CSCI-GA.1133 Intensive Introduction to Graduate Study in Computer Science I (PAC I)
4 Points. Graduate-level. Fall, Spring.
Prerequisites: None
An accelerated introduction to the fundamental concepts of computer science for students who lack a formal background in the field. Topics include algorithm design and program development; data types; control structures; subprograms and parameter passing; recursion; data structures; searching and sorting; dynamic storage allocation and pointers; abstract data types, such as stacks, queues, lists, and tree structures; generic packages; and an introduction to the principles of object-oriented programming. The primary programming language used in the course will be Java. Students should expect an average of 12-16 hours of programming and related course work per week.CSCI-GA.1144 Intensive Introduction to Graduate Study in Computer Science II (PAC II)
4 Points. Graduate-level. Fall, Spring.
Prerequisites: CSCI-GA 1133 or departmental permission.
This course builds directly on the foundation developed in PAC I, covering the essentials of computer organization through the study of assembly language programming and C, as well as introducing the students to the analysis of algorithms. Topics include: (1) Assembly language programming for the Intel chip family, emphasizing computer organization, the Intel x86 instruction set, the logic of machine addressing, registers and the system stack. (2) Programming in the C language, a general-purpose programming language which also has low-level features for systems programming. (3) An introduction to algorithms, including searching, sorting, graph algorithms and asymptotic complexity. Examples and assignments reinforce and refine those first seen in PAC I and often connect directly to topics in the core computer science graduate courses, such as Programming Languages, Fundamental Algorithms, and Operating SystemsCSCI-GA.1170 Fundamental Algorithms
3 Points. Graduate-level. Fall, Spring, Summer.
Prerequisites: None
Reviews a number of important algorithms, with emphasis on correctness and efficiency. The topics covered include solution of recurrence equations, sorting algorithms, selection, binary search trees and balanced-tree strategies, tree traversal, partitioning, graphs, spanning trees, shortest paths, connectivity, depth-first and breadth-first search, dynamic programming, and divide-and-conquer techniques.CSCI-GA.1180 Mathematical Techniques for Computer Science Applications
3 Points. Graduate-level. Fall.
Prerequisites: None
An introduction to theory, computational techniques, and applications of linear algebra, probability and statistics. These three areas of continuous mathematics are critical in many parts of computer science, including machine learning, scientific computing, computer vision, computational biology, natural language processing, and computer graphics. The course teaches a specialized language for mathematical computation, such as Matlab, and discusses how the language can be used for computation and for graphical output. No prior knowledge of linear algebra, probability, or statistics is assumed.CSCI-GA.2110 Programming Languages
3 Points. Graduate-level. Fall, Spring, Summer.
Prerequisites: None
Discusses the design, use, and implementation of imperative, object-oriented, and functional programming languages. The topics covered include scoping, type systems, control structures, functions, modules, object orientation, exception handling, and concurrency. A variety of languages are studied, including C++, Java, Ada, Lisp, and ML, and concepts are reinforced by programming exercises.CSCI-GA.2112 Scientific Computing
3 Points. Graduate-level. Fall.
Prerequisites: Multivariate calculus and linear algebra. Some programming experience recommended.
Methods for numerical applications in the physical and biological sciences, engineering, and finance. Basic principles and algorithms; specific problems from various application areas; use of standard software packages.CSCI-GA.2130 Compiler Construction
3 Points. Graduate-level. Fall, Spring.
Prerequisites: CSCI-GA 1170, CSCI-GA 2110, and CSCI-GA 2250.
This is a capstone course based on compilers and modern programming languages. The topics covered include structure of one-pass and multiple-pass compilers; symbol table management; lexical analysis; traditional and automated parsing techniques, including recursive descent and LR parsing; syntax-directed translation and semantic analysis; run-time storage management; intermediate code generation; introduction to optimization; and code generation. The course includes a special compiler-related capstone project, which ties together concepts of algorithms, theory (formal languages), programming languages, software engineering, computer architecture, and other subjects covered in the MS curriculum. This project requires a substantial semester-long programming effort, such as construction of a language compilation or translation system that includes lexical and syntactic analyzers, a type checker, and a code generator.CSCI-GA.2180 Financial Software Projects
3 Points. Graduate-level. Fall.
Prerequisites: It is assumed that the students can code in C++. No prior experience in the financial sector domain is required.
The theme of this course is an "applied case study" and focuses on fixed income markets. Topics covered include an overview of the markets, the inner workings of an investment bank, the market players, and where software engineers fit in. Students will be grouped into small teams to build a financial application using practical software engineering principles. Each team will build a risk management framework, starting with basic components.CSCI-GA.2246 Open Source Tools
3 Points. Graduate-level. Fall.
Prerequisites: An understanding of modern operating systems and a working knowledge of a programming language, such as C, C++ or Java
This course covers a brief history and philosophy of open source software, followed by an in-depth look at open source tools intended for developers. In particular, we will present an overview of the Linux operating system, command line tools (find, grep, sed), programming tools (GIT, Eclipse, DTrace), web and database tools (Apache, MySQL), and system administration tools. We will also cover scripting languages such as shell and Python.CSCI-GA.2250 Operating Systems
3 Points. Graduate-level. Fall, Spring, Summer.
Prerequisites: None
The topics covered include a review of linkers and loaders and the high-level design of key operating systems concepts such as process scheduling and synchronization; deadlocks and their prevention; memory management, including (demand) paging and segmentation; and I/O and file systems, with examples from Unix/Linux and Windows. Programming assignments may require C, C++, Java, or C#.CSCI-GA.2262 Data Communications and Networks
3 Points. Graduate-level. Fall, Spring.
Prerequisites: CSCI-GA 2250 or an undergraduate networking course.
This course teaches the design and implementation techniques essential for engineering robust networks. Topics include networking principles, Transmission Control Protocol/Internet Protocol, naming and addressing (Domain Name System), data encoding/decoding techniques, link layer protocols, routing protocols, transport layer services, congestion control, quality of service, network services, programmable routers and overlay networks.CSCI-GA.2270 Computer Graphics
3 Points. Graduate-level. Fall.
Prerequisites: CSCI-GA 1170.
Problems and objectives of computer graphics. Vector, curve, and character generation. Interactive display devices. Construction of hierarchical image list. Graphic data structures and graphics languages. Hidden-line problems; windowing, shading, and perspective projection. Curved surface generation display.CSCI-GA.2271 Computer Vision
3 Points. Graduate-level. Fall, Spring.
Prerequisites: CSCI-GA 1170
Basic techniques of computer vision and image processing. General algorithms for image understanding problems. Study of binary image processing, edge detection, feature extraction, motion estimation, color processing, stereo vision, and elementary object recognition. Mathematical, signal processing, and image processing tools. Relation of computer vision algorithms to the human visual system.CSCI-GA.2340 Elements of Discrete Mathematics
3 Points. Graduate-level. Summer.
Prerequisites: May not be taken by students who have received a grade of B or better in CSCI-GA 1170.
Introduction to the central mathematical concepts that arise in computer science. Emphasis is on proof and abstraction. Topics include proof techniques; combinatorics; sets, functions, and relations; discrete structures; order of magnitude analysis; formal logic; formal languages and automata.CSCI-GA.2390 Logic in Computer Science
3 Points. Graduate-level. Fall.
Prerequisites: Strong mathematical background and instructor permission for master’s students
A beginning graduate-level course in mathematical logic with motivation provided by applications in computer science. There are no formal prerequisites, but the pace of the class requires that students can cope with a significant level of mathematical sophistication. Topics include propositional and first-order logic; soundness, completeness, and compactness of first-order logic; first-order theories; undecidability and Godel’s incompleteness theorem; and an introduction to other logics such as second-order and temporal logic.CSCI-GA.2420 Numerical Methods I
3 Points. Graduate-level. Fall.
Prerequisites: Corequisite: linear algebra.
Numerical linear algebra. Approximation theory. Quadrature rules and numerical integration. Nonlinear equations and optimization. Ordinary differential equations. Elliptic equations. Iterative methods for large, sparse systems. Parabolic and hyperbolic equations.CSCI-GA.2421 Numerical Methods II
3 Points. Graduate-level. Spring.
Prerequisites: Corequisite: linear algebra.
Numerical linear algebra. Approximation theory. Quadrature rules and numerical integration. Nonlinear equations and optimization. Ordinary differential equations. Elliptic equations. Iterative methods for large, sparse systems. Parabolic and hyperbolic equations.CSCI-GA.2433 Database Systems
3 Points. Graduate-level. Fall, Spring.
Prerequisites: None
Database system architecture. Modeling an application and logical database design. The relational model and relational data definition and data manipulation languages. Design of relational databases and normalization theory. Physical database design. Concurrency and recovery. Query processing and optimization.CSCI-GA.2434 Advanced Database Systems
3 Points. Graduate-level. Fall.
Prerequisites: CSCI-GA 1170, CSCI-GA 2110, and CSCI-GA 2250.
This is a capstone course emphasizing large-scale database systems. This course studies the internals of database systems as an introduction to research and as a basis for rational performance tuning. Topics include concurrency control, fault tolerance, operating system interactions, query processing, and principles of tuning. Database capstone projects involve topics such as design, concurrency control, interactions, and tuning. These projects include some or all of the following elements: formation of a small team, project proposal, literature review, interim report, project presentation, and final report.CSCI-GA.2440 Software Engineering
3 Points. Graduate-level. Spring.
Prerequisites: CSCI-GA 1170, CSCI-GA 2110, and CSCI-GA 2250
This is a capstone course focusing on large-scale software development. This course presents modern software engineering techniques and examines the software life cycle, including software specification, design, implementation, testing, and maintenance. Object-oriented design methods are also considered. Software engineering projects involve creation of a large-scale software system and require some or all of the following elements: formation of a small team, project proposal, literature review, interim report, project presentation, and final report.CSCI-GA.2520 Bioinformatics and Genomes
4 Points. Graduate-level. Spring.
Prerequisites: None
The recent explosion in the availability of genome-wide data such as whole genome sequences and microarray data led to a vast increase in bioinformatics research and tool development. Bioinformatics is becoming a cornerstone for modern biology, especially in fields such as genomics. It is thus crucial to understand the basic ideas and to learn fundamental bioinformatics techniques. The emphasis of this course is on developing not only an understanding of existing tools but also the programming and statistics skills that allow students to solve new problems in a creative way.CSCI-GA.2560 Artificial Intelligence
3 Points. Graduate-level. Fall.
Prerequisites: None
There are many cognitive tasks that people do easily and almost unconsciously but that have proven extremely difficult to program on a computer. Artificial intelligence is the problem of developing computer systems that can carry out these tasks. This course covers problem solving and state space search; automated reasoning; probabilistic reasoning; planning; and knowledge representation.CSCI-GA.2565 Machine Learning
3 Points. Graduate-level. Fall.
Prerequisites: Undergraduate course in linear algebra and strong programming skills for implementation of algorithms studied in class. Recommended: knowledge of vector calculus, elementary statistics, and probability theory.
This course covers a wide variety of topics in machine learning, pattern recognition, statistical modeling, and neural computation. The course covers the mathematical methods and theoretical aspects but primarily focuses on algorithmic and practical issues.CSCI-GA.2566 Foundations of Machine Learning
3 Points. Graduate-level. Spring.
Prerequisites: CSCI-GA 1180.
This course introduces the fundamental concepts and methods of machine learning, including the description and analysis of several modern algorithms, their theoretical basis, and the illustration of their applications. Many of the algorithms described have been successfully used in text and speech processing, bioinformatics, and other areas in real-world products and services. The main topics covered are probability and general bounds; PAC model; VC dimension; perceptron, Winnow; support vector machines (SVMs); kernel methods; decision trees; boosting; regression problems and algorithms; ranking problems and algorithms; halving algorithm, weighted majority algorithm, mistake bounds; learning automata, Angluin-type algorithms; and reinforcement learning, Markov decision processes (MDPs).CSCI-GA.2580 Web Search Engines
3 Points. Graduate-level. Spring.
Prerequisites: Recommend CSCI-GA 1180.
Discusses the design of general and specialized Web search engines and the extraction of information from the results of Web search engines. Topics include Web crawlers, database design, query language, relevance ranking, document similarity and clustering, the “invisible” Web, specialized search engines, evaluation, natural language processing, data mining applied to the Web, and multimedia retrieval.CSCI-GA.2585 Speech Recognition
3 Points. Graduate-level. Fall.
Prerequisites: Familiarity with basics in linear algebra, probability and analysis of algorithms. No specific knowledge about signal processing or other engineering material is required.
This course gives a computer science presentation of automatic speech recognition, the problem of transcribing accurately spoken utterances, and presents algorithms for creating large-scale speech recognition systems. The algorithms and techniques presented are now used in most research and industrial systems. The objective of the course is not only to familiarize students with particular algorithms used in speech recognition, but also to use that as a basis to explore general concepts of text and speech, as well as machine learning algorithms relevant to a variety of other areas in computer science. The course will make use of several software libraries and will study recent research and publications in this area.CSCI-GA.2590 Natural Language Processing
3 Points. Graduate-level. Spring.
Prerequisites: None
Survey of the techniques used for processing natural language. Syntactic analysis: major syntactic structures of English; alternative formalisms for natural language grammar; parsing algorithms; analyzing coordinate conjunction; parsing with graded acceptability. Semantic analysis: meaning representations; analysis of quantificational structure; semantic constraints; anaphora resolution; analysis of sentence fragments. Analysis of discourse and dialog. Text generation. Students get some experience using a natural language parser and a natural language query interface. Brief weekly written assignments and a term project involving a mixture of library research and programming (mostly in LISP). This course reviews some of the recent work in this area, including the following topics: statistical models of language; entropy and perplexity; n-gram word models: acquisition and smoothing, part-of-speech models; finite state models: hidden Markov models, acquisition procedures; probabilistic context-free grammars: acquisition procedures; semantic models: word-concurrence, word classes; applications in information retrieval, speech recognition, and machine translation.CSCI-GA.2620 Networks and Mobile Systems
3 Points. Graduate-level. Spring.
Prerequisites: CSCI-GA 1170, CSCI-GA 2110, and CSCI-GA 2250.
A course in computer networks and large-scale distributed systems. Teaches the design and implementation techniques essential for engineering both robust networks and Internet-scale distributed systems. The goal is to guide students so they can initiate and critique research ideas in networks and distributed systems and implement and evaluate a working system that can handle a real-world workload. Topics include routing protocols, network congestion control, wireless networking, peer-to-peer systems, overlay networks and applications, distributed storage systems, and network security.CSCI-GA.2631 Distributed Computing
3 Points. Graduate-level.
Prerequisites: CSCI-GA 1170 and CSCI-GA 2250
Concepts underlying distributed systems: synchronization, communication, fault tolerance, and performance. Examined from three points of view: (1) problems, appropriate assumptions, and algorithmic solutions; (2) linguistic constructs; and (3) some typical systems.CSCI-GA.2930 Advanced Topics in Applied Mathematics
3 Points. Graduate-level. Fall.
Prerequisites: Topics determine prerequisites.
Topics vary each semester.CSCI-GA.2945 Advanced Topics in Numerical Analysis
3 Points. Graduate-level. Fall, Spring.
Prerequisites: Topics determine prerequisites.
Topics vary each semester.CSCI-GA.2965 Heuristic Problem Solving
3 Points. Graduate-level. Fall.
Prerequisites: CSCI-GA 1170 and an ability to prototype algorithms rapidly.
This course revolves around several problems new to computer science (derived from games or puzzles in columns for Dr. Dobb’s Journal, Scientific American, and elsewhere). The idea is to train students to face a new problem, read relevant literature, and come up with a solution. The solution entails winning a contest against other solutions. The winner receives candy. The best solutions become part of an evolving “Omniheurist” Web site that is expected to get many visitors over the years. The course is for highly motivated, mathematically adept students. It is open to supported Ph.D. students and well-qualified master’s students. Class size has been around 10 in the past, and instructor and students have all gotten to know one another very well. Algorithmic and programming knowledge is the main prerequisite. It also helps to be familiar with a rapid prototyping language such as Matlab, Mathematica, K, or Python, or to be completely fluent in some other language.CSCI-GA.3033 Special Topics in Computer Science
3 Points. Graduate-level. Fall, Spring.
Prerequisites: Prerequisites vary according to topic.
Topics vary each semester.CSCI-GA.3110 Honors Programming Languages
4 Points. Graduate-level. Spring.
Prerequisites: Permission of the instructor for master’s students
The course will introduce a panorama of programming languages concepts underlying the main programming language paradigms (such as imperative, functional, object-oriented, logic, concurrent, and scripting languages) and present in detail the formal methods (code semantics, specification, and verification) used in modern high quality assurance tools for software safety and security. A programming project (design and implementation of an interpreter/compiler for an dynamic object-oriented mini-language) will be programmed in OCaml, a multiparadigm language introduced at the beginning of the course.CSCI-GA.3130 Honors Compilers and Computer Languages
4 Points. Graduate-level.
Prerequisites: Permission of the instructor for master’s students
Lexical scanning and scanner generation from regular expressions; LL, LR, and universal parser generation from context-free grammars; syntax-directed translation and attribute grammars; type and general semantic analysis; code generation, peephole optimization, and register allocation; and global program analysis and optimization. Provides experience using a variety of advanced language systems and experimental system prototypes.CSCI-GA.3205 Applied Cryptography and Network Security
3 Points. Graduate-level. Spring.
Prerequisites: None
This course first introduces the fundamental mathematical cryptographic algorithms, focusing on those that are used in current systems. To the extent feasible, the mathematical properties of the cryptographic algorithms are justified, using elementary mathematical tools. Second, actual security mechanisms and protocols, mainly those employed for network traffic that rely on the previously introduced cryptographic algorithms, are presented. The topics covered include introduction to basic number-theoretical properties, public/private and symmetric key systems, secure hash functions, digital signature standards, digital certificates, IP security, e-mail security, Web security, and stand-alone computer privacy and security tools.CSCI-GA.3210 Introduction to Cryptography
3 Points. Graduate-level. Fall.
Prerequisites: Strong mathematical background
The primary focus of this course is on definitions and constructions of various cryptographic objects, such as pseudorandom generators, encryption schemes, digital signature schemes, message authentication codes, block ciphers, and others, time permitting. The class tries to understand what security properties are desirable in such objects, how to properly define these properties, and how to design objects that satisfy them. Once a good definition is established for a particular object, the emphasis will be on constructing examples that provably satisfy the definition. Thus, a main prerequisite of this course is mathematical maturity and a certain comfort level with proofs. Secondary topics, covered only briefly, are current cryptographic practice and the history of cryptography and cryptanalysis.CSCI-GA.3220 Advanced Cryptography
3 Points. Graduate-level. Spring.
Prerequisites: CSCI-GA 3210.
Basics of computational number theory for cryptography. Identification protocols. Digital signatures. Public-key encryption. Additional selected topics.CSCI-GA.3230 Random Graphs
3 Points. Graduate-level.
Prerequisites: None
This course covers numerous topics related to random graphs, including generalized randomized structures, random processes, probabilistic methods and Erdös Magic. Also covered are branching processes, phase transitions for large random evolutions, derandomization via conditional expectations and semidefinite programming derandomization techniques. Algorithms, probability and discrete mathematics all appear, but concepts will be defined from scratch. Emphasis will be on methods of asymptotic calculation.CSCI-GA.3250 Honors Operating Systems
4 Points. Graduate-level.
Prerequisites: Permission of the instructor for master’s students
Operating-system structure. Processes. Process synchronization. Language mechanisms for concurrency. Deadlocks: modeling, prevention, avoidance, and recovery. Memory management. File-system interface. Secondary storage. Distributed systems: layered system design, managing distributed processes, distributed shared memory, fault-tolerance. CPU scheduling. Queuing and performance: analysis of single M/M/1 queue and others. Protection and security. Advanced security concepts: threat monitoring, encryption, and public keys.CSCI-GA.3520 Honors Analysis of Algorithms
4 Points. Graduate-level. Fall.
Prerequisites: Permission of the instructor for master’s students.
Design of algorithms and data structures. Review of searching, sorting, and fundamental graph algorithms. In-depth analysis of algorithmic complexity, including advanced topics on recurrence equations and NP-complete problems. Advanced topics on lower bounds, randomized algorithms, amortized algorithms, and data structure design as applied to union-find, pattern matching, polynomial arithmetic, network flow, and matching.CSCI-GA.3812 Information Technology Projects
3 Points. Graduate-level. Fall, Spring, Summer.
Prerequisites: Permission of the instructor.
This is a capstone course that connects students directly with real-world information technology problems. The goal of this course is to teach the skills needed for success in real-world information technology via a combination of classroom lectures and practical experience with large projects that have been specified by local “clients.” The typical clients are primarily companies, but can also be government agencies or nonprofit organizations. Each project lasts for the entire semester and is designed to involve the full software project life cycle. Examples of such projects are development of software to solve a business problem, including specifying requirements, writing and testing prototype code, and writing a final report; and evaluation of commercial software to be purchased to address a business problem, including gathering requirements, designing an architecture to connect the new software with existing systems, and assessing the suitability of available software products.CSCI-GA.3813 Advanced Laboratory
1-3 (MS), 1-12 (PhD) Points. Graduate-level. Fall, Spring.
Prerequisites: Permission of the faculty project supervisor and the Director of Graduate Studies for the M.S. Programs
Large-scale programming project or research in cooperation with a faculty member or a professional internship. Sections 1-4 are for Master's students. Sections 5-8 are for Ph.D. students.CSCI-GA.3840 Master’s Thesis Research
3 - 6 Points. Graduate-level. Fall, Spring.
Prerequisites: Approval of a faculty adviser and the Director of Graduate Studies for the M.S. programs.
CSCI-GA.3850 Ph.D. Research Seminar
1 Points. Graduate-level. Fall, Spring.
Prerequisites: Permission of the instructor.
Graduate seminars serve as loosely structured forums for exploring research topics from broad areas of computer science. They are designed to foster dialogue by bringing together faculty and students from a given area and to encourage the exchange of ideas. As such, they bridge the gap between more structured course offerings and informal research meetings. Subject matter varies by section.CSCI-GA.3860 Ph.D. Thesis Research
1 - 12 Points. Graduate-level. Fall, Spring.
Prerequisites: Permission of the thesis adviser or director of graduate studies for the Ph.D. program.
CSCI-UA.0001 Computers in Society
4 Points. Undergraduate-level. Spring.
Prerequisites: No prior computing experience is assumed. Not intended for computer science majors.
Addresses the impact of the digital computer on individuals, organizations, and modern society as a whole, and the social, political, and ethical issues involved in the computer industry. Topics change to reflect changes in technology and current events. Features guest lecturers from various fields.CSCI-UA.0002 Introduction to Computer Programming
4 Points. Undergraduate-level. Fall, Spring, Summer.
Prerequisites: Three years of high school mathematics or equivalent. No prior computing experience is assumed. Students with any programming experience should consult with the department before registering. Students who have taken or are taking Introduction to Computer Science (CSCI-UA 101) will not receive credit for this course. Does not count toward the computer science major; serves as the prerequisite for students with no previous programming experience who want to continue into CSCI-UA 101 and pursue the major.
A gentle introduction to the fundamentals of computer programming, which is the foundation of computer science. Students design, write, and debug computer programs. No knowledge of programming is assumed.CSCI-UA.0004 Introduction to Web Design & Computer Principles
4 Points. Undergraduate-level. Fall, Spring, Summer.
Prerequisites: Three years of high school mathematics or equivalent. No prior computing experience is assumed. Students with computing experience should consult with the department before registering.
Introduces students to both the practice of web design and the basic principles of computer science. The practice component covers not only web design but also current graphics and software tools. The principles section includes an overview of hardware and software, the history of computers, and a discussion of the impact of computers and the Internet.CSCI-UA.0060 Database Design and Web Implementation
4 Points. Undergraduate-level. Spring.
Prerequisites: Introduction to Computer Programming (CSCI-UA 2) and Introduction to Web Design & Computer Principles (CSCI-UA 4).
Introduces principles and applications of database design. Students learn to use a relational database system, learn web implementations of database designs, and write programs in SQL. Students explore principles of database design and apply those principles to computer systems in general and in their respective fields of interest.CSCI-UA.0061 Web Development and Programming
4 Points. Undergraduate-level. Fall, Spring.
Prerequisites: Introduction to Computer Programming (CSCI-UA 2) and Introduction to Web Design & Computer Principles (CSCI-UA 4).
Provides a practical approach to web technologies and programming. Students build interactive, secure, and powerful web programs. Covers client and server side technologies for the web.CSCI-UA.0101 Introduction to Computer Science
4 Points. Undergraduate-level. Fall, Spring.
Prerequisites: Introduction to Computer Programming (CSCI-UA 2) or departmental permission assessed by placement exam.
How to design algorithms to solve problems and how to translate these algorithms into working computer programs. Experience is acquired through projects in a high-level programming language. Intended primarily for computer science majors but also suitable for students of other scientific disciplines. Programming assignments.CSCI-UA.0102 Data Structures
4 Points. Undergraduate-level. Fall, Spring.
Prerequisites: Introduction to Computer Science (CSCI-UA 101).
Use and design of data structures, which organize information in computer memory. Stacks, queues, linked lists, binary trees: how to implement them in a high-level language, how to analyze their effect on algorithm efficiency, and how to modify them. Programming assignments.CSCI-UA.0201 Computer Systems Organization
4 Points. Undergraduate-level. Fall, Spring.
Prerequisites: Data Structures (CSCI-UA 102).
Covers the internal structure of computers, machine (assembly) language programming, and the use of pointers in high-level languages. Topics include the logical design of computers, computer architecture, the internal representation of data, instruction sets, and addressing logic, as well as pointers, structures, and other features of high-level languages that relate to assembly language. Programming assignments are in both assembly language and other languages.CSCI-UA.0202 Operating Systems
4 Points. Undergraduate-level. Fall, Spring.
Prerequisites: Computer Systems Organization (CSCI-UA 201).
Covers the principles and design of operating systems. Topics include process scheduling and synchronization, deadlocks, memory management (including virtual memory), input/output, and file systems. Programming assignments.CSCI-UA.0310 Basic Algorithms
4 Points. Undergraduate-level. Fall, Spring.
Prerequisites: Data Structures (CSCI-UA 102) and Discrete Mathematics (MATH-UA 120).
Introduction to the study of algorithms. Presents two main themes: designing appropriate data structures and analyzing the efficiency of the algorithms that use them. Algorithms studied include sorting, searching, graph algorithms, and maintaining dynamic data structures. Homework assignments, not necessarily involving programming.CSCI-UA.0330 Introduction to Computer Simulation
4 Points. Undergraduate-level. Spring.
Prerequisites: A grade of C or higher in MATH-UA 121 Calculus I or MATH-UA 212 Math for Economics II (for Economics majors) and PHYS-UA 11 General Physics.
In this course, students will learn how to do computer simulations of such phenomena as orbits (Kepler problem and N-body problem), epidemic and endemic disease (including evolution in response to the selective pressure of a malaria), musical stringed instruments (piano, guitar, and violin), and traffic flow in a city (with lights, breakdowns, and gridlock at corners). The simulations are based on mathematical models, numerical methods, and Matlab programming techniques that will be taught in class. The use of animations (and sound where appropriate) to present the results of simulations will be emphasized.CSCI-UA.0380 Topics of General Computing Interest
4 Points. Undergraduate-level. Fall, Spring.
Prerequisites: Topics determine prerequisites.
Detailed descriptions available when topics are announced. Typical offerings include Computing in the Humanities and Arts and Introduction to Flash Programming. Does not count toward the computer science major.CSCI-UA.0421 Numerical Computing
4 Points. Undergraduate-level. Spring.
Prerequisites: Computer Systems Organization (CSCI-UA 201), either Calculus I (MATH-UA 121) or both of Mathematics for Economics I and II (MATH-UA 211 and 212), and Linear Algebra (MATH-UA 140), or permission of instructor.
The need for floating-point arithmetic, the IEEE floating-point standard, and the importance of numerical computing in a wide variety of scientific applications. Fundamental types of numerical algorithms: direct methods (e.g., for systems of linear equations), iterative methods (e.g., for a nonlinear equation), and discretization methods (e.g., for a differential equation). Numerical errors: can you trust your answers? Uses graphics and software packages such as Matlab. Programming assignments.
CSCI-UA.0436 Computer Architecture
4 Points. Undergraduate-level. Fall.
Prerequisites: Computer Systems Organization (CSCI-UA 201) and Discrete Mathematics (MATH-UA 120).
The structure and design of computer systems. Basic logic modules and arithmetic circuits. Control unit design and structure of a simple processor; speed-up techniques. Storage technologies and structure of memory hierarchies; error detection and correction. Input/output structures, busses, programmed data transfer, interrupts, DMA, and microprocessors. Discussion of various computer architectures; stack, pipeline, and parallel machines; and multiple functional units.CSCI-UA.0453 Theory of Computation
4 Points. Undergraduate-level. Fall.
Prerequisites: Basic Algorithms (CSCI-UA 310).
A mathematical approach to studying topics in computer science, such as regular languages and some of their representations (deterministic finite automata, nondeterministic finite automata, regular expressions) and proof of nonregularity. Context-free languages and pushdown automata; proofs that languages are not context-free. Elements of computability theory. Brief introduction to NP-completeness.CSCI-UA.0468 UNIX Tools
4 Points. Undergraduate-level.
Prerequisites: Computer Systems Organization (CSCI-UA 201).
Examines UNIX as an operating system and covers the sophisticated UNIX programming tools available to users and programmers. Shell and Perl scripting are studied in detail. Other topics include networking, system administration, security, and UNIX internals.CSCI-UA.0470 Object-Oriented Programming
4 Points. Undergraduate-level. Fall.
Prerequisites: Computer Systems Organization (CSCI-UA 201).
Introduces the important concepts of object-oriented design and languages, including code reuse, data abstraction, inheritance, and dynamic overloading. Covers in depth those features of Java and C++ that support object-oriented programming and gives an overview of other object-oriented languages of interest. Significant programming assignments stressing object-oriented design.CSCI-UA.0472 Artificial Intelligence
4 Points. Undergraduate-level. Spring.
Prerequisites: Computer Systems Organization (CSCI-UA 201) and Basic Algorithms (CSCI-UA 310).
Many cognitive tasks that people can do easily and almost unconsciously have proven extremely difficult to program on a computer. Artificial intelligence tackles the problem of developing computer systems that can carry out these tasks. Focus is on three central areas in AI: representation and reasoning, machine learning, and natural language processing.CSCI-UA.0478 Introduction to Cryptography
4 Points. Undergraduate-level. Fall, Spring.
Prerequisites: Basic Algorithms (CSCI-UA 310).
An introduction to the principles and practice of cryptography and its application to network security. Topics include symmetric-key encryption (block ciphers, modes of operations, AES), message authentication (pseudorandom functions, CBC-MAC), public-key encryption (RSA, ElGamal), digital signatures (RSA, Fiat-Shamir), and authentication applications (identification, zero-knowledge).CSCI-UA.0480 Special Topics in Computer Science
4 Points. Undergraduate-level. Fall, Spring.
Prerequisites: Topics determine prerequisites.
Detailed course descriptions are available when advanced topics are announced each semester. Typical offerings include, but are not limited to, Bioinformatics, Building Robots, Computer Graphics, Machine Learning, Network Programming, Computer Vision, and Multimedia for Majors.CSCI-UA.0520 Undergraduate Research
4 Points. Undergraduate-level. Fall.
Prerequisites: Permission of the department.
The student is supervised by a faculty member actively engaged in research, possibly leading to results publishable in the computer science literature. A substantial commitment to this work is expected. The research project may be one or two semesters, to be determined in consultation with the faculty supervisor. Students taking this course for honors in computer science are required to write an honors thesis. All other students need to submit a write-up of the research results at the conclusion of the project.CSCI-UA.0521 Undergraduate Research
4 Points. Undergraduate-level. Spring.
Prerequisites: Permission of the department.
The student is supervised by a faculty member actively engaged in research, possibly leading to results publishable in the computer science literature. A substantial commitment to this work is expected. The research project may be one or two semesters, to be determined in consultation with the faculty supervisor. Students taking this course for honors in computer science are required to write an honors thesis. All other students need to submit a write-up of the research results at the conclusion of the project.CSCI-UA.0897 Internship
1 - 4 Points. Undergraduate-level. Fall.
Prerequisites: Restricted to declared computer science majors. Internship credit does not count toward major requirements, but does apply toward completion of the CAS degree.
An internship in computer science is an excellent complement to formal course work. We strongly recommend that students have some practical training along with their classroom experience, so they can explore different career options and gain hands-on experience. An internship is for majors only, and students must have maintained an overall GPA of 3.0 and a computer science GPA of 3.5. The internship will be graded.CSCI-UA.0898 Internship
1 - 4 Points. Undergraduate-level. Spring.
Prerequisites: Restricted to declared computer science majors. Internship credit does not count toward major requirements, but does apply toward completion of the CAS degree.
An internship in computer science is an excellent complement to formal course work. We strongly recommend that students have some practical training along with their classroom experience, so they can explore different career options and gain hands-on experience. An internship is for majors only, and students must have maintained an overall GPA of 3.0 and a computer science GPA of 3.5. The internship will be graded.CSCI-UA.0997 Independent Study
2 - 4 Points. Undergraduate-level. Fall.
Prerequisites: Permission of the department. Does not satisfy the major elective requirement.
Students majoring in the department are permitted to work on an individual basis under the supervision of a full-time faculty member in the department if they have maintained an overall GPA of 3.0 and a GPA of 3.5 in computer science and have a study proposal that is approved by the director of undergraduate studies. Students are expected to spend about three to six hours a week on their project.CSCI-UA.0998 Independent Study
2 - 4 Points. Undergraduate-level. Spring.
Prerequisites: Permission of the department. Does not satisfy the major elective requirement.
Students majoring in the department are permitted to work on an individual basis under the supervision of a full-time faculty member in the department if they have maintained an overall GPA of 3.0 and a GPA of 3.5 in computer science and have a study proposal that is approved by the director of undergraduate studies. Students are expected to spend about three to six hours a week on their project.FRSEM-UA.0385 Computational Thought
4 Points. Undergraduate-level. Fall.
Prerequisites: AP calculus, discrete mathematics, or programming experience.
Computational technology and methods lie at the core of modern science, commerce, entertainment, and, regrettably, war. There are very powerful ideas underlying the field that have roots in mathematics, linguistics, engineering, and even philosophy. Some of its greatest inventions were born in cafés or as responses to a puzzle. Some recent algorithmic methods come from studying ants and evolution. This course introduces computational thinking as it builds on logic, linguistics, heuristics, artificial intelligence, and biological computing. The learning style combines straight lecture, interactive discussions of puzzles and games, and short computer programs (in the programming language Python which you will learn). Students make a few presentations during the semester about topics such as the solutions to computationally motivated puzzles, the relative power of linguistic descriptions, and their very own simulations of either an auction or a multi-bank elevator. The goal is for students to learn to think about computation from multiple perspectives and to synthesize those perspectives when faced with unsolved challenges.MAINT-GA.4747 Maintenance of Matriculation
Points. Graduate-level. Fall, Spring.
Prerequisites: None
Section 1 is for MS students. Section 4 is for non-supported PhD students.