CVC3 checks whether a given formula 
 is valid in the built-in theories under a given set 
 of assumptions. More precisely, it checks whether 
 that is, whether 
 is a logical consequence of the union 
 of the built-in theories and the set of formulas 
.
Roughly speaking, when 
 is universal and all the formulas in 
 are existential (i.e., when 
 and 
 contain at most universal, respectively existential, quantifiers), CVC3 is in fact a decision procedure: it is always guaranteed (well, modulo bugs and memory limits) to return a correct "valid" or "invalid" answer. In all other cases, CVC3 is only guaranteed to be sound: it will never say that an invalid formula is valid. However, it may either never return or give up and return "unknown" even if 
.
When CVC3 returns "valid" it can return a formal proof of the validity of 
 under the logical context 
, together with the subset 
 of 
 used in the proof, such that 
.
When CVC3 returns "invalid" it can return, in the current terminology, both a counter-example to 
's validity under 
 and a counter-model. Both a counter-example and a counter-models are a set 
 of additional formulas consistent with 
 in 
, but entailing the negation of 
. In formulas: 
 and 
. 
The difference is that a counter-model is given as a set of equations providing a concrete assignment of values for the free symbols in 
 and 
 (see QUERY for more details).
CVC3 can be used in two modes: as a C/C++ library, or as a command-line executable (implemented as a command-line interface to the library). This manual mainly describes the command-line interface on a unix-type platform.
cvc3. It reads the input (a sequence of commands) from the standard input and prints the results on the standard output. Errors and some other messages (e.g. debugging traces) are printed on the standard error.
Typically, the input to cvc3 is saved in a file and redirected to the executable, or given on a command line:
# Reading from standard input: cvc3 < input-file.cvc # Reading directly from file: cvc3 input-file.cvc
Notice that, for efficiency, CVC3 uses input buffers, and the input is not always processed immediately after each command. Therefore, if you want to type the commands interactively and receive immediate feedback, use the +interactive option (can be shortened to +int):
cvc3 +int
Run cvc3 -h for more information on the available options.
The command line front-end of CVC3 supports two input languages.
We describe the input languages next, concentrating mostly on the first.
;).Any text after the first occurrence of a percent character and to the end of the current line is a comment:
%%% This is a CVC3 comment
The type system consists of value types, non-value types and subtypes of value types, all of which are interpreted as sets. For convenience, we will sometimes identify below the interpretation of a type with the type itself.
Value types consist of atomic types and structured types. The atomic types are 
, 
 for all 
, as well as user-defined atomic types (also called uninterpreted types). The structured types are array, tuple, and record types, as well as ML-style user-defined (inductive) datatypes.
Non-value types consist of the type 
 and function types. Subtypes include the built-in subtype 
 of 
 and are covered in the Subtypes section below.
 type is interpreted as the set of rational numbers. The name 
 is justified by the fact that a CVC3 formula is valid in the theory of rational numbers iff it is valid in the theory of real numbers.
 is interpreted as the set of all bit vectors of size n.
% User declarations of atomic types: MyBrandNewType: TYPE; Apples, Oranges: TYPE;
 type is, perhaps confusingly, the type of CVC3 formulas, not the two-element set of Boolean values. The fact that 
 is not a value type in practice means that it is not possible for function symbols in CVC3 to have a arguments of type 
. The reason is that CVC3 follows the two-tiered structure of classical first-order logic that distinguishes between formulas and terms, and allows terms to occur in formulas but not vice versa. (An exception is the IF-THEN-ELSE construct, see later.) The only difference is that, syntactically, formulas in CVC3 are terms of type 
. A function symbol f then can have 
 as its return type. But that is just CVC3's way, inherited from the previous systems of the CVC family, to say that f is a predicate symbol.
CVC3 does have a Boolean type proper, that is, a value type with only two elements and with the usual Boolean operations defined on it: it is BITVECTOR(1).
) types are created by the mixfix type constructors
whose arguments can be instantiated by any value (sub)type, with the addition that the last argument can also be 
.
% Function type declarations UnaryFunType: TYPE = INT -> REAL; BinaryFunType: TYPE = (REAL, REAL) -> ARRAY REAL OF REAL; TernaryFunType: TYPE = (REAL, BITVECTOR(4), INT) -> BOOLEAN;
A function type of the form 
 with 
 is interpreted as the set of all total functions from the Cartesian product 
 to 
 when 
 is not 
. Otherwise, it is interpreted as the set of all relations over 
The example above also shows how to introduce type names. A name like UnaryFunType above is just an abbreviation for the type 
 and can be used interchangeably with it.
 In general, any type defined by a type expression E can be given a name with the declaration:
name : TYPE = E;
 whose arguments can be instantiated by any value type.
T1 : TYPE; % Array types: ArrayType1: TYPE = ARRAY T1 OF REAL; ArrayType2: TYPE = ARRAY INT OF (ARRAY INT OF REAL); ArrayType3: TYPE = ARRAY [INT, INT] OF INT;
An array type of the form 
 is interpreted as the set of all total maps from 
 to 
. The main conceptual difference with the type 
 is that arrays, contrary to functions, are first-class objects of the language: they can be arguments or results of functions. Moreover, array types come equipped with an update operation.
whose arguments can be instantiated by any value type.
% Tuple declaration TupleType: TYPE = [ REAL, ArrayType1, [INT, INT] ];
A tuple type of the form 
 is interpreted as the Cartesian product 
. Note that while the types 
 and 
 are semantically equivalent, they are operationally different in CVC3. The first is the type of functions that take n arguments, while the second is the type of functions of 1 argument of type n-tuple.
where 
, 
 are field labels, and the arguments can be instantiated with any value types.
% Record declaration RecordType: TYPE = [# number: INT, value: REAL, info: TupleType #];
The order of the fields in a record type is meaningful. In other words, permuting the field names gives a different type. Note that records are (at the moment) non-recursive. For instance, it is not possible to declare a record type called Person containing a field of type Person. Recursive types are provided in CVC3 as ML-style datatypes.
Each of the 
 is either a constant symbol or an expression of the form
where 
 are any value types or type names for value types, including any 
. Such declarations introduce for the datatype:
 of type 
,
 of type 
, and
 of type 
.Here are some examples of datatype declarations:
% simple enumeration type
% implicitly defined are the testers: is_red, is_yellow and is_blue
% (similarly for the other datatypes)
DATATYPE
  PrimaryColor = red | yellow | blue
END;
% infinite set of pairwise distinct values ...v(-1), v(0), v(1), ...
DATATYPE
  Id = v (id: INT)
END;
% ML-style integer lists
DATATYPE
  IntList = nil | cons (head: INT, tail: IntList)
END;
% ASTs
DATATYPE
  Term = var (index: INT)
       | apply (arg_1: Term, arg_2: Term)
       | lambda (arg: INT, body: Term)
END;
% Trees
DATATYPE
  Tree = tree (value: REAL, children: TreeList),
  TreeList = nil_tl
           | cons_tl (first_t1: Tree, rest_t1: TreeList)
END;
Constructor, selector and tester symbols defined for a datatype have global scope. So, for instance, it is not possible for two different datatypes to use the same name for a constructor.
A datatype is interpreted as a term algebra constructed by the constructor symbols over some sets of generators. For example, the datatype IntList is interpreted as the set of all terms constructed with nil and cons over the integers.
Because of this semantics, CVC3 allows only inductive datatypes, that is, datatypes whose values are essentially (labeled, ordered) finite trees. Infinite structures such as streams or even finite but cyclic ones such as circular lists are then excluded. For instance, none of the following declarations define inductive datatypes, and are rejected by CVC3:
DATATYPE
 IntStream = s (first:INT, rest: IntStream)
END;
DATATYPE
 RationalTree = node1 (first_child1: RationalTree)
              | node2 (first_child2: RationalTree, second_child2:RationalTree)
END;
DATATYPE
 T1 =  c1 (s1: T2),
 T2 =  c2 (s2: T1)
END;
In concrete, a declaration of 
 datatypes 
 will be rejected if for any one of the types 
, it is impossible to build a finite term of that type using only the constructors of 
 and free constants of type other than 
.
Datatypes are the only types for which the user also chooses names for the built-in operations defined on the type for:
For all the other types, CVC3 provides predefined names for the built-in operations on the type.
 to the terms 
 is 
 if 
 has type 
 and each 
 has type 
.Attempting to enter an ill-typed term will result in an error.
The main difference with standard many-sorted logic is that some built-in symbols are parametrically polymorphic. For instance the function symbol for extracting the element of any array has type 
 for all types 
 not containing function or predicate types.
). By and large, these are standard first-order terms built out of (typed) variables, predefined theory-specific operators, free (i.e., user-defined) function symbols, and quantifiers. Extensions include an if-then-else operator, lambda abstractions, and local symbol declarations, as illustrated below. Note that these extensions still keep CVC3's language first-order. In particular, lambda abstractions are restricted to take and return only terms of a value type. Similarly, quantifiers can only quantify variables of a value type.
Free function symbols include constant symbols and predicate symbols, respectively nullary function symbols and function symbols with a 
 return type. Free symbols are introduced with global declarations of the form 
 where 
, 
 are the names of the symbols and 
 is their type:
% integer constants a, b, c: INT; % real constants x,y,z: REAL; % unary function f1: REAL -> REAL; % binary function f2: (REAL, INT) -> REAL; % unary function with a tuple argument f3: [INT, REAL] -> BOOLEAN; % binary predicate p: (INT, REAL) -> BOOLEAN; % Propositional "variables" P,Q; BOOLEAN;
Like type declarations, such free symbol declarations have global scope and must be unique. In other words, it is not possible to globally declare a symbol more than once. This entails among other things that free symbols cannot be overloaded with different types.
As with types, a new free symbol can be defined as the name of a term of the corresponding type. With constant symbols this is done a declaration of the form 
 :
c: INT; i: INT = 5 + 3*c; j: REAL = 3/4; t: [REAL, INT] = (2/3, -4); r: [# key: INT, value: REAL #] = (# key := 4, value := (c + 1)/2 #); f: BOOLEAN = FORALL (x:INT): x <= 0 OR x > c ;
A restriction on constants of type 
 is that their value can only be a closed formula, that is, a formula with no free variables.
A term and its name can be used interchangeably in later expressions. Named terms are often useful for shared subterms (terms used several times in different places) since their use can make the input exponentially more concise. Named terms are processed very efficiently by CVC3. It is much more efficient to associate a complex term with a name directly rather than to declare a constant and later assert that it is equal to the same term. This point will be explained in more detail later in section Commands.
More generally, in CVC3 one can associate a term to function symbols of any arity. For non-constant function symbols this is done with a declaration of the form
 where 
 is any term of type 
 with free variables in 
. The lambda binder has the usual semantics and conforms to the usual lexical scoping rules: within the term 
 the declaration of the symbols 
 as local variables of respective type 
 hides any previous, global declaration of those symbols.
As a general shorthand, when 
 consecutive types 
 in the lambda expression 
 are identical, the syntax 
 is also allowed.
% Global declaration of x as a unary function symbol x: REAL -> REAL; % Local declarations of x as a constant symbol f: REAL -> REAL = LAMBDA (x: REAL): 2*x + 3; p: (INT, INT) -> BOOLEAN = LAMBDA (x,i: INT): i*x - 1 > 0; g: (REAL, INT) -> [REAL, INT] = LAMBDA (x: REAL, i:INT): (x + 1, i - 3);
Constant and function symbols can also be declared locally anywhere within a term by means of a let binder. This is done with a declaration of the form
for constant symbols, and of the form
for non-constant symbols. Let binders can be nested arbitrarily and follow the usual lexical scoping rules.
t: REAL =
  LET g = LAMBDA(x:INT): x + 1,
      x1 = 42,
      x2 = 2*x1 + 7/2
  IN
     (LET x3 = g(x1) IN x3 + x2) / x1;
Note that the same symbol = is used, unambiguously, in the syntax of global declarations, let declarations, and as a predicate symbol.
In addition to user-defined symbols, CVC3 terms can use a number of predefined symbols: the logical symbols as well as theory symbols, function symbols belonging to one of the built-in theories. They are described next, with the theory symbols grouped by theory.
= and /=, together with the logical constants TRUE, FALSE, the connectives NOT, AND, OR, XOR, =>, <=>, and the first-order quantifiers EXISTS and FORALL, all with the standard many-sorted logic semantics.
The binary connectives have infix syntax and type 
. The symbols = and /=, which are also infix, are instead polymorphic, having type 
 for every predefined or user-defined value type 
. They are interpreted respectively as the identity relation and its complement.
The syntax for quantifiers is similar to that of the lambda binder.
Here is an example of a formula built just of these logical symbols and variables:
A, B: TYPE;
quant: BOOLEAN = FORALL (x,y: A, i,j,k: B): i = j AND i /= k
                   => EXISTS (z: A): x /= z OR z /= y;
Binding and scoping of quantified variables follows the same rules as in let expressions. In particular, a quantifier will shadow in its scope any constant and function symbols with the same name as one of the variables it quantifies:
A: TYPE; i,j:INT; % The first occurrence of i and of j in f are constant symbols, % the others are variables. f: BOOLEAN = i = j AND FORALL (i,j: A): i = j OR i /= j;
In addition to these standard constructs, CVC3 also has a general mixfix conditional operator of the form
 with 
 where 
 are terms of type 
 and 
 are terms of the same value type 
:
% Conditional term x,y,z,w:REAL; t: REAL = IF x > 0 THEN y ELSIF x >= 1 THEN z ELSIF x > 2 THEN w ELSE 2/3 ENDIF;
The theory's function symbols consist of all and only the user-defined free symbols.
, each with the expected type: all numerals 0, 1, ..., as well as - (both unary and binary), +, *, /, <, >, <=, >=. Non-integer constants are written in fractional form: e.g., 1/2, 3/4, etc.Since CVC3 uses infinite precision rational arithmetic, the size of natural constants expressible in the presentation language is bounded in practice only by the amount of available memory.
The operators' names are overloaded in the obvious way. For instance, the same name is used for each 
 for the operator that takes a bit vector of size 
 and one of size 
 and returns their concatenation.
For each size 
, there are 
 elements in the type 
. These elements can be named using constant symbols or bit vector constants. Each element in the domain is named by two different constant symbols: once in binary and once in hexadecimal format. Binary constant symbols start with the characters 0bin and continue with the representation of the vector in the usual binary format (as an 
-string over the characters 0,1). Hexadecimal constant symbols start with the characters 0hex and continue with the representation of the vector in usual hexadecimal format (as an 
-string over the characters 0,...,9,a,...,f).
Binary constant Corresponding hexadecimal constant ----------------------------------------------------------- 0bin0000111101010000 0hex0f50
In the binary representation, the rightmost bit is the least significant bit (LSB) of the vector and the leftmost bit is the most significant bit (MSB). The index of the LSB in the bit vector is 0 and the index of the MSB is n-1 for an n-bit constant. This convention extends to all bit vector expressions in the natural way.
Bit-vector operators are categorized into word-level, bitwise, arithmetic, and comparison operators.
WORD-LEVEL OPERATORS: Description Symbol Example ================================================================ Concatenation _ @ _ 0bin01@0bin0 (= 0bin010) Extraction _ [i:j] 0bin0011[3:1] (= 0bin001) Left shift _ << k 0bin0011 << 3 (= 0bin0011000) Right shift _ >> k 0bin1000 >> 3 (= 0bin0001) Sign extension SX(_,k) SX(0bin100, 5) (= 0bin11100)
For each 
 there is
-bit vector 
 and an 
-bit vector 
 and returning the 
-bit concatenation of 
 and 
;
 for each 
 with 
, taking an 
-bit vector 
 and returning the 
-bit subvector of 
 at positions 
 through 
 (inclusive);
 for each 
, taking an 
-bit vector 
 and returning the 
-bit concatenation of 
 with the 
-bit zero vector;
 for each 
, taking an 
-bit vector 
 and returning the 
-bit concatenation of the 
-bit zero bit vector with 
;
 for each 
, taking an 
-bit vector 
 and returning the 
-bit concatenation of 
 copies of the MSB of 
 and 
.
BITWISE OPERATORS: Description Symbol ============================== Bitwise AND _ & _ Bitwise OR _ | _ Bitwise NOT ~ _ Bitwise XOR BVXOR(_,_) Bitwise NAND BVNAND(_,_) Bitwise NOR BVNOR(_,_) Bitwise XNOR BVXNOR(_,_)
For each 
 there are operators with the names and syntax above, performing the usual bitwise Boolean operations from 
-bit arguments to an 
-bit result.
ARITHMETIC OPERATORS: Description Symbol ======================================== Bit vector addition BVPLUS(k,_,_,...) Bit vector multiplication BVMULT(k,_,_) Bit vector negation BVUMINUS(_) Bit vector subtraction BVSUB(k,_,_)
For each 
 and 
 there is
, taking two or more bit vectors of arbitrary size, and returning the 
 least significant bits of their sum.
, taking two bit vectors 
 and 
, and returning the 
 least significant bits of their product.
, taking an 
-bit vector 
 and returning the 
-bit vector 
.
, taking two bit vectors 
 and 
, and returning the 
-bit vector 
 where 
 is 
 if the size of 
 is greater than or equal to 
, and 
 extended to size 
 by concatenating zeroes in the most significant bits otherwise.CVC3 does not have dedicated operators for multiplexers. However, specific multiplexers can be easily defined with the aid of conditional terms.
% Example of 2-to-1 multiplexer
mp: (BITVECTOR(1), BITVECTOR(1), BITVECTOR(1)) -> BITVECTOR(1) =
      LAMBDA (s,x,y : BITVECTOR(1)): IF s = 0bin0 THEN x ELSE y ENDIF;
In addition to equality and disequality, CVC3 provides the following comparison operators.
COMPARISON OPERATORS: Description Symbol =================================== Less than BVLT(_,_) Less than or equal to BVLE(_,_) Greater than BVGT(_,_) Greater than equal to BVGE(_,_)
For each 
 there is
, taking an 
-bit vector 
 and an 
-bit vector 
, and having the value 
 iff the zero-extension of 
 to 
 bits is less than the zero-extension of 
 to 
 bits, where 
 is the maximum of 
 and 
.
, taking an 
-bit vector 
 and an 
-bit vector 
, and having the value 
 iff the zero-extension of 
 to 
 bits is less than or equal to the zero-extension of 
 to 
 bits, where 
 is the maximum of 
 and 
.
, taking an 
-bit vector 
 and an 
-bit vector 
, and having the same value as 
.
, taking an 
-bit vector 
 and an 
-bit vector 
, and having the same value as 
.Following are some example CVC3 input formulas involving bit vector expressions
Example 1 illustrates the use of arithmetic, word-level and bitwise NOT operations:
x : BITVECTOR(5); y : BITVECTOR(4); yy : BITVECTOR(3); QUERY BVPLUS(9, x@0bin0000, (0bin000@(~y)@0bin11))[8:4] = BVPLUS(5, x, ~(y[3:2])) ;
Example 2 illustrates the use of arithmetic, word-level and multiplexer terms:
bv : BITVECTOR(10); a : BOOLEAN; QUERY 0bin01100000[5:3]=(0bin1111001@bv[0:0])[4:2] AND 0bin1@(IF a THEN 0bin0 ELSE 0bin1 ENDIF) = (IF a THEN 0bin110 ELSE 0bin011 ENDIF)[1:0] ;
Example 3 illustrates the use of bitwise operations:
x, y, z, t, q : BITVECTOR(1024); ASSERT x = ~x; ASSERT x&y&t&z&q = x; ASSERT x|y = t; ASSERT BVXOR(x,~x) = t; QUERY FALSE;
Example 4 illustrates the use of predicates and all the arithmetic operations:
x, y : BITVECTOR(4); ASSERT x = 0hex5; ASSERT y = 0bin0101; QUERY BVMULT(8,x,y)=BVMULT(8,y,x) AND NOT(BVLT(x,y)) AND BVLE(BVSUB(8,x,y), BVPLUS(8, x, BVUMINUS(x))) AND x = BVSUB(4, BVUMINUS(x), BVPLUS(4, x,0hex1)) ;
Example 5 illustrates the use of shift functions
x, y : BITVECTOR(8); z, t : BITVECTOR(12); ASSERT x = 0hexff; ASSERT z = 0hexff0; QUERY z = x << 4; QUERY (z >> 4)[7:0] = x;
 and 
 
 and element type 
, the first operator maps an array from 
 to 
 and an index into it (i.e., a value of type 
) to the element of type 
 "stored" into the array at that index. The second maps an array 
 from 
 to 
, an index 
, and a 
-element 
 to the array that stores 
 at index 
 and is otherwise identical to 
.Since arrays are just maps, equality between them is extensional: for two arrays of the same type to be different they have to store differ elements in at least one place.
Sequential updates can be chained with the syntax 
.
A: TYPE = ARRAY INT OF REAL; a: A; i: INT = 4; % selection: elem: REAL = a[i]; % update a1: A = a WITH [10] := 1/2; % sequential update % (syntactic sugar for (a WITH [10] := 2/3) WITH [42] := 3/2) a2: A = a WITH [10] := 2/3, [42] := 3/2;
No built-in operators other than equality and disequality are provided for this family in the presentation language. Each datatype declaration, however, generates constructor, selector and tester operators as described in Section Inductive Data Types.
 could be equivalently modeled as, say, the datatype 
Tuples could be seen in turn as special cases of records where the field names are the numbers from 0 to the length of the tuple minus 1. Currently, however, tuples and records have their own syntax for constructor and selector operators.
Records of type 
 have the associated built-in constructor 
 whose arguments must be terms of type 
, respectively.
Tuples of type 
 have the associated built-in constructor 
 whose arguments must be terms of type 
, respectively.
The selector operators on records and tuples follows a dot notation syntax.
% Record construction and field selection Item: TYPE = [# key: INT, weight: REAL #]; x: Item = (# key := 23, weight := 43/10 #); k: INT = x.key; v: REAL = x.weight; % Tuple construction and projection y: [REAL,INT,REAL] = ( 4/5, 9, 11/9 ); first_elem: REAL = y.0; third_elem: REAL = y.2;
Differently from datatypes, records and tuples are also provided with built-in update operators similar in syntax and semantics to the update operator for arrays. More precisely, for each record type 
 and each 
, CVC3 provides the operator 
 The operator maps a record 
 of that type and a value 
 of type 
 to the record that stores 
 in field 
 and is otherwise identical to 
. Analogously, for each tuple type 
 and each 
, CVC3 provides the operator 
% Record updates Item: TYPE = [# key: INT, weight: REAL #]; x: Item = (# key := 23, weight := 43/10 #); x1: Item = x WITH .weight := 48; % Tuple updates Tup: TYPE = [REAL,INT,REAL]; y: Tup = ( 4/5, 9, 11/9 ); y1: Tup = y WITH .1 := 3;
Updates to a nested component can be combined in a single WITH operator:
Cache: TYPE = ARRAY [0..100] OF [# addr: INT, data: REAL #]; State: TYPE = [# pc: INT, cache: Cache #]; s0: State; s1: State = s0 WITH .cache[10].data := 2/3;
Note that, differently from updates on arrays, tuple and record updates are just additional syntactic sugar. For instance, the record x1 and tuple y1 defined above could have been equivalently defined as follows:
% Record updates Item: TYPE = [# key: INT, weight: REAL #]; x: Item = (# key := 23, weight := 43/10 #); x1: Item = (# key := x.key, weight := 48 #); % Tuple updates Tup: TYPE = [REAL,INT,REAL]; y: Tup = ( 4/5, 9, 11/9 ); y1: Tup = ( y.0, 3, y.1 );
ASSERT 
 -- Add the formula 
 to the current logical context 
.QUERY 
 -- Check if the formula 
 is valid in the current logical context: 
.CHECKSAT 
 -- Check if the formula is satisfiable in the current logical context: 
.WHERE -- Print all the assumptions in the current logical context 
.COUNTEREXAMPLE -- After an invalid QUERY or satisfiable CHECKSAT, print the context that is a witness for invalidity/satisfiability.COUNTERMODEL -- After an invalid QUERY or satisfiable CHECKSAT, print a model that makes the formula invalid/satisfiable. The model is in terms of concrete values for each free symbol.CONTINUE -- Search for a counter-example different from the current one (after an invalid QUERY or satisfiable CHECKSAT).RESTART 
 -- Restart an invalid QUERY or satisfiable CHECKSAT with the additional assumption 
.
PUSH -- Save (checkpoint) the current state of the system.POP -- Restore the system to the state it was in right before the last call to PUSHPOPTO 
-- Restore the system to the state it was in right before the most recent call to PUSH made from stack level 
. Note that the current stack level is printed as part of the output of the WHERE command.
TRANSFORM 
 -- Simplify 
 and print the result.PRINT 
 -- Parse and print back the expression 
.OPTION option value -- Set the command-line option flag option to value. Note that option is given as a string enclosed in double-quotes and value as an integer.The remaining commands take a single argument, given as a string enclosed in double-quotes.
TRACE flag -- Turn on tracing for the debug flag flag.UNTRACE flag -- Turn off tracing for the debug flag flag.
ECHO string -- Print stringINCLUDE filename -- Read commands from the file filename.Here, we explain some of the above commands in more detail.
QUERY 
 invokes the core functionality of CVC3 to check the validity of the formula 
 with respect to the assertions made thus far (
). 
 should be a formula as described in Terms and Formulas.There are three possible answers.
. After a valid query, the logical context 
 is exactly as it was before the query.
. In other words, there is a model of 
 satisfying 
. After an invalid query, the logical context 
 is augmented with new literals 
 such that 
 is consistent in the theory 
, but 
. In fact, in this case 
 propositionally satisfies 
. We call the new context 
 a counterexample for 
.
. The difference is that because CVC3 is incomplete for some theories, it cannot guarantee in this case that 
 is actually consistent in 
. The only sources of incompleteness in CVC3 are non-linear arithmetic and quantifiers.
Counterexamples can be printed out using WHERE or COUNTEREXAMPLE commands. WHERE always prints out all of 
. COUNTEREXAMPLE may sometimes be more selective, printing a subset of those formulas from the context which are sufficient for a counterexample.
Since the QUERY command may modify the current context, if you need to check several formulas in a row in the same context, it is a good idea to surround every QUERY command by PUSH and POP in order to preserve the context:
PUSH; QUERY <formula>; POP;
CHECKSAT 
 behaves identically to QUERY 
.RESTART 
 can only be invoked after an invalid query. For example:
QUERY <formula>; Invalid. RESTART <formula2>;
The behavior of the above command will be identical to the following:
PUSH; QUERY <formula>; POP; ASSERT <formula2>; QUERY <formula>;
The advantage of using the RESTART command is that it may be much more efficient than the above command sequence. This is because when the RESTART command is used, CVC3 will re-use what it has learned rather than starting over from scratch.
A subtype 
 of a (sub)type 
 is defined as a subset of 
 that satisfies an associated predicate 
. More precisely, if 
 is a term of type 
, then for every model of 
 (among the models of CVC3's built-in theories), 
 is the extension of 
, that is, the set of all and only the elements of 
 that satisfy the predicate 
.
Subtypes like 
 above can be defined by the user with a declaration of the form:
where 
 is either just a (previously declared) predicate symbol of type 
 or a lambda abstraction of the form 
 where 
 is any CVC3 formula whose set of free variables contains at most 
.
Here are some examples of subtype declarations:
Animal: TYPE; fish : Animal; is_fish: Animal -> BOOLEAN; ASSERT is_fish(fish); % Fish is a subtype of Animal: Fish: TYPE = SUBTYPE(is_fish); shark : Fish; is_shark: Fish -> BOOLEAN; ASSERT is_shark(shark); % Shark is a subtype of Fish: Shark: TYPE = SUBTYPE(is_shark); % Subtypes of REAL AllReals: TYPE = SUBTYPE(LAMBDA (x:REAL): TRUE); NonNegReal: TYPE = SUBTYPE(LAMBDA (x:REAL): x >= 0); % Subtypes of INT DivisibleBy3: TYPE = SUBTYPE(LAMBDA (x:INT): EXISTS (y:INT): x = 3 * y);
CVC3 provides integers as a built-in subtype 
 of 
. 
 is a subtype and not a base type in order to allow mixed real/integer terms without having to use coercion functions such as 
 
 between terms of the two types. It is built-in because it is not definable by means of a first-order predicate.
Note that, with the syntax introduced so far, it seems that it may be possible to define empty subtypes, that is, subtypes with no values at all. For example:
NoReals: TYPE = SUBTYPE(LAMBDA (x:REAL): FALSE);
However, any attempt to do this results in an error. This is because CVC3's logic assumes types are not empty. In fact, each time a subtype 
 is declared CVC3 tries to prove that the subtype is non-empty; more precisely, that it is non-empty in every model of the current context. This is done simply by attempting to prove the validity of a formula of the form 
 where 
 is the value type of which 
 is a subtype, and 
 is the predicate defining 
. If CVC3 succeeds, the declaration is accepted. If it fails, CVC3 will issue a type exception and reject the declaration.
CVC3 might fail to prove the non-emptyness of a subtype either because the type is indeed empty in some models or because of CVC3's incompleteness over quantified formulas. Consider the following examples:
Animal: TYPE;
is_fish: Animal -> BOOLEAN;
% Fish is a subtype of Animal:
Fish: TYPE = SUBTYPE(is_fish);
Interval_0_1: TYPE = SUBTYPE(LAMBDA (x:REAL): 0 < x AND x < 1);
% Subtypes of [REAL, REAL]
StraightLine: TYPE = SUBTYPE(LAMBDA (x:[REAL,REAL]): 3*x.0 + 2*x.1 + 6 = 0);
%  Constant ARRAY subtype
ConstArray: TYPE = SUBTYPE(LAMBDA (a: ARRAY INT OF REAL): 
                             EXISTS (x:REAL): FORALL (i:INT): a[i] = x);
Each of these subtype declarations is rejected. For instance, the declaration of Fish is rejected because there are models of CVC3's background theory in which is_fish has an empty extension. To fix that it is enough to introduce a free constant of type Animal and assert that it is a Fish as we did above.
In the case of Interval_0_1 and Straightline, however, the type is indeed non-empty in every model, but CVC3 is unable to prove it. In such cases, the user can help CVC3 by explicitly providing a witness value for the subtype. This is done with this alternative syntax for subtype declarations:
where 
 is again a unary predicate and 
 is a term (denoting an element) that satisfies 
.
The following subtype declarations with witnesses are accepted by CVC3.
% Subtypes of REAL with witness Interval_0_1: TYPE = SUBTYPE(LAMBDA (x:REAL): 0 < x AND x < 1, 1/2); StraightLine: TYPE = SUBTYPE(LAMBDA (x:[REAL,REAL]): 3*x.0 + 2*x.1 + 6 = 0, (0, -3));
We observe that the declaration of ConstArray in the first example is rightly rejected under the empty context because the subtype can be empty in some models. However, even under contexts that exclude this possibility CVC3 is still unable to to prove the subtype's non-emptyness. Again, a declaration with witness helps in this case. Example:
zero_array: ARRAY INT OF REAL;
ASSERT FORALL (i:INT): zero_array[i] = 0;
% At this point the context includes the constant array zero_array
% and the declaration below is accepted.
ConstArray: TYPE = SUBTYPE(LAMBDA (a: ARRAY INT OF REAL): 
                             EXISTS (x:REAL): FORALL (i:INT): a[i] = x, zero_array);
Adding witnesses to declarations to overcome CVC3's incompleteness is an adequate, practical solution in most cases.
For additional convenience (when defining array types, for example) CVC3 has a special syntax for specifying subtypes that are finite ranges of 
. This is however just syntactic sugar.
% subrange type FiniteRangeArray: TYPE = ARRAY [-10..10] OF REAL; % equivalent but less readable formulations FiniteRange: TYPE = SUBTYPE(LAMBDA (x:INT): -10 <= x AND x <= 10); FiniteRangeArray2: TYPE = ARRAY FiniteRange OF REAL; FiniteRangeArray3: TYPE = ARRAY SUBTYPE(LAMBDA (x:INT): -10 <= x AND x <= 10) OF REAL;
In essence, for every ground term of the form 
 with 
 in the logical context, whenever 
 has type 
 where 
 is a subtype defined by a predicate 
, CVC3 adds to the context the assertion 
 constraining 
 to be a value in 
.
This leads to correct answers by CVC3, provided that all ground terms are well-subtyped in the logical context of the query; that is, if for all terms like 
 above the logical context entails that 
 is a value of 
. When that is not the case, CVC3 may return spurious countermodels to a query, that is, countermodels that do not respect the subtyping constraints.
For example, after the following declarations:
Pos: TYPE = SUBTYPE(LAMBDA (x: REAL): x > 0, 1); Neg: TYPE = SUBTYPE(LAMBDA (x: REAL): x < 0, -1); a: Pos; b: REAL; f: Pos -> Neg = LAMBDA (x:Pos): -x;
CVC3 will reply "Valid", as it should, to the command:
QUERY f(a) < 0;
However it will reply "Invalid" to the command:
QUERY f(b) < 0;
or to:
QUERY f(-4) < 0;
for that matter, instead of complaining in either case that the query is not well-subtyped. (The query is ill-subtyped in the first case because there are models of the empty context in which the constant b is a non-positive rational; in the second case because in all models of the context the term -4 is non-positive.)
In contrast, the command sequence
ASSERT b > 2*a + 3; QUERY f(b) < 0;
say, produces the correct expected answer because in this case b is indeed positive in every model of the logical context.
Semantically, CVC3's behavior is justified as follows. Consider, just for simplicity (the general case is analogous), a function symbol 
 of type 
 where 
 is a subtype of some value type 
. Instead of interpreting 
 as partial function that is total over 
 and undefined outside 
, CVC3's interprets it as a total function from 
 to 
 whose behavior outside 
 is specified in an arbitrary, but fixed, way. The specification of the behavior outside 
 is internal to CVC3 and can, from case to case, go from being completely empty, which means that CVC3 will allow any possible way to extend 
 from 
 to 
, to strong enough to allow only one way to extend 
. The choice depends just on internal implementation considerations, with the understanding that the user is not really interested in 
's behavior outside 
 anyway.
A simple example of this approach is given by the arithmetic division operation /. Mathematically division is a partial function from 
 to 
 undefined over pairs in 
. CVC3 views / as a total function from 
 to 
 that maps pairs in 
 to 
 and is defined as usual otherwise. In other words, CVC3 extends the theory of rational numbers with the axiom 
. Under this view, queries like
x: REAL; QUERY x/0 = 0 ; QUERY 3/x = 3/x ;
are perfectly legitimate. Indeed the first formula is valid because in each model of the empty context, x/0 is interpreted as zero and = is interpreted as the identity relation. The second formula is valid, more generally, because for each interpretation of x the two arguments of = will evaluate to the same rational number. CVC3 will answer accordingly in both cases.
While this behavior is logically correct, it may be counter-intuitive to users, especially in applications that intend to give CVC3 only well-subtyped formulas. For these applications it is more useful to the user to get a type error from CVC3 as soon as it receives an ill-subtyped assertion or query, such as for instance the two queries above. This feature is provided in CVC3 by using the command-line option +tcc. The mechanism for checking well-subtypedness is described below.
 is the union of CVC3's background theories.
Let us say that a (well-typed) term 
 containing no proper subterms of type 
 is well-subtyped in a model 
 of 
 (assigning an interpretation to all the free symbols and free variables of 
) if
 is a constant or a variable, or
 where 
 has type 
 and each 
 is well-subtyped in 
 and interpreted as a value of 
.
Note that this inductive definition includes the case in which the term is an atomic formula. Then we can say that an atomic formula is well-subtyped in a logical context 
 if it is well-subtyped in every model of 
 and 
.
While this seems like a sensible definition of well-subtypedness for atomic formulas, it is not obvious how to extend it properly to non-atomic formulas. For example, defining a non-atomic formula to be well-subtyped in a model if all of its atoms are well-subtyped is too stringent. Perfectly reasonable formulas like
 with 
, 
, and 
 free constants (or free variables) of type 
, say, would not be well-subtyped in the empty context because there are models of 
 in which the atom 
 is not well-subtyped (namely, those that interpret 
 as zero).
A better definition can be given by treating logical connectives non-strictly with respect to ill-subtypedness. More formally, but considering for simplicity only formulas built with atoms, negation and disjunction connectives, and existential quantifiers (the missing cases are analogous), we define a non-atomic formula 
 to be well-subtyped in a model 
 of 
 if one of the following holds:
 has the form 
 and 
 is well-subtyped in 
;
 has the form 
 and (i) both 
 and 
 are well-subtyped in 
 or (ii) 
 holds and is well-subtyped in 
 or (iii) 
 holds and is well-subtyped in 
;
 has the form 
 and (i) 
 holds and is well-subtyped in some model 
 that differs from 
 at most in the interpretation of 
 or (ii) 
 is well-subtyped in every such model 
.
In essence, this definition is saying that for well-subtypedness in a model it is irrelevant if a formula 
 has an ill-subtyped subformula, as long as the truth value of 
 is independent from the truth value of that subformula.
Now we can say in general that a CVC3 formula is well-subtyped in a context 
 if it is well-subtyped in every model of 
 and 
.
According to this definition, the previous formula 
, which is equivalent to 
, is well-subtyped in the empty context. In fact, in all the models of 
 that interpret 
 as zero, the subformula 
 is true and well-subtyped; in all the others, both 
 and 
 are well-subtyped.
This notion of well-subtypedness has a number of properties that make it fairly robust. One is that it is invariant with respect to equivalence in a context: for every context 
 and formulas 
 such that 
, the first formula is well-subtyped in 
 if and only if the second is.
Perhaps the most important property, however, is that the definition can be effectively reflected into CVC3's logic itself: there is a procedure that for any CVC3 formula 
 can compute a well-subtyped formula 
, a type correctness condition for 
, such that 
 is well-subtyped in a context 
 if and only if 
. This has the nice consequence that the very inference engine of CVC3 can be used to check the well-subtypedness of CVC3 formulas.
When called with the TCC option on (by using the command-line option +tcc), CVC3 behaves as follows. Whenever it receives an ASSERT or QUERY command, the system computes the TCC of the asserted formula or query and checks its validity in the current context (for ASSERTs, before the formula is added to the logical context). If it is able to prove the TCC valid, it just adds the asserted formula to the context or checks the validity of the query formula. If it is unable to prove the TCC valid, it raises an ill-subtypedness exception and aborts.
It is worth pointing out that, since CVC3 checks the validity of an asserted formula in the current logical context at the time of the assertion, the order in which formulas are asserted makes a difference. For instance, attempting to enter the following sequence of commands:
f: [0..100] -> INT; x: [5..10]; y: REAL; ASSERT f(y + 3/2) < 15; ASSERT y + 1/2 = x;
results in a TCC failure for the first assertion because the context right before it does not entail that the term y + 3/2 is in the range 0..100. In contrast, the sequence
f: [0..100] -> INT; x: [5..10]; y: REAL; ASSERT y + 1/2 = x; ASSERT f(y + 3/2) < 15;
is accepted because each of the formulas above is well-subtyped at the time of its assertion. Note that the assertion of both formulas together in the empty context with
ASSERT f(y + 3/2) < 15 AND y + 1/2 = x
or with
ASSERT y + 1/2 = x AND f(y + 3/2) < 15
is also accepted because the conjunction of the two formulas is well-subtyped in the empty context.
Specifically, when called with the option -lang smt it accepts as input an SMT-LIB benchmark belonging to one of the SMT-LIB sublogics. For a well-formed input benchmark, CVC3 returns the string "sat", "unsat" or "unknown", depending on whether it can prove the benchmark satisfiable, unsatisfiable, or neither.
At the time of this writing CVC3 supported all SMT-LIB sublogics.
We refer the reader to the SMT-LIB website for information on SMT-LIB, its formats, its logics, and its on-line library of benchmarks.
 1.5.1