Implements CVC3::ArithProofRules.

Definition at line 2773 of file arith_theorem_producer.cpp.

References CVC3::Expr::begin(), CHECK_PROOFS, CHECK_SOUND, CVC3::Expr::end(), CVC3::Expr::getKind(), CVC3::Expr::isEq(), CVC3::isIneq(), CVC3::isPlus(), CVC3::Expr::isRational(), CVC3::isRational(), CVC3::plusExpr(), MiniSat::right(), and CVC3::Expr::toString().

Theorem ArithTheoremProducer::canonDivide ( const Expr e) [virtual]

e[0]/e[1] ==> e[0]*(e[1])^-1

Implements CVC3::ArithProofRules.

Definition at line 907 of file arith_theorem_producer.cpp.

References DebugAssert, CVC3::DIVIDE, CVC3::Expr::getKind(), CVC3::Theorem::getRHS(), and CVC3::Expr::toString().

Theorem ArithTheoremProducer::canonMult ( const Expr e) [virtual]

Multiply out the operands of the multiplication (each of them is expected to be canonised

Implements CVC3::ArithProofRules.

Definition at line 781 of file arith_theorem_producer.cpp.

References CVC3::Expr::arity(), CVC3::Expr::begin(), DebugAssert, CVC3::Expr::end(), CVC3::Expr::getKind(), and CVC3::MULT.

Theorem ArithTheoremProducer::canonMultTermConst ( const Expr c,
const Expr t 
) [virtual]

t*c ==> c*t, takes constant c and term t

Implements CVC3::ArithProofRules.

Definition at line 931 of file arith_theorem_producer.cpp.

References CHECK_PROOFS, CHECK_SOUND, CLASS_NAME, CVC3::isRational(), and CVC3::Expr::toString().

Theorem ArithTheoremProducer::canonMultTerm1Term2 ( const Expr t1,
const Expr t2 
) [virtual]

t1*t2 ==> Error, takes t1 and t2 where both are non-constants

Implements CVC3::ArithProofRules.

Definition at line 945 of file arith_theorem_producer.cpp.

References CHECK_PROOFS, CHECK_SOUND, and CVC3::Expr::toString().

Theorem ArithTheoremProducer::canonMultZero ( const Expr e) [virtual]

0*t ==> 0, takes 0*t

Implements CVC3::ArithProofRules.

Definition at line 958 of file arith_theorem_producer.cpp.

Theorem ArithTheoremProducer::canonMultOne ( const Expr e) [virtual]

1*t ==> t, takes 1*t

Implements CVC3::ArithProofRules.

Definition at line 967 of file arith_theorem_producer.cpp.

Theorem ArithTheoremProducer::canonMultConstConst ( const Expr c1,
const Expr c2 
) [virtual]

c1*c2 ==> c', takes constant c1*c2

Implements CVC3::ArithProofRules.

Definition at line 983 of file arith_theorem_producer.cpp.

References CHECK_PROOFS, CHECK_SOUND, CLASS_NAME, CVC3::Expr::getRational(), CVC3::isRational(), and CVC3::Expr::toString().

Theorem ArithTheoremProducer::canonMultConstTerm ( const Expr c1,
const Expr c2,
const Expr t 
) [virtual]

c1*(c2*t) ==> c'*t, takes c1 and c2 and t

Implements CVC3::ArithProofRules.

Definition at line 1001 of file arith_theorem_producer.cpp.

References CHECK_PROOFS, CHECK_SOUND, CLASS_NAME, CVC3::Expr::getRational(), CVC3::isRational(), and CVC3::Expr::toString().

Theorem ArithTheoremProducer::canonMultConstSum ( const Expr c1,
const Expr sum 
) [virtual]

c1*(+ c2 v1 ...) ==> (+ c' c1v1 ...), takes c1 and the sum

Implements CVC3::ArithProofRules.

Definition at line 1021 of file arith_theorem_producer.cpp.

References CVC3::Expr::begin(), CHECK_PROOFS, CHECK_SOUND, CLASS_NAME, CVC3::Expr::end(), CVC3::Expr::getKind(), CVC3::isRational(), CVC3::PLUS, CVC3::plusExpr(), and CVC3::Expr::toString().

Theorem ArithTheoremProducer::canonPowConst ( const Expr pow) [virtual]
Theorem ArithTheoremProducer::canonFlattenSum ( const Expr e) [virtual]
Theorem ArithTheoremProducer::canonComboLikeTerms ( const Expr e) [virtual]
Theorem ArithTheoremProducer::multEqZero ( const Expr expr) [virtual]
Theorem ArithTheoremProducer::powEqZero ( const Expr expr) [virtual]
Theorem ArithTheoremProducer::elimPower ( const Expr expr) [virtual]
Theorem ArithTheoremProducer::elimPowerConst ( const Expr expr,
const Rational root 
) [virtual]
Theorem ArithTheoremProducer::evenPowerEqNegConst ( const Expr expr) [virtual]
Theorem ArithTheoremProducer::intEqIrrational ( const Expr expr,
const Theorem isInt 
) [virtual]
Theorem ArithTheoremProducer::constPredicate ( const Expr e) [virtual]

e0 @ e1 <==> true | false, where @ is {=,<,<=,>,>=}

Parameters:
etakes e is (e0@e1) where e0 and e1 are constants

Implements CVC3::ArithProofRules.

Definition at line 1300 of file arith_theorem_producer.cpp.

References CVC3::Expr::arity(), CHECK_PROOFS, CHECK_SOUND, CLASS_NAME, EQ, CVC3::GE, CVC3::Expr::getKind(), CVC3::Expr::getRational(), CVC3::GT, CVC3::isRational(), CVC3::LE, CVC3::LT, and CVC3::Expr::toString().

Theorem ArithTheoremProducer::rightMinusLeft ( const Expr e) [virtual]

e[0] @ e[1] <==> 0 @ e[1] - e[0], where @ is {=,<,<=,>,>=}

Implements CVC3::ArithProofRules.

Definition at line 1340 of file arith_theorem_producer.cpp.

References CHECK_PROOFS, CHECK_SOUND, EQ, CVC3::GE, CVC3::Expr::getKind(), CVC3::Expr::getOp(), CVC3::GT, CVC3::LE, and CVC3::LT.

Theorem ArithTheoremProducer::leftMinusRight ( const Expr e) [virtual]

e[0] @ e[1] <==> e[0] - e[1] @ 0, where @ is {=,<,<=,>,>=}

Implements CVC3::ArithProofRules.

Definition at line 1357 of file arith_theorem_producer.cpp.

References CHECK_PROOFS, CHECK_SOUND, EQ, CVC3::GE, CVC3::Expr::getKind(), CVC3::Expr::getOp(), CVC3::GT, CVC3::LE, and CVC3::LT.

Theorem ArithTheoremProducer::plusPredicate ( const Expr x,
const Expr y,
const Expr z,
int  kind 
) [virtual]

x @ y <==> x + z @ y + z, where @ is {=,<,<=,>,>=} (given as 'kind')

Implements CVC3::ArithProofRules.

Definition at line 1376 of file arith_theorem_producer.cpp.

References CHECK_PROOFS, CHECK_SOUND, EQ, CVC3::GE, CVC3::GT, CVC3::LE, MiniSat::left(), CVC3::LT, and MiniSat::right().

Theorem ArithTheoremProducer::multEqn ( const Expr x,
const Expr y,
const Expr z 
) [virtual]

x = y <==> x * z = y * z, where z is a non-zero constant

Implements CVC3::ArithProofRules.

Definition at line 1395 of file arith_theorem_producer.cpp.

References CHECK_PROOFS, CHECK_SOUND, CVC3::Expr::eqExpr(), CVC3::Expr::getRational(), and CVC3::Expr::isRational().

Theorem ArithTheoremProducer::divideEqnNonConst ( const Expr x,
const Expr y,
const Expr z 
) [virtual]

Implements CVC3::ArithProofRules.

Definition at line 1408 of file arith_theorem_producer.cpp.

References CVC3::Expr::eqExpr(), and CVC3::orExpr().

Theorem ArithTheoremProducer::multIneqn ( const Expr e,
const Expr z 
) [virtual]

Multiplying inequation by a non-zero constant.

z>0 ==> e[0] @ e[1] <==> e[0]*z @ e[1]*z

z<0 ==> e[0] @ e[1] <==> e[1]*z @ e[0]*z

for @ in {<,<=,>,>=}:

Implements CVC3::ArithProofRules.

Definition at line 1420 of file arith_theorem_producer.cpp.

References CHECK_PROOFS, CHECK_SOUND, CVC3::GE, CVC3::geExpr(), CVC3::Expr::getKind(), CVC3::Expr::getOp(), CVC3::Expr::getRational(), CVC3::GT, CVC3::gtExpr(), CVC3::isIneq(), CVC3::Expr::isRational(), CVC3::LE, CVC3::leExpr(), CVC3::LT, CVC3::ltExpr(), and CVC3::Expr::toString().

Theorem ArithTheoremProducer::eqToIneq ( const Expr e) [virtual]
Theorem ArithTheoremProducer::flipInequality ( const Expr e) [virtual]

"op1 GE|GT op2" <==> op2 LE|LT op1

Implements CVC3::ArithProofRules.

Definition at line 1498 of file arith_theorem_producer.cpp.

References CHECK_PROOFS, CHECK_SOUND, CVC3::isGE(), CVC3::isGT(), CVC3::LE, CVC3::LT, and CVC3::Expr::toString().

Theorem ArithTheoremProducer::negatedInequality ( const Expr e) [virtual]

Propagating negation over <,<=,>,>=.

NOT (op1 < op2) <==> (op1 >= op2)

NOT (op1 <= op2) <==> (op1 > op2)

NOT (op1 > op2) <==> (op1 <= op2)

NOT (op1 >= op2) <==> (op1 < op2)

Implements CVC3::ArithProofRules.

Definition at line 1518 of file arith_theorem_producer.cpp.

References CHECK_PROOFS, CHECK_SOUND, CVC3::GE, CVC3::GT, CVC3::isGT(), CVC3::isIneq(), CVC3::isLE(), CVC3::isLT(), CVC3::Expr::isNot(), CVC3::LE, CVC3::LT, and CVC3::Expr::toString().

Theorem ArithTheoremProducer::realShadow ( const Theorem alphaLTt,
const Theorem tLTbeta 
) [virtual]
Theorem ArithTheoremProducer::realShadowEq ( const Theorem alphaLEt,
const Theorem tLEalpha 
) [virtual]

alpha <= t <= alpha ==> t = alpha

takes two ineqs "|- alpha LE t" and "|- t LE alpha" and returns "|- t = alpha"

Implements CVC3::ArithProofRules.

Definition at line 1582 of file arith_theorem_producer.cpp.

References CHECK_PROOFS, CHECK_SOUND, CVC3::Theorem::getExpr(), CVC3::Theorem::getProof(), CVC3::isLE(), and CVC3::Theorem::toString().

Theorem ArithTheoremProducer::finiteInterval ( const Theorem aLEt,
const Theorem tLEac,
const Theorem isInta,
const Theorem isIntt 
) [virtual]

Finite interval for integers: a <= t <= a + c ==> G(t, a, 0, c)

Implements CVC3::ArithProofRules.

Definition at line 1614 of file arith_theorem_producer.cpp.

References CHECK_PROOFS, CHECK_SOUND, CVC3::Theorem::getExpr(), CVC3::Theorem::getProof(), CVC3::isIntPred(), CVC3::isLE(), CVC3::isPlus(), CVC3::isRational(), and CVC3::Expr::toString().

Theorem ArithTheoremProducer::darkGrayShadow2ab ( const Theorem betaLEbx,
const Theorem axLEalpha,
const Theorem isIntAlpha,
const Theorem isIntBeta,
const Theorem isIntx 
) [virtual]

Dark & Gray shadows when a <= b.

takes two integer ineqs (i.e. all vars are ints) "|- beta <= b.x" and "|- a.x <= alpha" and checks if "1 <= a <= b" and returns (D or G) and (!D or !G), where D = Dark_Shadow(ab-1, b.alpha - a.beta), G = Gray_Shadow(a.x, alpha, -(a-1), 0).

Implements CVC3::ArithProofRules.

Definition at line 1678 of file arith_theorem_producer.cpp.

References CVC3::Expr::arity(), CHECK_PROOFS, CHECK_SOUND, CVC3::Theorem::getExpr(), CVC3::Theorem::getProof(), CVC3::Expr::getRational(), CVC3::isIntPred(), CVC3::isLE(), CVC3::isMult(), CVC3::minusExpr(), CVC3::multExpr(), CVC3::Expr::toString(), and CVC3::Theorem::toString().

Theorem ArithTheoremProducer::darkGrayShadow2ba ( const Theorem betaLEbx,
const Theorem axLEalpha,
const Theorem isIntAlpha,
const Theorem isIntBeta,
const Theorem isIntx 
) [virtual]

Dark & Gray shadows when b <= a.

takes two integer ineqs (i.e. all vars are ints) "|- beta <= b.x" and "|- a.x <= alpha" and checks if "1 <= b < a" and returns (D or G) and (!D or !G), where D = Dark_Shadow(ab-1, b.alpha - a.beta), G = Gray_Shadow(b.x, beta, 0, b-1).

Implements CVC3::ArithProofRules.

Definition at line 1769 of file arith_theorem_producer.cpp.

References CVC3::Expr::arity(), CHECK_PROOFS, CHECK_SOUND, CVC3::Theorem::getExpr(), CVC3::Theorem::getProof(), CVC3::Expr::getRational(), CVC3::isIntPred(), CVC3::isLE(), CVC3::isMult(), CVC3::minusExpr(), CVC3::multExpr(), CVC3::Expr::toString(), and CVC3::Theorem::toString().

Theorem ArithTheoremProducer::expandDarkShadow ( const Theorem darkShadow) [virtual]
Theorem ArithTheoremProducer::expandGrayShadow0 ( const Theorem g) [virtual]
Theorem ArithTheoremProducer::splitGrayShadow ( const Theorem g) [virtual]

G(x, e, c1, c2) ==> (G1 or G2) and (!G1 or !G2)

Here G1 = G(x,e,c1,c), G2 = G(x,e,c+1,c2), and c = floor((c1+c2)/2).

Implements CVC3::ArithProofRules.

Definition at line 1894 of file arith_theorem_producer.cpp.

References CHECK_PROOFS, CHECK_SOUND, CVC3::Theorem::getAssumptionsRef(), CVC3::Theorem::getExpr(), CVC3::Theorem::getProof(), CVC3::Expr::getRational(), CVC3::isGrayShadow(), CVC3::Rational::isInteger(), and CVC3::Expr::toString().

Theorem ArithTheoremProducer::splitGrayShadowSmall ( const Theorem grayShadow) [virtual]

Implements CVC3::ArithProofRules.

Definition at line 3190 of file arith_theorem_producer.cpp.

References DebugAssert.

Theorem ArithTheoremProducer::expandGrayShadow ( const Theorem g) [virtual]
Theorem ArithTheoremProducer::expandGrayShadowConst ( const Theorem g) [virtual]

Optimized rules: GRAY_SHADOW(a*x, c, c1, c2) ==> [expansion].

Implements three versions of the rule:

\[\frac{\mathrm{GRAY\_SHADOW}(ax,c,c1,c2)} {ax = c + i - \mathrm{sign}(i)\cdot j(c,i,a) \lor GRAY\_SHADOW(ax, c, i-\mathrm{sign}(i)\cdot (a+j(c,i,a)))}\]

where the conclusion may become FALSE or without the GRAY_SHADOW part, depending on the values of a, c and i.

Implements CVC3::ArithProofRules.

Definition at line 1962 of file arith_theorem_producer.cpp.

References CVC3::abs(), CHECK_PROOFS, CHECK_SOUND, CVC3::Expr::eqExpr(), CVC3::Theorem::getAssumptionsRef(), CVC3::Theorem::getExpr(), CVC3::Theorem::getProof(), CVC3::Expr::getRational(), CVC3::GRAY_SHADOW, CVC3::isGrayShadow(), CVC3::Rational::isInteger(), CVC3::isMult(), CVC3::Expr::isRational(), CVC3::isRational(), CVC3::Expr::orExpr(), and CVC3::Expr::toString().

Theorem ArithTheoremProducer::grayShadowConst ( const Theorem g) [virtual]

|- G(ax, c, c1, c2) ==> |- G(x, 0, ceil((c1+c)/a), floor((c2+c)/a))

In the case the new c1 > c2, return |- FALSE

Implements CVC3::ArithProofRules.

Definition at line 2027 of file arith_theorem_producer.cpp.

References CHECK_PROOFS, CHECK_SOUND, CVC3::Theorem::getAssumptionsRef(), CVC3::Theorem::getExpr(), CVC3::Theorem::getProof(), CVC3::Expr::getRational(), CVC3::isGrayShadow(), CVC3::Rational::isInteger(), CVC3::Expr::isRational(), and CVC3::Expr::toString().

Rational ArithTheoremProducer::constRHSGrayShadow ( const Rational c,
const Rational b,
const Rational a 
)

Implements j(c,b,a)

accepts 3 integers a,b,c and returns (b > 0)? (c+b) mod a : (a - (c+b)) mod a

Definition at line 2067 of file arith_theorem_producer.cpp.

References DebugAssert, and CVC3::Rational::isInteger().

Theorem ArithTheoremProducer::lessThanToLE ( const Theorem less,
const Theorem isIntLHS,
const Theorem isIntRHS,
bool  changeRight 
) [virtual]

Takes a Theorem(\alpha < \beta) and returns Theorem(\alpha < \beta <==> \alpha <= \beta -1) where \alpha and \beta are integer expressions

Implements CVC3::ArithProofRules.

Definition at line 2085 of file arith_theorem_producer.cpp.

References CHECK_PROOFS, CHECK_SOUND, CVC3::Theorem::getExpr(), CVC3::Theorem::getProof(), CVC3::isIntPred(), CVC3::isLT(), CVC3::leExpr(), and CVC3::Expr::toString().

Theorem ArithTheoremProducer::lessThanToLERewrite ( const Expr ineq,
const Theorem isIntLHS,
const Theorem isIntRHS,
bool  changeRight 
) [virtual]

Takes a Theorem(\alpha < \beta) and returns Theorem(\alpha < \beta <==> \alpha <= \beta -1) where \alpha and \beta are integer expressions

Implements CVC3::ArithProofRules.

Definition at line 3152 of file arith_theorem_producer.cpp.

References CHECK_PROOFS, CHECK_SOUND, CVC3::Theorem::getExpr(), CVC3::Theorem::getProof(), CVC3::isIntPred(), CVC3::isLT(), CVC3::leExpr(), and CVC3::Expr::toString().

Theorem ArithTheoremProducer::intVarEqnConst ( const Expr eqn,
const Theorem isIntx 
) [virtual]
Parameters:
eqnis an equation 0 = a.x or 0 = c + a.x
isIntxis a proof of IS_INTEGER(x)
Returns:
the theorem 0 = c + a.x <==> x=-c/a if -c/a is int else return the theorem 0 = c + a.x <==> false.

It also handles the special case of 0 = a.x <==> x = 0

Implements CVC3::ArithProofRules.

Definition at line 2138 of file arith_theorem_producer.cpp.

References CVC3::Expr::arity(), CHECK_PROOFS, CHECK_SOUND, CVC3::Expr::eqExpr(), CVC3::Theorem::getAssumptionsRef(), CVC3::Theorem::getExpr(), CVC3::Theorem::getProof(), CVC3::Expr::getRational(), CVC3::Rational::isInteger(), CVC3::isIntPred(), CVC3::isMult(), CVC3::isPlus(), CVC3::Expr::isRational(), CVC3::isRational(), MiniSat::left(), MiniSat::right(), and CVC3::Expr::toString().

Theorem ArithTheoremProducer::IsIntegerElim ( const Theorem isIntx) [virtual]

IS_INTEGER(x) |= EXISTS (y : INT) y = x where x is not already known to be an integer.

Implements CVC3::ArithProofRules.

Definition at line 2505 of file arith_theorem_producer.cpp.

References CHECK_PROOFS, CHECK_SOUND, DebugAssert, CVC3::Expr::eqExpr(), EXISTS, CVC3::Theorem::getExpr(), CVC3::Expr::getKind(), CVC3::Theorem::getProof(), and CVC3::IS_INTEGER.

Theorem ArithTheoremProducer::eqElimIntRule ( const Theorem eqn,
const Theorem isIntx,
const std::vector< Theorem > &  isIntVars 
) [virtual]

Equality elimination rule for integers:

\[\frac{\mathsf{int}(a\cdot x)\quad \mathsf{int}(C+\sum_{i=1}^{n}a_{i}\cdot x_{i})} {a\cdot x=C+\sum_{i=1}^{n}a_{i}\cdot x_{i} \quad\equiv\quad x=t_{2}\wedge 0=t_{3}} \]

See the detailed description for explanations.

This rule implements a step in the iterative algorithm for eliminating integer equality. The terms in the rule are defined as follows:

\[\begin{array}{rcl} t_{2} & = & -(C\ \mathbf{mod}\ m+\sum_{i=1}^{n}(a_{i}\ \mathbf{mod}\ m) \cdot x_{i}-m\cdot\sigma(t))\\ & & \\ t_{3} & = & \mathbf{f}(C,m)+\sum_{i=1}^{n}\mathbf{f}(a_{i},m)\cdot x_{i} -a\cdot\sigma(t)\\ & & \\ t & = & (C\ \mathbf{mod}\ m+\sum_{i=1}^{n}(a_{i}\ \mathbf{mod}\ m) \cdot x_{i}+x)/m\\ & & \\ m & = & a+1\\ & & \\ \mathbf{f}(i,m) & = & \left\lfloor \frac{i}{m} +\frac{1}{2}\right\rfloor +i\ \mathbf{mod}\ m\\ & & \\ i\ \mathbf{mod}\ m & = & i-m\left\lfloor\frac{i}{m} +\frac{1}{2}\right\rfloor \end{array} \]

All the variables and coefficients are integer, and a >= 2.

Parameters:
eqnis the equation

\[a\cdot x = C + \sum_{i=1}^n a_i\cdot x_i.\]

\[\frac{\Gamma\models ax=t\quad \Gamma'\models\mathsf{int}(x)\quad \{\Gamma_i\models\mathsf{int}(x_i) | x_i\mbox{ is var in }t\}} {\Gamma,\Gamma',\bigcup_i\Gamma_i\models \exists (y:\mathrm{int}).\ x=t_2(y)\wedge 0=t_3(y)} \]

See detailed docs for more information.

This rule implements a step in the iterative algorithm for eliminating integer equality. The terms in the rule are defined as follows:

\[\begin{array}{rcl} t & = & C+\sum_{i=1}^na_{i}\cdot x_{i}\\ t_{2}(y) & = & -(C\ \mathbf{mod}\ m+\sum_{i=1}^{n}(a_{i}\ \mathbf{mod}\ m) \cdot x_{i}-m\cdot y)\\ & & \\ t_{3}(y) & = & \mathbf{f}(C,m)+\sum_{i=1}^{n}\mathbf{f}(a_{i},m)\cdot x_{i} -a\cdot y\\ & & \\ m & = & a+1\\ & & \\ \mathbf{f}(i,m) & = & \left\lfloor \frac{i}{m} +\frac{1}{2}\right\rfloor +i\ \mathbf{mod}\ m\\ & & \\ i\ \mathbf{mod}\ m & = & i-m\left\lfloor\frac{i}{m} +\frac{1}{2}\right\rfloor \end{array} \]

All the variables and coefficients are integer, and a >= 2.

Parameters:
eqnis the equation ax=t:

\[a\cdot x = C + \sum_{i=1}^n a_i\cdot x_i.\]

isIntxis a Theorem deriving the integrality of the LHS variable: IS_INTEGER(x)
isIntVarsis a vector of Theorems deriving the integrality of all variables on the RHS

Implements CVC3::ArithProofRules.

Definition at line 2531 of file arith_theorem_producer.cpp.

References CVC3::Expr::arity(), CHECK_PROOFS, CHECK_SOUND, CVC3::Expr::eqExpr(), EXISTS, CVC3::Theorem::getExpr(), CVC3::Theorem::getLHS(), CVC3::Theorem::getProof(), CVC3::Expr::getRational(), CVC3::Theorem::getRHS(), CVC3::int2string(), CVC3::isDivide(), CVC3::isInt(), CVC3::Rational::isInteger(), CVC3::isIntPred(), CVC3::isPlus(), CVC3::isRational(), CVC3::Theorem::isRewrite(), CVC3::Expr::setType(), CVC3::Rational::toString(), CVC3::Expr::toString(), CVC3::Theorem::toString(), and TRACE.

Theorem ArithTheoremProducer::isIntConst ( const Expr e) [virtual]

return e <=> TRUE/FALSE for e == IS_INTEGER(c), where c is a constant

Parameters:
eis a predicate IS_INTEGER(c) where c is a rational constant

Implements CVC3::ArithProofRules.

Definition at line 2623 of file arith_theorem_producer.cpp.

References CHECK_PROOFS, CHECK_SOUND, CVC3::Expr::getRational(), CVC3::isInt(), CVC3::Rational::isInteger(), CVC3::isIntPred(), CVC3::isRational(), and CVC3::Expr::toString().

Theorem ArithTheoremProducer::equalLeaves1 ( const Theorem e) [virtual]
Theorem ArithTheoremProducer::equalLeaves2 ( const Theorem e) [virtual]
Theorem ArithTheoremProducer::equalLeaves3 ( const Theorem e) [virtual]
Theorem ArithTheoremProducer::equalLeaves4 ( const Theorem e) [virtual]
Theorem ArithTheoremProducer::diseqToIneq ( const Theorem diseq) [virtual]
Theorem ArithTheoremProducer::dummyTheorem ( const Expr e) [virtual]

Implements CVC3::ArithProofRules.

Definition at line 2839 of file arith_theorem_producer.cpp.

Theorem ArithTheoremProducer::oneElimination ( const Expr x) [virtual]
Theorem ArithTheoremProducer::clashingBounds ( const Theorem lowerBound,
const Theorem upperBound 
) [virtual]
Theorem ArithTheoremProducer::addInequalities ( const Theorem thm1,
const Theorem thm2 
) [virtual]
Theorem ArithTheoremProducer::addInequalities ( const std::vector< Theorem > &  thms) [virtual]

Implements CVC3::ArithProofRules.

Definition at line 3227 of file arith_theorem_producer.cpp.

References DebugAssert.

Theorem ArithTheoremProducer::implyWeakerInequality ( const Expr expr1,
const Expr expr2 
) [virtual]
Theorem ArithTheoremProducer::implyNegatedInequality ( const Expr expr1,
const Expr expr2 
) [virtual]
Theorem ArithTheoremProducer::integerSplit ( const Expr intVar,
const Rational intPoint 
) [virtual]
Theorem ArithTheoremProducer::trustedRewrite ( const Expr expr1,
const Expr expr2 
) [virtual]

Implements CVC3::ArithProofRules.

Definition at line 3036 of file arith_theorem_producer.cpp.

Theorem ArithTheoremProducer::rafineStrictInteger ( const Theorem isIntConstrThm,
const Expr constr 
) [virtual]
Theorem ArithTheoremProducer::simpleIneqInt ( const Expr ineq,
const Theorem isIntRHS 
) [virtual]

Implements CVC3::ArithProofRules.

Definition at line 3123 of file arith_theorem_producer.cpp.

References DebugAssert.

Theorem ArithTheoremProducer::intEqualityRationalConstant ( const Theorem isIntConstrThm,
const Expr constr 
) [virtual]

Implements CVC3::ArithProofRules.

Definition at line 3133 of file arith_theorem_producer.cpp.

References DebugAssert.

Theorem ArithTheoremProducer::cycleConflict ( const std::vector< Theorem > &  inequalitites) [virtual]

Implements CVC3::ArithProofRules.

Definition at line 3138 of file arith_theorem_producer.cpp.

References DebugAssert.

Theorem ArithTheoremProducer::implyEqualities ( const std::vector< Theorem > &  inequalities) [virtual]

Implements CVC3::ArithProofRules.

Definition at line 3143 of file arith_theorem_producer.cpp.

References DebugAssert.

Theorem ArithTheoremProducer::implyWeakerInequalityDiffLogic ( const std::vector< Theorem > &  antecedentThms,
const Expr implied 
) [virtual]

Implements CVC3::ArithProofRules.

Definition at line 3195 of file arith_theorem_producer.cpp.

References DebugAssert.

Theorem ArithTheoremProducer::implyNegatedInequalityDiffLogic ( const std::vector< Theorem > &  antecedentThms,
const Expr implied 
) [virtual]

Implements CVC3::ArithProofRules.

Definition at line 3200 of file arith_theorem_producer.cpp.

References DebugAssert.

Theorem ArithTheoremProducer::expandGrayShadowRewrite ( const Expr theShadow) [virtual]

Implements CVC3::ArithProofRules.

Definition at line 3205 of file arith_theorem_producer.cpp.

References DebugAssert.

Theorem ArithTheoremProducer::compactNonLinearTerm ( const Expr nonLinear) [virtual]

Implements CVC3::ArithProofRules.

Definition at line 3210 of file arith_theorem_producer.cpp.

References DebugAssert.

Theorem ArithTheoremProducer::nonLinearIneqSignSplit ( const Theorem ineqThm) [virtual]

Implements CVC3::ArithProofRules.

Definition at line 3215 of file arith_theorem_producer.cpp.

References DebugAssert.

Theorem ArithTheoremProducer::implyDiffLogicBothBounds ( const Expr x,
std::vector< Theorem > &  c1_le_x,
Rational  c1,
std::vector< Theorem > &  x_le_c2,
Rational  c2 
) [virtual]

Implements CVC3::ArithProofRules.

Definition at line 3220 of file arith_theorem_producer.cpp.

References DebugAssert.

Theorem ArithTheoremProducer::powerOfOne ( const Expr e) [virtual]

Implements CVC3::ArithProofRules.

Definition at line 3232 of file arith_theorem_producer.cpp.

References DebugAssert.


Member Data Documentation

Definition at line 33 of file arith_theorem_producer.h.

Referenced by darkShadow(), grayShadow(), intType(), and realType().


The documentation for this class was generated from the following files: