SCAF: Simplicial Complex Augmentation Framework for Bijective Maps

Zhongshi Jiang, New York University
Scott Schaefer, Texas A&M University
Daniele Panozzo, New York University
Maps
Maps
Maps

Simplicial Complex Augmentation Framework for Bijective Maps

Zhongshi Jiang
Maps

Simplicial Complex Augmentation Framework for Bijective Maps

Zhongshi Jiang
Maps

Simplicial Complex Augmentation Framework for Bijective Maps

Zhongshi Jiang
Better Maps
Better Maps
Better Maps
Better Maps

Distortion

Simplicial Complex Augmentation Framework for Bijective Maps
Better Maps

Simplicial Complex Augmentation Framework for Bijective Maps

Zhongshi Jiang
Better Maps
Better Maps

Simplicial Complex Augmentation Framework for Bijective Maps

Zhongshi Jiang
Better Maps

Simplicial Complex Augmentation Framework for Bijective Maps

Zhongshi Jiang
Overlapping
Overlapping
Overlapping
Overlapping

Local Flip
Overlapping

Local Flip

Simplicial Complex Augmentation Framework for Bijective Maps
Overlapping

Local Flip
Overlapping

Local Flip
Overlapping

Local Flip
Overlapping

Local Flip

Global Overlap
Simplicial Complex Augmentation Framework for Bijective Maps

Locally Injective Maps

Results

Bijective Maps

Comparisons

Zhongshi Jiang
Locally Injective Maps

Results

Bijective Maps

Comparisons
Bijective Condition: Local

\[\text{det}(\Delta) > 0 \quad \forall \Delta \in \mathcal{M} \]
Symmetric Dirichlet Energy

Reference Triangle

J
Symmetric Dirichlet Energy

Reference Triangle

\[J \]

\[\infty \quad 2 \quad 4 \]

Simplicial Complex Augmentation Framework for Bijective Maps

Zhongshi Jiang
Symmetric Dirichlet Energy

\[E = \|J\|_F^2 + \|J^{-1}\|_F^2 \]
Symmetric Dirichlet Energy

\[E = \|J\|_F^2 + \|J^{-1}\|_F^2 \]

\[= \sigma_1^2 + \sigma_2^2 + \sigma_1^{-2} + \sigma_2^{-2} \]
Locally Injective Mappings

Simplicial Complex Augmentation Framework for Bijective Maps

Zhongshi Jiang

[CM: Shtengel et al 2017]

[SLIM: Rabinovich et al 2017]

[LIM: Schueller et al 2013]

[AKVP: Claci et al 2016]

[AQP: Kovalsky et al 2016]
Scalable Locally Injective Mappings

\[\mathcal{B}[X_{k-1}](x) \]

Rotation Invariance Energies

[Rabinovich et al 2017]
Scalable LocallyInjective Mappings

\[\mathcal{P}(x_{k-1})(x) \]

Rotation Invariance Energies

[Rabinovich et al 2017]
Scalable Locally Injective Mappings

Rotation Invariance Energies

[Rabinovich et al 2017]

Simplicial Complex Augmentation Framework for Bijective Maps
Zhongshi Jiang
Scalable Locally Injective Mappings

\[X_k = \operatorname{argmin}_x \mathcal{Y}[X_{k-1}](x) \]

Rotation Invariance Energies

[Rabinovich et al 2017]
Locally Injective Maps

Bijective Maps

Results

Comparisons
Bijective Condition: Global

\[\Delta_1 \cap \Delta_2 = \emptyset \]
\[\forall (\Delta_1, \Delta_2) \in \mathcal{M} \times \mathcal{M} \]
Bijective Maps: Smith and Schaefer 2015

- Collision Detection on Boundary
- Local Support Energy
Scaffold: Natural Collision Detector
Scaffold: Natural Collision Detector
Scaffold Pipeline

[Zhang et al 2005]
Scaffold Pipeline

[Zhang et al 2005]

[Tutte 1963]
Scaffold Pipeline

- Build Scaffold

[Zhang et al 2005]

[Tutte 1963]
Scaffold Pipeline

- Tutte Embedding
- Build Scaffold
- Valid Interior Deformation
Scaffold Restricts
More Progressive [Müller et al 2015]
More Progressive [Müller et al 2015]

- Start from Identity
More Progressive [Müller et al 2015]

- Start from Identity
- Deform Arbitrarily
More Progressive [Müller et al 2015]

- Start from Identity
 - Deform Arbitrarily
 - Bounce Back
More Progressive [Müller et al 2015]

- Start from Identity
- Deform Arbitrarily
- Bounce Back
More Progressive [Müller et al 2015]

• Start from Identity
 • Deform Arbitrarily
 • Bounce Back
Scaffold

Simplicial Complex Augmentation Framework for Bijective Maps

Zhongshi Jiang
Scaffold Helps

global
Scaffold Helps
SCAF Helps
SCAF: Simplicial Complex Augmentation Framework for Bijective Maps

• Previous
 • Local Knowledge
 • Collision Detection
SCAF: Simplicial Complex Augmentation Framework for Bijective Maps

- Scaffold Optimization
 - Global Knowledge
 - Collision Resolution
SCAF: Simplicial Complex Augmentation Framework for Bijective Maps

• Scaffold Optimization
 • Global Knowledge
 • Collision Resolution
SCAF: Simplicial Complex Augmentation Framework for Bijective Maps

• Scaffold Optimization
 • Global Knowledge
 • Collision Resolution
SCAF: Simplicial Complex Augmentation Framework for Bijective Maps

- Scaffold Optimization
 - Global Knowledge
 - Collision Resolution
SCAF: Simplicial Complex Augmentation Framework for Bijective Maps

- Scaffold Optimization
 - Global Knowledge
 - Collision Resolution
SCAF: Simplicial Complex Augmentation Framework for Bijective Maps

- Scaffold Optimization
 - Global Knowledge
 - Collision Resolution
SCAF: Simplicial Complex Augmentation Framework for Bijective Maps

- Scaffold Optimization
 - Global Knowledge
 - Collision Resolution
SCAF: Simplicial Complex Augmentation Framework for Bijective Maps

- Scaffold Optimization
 - Global Knowledge
 - Collision Resolution

\[E = E_M + E_S \]
SCAF: Simplicial Complex Augmentation Framework for Bijective Maps

- Scaffold Optimization
 - Global Knowledge
 - Collision Resolution

\[E = E_M + E_S \]
Formulation

\[E_M(X) \]

coordinates
Formulation

\[E_M(X) \]

coordinates
Formulation

\[E_M(X) + E_{S^*}(X) \]

coordinates
Formulation

\[X^* = \arg\min_X E_M(X) + E_{S^*}(X) \]
Formulation

$$\min_{X_k} E(X_k) = E_M(X_k) + E_{S_{k-1}}(X_k) \text{ from } X_{k-1}$$

$$E = E_M + E_S$$
Formulation

\[\min_{X_k} E(X_k) = E_M(X_k) + E_{S_{k-1}}(X_k) \text{ from } X_{k-1} \]

\[E = E_M + E_S \]
Formulation

\[
\min_{X_k} E(X_k) = E_M(X_k) + E_{S_{k-1}}(X_k) \text{ from } X_{k-1}
\]

\[
E = E_M + E_S
\]
Formulation

\[\min_{X_k} E(X_k) = E_M(X_k) + E_{S_{k-1}}(X_k) \] from \(X_{k-1} \)

\[E = E_M + E_S \]
Formulation

\[
\min_{X_k} E(X_k) = E_M(X_k) + E_{S_{k-1}}(X_k) \text{ from } X_{k-1}
\]

\[
S_k = \text{Update}(X_k) \text{ from } S_{k-1}
\]

\[
E = E_M + E_S
\]
Triangulation

- Local Update
- Edge Flip [Zhang et al. 2005, Müller et al. 2015]

$$S_k = \text{Update}(X_k) \quad \text{from} \quad S_{k-1}$$
Triangulation

- Local Update
- Edge Flip

$S_k = \text{Update}(X_k)$ from S_{k-1}

[Zhang et al. 2005, Müllner et al. 2015]
Triangulation

- **Local Update**
- **Edge Flip**

\[S_k = \text{Update}(X_k) \text{ from } S_{k-1} \]
Triangulation

• Direct reconstruct
• Coarse
Triangulation

• Direct reconstruct
• Coarse
Triangulation

• Direct reconstruct
• Coarse
Triangulation

- Direct reconstruct
- Coarse
Triangulation

- Direct reconstruct
- Coarse
Triangulation

- Direct reconstruct
- Coarse
Triangulation

• Direct reconstruct
• Coarse
Triangulation

- Direct reconstruct
- Coarse
Triangulation

- Direct reconstruct
- Coarse
Locally Injective Maps

Bijective Maps

Results

Comparisons
Result
Robustness

• **Global Parameterization Dataset** [Myles et al. 2014]

• **119 meshes cut by** [Bommes et al. 2009] [Myles et al. 2014]
Robustness

• Global Parameterization Dataset [Myles et al. 2014]
• 119 meshes cut by [Bommes et al. 2009] [Myles et al. 2014]
Simplicial Complex Augmentation Framework for Bijective Maps
Simplicial Complex Augmentation Framework for Bijective Maps
Simplicial Complex Augmentation Framework for Bijective Maps
Volume

- Same Formulation
- Different Tessellation
 - TetGen [Si 2015]
 - Local Operations [Klinger 2009]
• Same Formulation
• Different Tessellation
 • TetGen [Si 2015]
 • Local Operations [Klinger 2009]
Volume

- Same Formulation
- Different Tessellation
 - TetGen [Si 2015]
 - Local Operations [Klinger 2009]
Locally Injective Maps

Bijective Maps

Results

Comparisons
Quality

Simplicial Complex Augmentation Framework for Bijective Maps

Zhongshi Jiang
Quality

9K faces
Quality

9K faces
Quality

9K faces

[Smith and Schaefer 2015]: 2 hour 20 min
Quality

[Smith and Schaefer 2015]: 2 hour 20 min

< 2 min

9K faces
Efficiency

80K faces
Efficiency

80K faces
Efficiency

< 40 min
Efficiency

Over 5 days!

< 40 min
Efficiency

Over 5 days!

< 40 min
Scalability

- Inherited from SLIM [Rabinovich et al. 2017]
Limitations

- Local Minimum
- Valid Initialization
 - Easy in 2D
 - Hard in 3D
- Implementation in 3D
 - Less Efficient
 - More Involved
SCAF: Simplicial Complex Augmentation Framework for Bijective Maps

Efficient

Robust

Scalable

Simplicial Complex Augmentation Framework for Bijective Maps

Zhongshi Jiang
The authors acknowledge funding from the NSF CAREER awards IIS-1652515 and IIS-1148976, and a gift from Adobe. We would like to thank Michael Rabinovich and Roi Poranne for providing the source code and Lucy models for [Rabinovich et al. 2017], Leonardo Sacht for providing the source code and Leg model for [Sacht et al. 2013], and the anonymous reviewers for their insightful comments and suggestions.

https://github.com/jiangzhongshi/scaffold-map