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Abstract

In this paper, for small uniformities, we determine the order of magnitude of
the multicolor Ramsey numbers for Berge cycles of length 4, 5, 6, 7, 10, or 11. Our
result follows from a more general setup which can be applied to other hypergraph
Ramsey problems. Using this, we additionally determine the order of magnitude of
the multicolor Ramsey number for Berge-Ka,b for certain a, b, and uniformities.

Mathematics Subject Classifications: 05D10, 05C35, 05C65

1 Introduction

Given a family of hypergraphs F , the k-color Ramsey number for F is the minimum n
such that for any edge coloring of the complete r-uniform hypergraph on n vertices with
k colors, we have that there exists a monochromatic subgraph F for some F ∈ F . We will
denote this quantity by Rr(F ; k). The study of graph and hypergraph Ramsey numbers
represents a huge body of research, and we refer the reader to the surveys [6] and [20].

In this paper we will be interested in hypergraph Ramsey numbers where the number
of colors goes to infinity. We will focus on families of hypergraphs which are Berge-G for
some graph G, defined as follows. Given a (2-uniform) graph G, we say that a hypergraph
H is a Berge-G if V (G) ⊂ V (H) and there is a bijection φ : E(G) → E(H) such that
e ⊂ φ(e) for all e ∈ E(G). In other words, H is a Berge-G if we can embed a single
edge into each hyperedge of H and create a copy of G. When G is a path or cycle, this
definition agrees with the definition of a Berge path or Berge cycle. Note that many
nonisomorphic hypergraphs may be a Berge-G, and we denote the family of all such
hypergraphs by B(G). The notion of the family of Berge-G for general graphs G was
initiated in [12] and since then extensive research has been done on extremal problems
related to B(G) for various graphs G.

The Turán number for a family F is denoted by exr(n,F) and is the maximum
number of edges in an n-vertex r-uniform hypergraph that does not contain any F ∈ F
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as a subgraph. Early work on extremal problems for Berge hypergraphs focused on
Turán numbers of B(G). Since the introduction of the Berge-Turán problem, a long list
of papers have been written about it, far too many to cite here, and we recommend
[11] for a partial history. More recently Ramsey problems have also been considered,
see for example [3, 4, 5, 9, 10, 13, 14, 19, 21, 22, 23]. The two problems are related
as any coloring avoiding monochromatic B(G) must have that every color class contains
at most exr(n,B(G)) edges. It is therefore not surprising that the order of magnitude
for R2(C2m; k), the multicolor Ramsey number of an even cycle, is known only when

k ∈ {2, 3, 5}. In these cases, Li and Lih [18] showed that R2(C2m; k) = Θ
!
k

m
m−1

"
. Our

main result is a generalization of this to hypergraphs. We prove our main result as
a corollary of some more general theorems which may be useful for future hypergraph
Ramsey problems.

Lower bounds for Rr(F ; k) may be proved by considering the dual problem of min-

imizing the number of colors necessary to partition the edge set of K
(r)
n such that each

color class is F -free. Our first theorem reduces this dual problem to covering the edges
of complete r-partite r-uniform hypergraphs. We use K

(r)
n to denote the complete r-

uniform hypergraph on n vertices and K
(r)
n,··· ,n to denote the complete r-partite r-uniform

hypergraph with n vertices in each part.

Theorem 1. Let r be fixed and β > r−2 and let F be a family of connected hypergraphs.
If there exists an edge coloring of K

(r)
n,··· ,n with O(nβ) colors with no monochromatic F ∈ F ,

then there exists a coloring of the edges of K
(r)
n with O(nβ) colors with no monochromatic

F ∈ F .

We use this theorem to prove our main result, which determines the order of mag-
nitude of the multicolor Ramsey number for Berge cycles of certain lengths and certain
uniformities.

Theorem 2. For m ∈ {2, 3, 5}, if r < 4m− 1, then Rr(B(C2m); k) and Rr(B(C2m+1); k)

are each Θ
!
k

m
rm−m−1

"

We note that our proof yields that if one could determine that the order of magnitude
of the graph multicolor Ramsey number for C2m is Θ(k

m
m−1 ) for some m ∕∈ {2, 3, 5} then

this would also determine that for all r < 4m−1 the order of magnitude of the r-uniform

multicolor Ramsey number for B(C2m) and for B(C2m+1) is Θ
!
k

m
rm−m−1

"
. Using similar

techniques, we are also able to give lower bounds on Rr(B(Ka,b); k) for some choices of
r, a, b.

Theorem 3. Let b ! 2 and a > (b− 1)!. Then for all r < 2(a+ b)− 1 we have

Rr(B(Ka,b); k) = Ω
!
k

b
(r−2)b+1

"
.

Furthermore, when b = 2 or a+ b " r < 2(a+ b)− 1, for a > (b− 1)! we have

Rr(B(Ka,b); k) = Θ
!
k

b
(r−2)b+1

"
.
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2 Preliminaries

Definition 4. For a given r, there are a finite number of possible vectors (ρ1, . . . , ρr)
such that ρi ∈ N ∪ {0} and

#
ρi = r. We will call the set of these vectors Pr. Given a

particular vector ρρρ ∈ Pr, we have the following shorthand for describing specific features
of this vector. The maximal element is ρρρmax. The number of non-zero ρi is |supp(ρρρ)|
which we will notate as ρ̂̂ρ̂ρ for brevity.

Definition 5. We define (Pr,≺) to be the partial ordering of these weak compositions of
r as the following. ∀ρρρ,τττ ∈ Pr, ρρρ ≺ τττ if ρ̂̂ρ̂ρ > τ̂̂τ̂τ and there exists an ordering of a partition
of ρρρ into τ̂̂τ̂τ subsets such that the sum of the elements in the i’th ordered subset of ρρρ are
equal to the i’th nonzero entry of τττ for all i.

By considering any linear extension of the poset (Pr,≺), we arrive at a total ordering
of Pr with smallest element (1, 1, . . . , 1) which we can then induct over.

Definition 6. We define H
(r)
(ρ1,...,ρr)

(n) to be the hypergraph with vertex set V = V1 ∪
V2 ∪ . . . ∪ Vr where |Vi| = n and edge set {e : |e ∩ Vi| = ρi}.

To illustrate the definition, we note thatH
(r)
(1,··· ,1)(n) is the complete r-partite r-uniform

graph with n vertices in each part. We will need the following procedure which takes a
graph and transforms it to a hypergraph of higher uniformity.

Definition 7 (Enlarging). Let G be a bipartite graph with partite sets A and B and
let a, b ∈ N. Define an (a + b)-uniform hypergraph H as follows. For each v ∈ A let
v1, · · · , va be a disjoint vertices and for each u ∈ B let u1, · · · , ub be b disjoint vertices.
Then

V (H) =

$
%

v∈A

{v1, · · · , va}
&

∪
$
%

u∈B

{u1, · · · , ub}
&
,

E(H) = {{v1, · · · , va, u1, · · · , ub} : uv ∈ E(G)} .

We say that H is the hypergraph obtained by enlarging each vertex in A to a vertices
and each vertex in B to b vertices.

As stated in the introduction, determining the minimum n such that any coloring of
K

(r)
n has a monochromatic F is equivalent to the dual problem of minimizing the number

of colors necessary to color K
(r)
n such that no color class contains an F . We formalize

this with the following function.

Definition 8. Let H be a hypergraph and F be a family of hypergraphs. Define the
function C(H,F) to be the minimum number of colors necessary to color the edge set of
H such that no color class contains any F ∈ F .

3 Proof of Theorem 1

Let β > r − 2 and let F be a fixed family of connected hypergraphs, and assume that
we can color the edges of complete r-uniform r-partite hypergraph with O(nβ) colors
so that there is no monochromatic copy of a hypergraph in F . That is, there exists a
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constant c1,··· ,1 such that C(H
(r)
1,··· ,1(n),F) " c1,··· ,1n

β for all n. We aim to show that

C(K
(r)
n ,F) = O(nβ). To do this, we will split the edge set of K

(r)
n into a bounded number

of parts each associated to an element of the poset Pr and show that that each of these
sets can be colored with O(nβ) colors.

Since C(K
(r)
n ,F) is monotone in n, we assume without loss of generality that n is

divisible by r. Divide the vertex set into V1, . . . , Vr each of size n
r
. For each edge e there

is a vector (e1, . . . , er) ∈ Pr where ei = |e∩Vi|, and we may partition the edge set of K
(r)
n

into sets depending on which vector in Pr it is associated with. For a given vector ρρρ ∈ Pr

the set of edges with vector ρρρ forms a subhypergraph isomorphic to H
(r)
ρρρ

'
n
r

(
, and hence

K(r)
n =

%

ρρρ∈Pr

H(r)
ρρρ

!n
r

"
.

Since the number of vectors in Pr is a constant that depends only on r, it suffices
to show that for each ρρρ ∈ Pr we have that C(H

(r)
ρρρ ,F) = O(nβ). We will proceed

by induction on (any linear extension of) Pr. Since by the assumption we have that

C(H
(r)
1,··· ,1(n),F) " c1,··· ,1n

β, the base case is satisfied. Now fix ρρρ = (ρ1, · · · , ρr) ∈ Pr and

assume that for all τττ ≺ ρρρ there is a constant cτττ such that C(H
(r)
τττ (n),F) " cτττn

β for all n.

Note that if ρi = 0, then Vi is not incident with any hyperedges of H
(r)
ρρρ (n). Without

loss of generality we can assume that ρ1 through ρρ̂̂ρ̂ρ are non-zero. Split each Vi where
ρi > 0 into ρρρmax parts Vi,1, · · · , Vi,ρρρmax (again without loss of generality assume that n is

divisible by ρρρmax). Divide the edges of H
(r)
ρρρ (n) as follows. Call an edge e Type I if for

all i there exists a j such that e ∩ Vi,j = e ∩ Vi. Call the other edges Type II. We will
show that we may cover the Type I and Type II edges with O(nβ) F -free hypergraphs
by induction on n and by the induction hypothesis on Pr respectively.

First we take care of the Type II edges. For any choice U1, · · · , Ur of distinct sets
from {Vi,j}i,j we may consider the subhypergraph of Type II edges which are induced
by U1, · · · , Ur. If this subhypergraph contains edges, then for each edge e one may
consider the vector (e′1, · · · , e′r) where e′i = |Ui ∩ e|. By definition of Type II, the vector
(e′1, · · · , e′r) is strictly less than ρρρ in Pr. Therefore, by the induction hypothesis (on Pr),
this subhypergraph of edges may be covered by O(nβ) hypergraphs each of which is F -
free. Since the number of choices for U1, · · · , Ur is a constant that depends only on r and
ρρρmax, we have that there is an absolute constant C := Cr,ρρρ so that the Type II edges may
be covered with at most Cnβ F -free subhypergraphs.

Next we take care of the Type I edges by induction on n. Define C1 to be a constant
that satisfies C + C1ρρρ

ρ̂̂ρ̂ρ−1−β
max < C1. This is possible since β > r − 2 and ρ̂̂ρ̂ρ " r − 1 for

any ρρρ ∕= (1, · · · , 1). For the induction hypothesis, assume that for any k < n we have

that C(H
(r)
ρρρ (k),F) " C1k

β. For any j = (j1, · · · , jρ̂ρρ) ∈ {1, · · · ,ρρρmax}ρ̂ρρ the graph of

Type I edges induced by V1,j1 , · · · , Vρ̂ρρ,jρ̂ρρ is isomorphic to H
(r)
ρρρ

!
n

ρρρmax

"
. By the induction

hypothesis (on n) there are F -free hypergraphs G1(j), · · · , GT (j) which cover the Type I

edges induced by V1,j1 , · · · , Vρ̂ρρ,jρ̂ρρ where T = C1

!
n

ρρρmax

"β

. Naively, we could use such a set

of hypergraphs for each j, but unfortunately this is not a small enough number in total.
In order to reduce the total number of hypergraphs used, we will combine those which
are edge-disjoint. Note that because F contains only connected hypergraphs, the disjoint
union of F -free graphs is still F -free.

the electronic journal of combinatorics 29(4) (2022), #P4.26 4



For each j assume that we have F -free hypergraphs G1(j), · · · , GT (j) which partition

the Type I edges induced by V1,j1 , · · · , Vρ̂ρρ,jρ̂ρρ and T = C1

!
n

ρρρmax

"β

. We combine disjoint

copies of these as follows. For k2, · · · , kρ̂̂ρ̂ρ any ρ̂̂ρ̂ρ − 1 (not necessarily distinct) integers in
{0, · · · ,ρρρmax−1}, consider the vectors j1 = (1, 1+k2, · · · , 1+kρ̂̂ρ̂ρ), j2 = (2, 2+k2, · · · , 2+
kρ̂̂ρ̂ρ), . . . . jρ̂̂ρ̂ρ = (ρ̂̂ρ̂ρ, ρ̂̂ρ̂ρ + k2, · · · , ρ̂̂ρ̂ρ + kρ̂̂ρ̂ρ) where addition is done on {1, · · · ,ρρρmax} mod
ρρρmax. Then for any t the graphs Gt(j1), · · · , Gt(jρ̂̂ρ̂ρ) are disjoint. Let their union be called
Gt(k2, · · · , kρ̂̂ρ̂ρ). Then as k2, · · · , kρ̂̂ρ̂ρ vary we have

T%

t=1

%

k2,··· ,kρ̂̂ρ̂ρ

Gt(k2, · · · , kρ̂̂ρ̂ρ) =
T%

t=1

%

j

Gt(j),

and this union covers all of the Type I edges. The total number of graphs Gt(k2, · · · , kρ̂̂ρ̂ρ)
is ρρρρ̂̂ρ̂ρ−1

max · T = C1

'
ρρρρ̂̂ρ̂ρ−1−β
max

(
nβ. Combining the graphs used to cover the Type I edges with

the graphs used to cover the Type II edges we have that

C(H(r)
ρρρ (n),F) " Cnβ + C1

'
ρρρρ̂̂ρ̂ρ−1−β
max

(
nβ < C1n

β,

where the last inequality follows by the choice of C1.

4 Proof of Theorems 2 and 3

We need the following lemmas which take a graph and transform it to a hypergraph
which forbids something. Lemma 9 has been noted before, see Construction 1.9 in [15]
for example, but we include a proof for completeness.

Lemma 9. Let G be a bipartite graph with no C3, C4, . . . , C2m, C2m+1. Let H be the (s+t)-
uniform hypergraph obtained by enlarging each vertex in one part of G to s vertices and
each vertex in the other part of G to t vertices. Then if s < 2m and t < 2m, H is B(C2m)
and B(C2m+1) free.

Proof. By contrapositive, let g ∈ {2m, 2m + 1} and assume that H contains a Berge-
Cg with vertex set v1, . . . , vg and edge set e1, . . . , eg such that vi, vi+1 ∈ ei (subscripts
considered modulo g). Let A and B be the partite sets of graph G. For each vj let wj be
the vertex in G which was enlarged to create vj. Note that the wj may not be distinct,
but in the sequence (w1, · · · , wt) a vertex may appear at most s times if it is in A and
at most t times if it is in B. For each j, if wj and wj+1 are distinct, then wj ∼ wj+1

in G. Then, ignoring repeated vertices, the sequence w1, w2, . . . , wg, w1 corresponds to a
closed walk in G of length ℓ " g. Furthermore, since e1, · · · , eg are distinct hyperedges,
the edges in this closed walk must be distinct. Since g ! 2m and s < 2m and t < 2m,
we have that ℓ ! 3. Therefore, there is a cycle in G of length at least 3 and at most g.

We prove a similar lemma regarding enlarging graphs that are Ka,b-free.

Lemma 10. Let a, b ! 2 and G be a bipartite graph with no Ka,b. Let H be the (s+ t)-
uniform hypergraph obtained by enlarging each vertex in one part of G to s vertices and
each vertex in the other part of G to t vertices. Then if s < a+ b and t < a+ b, H does
not contain a Berge-Ka,b.
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Proof. By contrapositive, assume H contains a Berge-Ka,b with vertex set v1, · · · , va,
u1, · · · , ub and edge set {ei,j} where {vi, uj} ⊂ ei,j. Let the partite sets of G be A′ and
B′ and let A be the set of vertices that came from enlarging vertices in A′ and B be
the set of vertices that came from enlarging vertices in B′. For each ui and vj, let u′

i

and v′j be the vertex in G that was enlarged to create ui or vj respectively. First the
set {v′1, · · · , v′a, u′

1, · · · , u′
b} contains more than one vertex because each vertex of G was

enlarged to either s or t vertices in H and both s and t are at most a+b−1 by assumption.
Therefore, there exist u′

i and v′j that are adjacent in G, and we may assume without loss
of generality that v′j ∈ A′ and u′

i ∈ B′ (and therefore vj ∈ A and uj ∈ B).
Next we will show that vk and uk are in A and B respectively for all k. The only

vertices in A that vi shares edges with are those that came from enlarging v′i. Therefore,
if uk ∈ A for some k we must have that u′

k = v′i. But then this forces all vertices all
vertices in A to come from enlarging either v′i or u

′
j. For a > 1 this is a contradiction for

then the map from the edges of the Berge-Ka,b to the edges of Ka,b will not be a bijection.
A similar contradiction occurs if vk ∈ B for some k.

Since all vi are in A and uj are in B, we must also have that all v′i and all v′j are
distinct, otherwise again, since a, b ! 2, the map from the edges of the Berge-Ka,b to the
edges of Ka,b will not be a bijection. But now if all v′i and u′

j are distinct, we have that
v′i and u′

j are adjacent in G for all i and j, i.e. there is a Ka,b in G.

We will also use the following general theorem which allows one to obtain a coloring
of K

(r)
n,··· ,n given a coloring of Kn,n.

Theorem 11. Let G1, · · · , GT be bipartite graphs on partite sets A and B whose union
is Kn,n. For each j let Hj be the hypergraph obtained by enlarging each vertex in A to
s vertices and each vertex in B to t vertices. Assume that F is a family of hypergraphs
such that Hi is F-free for all i. Then there is a partition of the edge set of the complete
(s + t)-partite (s + t)-uniform hypergraph with n vertices in each part into T · ns+t−2

subgraphs each of which is F-free.

Proof. Let A and B be identified with Z/nZ, and let A1, · · · , As and B1, · · · , Bt be
disjoint sets of vertices also each identified with Z/nZ. For a2, · · · , as and b2, · · · , bt
arbitrary elements of Z/nZ and 1 " i " T , define the (s + t)-partite (s + t)-uniform
hypergraph Hi(a2, · · · , as, b2, · · · , bt) to be the (s+ t)-partite (s+ t)-uniform hypergraph
on partite sets A1, · · · , As, B1, · · · , Bt with edge set

{(u, u+ a2, · · · , u+ as, v, v + b2, · · · v + bt) : uv ∈ E(Gi)},
where vertices in coordinates 1 through s are in parts A1, · · · , As respectively and vertices
in coordinates s+ 1, · · · s+ t are in parts B1, · · · , Bt respectively.

Note that Hi(0, · · · , 0, 0, · · · , 0) is isomorphic to the hypergraph obtained by en-
larging each vertex in Gi to s vertices if it is in A and to t vertices if it is in B,
and hence it is F -free. Furthermore for any choice a2, · · · , as, b2, · · · bt, the hypergraph
Hi(a2, · · · , as, b2, · · · bt) is isomorphic to Hi(0, · · · , 0, 0, · · · , 0) via the explicit automor-
phism

u +→

)
*+

*,

u u ∈ A1 ∪B1

u+ ai u ∈ Ai, i ! 2

u+ bi u ∈ Bi, i ! 2

.
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Note that as i ranges from 1 to T and a2, · · · , as, b2, · · · bt vary over all choices in Z/nZ,
we have T · ns+2−2 hypergraphs Hi(a2, · · · , as, b2, · · · bt). It only remains to show that

T%

j=1

%

a2,··· ,as,b2,···bt

Hi(a2, · · · , as, b2, · · · bt)

covers all of the hyperedges of the complete r-partite r-uniform hypergraph on partite sets
A1, · · · , As, B1, · · · , Bt. To do this, consider an arbitrary hyperedge (v1, · · · , vs+t). Let i
be the index such that v1vs+1 ∈ E(Gi) (this is well-defined since the union of G1, · · · , GT

is Kn,n). Then by the definitions we have that (v1, · · · , vs+t) is an edge of the hypergraph

Hi(v2 − v1, v3 − v1, · · · , vs − v1, vs+2 − vs+1, · · · , vs+t − vs+1).

Proof of Theorem 2. It is known [16] that the Turán numbers for Berge cycles satisfy

exr(n,B(C2m)) = O
!
n1+ 1

m

"

exr(n,B(C2m+1)) = O
!
n1+ 1

m

"
.

Applying this result and the pigeonhole principle yields the upper bound. For the

lower bound, showing that Rr(B(C2m); k) and Rr(B(C2m+1); k) are Ω
!
k

m
rm−m−1

"
is equiv-

alent to showing that K
(r)
n can be partitioned into O

!
nr−1− 1

m

"
subgraphs each of which

are B(C2m) and B(C2m+1) free respectively. Let s and t be defined so that s+ t = r and
s, t < 2m.

It is known that for m ∈ {2, 3, 5}, Kn,n can be partitioned into O
!
n1− 1

m

"
subgraphs

each of which has girth at least 2m + 2 (see Lemma 5 of [18] for the case m = 2 and
Proposition 3.1 of [24] for the cases when m = 3 and m = 5). Therefore, for T =

O
!
n1− 1

m

"
assume that G1, · · · , GT are graphs each of which have girth at least 2m + 2

and whose union is Kn,n. By Lemma 9, for each Gi the hypergraph obtained by enlarging
each vertex in one partite set to s vertices and each vertex in the other partite set to
t vertices is both B(C2m)-free and B(C2m+1)-free. Then, by applying Theorem 11, we

have a set of O
!
nr−1− 1

m

"
subgraphs which are B(C2m) and B(C2m+1)-free the union of

which cover the edges of K
(r)
n,··· ,n. Applying Theorem 1, we may partition the edge set

of K
(r)
n into O

!
nr−1− 1

m

"
subgraphs each of which are B(C2m) and B(C2m+1)-free. This

completes the proof.

Proof of Theorem 3. The lower bound is similar to the proof of the lower bound in Theo-
rem 2. We leave the details to the reader and only note that one uses Lemma 10 and the
result from [1] that for a > (b− 1)!, the edge set of Kn may be partitioned into Θ(n1/b)
subgraphs each of which is Ka,b-free.

For the upper bound, when b = 2 we use the result from [11] that

exr(n,B(K2,t)) = O
'
n3/2

(
,
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for all r and t and the result from [12] that

exr(n,B(Ka,b)) = O(n2−1/s)

whenever r ! a+ b. The bound then follows from the pigeonhole principle.

5 Conclusion

In this paper we determined the order of magnitude for the multicolor Ramsey numbers
of Berge cycles of length 4, 5, 6, 7, 10, or 11, as long as the uniformity is small enough.
Extending our theorem to other cycle lengths or uniformities is out of reach at the current
time, for in these cases we do not even know the order of magnitude of the Turán number
exr(n,Cℓ). Our main result follows from a more general set up that allows one to go from
a construction in the graph case to a construction in the hypergraph case. Because of
this we were also able to give the order of magnitude for Rr(B(Ka,b)) for some choices of
r, a, b. The lower bound in Theorem 3 is not tight in general. It is known (see [11]) that

ex(n,Kr, F ) " exr(n,B(F )) " ex(n,Kr, F ) + ex(n, F ),

where ex(n,Kr, F ) denotes the maximum number of copies of Kr in an n-vertex F -free
graph. Combining this with results from [2] gives that for a > (b− 1)! and 3 " r " a

2
+1,

exr(n,B(Ka,b)) = Θ
!
nr−(r2)/a

"
.

The upper bound that one gets from the pigeonhole principle for such r, a, b does not
match our lower bound in Theorem 3. Perhaps one could leverage the projective norm
graphs to improve on our result in these cases. When a

2
+ 1 < r < a + b the order

of magnitude for exr(n,B(Ka,b)) is not known and this would have to be determined
before answering the Ramsey question. It would be interesting to determine the order of
magnitude for the multicolor Ramsey number of B(G) for other graphs G.

Throughout this paper we did not try to optimize our multiplicative constants because
doing so would not have given us an asymptotic formula in any of the cases. We note
that in all of the constructions as they are written, there are pairs of color classes that
correspond to edge disjoint hypergraphs, and these could be combined to reduce the total
number of colors used. It is not clear what the best way to do this systematically is, but
for example, we can obtain a lower bound for R3(n,B(C4)) of

$
(3
√
2− 4)(3

√
3− 1)

2
− o(1)

&2/3

k2/3 ≈ 0.63756k2/3.

Furthermore, in some cases it is possible to extend Theorem 1 to some β " r − 2. De-
termining an asymptotic formula for any of the Ramsey numbers studied in this paper
would be very interesting but would require new ideas, as even asymptotics for the cor-
responding Turán numbers are not known (cf [7, 8, 16] and Section 5 of [11]). In the
specific case of 3-uniform graphs of girth 5, it is known [17] that

ex3(n, {B(C2),B(C3),B(C4)}) ∼
1

6
n3/2.
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One construction showing the lower bound is to take the vertex set to be the 1-dimensional
subspaces of F3

q where 3 subspaces form an edge if and only if they are an orthogonal
basis. It would be interesting to try to use automorphisms of this graph to show (if it is
true) that

R3({B(C2),B(C3),B(C4)}; k) ∼ k2/3.

References

[1] Noga Alon, Lajos Rónyai, and Tibor Szabó. Norm-graphs: variations and applica-
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[4] Eben Blaisdell, András Gyárfás, Robert A Krueger, and Ronen Wdowinski. Parti-
tioning the power set of [n] into Ck-free parts. The Electronic Journal of Combina-
torics, pages P3–38, 2019.

[5] Tom Bohman and Emily Zhu. On multicolor Ramsey numbers of triple system paths
of length 3. arXiv preprint arXiv:1907.05236, 2019.

[6] David Conlon, Jacob Fox, and Benny Sudakov. Recent developments in graph Ram-
sey theory. Surveys in combinatorics, 424(2015):49–118, 2015.
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