
Progressive Embedding

HANXIAO SHEN, New York University
ZHONGSHI JIANG, New York University
DENIS ZORIN, New York University
DANIELE PANOZZO, New York University

Tutte embedding is one of the most common building blocks in geome-

try processing algorithms due to its simplicity and provable guarantees.

Although provably correct in infinite precision arithmetic, it fails in chal-

lenging cases when implemented using floating point arithmetic, largely

due to the induced exponential area changes.

We propose Progressive Embedding, with similar theoretical guarantees

to Tutte embedding, but more resilient to the rounding error of floating

point arithmetic. Inspired by progressive meshes, we collapse edges on

an invalid embedding to a valid, simplified mesh, then insert points back

while maintaining validity. We demonstrate the robustness of our method

by computing embeddings for a large collection of disk topology meshes.

By combining our robust embedding with a variant of the matchmaker

algorithm, we propose a general algorithm for the problem of mapping

multiply connected domains with arbitrary hard constraints to the plane,

with applications in texture mapping and remeshing.

CCS Concepts: • Computing methodologies → Shape modeling.

ACM Reference Format:
Hanxiao Shen, Zhongshi Jiang, Denis Zorin, and Daniele Panozzo. 2019.

Progressive Embedding. ACM Trans. Graph. 38, 4, Article 32 (July 2019),

13 pages. https://doi.org/10.1145/3306346.3323012

1 INTRODUCTION
Piecewise linear surface-to-plane maps, or parametrizations, are

ubiquitous in computer graphics, geometry processing, mechanical

engineering, and scientific visualization. Depending on the appli-

cations, the maps are required to exhibit different properties, most

commonly, low distortion, local injectivity, and global bijectivity.

The last two properties are challenging to guarantee for discrete

maps. Most algorithms with guarantees use Tutte embedding as a

component. Tutte embedding is a construction that is guaranteed

to create bijective mappings under minimal assumptions, if both do-

mains are simply connected and the target planar domain is convex.

However, the guarantee only holds if the computation is performed

in arbitrary precision rather than floating point arithmetic, as it is

commonly done. Failure due to floating point approximation is not

as uncommon as one would assume, as the algorithm is likely to

create an extreme variation of scale and aspect ratios in complex

This work was supported in part through the NYU IT High Performance Computing

resources, services, and staff expertise. This work was partially supported by the NSF

CAREER award with number 1652515, the NSF grant IIS-1320635, the NSF grant DMS-

1436591, the NSF grant 1835712, a gift from Adobe Research, and a gift from nTopology.

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than the

author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or

republish, to post on servers or to redistribute to lists, requires prior specific permission

and/or a fee. Request permissions from permissions@acm.org.

© 2019 Copyright held by the owner/author(s). Publication rights licensed to ACM.

0730-0301/2019/7-ART32 $15.00

https://doi.org/10.1145/3306346.3323012

Fig. 1. The Tutte embedding of this Hele-Shaw polygon (left) contains 46
flipped triangles, due to numerical rounding errors. Our progressive embed-
ding (right) produces a valid embedding, without any inverted element and
with lower distortion. The colors represent the distortion of the triangles,
measured using the symmetric Dirichlet energy.

mapping cases. To quantitatively evaluate this issue, we computed

Tutte embeddings on 2718 models (all the genus 0 models from

Thingi10k [Zhou and Jacobson 2016]) using double precision, and

observed 80 failures. To the best of our knowledge, this problem has

not been addressed before in the literature.

This rate of failure is problematic for batch processing large ge-

ometrical collections (for example for processing geometric deep

learning datasets) or when the embedding has to be computed many

times (for example in cross-parametrization [Kraevoy et al. 2003;

Schreiner et al. 2004]). In these scenarios, a failure rate of 2.9% may

not be tolerable, since it is not realistic to manually fix hundreds

of problematic cases, and if failure happens on large meshes with

millions of triangles it might not even be possible to fix them by

hand.

A simple solution to this problem is the use of multi-precision

(or rational) arithmetic [Granlund 2018]: if enough bits are used to

represent the mantissa and exponent of the floating point represen-

tation, Tutte embedding will succeed, since the solution of a linear

system can be computed exactly. However, the result in high preci-

sion is not directly usable by downstream applications, and requires

to be rounded (or “snapped” [Halperin and Packer 2002]) to floating

point coordinates. This is a surprisingly challenging problem for

which, to the best of our knowledge, no solution applicable to our

setting exists (Section 3.1).

Instead, we propose a progressive algorithm to directly generate

an embedding using floating point coordinates. We start from an

initial, possibly invalid, floating point planar parametrization, and

ACM Trans. Graph., Vol. 38, No. 4, Article 32. Publication date: July 2019.

https://doi.org/10.1145/3306346.3323012
https://doi.org/10.1145/3306346.3323012

32:2 • Hanxiao Shen, Zhongshi Jiang, Denis Zorin, and Daniele Panozzo

we make it valid by collapsing all flipped and degenerate parts

of the (possibly invalid) embedding produced, e.g., by a floating-

point Tutte algorithm. We re-insert one vertex of the original mesh

at a time, preserving the validity of the map at every step. This

approach is inspired by [Schreiner et al. 2004], which proposes a

progressive algorithm for computing cross-parametrizations based

on progressive meshes [Hoppe 1996]. Our algorithm differs since

we do not know a valid position for the inserted vertices, and we

thus have to compute it as the vertices are added back. We provide

a formal proof of correctness of our method in arbitrary precision

(obtaining the same formal guarantees as Tutte embedding), and we

practically demonstrate its superior robustness by parametrizing a

large collection of 10k models.

Using our new embeddingmethod and thematchmaker algorithm

[Kraevoy and Sheffer 2004; Kraevoy et al. 2003] as a foundation,

we develop an algorithm for mapping between multiply-connected

domains with arbitrary constraints, supporting fully general self-

overlapping domains as the target. We experimentally show that our

algorithm is very robust, producing valid and distortion-optimized

maps even for challenging cases where the original matchmaker

algorithm fails due to numerical problems. We demonstrate the prac-

tical utility of our algorithm for UV mapping and quadrangulation

applications.

To foster replicability of results and to maximize the practical

impact of our algorithm, we also attach a reference implementation.

https://github.com/hankstag/progressive_embedding

2 RELATED WORK

2.1 Planar Embedding of Graphs and Meshes
Fary’s theorem [Fáry 1948] states that any planar graph can be

embedded in the plane with straight edges. Tutte [Tutte 1963] ex-

tends this result to the case of fixed convex boundary with a spring

analogue, and [Floater 1997] established its connection to the param-

eterization methods in the geometry processing community, and

extend Tutte’s uniform weight to arbitrary positive ones. In both

cases, the problem is reduced to solving a linear system of equations

and the resulting embeddings’ minimum area might even be nega-

tive exponential with respect to the number of vertices. There has

been active effort in the graph drawing community to address these

issues, by bounding the total area when drawing on integer grids, or

equivalently, controlling the minimum resolution [Chambers et al.

2011] under fixed diameter. Most notably, [Schnyder 1990] shows

an algorithm to embed a planar graph onto integer grids inside a

triangle region, and [Chambers et al. 2011] proves an upper polyno-

mial bound on the area while keeping a specified convex boundary

shape: the proof is constructive and may (potentially) be used as a

basis for a practical algorithm. In all cases, rounding problems will

affect these algorithms as the size of the graph grows (Section 3.1).

Orbifold Tutte Embedding. Multiple extensions of Tutte’s theorem

to map surfaces to different co-domains have been proposed. In

particular, the theorem has been extended to map surfaces to a

Euclidean orbifold [Aigerman and Lipman 2015], to a hyperbolic

orbifold [Aigerman and Lipman 2016], and to a spherical orbifold

[Aigerman et al. 2017]. All three methods support hard positional

constraints and ensure the generation of a bijective map between

the surface and the orbifold in infinite precision arithmetic. These

methods also suffer from similar numerical issue as Tutte’s, and

extending our algorithm to orbifold embeddings is an interesting

direction for future work.

2.2 Progressive Meshes
The well-known progressive meshes algorithm [Hoppe 1996; Sander

et al. 2001] shows how a triangle mesh can be simplified by col-

lapsing one edge at a time, and reconstructed applying the inverse

topological operations in the inverse order. This scheme has been

introduced as an efficient way to store, transmit, and render large

meshes, where the per-vertex properties of the removed vertex are

stored together with the information required to insert them back.

This work has been later applied to compute inter-surface mappings

[Schreiner et al. 2004], by jointly simplifying two meshes into a

common base mesh, then starting from optimizing their isometric

distortion while reinserting the vertices in the base mesh.

We use the same idea to eliminate problematic regions of an

existing embedding (either flipped, or with a high distortion), and

then reinserting one vertex at a time, while preserving the quality

of the triangulation. Differently from progressive meshes, in our

case we do not have geometrical information available that could

help us decide where the vertex should be inserted to obtain a valid

embedding.

2.3 Distortion-Minimizing Mappings
In this section, we focus on the recent works closely related to gen-

erating distortion-minimizing discrete locally injective and globally

bijective discrete maps, and we refer to [Floater and Hormann 2005;

Hormann et al. 2007; Sheffer et al. 2006] for a comprehensive treat-

ment of earlier parametrization methods without these properties.

A discrete locally injective map requires that triangles maintain

their orientation (i.e. they do not flip) and if the sum of (unsigned)

triangle angles around each internal vertex is precisely 2π [Weber

and Zorin 2014]. Threemain families ofmethods have been proposed

to deal with this challenging constraint: barrier, convexification, and

hybrid algorithms.

Barrier Algorithms. Barrier algorithms require a valid initial so-

lution, and then optimize its quality without leaving the feasible

space. The key idea is to adopt quality metrics diverging to infinity

when triangles become degenerate, thus inhibiting flips. Popular

choices strive to preserve angles [Degener et al. 2003; Hormann

and Greiner 2000] or lengths [Aigerman et al. 2014; Poranne and

Lipman 2014; Sander et al. 2001; Smith and Schaefer 2015; Sorkine

et al. 2002]. Alternatively, a barrier functions can be added to exist-

ing energies to enforce local injectivity [Schüller et al. 2013]. These

non-linear energies are difficult to minimize, stemming a series of

methods specifically targeting this problem. They include coordi-

nate descent [Hormann and Greiner 2000; Labsik et al. 2000], parallel

gradient descent [Fu et al. 2015], Anderson Acceleration [Peng et al.

2018], as well as other quasi-newton approaches [Claici et al. 2017;

Kovalsky et al. 2016; Liu et al. 2018; Rabinovich et al. 2017; Shtengel

et al. 2017; Smith and Schaefer 2015; Zhu et al. 2018].

All these methods support hard-constraints if they are already

satisfied in the initial map, which is the key idea used inMatchMaker

ACM Trans. Graph., Vol. 38, No. 4, Article 32. Publication date: July 2019.

https://github.com/hankstag/progressive_embedding

• 32:3

[Kraevoy et al. 2003]. Our progressive embedding can be used to

robustly generate the initial map, that can then be improved by any

of the previous techniques (Section 5).

Projection Algorithms. An essential component of these methods

is a convexified form of the injectivity constraints [Kovalsky et al.

2015; Lipman 2012]. While these methods naturally support hard

injectivity constraints, they might fail to find a feasible solution,

with no output generated. The only known way to guarantee that a

feasible solution exists is to formulate the convexified constraints

using a reference frame derived from a valid (although potentially

very high distortion) solution.

Hybrid Algorithms. Hybrid algorithms are an interesting mix

between these two approaches [Fu and Liu 2016; Poranne et al.

2017]. The initial guess is produced by separating all triangles and

isometrically rotating them into the UV space. A barrier method is

then used to prevent them from flipping, while trying to seal the

seams. This approach might fail to seal all the seams, not producing

a valid map.

Globally Bijective Maps. For simply connected domains, bijective

maps are locally injective maps whose boundary does not intersect.

All embeddings described in Section 2.1 satisfy this property. These

methods have been extended to non-convex, self-overlapping poly-

gons [Weber and Zorin 2014] and polyhedrons [Campen et al. 2016],

but they still require a fixed boundary. Few methods can produce

bijective maps while letting the boundary free, relying on either col-

lision detection [Smith and Schaefer 2015] or scaffolding elements

[Gotsman and Surazhsky 2001; Jiang et al. 2017; Müller et al. 2015;

Zhang et al. 2005]. All free boundary methods require a starting

point: our algorithm can be used to generate it, enabling these al-

gorithms to create bijective maps with hard constraints (Section

4).

Hard Positional Constraints and Refinement. Matchmaker [Kraevoy

et al. 2003] introduced hard positional constraints for texture map-

ping applications. The algorithm uses a two-step approach, first

generating a valid map, and then optimizing its geometrical quality.

The method is one of the few using refinement to guarantee the

existence of feasible solutions. The method has been extended by

adding an intermediate warping stage to align the constraints in

[Lee et al. 2008]. We show in section 4 how our embedding can

be used withtin Matchmaker to increase its robustness, and we

also show how to extend Matchmaker to support self-overlapping

polygonal target domains.

Cross-Parametrization. Cross-parametrization, i.e. the computa-

tion of a map between two surfaces, is another problem that often

relies on planar embeddings. [Schreiner et al. 2004] and [Kraevoy

and Sheffer 2004] proposed the first provably guaranteed solutions

to compute maps between surfaces, by reducing the problem to

mapping both surfaces to a common subdomain by either using

Tutte’s embedding or a simplification approach. A similar construc-

tion that cuts open the surface into a single topological disc has

been proposed in [Aigerman et al. 2014], and extended to allow even

the optimization of the seams positions in [Aigerman et al. 2015].

Floating point rounding errors have not been considered in any of

Fig. 2. A selection of failed Tutte’s embedding (left) and our bijective pro-
gressive embeddings (right). Note that the progressive embeddings have a
much lower area distortion (colors).

these works, which are more prone to fail as the resolution of the

mesh increase or whenever the user-provided constraints introduce

a high distortion (Section 5).

Global Parametrization. Field-aligned parametrization methods

[Bommes et al. 2009] strive to compute a locally injective map

[Bommes et al. 2013] whose gradient is aligned with a user-provided

directional field. We refer an interested reader to [Bommes et al.

2012] for a comprehensive overview of these techniques. Our em-

bedding algorithm can be used to compute parametrizations to a

target self-overlapping polygon, enabling to robustly generate these

parametrization if a valid boundary polygon is provided (Section 5).

3 PROGRESSIVE EMBEDDING

3.1 Analysis of Tutte Embedding in Floating Points
We discuss in detail when Tutte embedding implemented in floating

point may fail, and also show that straightforward solutions with

off-the-shelves geometry processing tools do not solve these issues.

Tutte Embedding implemented in Floating Points. We use the im-

plementation of Tutte embedding in libigl [Jacobson et al. 2016],

and apply it to all the 2718 genus 0 models of the Thingi10k dataset

[Zhou and Jacobson 2016], after cleaning them up and improving

their quality using TetWild [Hu et al. 2018], to ensure that no de-

generate triangles are present. We also ensure that the meshes are

3-connected by refining them locally. For every model, we randomly

pick and delete a triangle, and map the resulting boundary to an

equilateral triangle. We compute the Tutte embedding, and check

for flips using CGAL’s exact floating point predicates [Brönnimann

et al. 2018]. The check fails for 80 models, due to the numerical

errors introduced in the mapping. In retrospect, this is not surpris-

ing since it is well-known that Tutte planar drawing may admit

exponential area when drawing on integer grids. Two problematic

cases are shown in Figure 2, where the embedding introduces a

large variation of scale, and the flip occurs on triangles with small

areas.

Multi-Precision Tutte Embedding with Snap Rounding. A straight-

forward way to address this problem is to increase the number of

bits used in the floating point representation. We double the number

of bits using the library MPFR [Fousse et al. 2007], which is directly

ACM Trans. Graph., Vol. 38, No. 4, Article 32. Publication date: July 2019.

32:4 • Hanxiao Shen, Zhongshi Jiang, Denis Zorin, and Daniele Panozzo

Fig. 3. A progressive embedding (right) of the retinal model (left) is gener-
ated starting from a randomized initial parametrization (middle). The red
color indicates the amount of isometric distortion, and yellow indicates
inverted elements. Note that the model is cut open to have disk topology.

integrated into Eigen, and can thus be used with the Tutte embed-

ding in libigl with minimal code changes. With this setup, all the

problematic cases are solved. However, the runtime is increased by

around one order of magnitude, and, most importantly, the results

generated cannot be rounded back to floating point since trivial

rounding introduces flips. Snap rounding [Packer 2018] could be

used to avoid them, but it will collapse possibly large regions of the

mesh: 6.3% of the vertices of the model shown in the bottom left

of Figure 8 are collapsed when using a snap rounding resolution of

10
−16

times the diagonal of the bounding box of the embedding.

Multi-Precision Tutte Embedding with Quality Optimization. The
problem with rounding to floats is induced by the small triangles

(and correspondingly small edges) which leads to flips after snapping.

A possible way to address this issue is to use a mesh optimization

algorithm, using multi-precision representation, before rounding

to floats. We tested two approaches: (1) SLIM [Rabinovich et al.

2017] adapted to run in multiprecision, and (2) minimizing the

symmetric Dirichlet energy by moving one vertex at a time using

coordinate descent [Hormann and Greiner 2000]. The first approach

is prohibitively slow, due to the linear solve in high precision and

the very small steps due to the elements with almost zero area. The

second one succeeds on 57 models, but still fails on 23, even after

24 hours of running time.

3.2 Progressive Embedding
Our approach draws on the ideas of progressive meshes [Hoppe

1996] and inter-surface mappings [Schreiner et al. 2004], which are,

in turn, closely related to theoretical ideas from PL topology (e.g.,

[Hudson and Shaneson 1969]).

Our algorithm does not require Tutte embedding and can be

used to construct an embedding from scratch or from a random

initial mapping (Figure 3). It can be accelerated by using an existing,

possibly invalid, embedding as a starting point. A triangle is invalid

if its signed area is negative, or if its quality measure is below

a threshold (we use the symmetric Dirichlet energy [Smith and

Schaefer 2015] with respect to a canonical equilateral triangle whose

area is the area of the target boundary polygon divided by the

number of triangles and mark invalid if it is above τ = 1e20). Using

a quality measure in addition to signed area is important, since

triangles with small, positive areas might cause numerical problems

during the vertex insertion (Phase 2 below).

Starting from an invalid embedding, our algorithm (1) performs

edge collapses until the simplified mesh has no invalid triangles

Algorithm 1: Collapse Invalid Triangles

Input :Planar meshM
Output :Valid mesh M, and a recorded collapse sequence R

1 invalid_set = set of invalid triangles inM;

2 while invalid_set is not empty do
3 if only one internal vertex left then
4 Set to the barycenter of ∂ M and return
5 for T ∈ invalid_set do
6 for e ∈ T, internal(e) and link(e) do

// Try only internal edges with link condition

satisfied

7 collapse(M, e) and record to R;
8 Remove T from invalid_set;
9 break ; // Try next triangle

10 if nothing got collapsed then
// Expand the set with neighborhoods

11 for T ∈ invalid_set do
12 Add neighbors of T to invalid_set;

Collapse

Insertion

Fig. 4. Collapsing vm to v0 and the corresponding fans of triangles.

(Algorithm 1), and (2) progressively inserts back each vertex in the

same order (Algorithm 2), with feasibility of insertion ensured at

each step.

Stage 1: Simplification. At this stage, we iteratively find an interior
edge that can be collapsed until all invalid elements are removed

from the initial embedding, or a single interior vertex is left (Al-

gorithm 1). A theorem in [Mijatović 2003] and our Theorem A.8

guarantees that a sequence of collapses reducing the mesh to a mesh

Fig. 5. The two admissible insertion positions from Lemma A.11. The dark
region on the left shows the valid positions forvm while fixingv0. The right
case is the opposite. Our algorithm opts for the left case for stability, since
the calculation of the valid sector in the right case involves intersection of
the prolonged edge (dashed lines) and the 1-ring neighbors. We pick the
valid sector as the one that has an inner angle sum smaller than π .

ACM Trans. Graph., Vol. 38, No. 4, Article 32. Publication date: July 2019.

• 32:5

Algorithm 2: Single Vertex Insertion
Input :Mesh M , vm is to be split from v0, with position p0

F = neighboring faces of v0 or vm
V = adjacent vertices of v0 in the valid sector

E = midpoints of edges in the link of v0 in the valid sector

P = a map from the mesh vertices to 2D positions

Output :P with relaxed positions, along with newly assigned P(vm)

1 Loop
2 foreach v ∈ V+E do

// Backtracking line search, from p0 towards P(v), until

F all valid

3 P(vm) = linesearch (p0, P(v));
4 candidate_score = maxf ∈F Energy (f);
5 Record P(vm) if candidate_score < ∞

6 if Record is not empty then // Insertion succeeds

7 Select P(vm) with the minimum candidate_score.;
8 Relax vertex positions with 10 iterations of local smoothing;

9 break;
10 else // Insertion fails, improve quality and try again

11 Relax vertex positions with 50 iterations of local smoothing;

with a single interior vertex can always be found; as the boundary

embedding is convex, we can also always find a position for this

vertex to create a valid embedding for the fully simplified mesh.

The simplification algorithm starts by tagging all invalid triangles

(Line 1), and attempts to collapse all their edges. If this procedure

is successful in eliminating all invalid triangles, the algorithm ter-

minates, otherwise all the triangles adjacent to tagged triangles are

tagged (Line 12), and their edges collapsed. Note that we only allow

edge collapses on internal edges to avoid changes to the boundary.

This algorithm is guaranteed to terminate, since in the worst case

it will tag the entire mesh and Theorem A.8 ensures that at least

one edge will be collapsible. If only one internal vertex is left (Line

4), we move it to the barycenter of the boundary vertices (which

is inside the convex boundary by construction, but might fail in

degenerate cases, as discussed in Section 6). Once the algorithm

terminates, the resulting simplified mesh has no inverted triangles

and by Proposition A.9, also has sums of triangle angles at each

vertex equal to 2π .

Stage 2: Insertion. Starting from the valid embedding computed

after Stage 1, we perform a sequence of splits reverting the collapses,

while maintaining embedding validity at every step (Algorithm

2). Lemma A.11 ensures that this is always possible (in infinite

precision), as the area of each triangle after insertion is always

positive, whenever the newly inserted points lie in the valid sector

(Figure 5). The algorithm first computes candidate directions in

the valid sector, then performs a flip-avoiding line search [Smith

and Schaefer 2015] (Line 3) to find candidate positions P(vm) for

the newly inserted vertex vm , such that the 1-ring neighborhoods

are valid. In our experiments, we use step length α = 0.8, and cap

the number of line search iterations to 75. If at least one candidate

is found, the split is performed using the candidate resulting in a

mesh minimizing the error measured as the maximum of the 1-ring

energy. Since a candidate position always exist in infinite precision

(Lemma A.11), the only possible cause for not finding it is a lack of

Time

E
ne

rg
y

Fig. 6. Max of Symmetric Dirichlet energy per triangle at the insertion stage
of the arch model. Every vertex insertion can decrease the local quality of
the mesh, which is then restored using smoothing. Every peak in the energy
graph corresponds to a vertex insertion.

representation power in the floating point representation. We thus

improve the quality of the mesh (Line 11) until a candidate is found.

This algorithm may still fail to find a candidate in degenerate

configurations. However, we experimentally found that the con-

strained mesh smoothing is very effective at ameliorating this issue,

keeping the mesh quality sufficiently high during the insertion to

allow split operations to succeed (Figure 6). In all our experiments

we only found one failure case, where the prescribed target bound-

ary is a numerically degenerate triangle (Section 6). All our other

experiments, even on a large data set and with complex boundary

conditions (Section 5) were successful.

Local Smoothing. To improve the quality of the map in the inser-

tion step (Algorithm 2, line 8 and 11), we minimize the symmetric

Dirichlet energy [Smith and Schaefer 2015], optimizing one vertex

position at a time using Newton iterations, similarly to [Fu et al.

2015; Hormann and Greiner 2000; Labsik et al. 2000]. We favor this

local approach since it is more robust to low quality elements, which

would otherwise badly affect both the numerical stability and the

step size of global optimization methods. Since our goal is to im-

prove the minimal quality of the mesh, we minimize the symmetric

Dirichlet energy only for the invalid triangles (using reference shape

as an equilateral triangle with area equal to the average of triangles

in the 2D domain), and use the scaffold energy [Jiang et al. 2017] (i.e.

we use the element itself as the reference triangle for the symmetric

Dirichlet energy) for the valid ones, which allows them to move

more freely. In our experiments, the local smoothing is performed

for 10 iterations after every insertion step. If a valid insertion candi-

date cannot be found, we keep improving the quality with batches

of 50 smoothing iterations until a candidate is found (Algorithm

2 line 11). Furthermore, at each smoothing phase, we perform a

greedy coloring of the edge graph [Kucera 1991], and the vertices

inside each color are optimized in parallel.

4 MATCHMAKER++
The computation of locally injective maps is important in geometry

processing (Section 2), with the majority of the methods focusing

on efficient and scalable quality optimization. However, few method

guarantees positional constraints: the notable MatchMaker algo-

rithm [Kraevoy et al. 2003] reduces the problem to a number of

ACM Trans. Graph., Vol. 38, No. 4, Article 32. Publication date: July 2019.

32:6 • Hanxiao Shen, Zhongshi Jiang, Denis Zorin, and Daniele Panozzo

convex planar embeddings, which are computed with Tutte’s algo-

rithm. However, as we observe in some cases (Section 5.2), such

embeddings can be numerically challenging. Replacing Tutte embed-

ding with progressive embedding enables matchmaker to robustly

compute maps with very challenging configurations of constraints.

In this Section, we describe an extension of [Kraevoy et al. 2003]

that (1) makes use of progressive embedding to increase robustness,

and (2) supports weakly self-overlapping polygons as co-domains

[Weber and Zorin 2014].

Overview. Combining our progressive embedding algorithm and

the matchmaker algorithm, we describe an algorithm for solving

the following problem: Given a simply-connected 3d mesh, equipped
with with a set of user-defined hard positional constraints at vertices,
compute a valid piecewise-linear parametrization, such that (1) the
map is valid in the following sense: there are no flipped triangles,
and for each vertex, the map restricted to the one ring of triangle
of that vertex is bijective, unless it is a singular boundary vertex, as
defined below and (2) the parametrization bitwise exactly satisfies the
user-defined positional constraints. We tackle this in three steps: we

decompose the target domain into convex polygonal subdomains,

match these domains to the subdomains of the source domain, com-

pute an initial bijective map by stitching progressive embeddings for

each subdomain, and final globally optimize the mapping distortion.

User input. We distinguish between two cases, chosen by the

user (1) the required map is a global embedding, (2) the map is an

immersion. For the first case, the constraint specification is more

flexible: the user only has to provide a set of point or line constraints.

For the second case, the target domain is not a subset of the plane,

but rather, an everywhere flat surface with overlaps. We require

the user to prescribe constraints for the whole boundary of the

polygon to define the target domain unambiguously (some parts

may be marked as movable, but an initial position is needed) and

to provide a path connecting each point or line constraint to the

boundary, which allows to define its location on the target surface

implied by the boundary specification. In this case, target boundary

polygon has to be weakly self-overlapping [Weber and Zorin 2014],

otherwise, the map does not exist.

Phase 1: Subdivision of the Target Domain. In the global embedding

case, the target domain is generated by triangulating the bound-

ing box of the input with Triangle [Shewchuk 1996]. In the second

case, the self-overlapping domain is triangulated using a modifica-

tion of the Shor-Van Wyck algorithm [Shor and Van Wyk 1992],

described in [Weber and Zorin 2014]. In both cases we ensure that

the hard positional constraints are vertices of the triangulation. We

then merge triangles into convex polygons in a greedy manner, by

dropping edges if the resulting subdomains are convex. While this

merging step is optional (the algorithm works also without it) it

reduces the number of subdomains and vertices, making the next

steps more efficient. In the case when an immersion is computed,

by construction, it will be an embedding on subdomains computed

starting from the Shor-Van Wyck triangulation.

Phase 2: Path Tracing on the Original Mesh. After the target do-
main is subdivided into convex polygons, we match this decomposi-

tion to the input mesh. The goal is to find non-intersecting paths

Fig. 7. Starting from a triangulation generated from only boundary seg-
ments and internal constraint points (left). Instead of treating triangles
as sub-domains as in [Kraevoy et al. 2003], we merge triangles to convex
polygons (middle). Then we find paths (bold, right) connecting constraint
points to the boundary without new cycles, and prioritize their tracing.

connecting each of these pairs in 3D mesh, subdividing the whole

mesh into same number of patches.

At the tracing stage, we perform a reordering of the paths to

make sure that no previously traced path will block the future

ones (Figure 7). In the case of embedding, the algorithm finds paths

that connect all positional constraints to the boundary without

creating additional loops (than the existing boundary). In practice,

these paths are found by dropping one segment on the boundary,

and then grow the minimum spanning tree (over the edges of the

polygonal mesh) from the incomplete boundary loop. We first trace

the paths on the minimum spanning tree and then the remaining

ones, connecting the boundary to the constraints. The correctness

of this procedure can be found in [Praun et al. 2001].

For the tracing of each path on the surface, we follow [Kraevoy

et al. 2003] to find the shortest path connecting two endpoints, and

add Steiner points on the edges if no path, not intersecting other

paths, can be found.

Phase 3: Bijective Mapping. After establishing a correspondence
between each patch of the 3D mesh and a convex polygon in the

target domain, we can first subdivide the 2D paths in the target

domain to match the number of vertices on the corresponding 3D

path to obtain the one-to-one correspondence between them. We

observe that up to this point, the algorithm is largely combinatorial

(while some vertices are inserted on edges, their geometric position

is trivially determined and is very unlikely to result in numerical

problems; none were observed in our experiments). At this point, the

map is defined for boundaries of the subdomains corresponding to

the convex subdomains in the target. Next, we extend the map to the

interior of each region using our progressive embedding algorithm

(Section 3.2). Notice that when the mesh patch is not 3-connected,

we need to split the edges with two endpoints on the boundary.

Phase 4: Quality Optimization. The map obtained in the previ-

ous steps is valid, according to the definition of the weakly self-

overlapping map [Weber and Zorin 2014]. Therefore, its quality can

be optimized using any locally injective map improvement algo-

rithm (Section 2). We opt for [Rabinovich et al. 2017], since it is

efficient for large models and the implementation is readily available

[Jacobson et al. 2016]. The implementation is modified to support

hard positional constraints, by eliminating the corresponding vari-

ables.

5 RESULTS AND DISCUSSION
We implemented our algorithm in C++, using Eigen [Guennebaud

et al. 2010] for linear algebra, and libigl [Jacobson et al. 2016] for

ACM Trans. Graph., Vol. 38, No. 4, Article 32. Publication date: July 2019.

• 32:7

Name #V #F #invalid #flipped PE(s)

Octopus 5034 10063 2351 524 245.1

Swirl 11754 23503 9317 638 2273.1

Deer 8720 17434 15728 7831 3916.8

Rabbit 7253 14500 8743 4233 1198.6

HeleShaw 3505 5355 437 46 62.1

Retinal 3791 7282 3533 3533 95.0

Arch 973 1941 790 270 21.9

Propeller 787 1569 484 70 11.6

Table 1. Statistics of the input and output meshes in the planar embedding
test (Section 5.1). From left to right: Name of the dataset, number of vertices,
number of faces, number of invalid elements (positive area, but with energy
above 1e20) after Tutte embedding, number of flipped elements after Tutte
embedding, progressive embedding (Section 3) running time in seconds.

Name #V #F #invalid #flipped PE(s) MM++(s)

Fertility 16508 33028 0 0 NA 582.4

3 holes 7440 14886 0 0 NA 107.4

Robot Cat 4117 7512 0 0 NA 0.8

Aircraft 2523 4656 0 0 NA 0.5

Twirl 5562 10402 0 0 NA 1.1

Filigree 49872 100000 32 0 72.4 30.8

Botijo 43786 83788 0 0 NA 3.9

Beetle 20619 39276 0 0 NA 1.1

Casting 21236 39438 67 40 27.4 1.3

Oil pump 54135 103778 5 0 2.3 4.8

Table 2. Statistics of the input and output meshes of the MatchMaker++
test (Section 5.2). From left to right: Name of the dataset, number of vertices,
number of faces, number of invalid elements (positive area, but with energy
above 1e20) after Tutte embedding, number of flipped elements after Tutte
embedding, progressive embedding (Section 3) running time in seconds,
and MatchMaker++ (Section 4) running time in seconds.

geometry processing and visualization. The reference source code,

the data used, and the scripts to reproduce the results are attached

in the additional material. The timings and statistics for the datasets

shown in the paper are summarized in Table 1 and Table 2.

We first present results computed using only our progressive

embedding (Section 5.1), and then demonstrate the generation of

low distortion, locally bijective maps created with our extension of

MatchMaker (Section 5.2).

5.1 Progressive Embedding
Planar Embedding for the Thingi10k Dataset [Zhou and Jacobson

2016]. By computing Tutte’s embedding for the genus-zero models

in 2718 surface mesh models on a triangle boundary, we observed

there are 80 cases where the generated parametrization has flipped

elements due to floating point rounding errors. Using our progres-

sive strategy, we are able to fix all failed cases. A selection of the

parametrization results are shown in Figure 2.

Integration with OptCuts [Li et al. 2018]. OptCuts is a joint opti-
mization method to create UV seam from a 3D model, balancing

seam length and parameterization quality. It relies on a valid ini-

tialization, which for genus 0 model, is compute through randomly

cutting two adjacent edges as seams, then flatten it on the plane

with Tutte embedding. In Figure 8, we show two examples where

this initialization fail. Both models can be processed if progressive

Fig. 8. Three UV maps generated by OptCuts [Li et al. 2018] using an initial
embedding created by our algorithm. OptCuts fails to process both models
if Tutte embedding is used instead.

embedding is used instead of Tutte embedding, allowing OptCuts

to proceed and optimize the UV map.

Mapping an Hele-Shaw Polygon to a Square. Hele-Shaw flow is

a two-dimensional Stokes flow of mixing liquids between two par-

allel flat surfaces separated by a small gap. In Figure 1, we show

an example mesh generated using the Hele-Shaw simulation pro-

posed in [Segall et al. 2016]. One way to compute a bijective map

of the interior of the polygon between different frames is a cross-

parameterization using a square as the common domain, with no

internal constraints. Tutte embedding fails in this case, introduc-

ing 46 flipped faces (Figure 1, left), while progressive embedding

produces a valid map with lower distortion (Figure 1, right).

5.2 Matchmaker++ [Kraevoy et al. 2003]
Self-Overlapping Locally-Injective Maps. By introducing Shor Van

Wyck algorithm into the matchmaker pipeline, we are able to map-

ping a surface mesh with disk topology to self-overlaping bound-

aries as in [Weber and Zorin 2014]. Similarly to [Weber and Zorin

2014] our algorithm can generate locally-injective, self-overlapping

parametrizations (Figure 9), which are commonly used by quadran-

gulation algorithms [Bommes et al. 2012].

Comparison with [Kovalsky et al. 2015]. We parametrized the

global parametrization benchmark introduced in [Myles et al. 2014],

using the seams in the obj files, and fixing in random positions

3 random points of each mesh. This is a challenging task, since

the random constraints introduce a large distortion. Our method

succeeded on all 102 models: a selection of the most challenging

ones is shown in Figure 10. We also run the same experiment using

the most recent projection method [Kovalsky et al. 2015] (which is

one of the few methods that supports similar constraints without

requiring a fully specified target domain), using LSCM [Lévy et al.

2002] as an initial guess. The method failed on 28 models over 102

ACM Trans. Graph., Vol. 38, No. 4, Article 32. Publication date: July 2019.

32:8 • Hanxiao Shen, Zhongshi Jiang, Denis Zorin, and Daniele Panozzo

Fig. 9. Two seamless maps with hard positional constraints and fixed bound-
aries are generated by our algorithm.

Fig. 10. A selection of locally injective parametrizations computed by our
algorithm by fixing 3 random points to 3 random points in UV space.

(27%). We show three failed cases using their method with flipped

elements in the output, and the quality is considerably lower than

our approach, as shown in Figure 11. Note that this is a comparison

that favours our method, since we are allowed to remesh the map,

while [Kovalsky et al. 2015] preserves the original connectivity.

Stress Test. To further evaluate the robustness and applicability of
our algorithm, we performed an additional stress test, by parametriz-

ing the 102 models of [Myles et al. 2014] into a planar space filling

curve, and adding 3 random positional constraints. These exper-

iments push the algorithm to the limit: MatchMaker fails on 5 if

Tutte embedding is used, while it succeeds in all cases, producing

bijective maps exactly satisfying the hard positional constraints,

with progressive embedding (Figure 12).

Fig. 11. Our parametrizations (bottom) have no flipped elements and have
a higher quality than those generated by [Kovalsky et al. 2015] (top) using
the same positional constraints.

Fig. 12. To stress test the robustness ofMatchMaker++, we parametrize com-
plex surface meshes inside a space filling curve, with 3 additional random
positional constraints in its interior.

6 LIMITATIONS AND CONCLUDING REMARKS.
We introduced a robust algorithm to compute planar embeddings,

and demonstrated its practical utility in common geometry process-

ing tasks. Our algorithm is provably correct in infinite precision

and is designed to work robustly with floating point coordinates:

unfortunately we cannot guarantee that an output is produced in

the latter case since a solution of the local point placement problem

might not exist. Consider the example in Figure 13: the bounding box

of the triangle has short sides (the difference between the floating

point coordinate representation is only in the least significant bit of

the mantissa). Assume that our algorithm needs to split off a vertex

from the vertex with numerically flat angle A, placing the result-

ing point in the interior. In this situation, our algorithm fails, since

the average of the coordinates (in floating point) of the boundary

triangle does not lie inside the triangle due to numerical rounding.

Except for this extreme case, we have not observed any other

failure cases for our algorithm, which produced robustly thousands

of embeddings, and, when paired with matchmaker, enables the

robust generation of constrained locally injective maps.

ACM Trans. Graph., Vol. 38, No. 4, Article 32. Publication date: July 2019.

• 32:9

h

b

Fig. 13. A failure case of our implementation in double precision floating
point: a triangle without possible points inside. A, B , andC has coordinates
(0, 1 + h), (−b/2, 1), and (b/2, 1) resp., where h = 2

−53(The illustration is
not to scale.)

REFERENCES
Noam Aigerman, Shahar Z. Kovalsky, and Yaron Lipman. 2017. Spherical Orbifold

Tutte Embeddings. ACM Trans. Graph. 36, 4, Article 90 (July 2017), 13 pages. https:

//doi.org/10.1145/3072959.3073615

Noam Aigerman and Yaron Lipman. 2015. Orbifold Tutte Embeddings. ACM Trans.
Graph. 34, 6, Article 190 (Oct. 2015), 12 pages. https://doi.org/10.1145/2816795.

2818099

Noam Aigerman and Yaron Lipman. 2016. Hyperbolic Orbifold Tutte Embeddings.

ACM Trans. Graph. 35, 6, Article 217 (Nov. 2016), 14 pages. https://doi.org/10.1145/

2980179.2982412

Noam Aigerman, Roi Poranne, and Yaron Lipman. 2014. Lifted Bijections for Low

Distortion Surface Mappings. ACM Trans. Graph. 33, 4 (2014), 69:1–69:12.
Noam Aigerman, Roi Poranne, and Yaron Lipman. 2015. Seamless Surface Mappings.

ACM Trans. Graph. 34, 4, Article 72 (July 2015), 13 pages. https://doi.org/10.1145/

2766921

David Bommes, Marcel Campen, Hans-Christian Ebke, Pierre Alliez, and Leif Kobbelt.

2013. Integer-grid Maps for Reliable Quad Meshing. ACM Trans. Graph. 32, 4, Article
98 (July 2013), 12 pages. https://doi.org/10.1145/2461912.2462014

D. Bommes, B. Lévy, N. Pietroni, E. Puppo, C. Silv a, M. Tarini, and D. Zorin. 2012. State

of the Art in Quad Meshing. In Eurographics STARS.
David Bommes, Henrik Zimmer, and Leif Kobbelt. 2009. Mixed-integer Quadrangulation.

ACM Trans. Graph. 28, 3, Article 77 (July 2009), 10 pages. https://doi.org/10.1145/

1531326.1531383

Hervé Brönnimann, Andreas Fabri, Geert-Jan Giezeman, Susan Hert, Michael Hoffmann,

Lutz Kettner, Sylvain Pion, and Stefan Schirra. 2018. 2D and 3D Linear Geometry

Kernel. In CGAL User and Reference Manual (4.13 ed.). CGAL Editorial Board.

https://doc.cgal.org/4.13/Manual/packages.html#PkgKernel23Summary

Marcel Campen, Cláudio T. Silva, and Denis Zorin. 2016. Bijective Maps from Simplicial

Foliations. ACM Trans. Graph. 35, 4, Article 74 (July 2016), 15 pages.

Erin W. Chambers, David Eppstein, Michael T. Goodrich, and Maarten Löffler. 2011.

Drawing Graphs in the Plane with a Prescribed Outer Face and Polynomial Area. In

Proceedings of the 18th International Conference on Graph Drawing (GD’10). Springer-
Verlag, Berlin, Heidelberg, 129–140. http://dl.acm.org/citation.cfm?id=1964371.

1964384

S. Claici, M. Bessmeltsev, S. Schaefer, and J. Solomon. 2017. Isometry-Aware Precondi-

tioning for Mesh Parameterization. Comput. Graph. Forum 36, 5 (Aug. 2017), 37–47.

https://doi.org/10.1111/cgf.13243

P. Degener, J. Meseth, and R. Klein. 2003. An Adaptable Surface Parameterization

Method. In Proceedings of the 12th International Meshing Roundtable. 201–213.
Tamal K Dey, Herbert Edelsbrunner, Sumanta Guha, and Dmitry V Nekhayev. 1999.

Topology preserving edge contraction. Publ. Inst. Math.(Beograd)(NS) 66, 80 (1999),
23–45.

István Fáry. 1948. On straight line representation of planar graphs. Acta Univ. Szeged.
Sect. Sci. Math. 11 (1948), 229–233.

Michael S. Floater. 1997. Parametrization and smooth approximation of surface trian-

gulations. Computer Aided Geometric Design 14 (1997), 231–250.

Michael S. Floater and Kai Hormann. 2005. Surface Parameterization: a Tutorial and

Survey. In In Advances in Multiresolution for Geometric Modelling, Mathematics and
Visualization. Springer Verlag, 157–186.

Laurent Fousse, Guillaume Hanrot, Vincent Lefèvre, Patrick Pélissier, and Paul Zim-

mermann. 2007. MPFR: A Multiple-precision Binary Floating-point Library with

Correct Rounding. ACM Trans. Math. Softw. 33, 2, Article 13 (June 2007). https:

//doi.org/10.1145/1236463.1236468

Xiao-Ming Fu and Yang Liu. 2016. Computing Inversion-free Mappings by Simplex

Assembly. ACM Trans. Graph. 35, 6, Article 216 (Nov. 2016), 12 pages. https:

//doi.org/10.1145/2980179.2980231

Xiao-Ming Fu, Yang Liu, and Baining Guo. 2015. Computing Locally Injective Mappings

by Advanced MIPS. ACM Trans. Graph. 34, 4, Article 71 (July 2015), 12 pages.

Craig Gotsman and Vitaly Surazhsky. 2001. Guaranteed intersection-free polygon

morphing. Computers & Graphics 25, 1 (2001), 67–75.
Torbjörn Granlund. 2018. GNU MP: The GNU Multiple Precision Arithmetic Library

(5.0.5 ed.). http://gmplib.org/.

Gaël Guennebaud, Benoît Jacob, et al. 2010. Eigen v3. http://eigen.tuxfamily.org.

Dan Halperin and Eli Packer. 2002. Iterated snap rounding. Computational Geometry
23, 2 (2002), 209 – 225. https://doi.org/10.1016/S0925-7721(01)00064-5

Hugues Hoppe. 1996. Progressive Meshes. In Proceedings of the 23rd Annual Conference
on Computer Graphics and Interactive Techniques (SIGGRAPH ’96). ACM, New York,

NY, USA, 99–108. https://doi.org/10.1145/237170.237216

K. Hormann and G. Greiner. 2000. MIPS: An Efficient Global Parametrization Method.

In Curve and Surface Design: Saint-Malo 1999. 153–162.
Kai Hormann, Bruno Lévy, and Alla Sheffer. 2007. Mesh Parameterization: Theory and

Practice. In ACM SIGGRAPH 2007 Courses (SIGGRAPH ’07). ACM, New York, NY,

USA.

Yixin Hu, Qingnan Zhou, Xifeng Gao, Alec Jacobson, Denis Zorin, and Daniele Panozzo.

2018. Tetrahedral Meshing in the Wild. ACM Trans. Graph. 37, 4, Article 60 (July
2018), 14 pages. https://doi.org/10.1145/3197517.3201353

John FP Hudson and Julius L Shaneson. 1969. Piecewise linear topology. Vol. 11. WA

Benjamin New York.

Alec Jacobson, Daniele Panozzo, et al. 2016. libigl: A simple C++ geometry processing

library. http://libigl.github.io/libigl/.

Zhongshi Jiang, Scott Schaefer, and Daniele Panozzo. 2017. Simplicial Complex Aug-

mentation Framework for Bijective Maps. ACM Trans. Graph. 36, 6, Article 186 (Nov.
2017), 9 pages. https://doi.org/10.1145/3130800.3130895

Shahar Z. Kovalsky, Noam Aigerman, Ronen Basri, and Yaron Lipman. 2015. Large-scale

Bounded Distortion Mappings. ACM Trans. Graph. 34, 6, Article 191 (Oct. 2015),
10 pages. https://doi.org/10.1145/2816795.2818098

Shahar Z. Kovalsky, Meirav Galun, and Yaron Lipman. 2016. Accelerated Quadratic

Proxy for Geometric Optimization. ACM Trans. Graph. 35, 4, Article 134 (July 2016),

11 pages. https://doi.org/10.1145/2897824.2925920

Vladislav Kraevoy and Alla Sheffer. 2004. Cross-parameterization and Compatible

Remeshing of 3D Models. ACM Trans. Graph. 23, 3 (Aug. 2004), 861–869. https:

//doi.org/10.1145/1015706.1015811

Vladislav Kraevoy, Alla Sheffer, and Craig Gotsman. 2003. Matchmaker: Constructing

Constrained Texture Maps. ACM Trans. Graph. 22, 3 (July 2003), 326–333.

Ludek Kucera. 1991. The greedy coloring is a bad probabilistic algorithm. Journal of
Algorithms 12, 4 (1991), 674 – 684. https://doi.org/10.1016/0196-6774(91)90040-6

Ulf Labsik, Kai Hormann, and Guenther Greiner. 2000. Using Most Isometric

Parametrizations for Remeshing Polygonal Surfaces. In Proceedings of the Geometric
Modeling and Processing 2000 (GMP 2000). IEEE Computer Society, Washington, DC,

USA.

T. Y. Lee, S. W. Yen, and I. C. Yeh. 2008. Texture Mapping with Hard Constraints Using

Warping Scheme. IEEE Transactions on Visualization and Computer Graphics 14, 2
(March 2008), 382–395. https://doi.org/10.1109/TVCG.2007.70432

Bruno Lévy, Sylvain Petitjean, Nicolas Ray, and Jérome Maillot. 2002. Least Squares

Conformal Maps for Automatic Texture Atlas Generation. ACM Trans. Graph. 21, 3
(July 2002), 362–371.

Minchen Li, Danny M Kaufman, Vladimir G Kim, Justin Solomon, and Alla Sheffer. 2018.

OptCuts: joint optimization of surface cuts and parameterization. In SIGGRAPH
Asia 2018 Technical Papers. ACM, 247.

Yaron Lipman. 2012. Bounded Distortion Mapping Spaces for Triangular Meshes. ACM
Trans. Graph. 31, 4 (2012), 108:1–108:13.

Yaron Lipman. 2014. Bijective mappings of meshes with boundary and the degree in

mesh processing. SIAM Journal on Imaging Sciences 7, 2 (2014), 1263–1283.
Ligang Liu, Chunyang Ye, Ruiqi Ni, and Xiao-Ming Fu. 2018. Progressive Param-

eterizations. ACM Trans. Graph. 37, 4, Article 41 (July 2018), 12 pages. https:

//doi.org/10.1145/3197517.3201331

Aleksandar Mijatović. 2003. Simplifying triangulations of S3
. Pacific journal of mathe-

matics 208, 2 (2003), 291–324.
Matthias Müller, Nuttapong Chentanez, Tae-Yong Kim, and Miles Macklin. 2015. Air

Meshes for Robust Collision Handling. ACM Trans. Graph. 34, 4, Article 133 (July
2015), 9 pages.

Ashish Myles, Nico Pietroni, and Denis Zorin. 2014. Robust Field-aligned Global

Parametrization. ACM Trans. Graph. 33, 4, Article 135 (July 2014), 14 pages. https:

//doi.org/10.1145/2601097.2601154

Eli Packer. 2018. 2D Snap Rounding. In CGAL User and Reference Manual (4.13
ed.). CGAL Editorial Board. https://doc.cgal.org/4.13/Manual/packages.html#

PkgSnapRounding2Summary

Yue Peng, Bailin Deng, Juyong Zhang, Fanyu Geng, Wenjie Qin, and Ligang Liu. 2018.

Anderson Acceleration for Geometry Optimization and Physics Simulation. ACM
Trans. Graph. 37, 4, Article 42 (July 2018), 14 pages. https://doi.org/10.1145/3197517.

3201290

Roi Poranne and Yaron Lipman. 2014. Provably Good Planar Mappings. ACM Trans.
Graph. 33, 4, Article 76 (July 2014), 11 pages.

Roi Poranne, Marco Tarini, Sandro Huber, Daniele Panozzo, and Olga Sorkine-Hornung.

2017. Autocuts: Simultaneous Distortion and Cut Optimization for UV Mapping.

ACM Trans. Graph. 36, 6, Article 215 (Nov. 2017), 11 pages. https://doi.org/10.1145/

3130800.3130845

ACM Trans. Graph., Vol. 38, No. 4, Article 32. Publication date: July 2019.

https://doi.org/10.1145/3072959.3073615
https://doi.org/10.1145/3072959.3073615
https://doi.org/10.1145/2816795.2818099
https://doi.org/10.1145/2816795.2818099
https://doi.org/10.1145/2980179.2982412
https://doi.org/10.1145/2980179.2982412
https://doi.org/10.1145/2766921
https://doi.org/10.1145/2766921
https://doi.org/10.1145/2461912.2462014
https://doi.org/10.1145/1531326.1531383
https://doi.org/10.1145/1531326.1531383
https://doc.cgal.org/4.13/Manual/packages.html#PkgKernel23Summary
http://dl.acm.org/citation.cfm?id=1964371.1964384
http://dl.acm.org/citation.cfm?id=1964371.1964384
https://doi.org/10.1111/cgf.13243
https://doi.org/10.1145/1236463.1236468
https://doi.org/10.1145/1236463.1236468
https://doi.org/10.1145/2980179.2980231
https://doi.org/10.1145/2980179.2980231
http://gmplib.org/
https://doi.org/10.1016/S0925-7721(01)00064-5
https://doi.org/10.1145/237170.237216
https://doi.org/10.1145/3197517.3201353
https://doi.org/10.1145/3130800.3130895
https://doi.org/10.1145/2816795.2818098
https://doi.org/10.1145/2897824.2925920
https://doi.org/10.1145/1015706.1015811
https://doi.org/10.1145/1015706.1015811
https://doi.org/10.1016/0196-6774(91)90040-6
https://doi.org/10.1109/TVCG.2007.70432
https://doi.org/10.1145/3197517.3201331
https://doi.org/10.1145/3197517.3201331
https://doi.org/10.1145/2601097.2601154
https://doi.org/10.1145/2601097.2601154
https://doc.cgal.org/4.13/Manual/packages.html#PkgSnapRounding2Summary
https://doc.cgal.org/4.13/Manual/packages.html#PkgSnapRounding2Summary
https://doi.org/10.1145/3197517.3201290
https://doi.org/10.1145/3197517.3201290
https://doi.org/10.1145/3130800.3130845
https://doi.org/10.1145/3130800.3130845

32:10 • Hanxiao Shen, Zhongshi Jiang, Denis Zorin, and Daniele Panozzo

Emil Praun, Wim Sweldens, and Peter Schröder. 2001. Consistent Mesh Parame-

terizations. In Proceedings of the 28th Annual Conference on Computer Graphics
and Interactive Techniques (SIGGRAPH ’01). ACM, New York, NY, USA, 179–184.

https://doi.org/10.1145/383259.383277

Michael Rabinovich, Roi Poranne, Daniele Panozzo, and Olga Sorkine-Hornung. 2017.

Scalable Locally Injective Mappings. ACM Trans. Graph. 36, 2, Article 16 (April

2017), 16 pages. https://doi.org/10.1145/2983621

Pedro V. Sander, John Snyder, Steven J. Gortler, and Hugues Hoppe. 2001. Texture

Mapping Progressive Meshes. In ACM SIGGRAPH. 409–416.
Walter Schnyder. 1990. Embedding Planar Graphs on the Grid. In Proceedings of the

First Annual ACM-SIAM Symposium on Discrete Algorithms (SODA ’90). Society
for Industrial and Applied Mathematics, Philadelphia, PA, USA, 138–148. http:

//dl.acm.org/citation.cfm?id=320176.320191

John Schreiner, Arul Asirvatham, Emil Praun, and Hugues Hoppe. 2004. Inter-surface

Mapping. ACM Trans. Graph. 23, 3 (Aug. 2004), 870–877. https://doi.org/10.1145/

1015706.1015812

Christian Schüller, Ladislav Kavan, Daniele Panozzo, and Olga Sorkine-Hornung.

2013. Locally Injective Mappings. In Proceedings of the Eleventh Eurograph-
ics/ACMSIGGRAPH Symposium on Geometry Processing (SGP ’13). Eurographics
Association, Aire-la-Ville, Switzerland, Switzerland, 125–135. https://doi.org/10.

1111/cgf.12179

Aviv Segall, Orestis Vantzos, and Mirela Ben-Chen. 2016. Hele-Shaw flow simulation

with interactive control using complex barycentric coordinates. In Proceedings of
the ACM SIGGRAPH/Eurographics symposium on computer animation. Eurographics
Association, 85–95.

Alla Sheffer, Emil Praun, and Kenneth Rose. 2006. Mesh Parameterization Methods and

Their Applications. Found. Trends. Comput. Graph. Vis. 2, 2 (2006), 105–171.
Jonathan Richard Shewchuk. 1996. Triangle: Engineering a 2D Quality Mesh Generator

and Delaunay Triangulator. In Applied Computational Geometry: Towards Geometric
Engineering, Ming C. Lin and Dinesh Manocha (Eds.). Lecture Notes in Computer

Science, Vol. 1148. Springer-Verlag, 203–222. From the First ACM Workshop on

Applied Computational Geometry.

Peter W Shor and Christopher J Van Wyk. 1992. Detecting and decomposing self-

overlapping curves. Computational Geometry 2, 1 (1992), 31–50.

Anna Shtengel, Roi Poranne, Olga Sorkine-Hornung, Shahar Z. Kovalsky, and Yaron

Lipman. 2017. Geometric Optimization via Composite Majorization. ACM Trans.
Graph. 36, 4, Article 38 (July 2017), 11 pages. https://doi.org/10.1145/3072959.

3073618

Jason Smith and Scott Schaefer. 2015. Bijective Parameterization with Free Boundaries.

ACM Trans. Graph. 34, 4, Article 70 (July 2015), 9 pages.

Olga Sorkine, Daniel Cohen-Or, Rony Goldenthal, and Dani Lischinski. 2002. Bounded-

distortion Piecewise Mesh Parameterization. In Proceedings of the Conference on
Visualization. 355–362.

W.T Tutte. 1963. How to draw a graph. Proc. London Math. Soc., 3 (1963), 743–768.
Ofir Weber and Denis Zorin. 2014. Locally Injective Parametrization with Arbitrary

Fixed Boundaries. ACM Trans. Graph. 33, 4, Article 75 (July 2014), 12 pages. https:

//doi.org/10.1145/2601097.2601227

Eugene Zhang, Konstantin Mischaikow, and Greg Turk. 2005. Feature-based Surface

Parameterization and Texture Mapping. ACM Trans. Graph. 24, 1 (Jan. 2005), 1–27.
Qingnan Zhou and Alec Jacobson. 2016. Thingi10K: A Dataset of 10,000 3D-Printing

Models. arXiv preprint arXiv:1605.04797 (2016).

Yufeng Zhu, Robert Bridson, and Danny M. Kaufman. 2018. Blended Cured Quasi-

newton for Distortion Optimization. ACM Trans. Graph. 37, 4, Article 40 (July 2018),

14 pages. https://doi.org/10.1145/3197517.3201359

A PROOFS
The proof of the existence of the collapse sequence for two-dimensional

manifold meshes can be found, e.g., in [Mijatović 2003], where it is

derived from the shellability of two-dimensional manifold meshes

homeomorphic to a disk (i.e., the possibility of removing trian-

gles one-by-one, keeping the topology of the remaining part of

the mesh unchanged), and make use of a specific composition of

Pachner moves equivalent to edge collapse. We present a different

proof, based on proving the existence of a collapsible edge, which is

aligned with the structure of our algorithm and helps us to show

the existence of the inverse vertex split sequence.

A.1 Existence of the Collapse Sequence
We assume that the input mesh connectivity (V0, F0) is manifold,

i.e., each edge is shared by no more than two triangles, and the

triangles incident at a vertex can be arranged in a sequence so

that two sequential triangles share an edge. For interior vertices,

the sequence is circular, i.e. the first and last triangles also share

an edge. With the topology of a 2D disc, the graphs of edges of

such meshes are planar i.e., can be embedded in the plane, with

positions P0 = {pi ∈ R2} assigned to vertices vi . By the Fáry’s

theorem, [Fáry 1948] there is a straight-edge embedding of this

graph in the plane with non-intersecting edges (Fáry embedding). In
subsequent lemmas, we use geometric images of vertices and edges

under this embedding. Only the existence of this embedding, but

not the specific construction, is used to prove the existence of the

collapse sequence.

The following sequence of lemmas focuses on the one-ring neigh-

borhood of an interior vertex, and shows that at least one of the

adjacent edges satisfies the link condition. This observation further

leads to Theorem A.8: a valid sequence of edge collapses can be

used to reduce the mesh to a mesh with a single interior vertex. A

vertex of the mesh is interior if it does not lie on the boundary, and

an edge is interior if its two endpoints are interior vertices.

Definition A.1. An interior edge vivj satisfies the link condition
if |Ni ∩ Nj | = 2, where Ni is the set of the adjacent vertices of vi .

Lemma A.2. Let v0 be an interior vertex of degree d (Figure 14). We
enumerate its neighbors counterclockwise around the vertex (using
Fáry embedding), denoting themv1,v2, . . . ,vd . Assumev0v1 violates
the link condition, i.e.,N0∩N1 contains a vertexvk ,k = min(N0∩N1\

{2,d}). (1) If the triangle ∆v0v1vk is oriented counterclockwise, then
the set Ni , consisting of adjacent vertices of vi ,lies within ∆v0v1vk ,
for any 1 < i < k . (2) If ∆v0v1vk is oriented clockwise, then Ni is
within ∆v0v1vk for k < i < d .

Proof. Without the loss of generality, consider ∆v0v1vk orients

counterclockwise. Consider the segment v0vi , for 1 < i < k . The
half-line starting at v0 and containing this segment is between half-

lines containing v1 and vk , because the vertices were numbered

counterclockwise. Therefore the half-line contains a point in the

interior of∆v0v1vk , by continuity. Ifvi is outside or on the boundary
of ∆v0v1vk then the half-line connects an interior and non-interior

point different from v0, and intersects v1vk . which contradicts the

assumption on the embedding. Thus,vi is in the interior of ∆v0v1vk .

ACM Trans. Graph., Vol. 38, No. 4, Article 32. Publication date: July 2019.

https://doi.org/10.1145/383259.383277
https://doi.org/10.1145/2983621
http://dl.acm.org/citation.cfm?id=320176.320191
http://dl.acm.org/citation.cfm?id=320176.320191
https://doi.org/10.1145/1015706.1015812
https://doi.org/10.1145/1015706.1015812
https://doi.org/10.1111/cgf.12179
https://doi.org/10.1111/cgf.12179
https://doi.org/10.1145/3072959.3073618
https://doi.org/10.1145/3072959.3073618
https://doi.org/10.1145/2601097.2601227
https://doi.org/10.1145/2601097.2601227
https://doi.org/10.1145/3197517.3201359

• 32:11

 Orientation

Fig. 14. Neighbors of v0 as described as in Lemma A.2

Similarly, all points in Ni are either in the interior of ∆v0v1vk , or on
its vertices, as the edges of the embedding do not intersect except

at vertices. □

Without loss of generality, we assume that the first case of the

lemma and take a closer look at ∆v0v1vk . Intuitively, one can think

of an edge that violates the link condition as having two endpoints

which are connected to (at least) three common vertices. Therefore,

on one of the sides of the edge, there would be at least two vertices

connected to it. The next lemma establishes the fact that if a se-

quence of edges violates the link condition, then the “lower”(smaller

indices) side of the edge always has only one vertex connected to

its endpoints.

Lemma A.3. Suppose an edge v0v1 violates the link condition, and
k is defined as in Lemma A.2. Suppose, W.L.O.G., ∆v0v1vk is oriented
counterclockwise, and let 1 < i < k . If additionally for all 1 < t < i ,
v0vt violates the link condition, thenvi−1 is the only vertex with index
in the range 1 ≤ t ≤ i − 1 connected to vi .

Fig. 15. Neighbors of v0 as described as in the proof Lemma A.3, notice
that vj+1 is enclosed in ∆v0vjvn , so a connection to a previous vertex (red
dotted line) is forbidden.

Proof. We prove the Lemma by induction. The base case, i = 2

the proposition clearly holds. Suppose for all i ≤ j holds. Since v0vj
violates the link condition, N0 ∩ Nj contains vj+1 and vn for some

j + 1 < n ≤ k (see Figure 15), by the inductive assumption. vj+1
is in the interior of ∆v0vjvn by Lemma A.2. Form ≤ j − 1, vm is

outside ∆v0vjvn , because the half-line v0vj is between v0vm and

v0vj by the choice of numbering. It follows that in order to connect

vj+1 to a previous vertex vm vj+1vm would have to intersect the

boundary of ∆v0vjvn , which contradicts that fact that we are using

an intersection-free Fáry embedding. This proves the induction

step. □

We conclude that under the assumptions of Lemma A.2, first

case, vi , 1 < i < k are interior vertices in the triangle ∆v0v1vk ,
thus interior vertices of the mesh. Then v0v2 . . .v0vk−1 are interior
edges. The next lemma shows that at least one of them satisfies the

link condition

Lemma A.4. Following the first case in Lemma A.2. If for all n < k-1,
v0vn violates the link condition, the interior edge v0vk−1, satisfies the
link condition.

Proof. By definition, N0∩Nk−1 is not empty. By Lemma A.3, the

only vertex with index less than k −1 contained in Nk−1 isvk−2. On
the other hand, the only remaining vertex of N0 with index greater

than k − 1 inside ∆v0v1vk is vk . So we have exactly two vertices in

N0 ∩ Nk−1, i.e., v0vk−1 satisfies the link condition. □

Definition A.5. A fan of triangles F (v0;v1 . . .vd+1), centered at

v0, with vi enumerated counterclockwise around v0, is a sequence
of non-repeating triangles {∆v0vivi+1)|i = 1 . . .d}. A fan is closed,
if vd+1 = v1, otherwise it is open.

Definition A.6. Given a triangulation of a polygonal planar do-

main, with two interior vertices v0, vm , whose neighbors are N0

and Nm , a collapse operation from vm to v0 connects all vertices

v ∈ Nm \N0 to v0, and removes vm with incident edges. A collapse

operation is valid if v0vm satisfies the link condition, and neither

of the end points is a boundary vertex.

To define a collapse operation in a reversible way, in addition to

specifying the pair of vertices, we define a fan F (v0;v1 . . .vk) in the
mesh obtained after the collapse. The vertices v1 . . .vk are the ver-

tices that were connected to vm before the collapse. In other words,

we record a collapse operation, transforming the mesh (Vi , Fi) to
(Vi+1, Fi+1), as the pairCi = (vm ,F (v0;v1 . . .vk)), wherevm is the

removed vertex in Vi , and F is a fan of triangles in Fi+1.

Lemma A.7. A 3-connected and planar mesh, is still 3-connected
and planar after any interior edge collapseC = (vm ,F (v0;v1 . . .vk)).

Proof. The link condition ensures that the mesh remains mani-

fold after an edge collapse [Dey et al. 1999]. 3-connectedness of a

triangle mesh is equivalent to the requirement that no two boundary

vertices are connected by an interior edge. As no collapses involving

boundary vertices are allowed, if there are no such edges before the

collapse, no such edge may appear after the collapse: the only new

edges connect vertices of the fan of vm to v0, which is interior. □

Theorem A.8. If the edge graph of a mesh (V , F) is planar and
3-connected, there is always an edge that can be collapsed to obtain a
planar and 3-connected mesh with one less vertex, unless there is only
one interior vertex left.

Proof. Suppose no edge in (V , F) can be collapsed. This means

that either there are no edges with two interior endpoints, or all

such edges violate the link condition. But by Lemma A.4, the second

option is not possible. If there are no edges connecting two interior

vertices, then all edges incident at interior vertices have the other

endpoint on the boundary. Then all edges in the link of an interior

vertex have two endpoints on the boundary. By 3-connectedness,

these edges should be boundary edges. Therefore, the link of each

ACM Trans. Graph., Vol. 38, No. 4, Article 32. Publication date: July 2019.

32:12 • Hanxiao Shen, Zhongshi Jiang, Denis Zorin, and Daniele Panozzo

interior vertex forms a complete boundary loop. As we assume the

mesh to be simply connected, then there is only one boundary loop.

So the whole boundary has to coincide with the link of any interior

vertex, from which it follows that there is only one. □

We remark that when there is only one interior vertex left, if the

boundary vertices vi , i ≥ 1, are assigned positions pi , so that they

form a star-shaped simple polygon, there is a position (within the

interior of the kernel of the boundary) p0 for the remaining interior

vertex v0 that results in a valid straight-edge embedding.

As a result of sequentially collapsing edges, we obtain a sequence

(Vi , Fi ,Ci), i = 1, 2, . . . ,k with the following properties: |Vi | =
|Vi−1 | − 1, (Vk , Fk) is a valid triangulation, boundary vertices are

the same for all Vi , and Ci is a valid collapse.

Proposition A.9. Suppose the vertices vi of the disk-topology
manifold mesh (V , F) are assigned parametric positions pi in the plane,
and the map is bijective on the boundary so that the triangles all have
positive orientation. Then the sum of the angles of triangles incident
at an interior vertex is 2π .

Proof. Assign, e.g., unit length to all edges of the mesh; this

associates a a surface M with the mesh, with each combinatorial

triangle corresponding to an equilateral triangle. Then the positions

pi define a PL map fromM to the plane. By Theorem 1 from [Lipman

2014], this map is globally bijective; the statement of the proposition

immediately follows. □

A.2 Vertex split
Definition A.10. Let (V , F) be a mesh with a valid straight-edge

embedding in the plane given by vertex positions P . Consider a
closed fan of triangles F (v0;v1 . . .vd+1) centered at an interior ver-

tex v0, with vd+1 = v1, and an open sub-fan F (v0;v1 . . .vk). Vertex
split introduces a new vertexvm with a positionpm ,F (v0;v1 . . .vk),
replaces it with a fan F (vm ;v1 . . .vk), and adds triangles ∆v0v1vm
and∆v0vmvk .We denote such a split S by (vm ,pm ,F (v0;v1 . . .vk)).

A split S = (vm ,pm ,F (v0;v1 . . .vk)), in terms of connectivity

modification, is the inverse of a collapse C = (vm ,F (v0;v1 . . .vk)):
the connectivity of the mesh obtained by applying the split is iden-

tical to the mesh that the collapse was applied to.

The following lemma establishes that we can perform a split

reversing any collapse while maintaining the validity of the embed-

ding, if the initial embedding is valid.

Lemma A.11. Consider a fan of triangles F (v0;v1 . . .vk) (Figure
5), with positive signed areas {A(∆v0vi−1vi)}1<i≤k and with an-
gles of triangles incident at v0 summing up to 2π . The kernel of the
fan has a non-empty interior. Then a new vertex position pm corre-
sponding to a new vertex vm located in the interior of the fan, can be
split off p0, so that min

1<i≤k A(∆vmvi−1vi) > 0, A(∆v0v1vm) > 0,
A(∆v0vmvk) > 0, and angles of triangles in both resulting fans at v0
and v1 sum up to 2π .

Proof. Define a function f (px) = mini A(∆vxvi−1vi). This is a
continuous function of the coordinates px of the point vx . Because
f (p0) > 0, there is a diskB(p0, ε), of radius ε > 0, such that f (px) > 0

for any px ∈ B(p0, ε), i.e. for all i , A(∆vmvi−1vi) > 0, if we pick

pm inside B(v0, ε). Suppose we initially place pm at p0, with new

triangles added as a result of the split having zero angles at v1
and vk . We note that the for each of v0 and v1 in this degenerate

configuration the angles of incident triangles sum up to 2π . The
angles of triangles also change continuously as functions of vertex

position px , so does their sum. On the other hand, if each triangle

remains positively oriented (A(∆vmvi−1vi) > 0), then the sum of

the angles can only change discretely, and has to be of the form 2πn,
n ∈ Z (n-fold cover). We conclude that n has to remain one, as it is

one for the initial position.

Consider the intersection C of the half-planes bounded by lines

containing p0p1 and p0pk (for each segment, we choose the half-line

on the side of the interior of the fan). If pm ∈ C ∩ B(p0, ε), then
A(∆v0v1vm) > 0, A(∆v0vmvk) > 0 also hold. □

The following theorem is a straightforward application of Lemma

A.11.

Theorem A.12. Suppose we have a sequence of valid collapses
(Vi , Fi ,Ci), i = 0 . . .N − 2, where N = |V0 |, the number of interior
vertices in the initial mesh, all (Vi , Fi) i = 0 . . .N − 1 are 3-connected
planar, and the last mesh (VN−1, FN−1) with a single interior vertex
has a valid straight-edge embedding in the plane with vertex positions
PN−1. Suppose Ci = (vim ,F (vi+1

0
,vi+1

1
. . .vi+1k)).

Then the sequence of vertex splits Si that are inverses ofCi , results in
a valid straight-edge embedding of (V0, F0), given by vertex positions
P0.

Proof. VN−1, FN−1 with positions PN−1 is valid by assumption.

Each step of vertex split with Si results in a straight-edge embedding

of (Vi , Fi) by Lemma A.11. By induction, the embedding of (V0, F0)
obtained by the sequence of splits reverting the sequence of collapses

is a straight-edge embedding. □

B MATCHMAKER

1

2

3

4

5

6
7

8

(a) (b)

2

3

1

7

4

8 5

6

(c)

1

2

3

4

8

7

6

5

Fig. 16. Illustation of theMatchMaker algorithm. The regions surrounded by
solid black lines with the same numbering have one to one correspondence
throughout the 3 subfigures (a), (b), and (c). (a) unconstrained parametriza-
tion embedded in a triangulation of the bounding box. The dashed lines
are the triangulation of the regions between the mesh and virtual bound-
ary. (b) triangulated virtual boundary with three constrained parametric
positions (edges are splitted accordingly). (c) result of Tutte embedding for
every individual patch glued together.

MatchMaker [Kraevoy et al. 2003] tackles the problem of planar

parametrizaton of a surface with hard positional constraints. The

general idea is to decompose the mesh into patches and map them

to convex domains using Tutte embedding to generate a bijective

ACM Trans. Graph., Vol. 38, No. 4, Article 32. Publication date: July 2019.

• 32:13

(a) (b) (c)

Fig. 17. The scenario that the red tracing path is invalid. (a) The extended
unconstrained parametrization M ′

0
, a new tracing path is generated (red

line) to match the purple edge in (b). (b) Triangulated virtual boundary M1.
The internal edge(purple line) separate the mesh into two sub-regions, while
the two hard constriants land in the same sub-region. It differs from the
configuration in (a), where the constraint points are in different sub-regions.
(c) The purple tracing path is valid since the hard constraints lies in the
same sub-region, while red tracing path blocks future necessary tracing
paths, such as the green one.

parametrization. We briefly summarize the pipeline of the original

MatchMaker method.

Triangulate Virtual Boundary. Use a conventional unconstrained
parametrization method to get a planar meshM0 (the dark region

in Figure 16(b)). EmbedM0 in a rectangular bounding box, and use

the constrained Delaunay triangulation to triangulate the region

between the planar mesh and the virtual boundary, to obtain M ′
1

(Figure 16(a)). Similarly, create a constrained Delaunay trianglua-

tion of the same bounding box with hard constraints at prescribed

position using [Shewchuk 1996], to obtain the mesh in Figure 16 (a).

We call this meshM1.

Matching Patches. For each internal edge of M1, trace an edge

path between the two corresponding points onM ′
0
using Dijsktra’s

shortest path algorithm. This process is performed sequentially, one

edge each time. Every new paths traced must meet the following

criteria: (1) it does not intersect with any other paths; (2) it does not

block necessary future paths. This is achieved using the minimum

spanning tree as described in Section 4. Steiner points may be needed

to make sure a valid path can always be found (red dot in Figure 17

(c)). As the result of this step, extended planar meshM ′
0
is subdivided

into patches, and every patch is matched with a triangle inM1.

Embedding. At the previous step, the problem is reduced to map-

ping a patch of a planar mesh to a convex boundary, i.e., a problem

solved by Tutte embedding [Tutte 1963]. Additional edge splitting

operation is needed to match the boundary vertices number of tri-

angles inM0 to vertices number on corresponding paths inM ′
1
, as

shown in Figure 16 (b).

Smoothing and Post-processing. The parametrization generated

at the embedding stage can be optimized using any technique pre-

venting triangles from changing their orientations.

ACM Trans. Graph., Vol. 38, No. 4, Article 32. Publication date: July 2019.

	Abstract
	1 Introduction
	2 Related work
	2.1 Planar Embedding of Graphs and Meshes
	2.2 Progressive Meshes
	2.3 Distortion-Minimizing Mappings

	3 Progressive Embedding
	3.1 Analysis of Tutte Embedding in Floating Points
	3.2 Progressive Embedding

	4 Matchmaker++
	5 Results and Discussion
	5.1 Progressive Embedding
	5.2 Matchmaker++ Kraevoy:2003

	6 Limitations and Concluding Remarks.
	References
	A Proofs
	A.1 Existence of the Collapse Sequence
	A.2 Vertex split

	B Matchmaker

