
§1. Plane Graph and Skeletons Lecture V Page 1

Lecture V

PLANE GRAPHS AND POINT LOCATION

Euler’s formula relating number of vertices, edges and faces of a plana embedding of graph is a funda-
mental relation in computational geometry. It leads to all the favorable computational properties of planar
graphs, as compared to general graphs. We introduce the notion of skeletons and their computation. In
general, we need the language of cell complexes as in topology where skeletons might be called 1-complexes.

The problem of point location, Kirkpatrick’s elegant solution, and the alternative of Seidel is treated.

§1. Plane Graphs and Skeletons

Let G be a undirected graph G = (V, E). Let the map µ assign to each v ∈ V a distinct point µ(v) in
the plane. The points are distinct in the sense that u 6= v implies µ(u) 6= µ(v). This map extends naturally
to edges where e = (u, v) ∈ E is mapped to the open line segment µ(e) = (µ(u), µ(v)). This extended map
µ is called a linear plane embedding of G if the following two conditions hold.

• For all edges e 6= f , µ(e) ∩ µ(f) =,

• If v is not an endpoint of e, then v does not lie in the closure of µ(e).

Not all graphs admit such a embedding; those that do are called planar graphs. We will simply say
“embedding” instead of “linear plane embedding”. By a plane graph we mean1 a planar graph G together
with some linear plane embedding µ.

Let S be a set of open line segments (called “edges”) and points (“vertices”). We call S a skeleton if it
satisfies the following properties:

• For all edges e, f ∈ S, e 6= f implies e ∩ f =.

• Let e ∈ S be an edge. If a vertex v ∈ S lies in the closure of e then v is an endpoint of e. Conversely,
if v is an endpoint of e then v ∈ S.

Clearly, if µ is an embedding of G, then the set

{µ(v) : v ∈ V } ∪ {µ(e) : e ∈ E}
is a skeleton. Conversely, every skeleton is the embedding of a graph which we denote by G(S) =
(V (S), E(S)). By abuse of language, we sometimes call S an embedding of G(S).

Given any graph G, we have the usual numerical quantities |V |, |E| and the number of connected com-
ponents β(G). We will call the quantities |V |, |E| and the number of connected components of G the
embedding invariants of G, and denote them by

ν0(G), ν1(G), β(G),

respectively. If S is a skeleton, we will write ν0(S) for ν0(G(S)), etc. But we can define another quantity for
S, the number of regions induced by S. More precisely, consider the set K = R

2 \ ∪S. The set K partitions
1This technical distinction between “planar graph” and “plane graph” is possibly confusing in ordinary speech.

c© Chee-Keng Yap April 30, 2003

§2. Euler’s Formula Lecture V Page 2

naturally into a finite number of maximally connected open sets, each of which is called a region of the
embedding. Note that K has exactly one unbounded region. Let ν2(S) denote the number of regions. It
is less clear that ν2(S) is an embedding invariant of G(S). This is however true, and will be proved below.
Hence we may write ν2(G) for ν2(S) where S is any embedding of G. Note that ν2(G) is only defined when
G is planar.

Remark: Two closed line segments are said to be crossing if their relative interios intersect; otherwise
they are non-crossing. Note that non-crossing line segments may share endpoints. Then a skeleton S
alternatively be represented by a set of closed line segments that are non-crossing.

§2. Euler’s Formula for Embeddings

A skeleton S (or graph G) can be incrementally constructed via a sequence of |S| (or |V |+|E|) operations,
where each operation comes under one of the following two types:

• Add an isolated point (a vertex).

• Add an open line segment (an edge) connecting two existing isolated points (vertices).

More precisely, a construction sequence for S is

S0 ⊆ S1 ⊆ S2 ⊆ · · · ⊆ Sm (1)

where S0 = ∅, Sm = S, and for i ≥ 0, Si+1 is obtained from Si using one of our operations above. Clearly,
|Si| = i for i = 0, . . . , m.

Theorem 1 The following formula of Euler holds for any skeleton S:

ν0(S)− ν1(S) + ν2(S) = 1 + β(S). (2)

Proof. We use induction on |S|. The formula is true when S is the empty set:

0− 0 + 1 = 1 + 0.

For |S| > 0, consider any construction sequence (1) that ends in S. Let S′ be the skeleton just before S in
the sequence (so S′ = Sm−1). By induction hypothesis, Euler’s formula holds for S′. So, we need to show
that adding a vertex or an edge preserves the invariant. When we add a vertex, the only quantities in the
Euler’s formula (2) that change are the number of vertices and the number of connected components of the
graph: both increases by 1,

ν0(S) = ν0(S′) + 1, β(S) = β(S′) + 1.

But these changes preserve our Euler’s formula. When we add an edge, there are two possibilities: (i) the
two endpoints of the edge belong to disjoint components of the graph, or (ii) they belong to a common
component. In case (i), the quantities that change are

ν1(S) = ν1(S′) + 1, β(S) = β(S′)− 1.

Thus, we gained an edge but lost one connected component. This preserves the Euler’s formula (2). In case
(ii), the changes are

ν1(S) = ν1(S′) + 1, ν2(S) = ν2(S′) + 1.

c© Chee-Keng Yap April 30, 2003

§3. Consequences of Euler’s Formula Lecture V Page 3

Thus, we gained an edge as well an a region (one of the original regions split into two). Again, Euler’s
formula continues to hold. Q.E.D.

The above proof apparently depends on a choice of a sequence (1), namely, on the order in which vertices
and edges are introduced. But the numerical quantity ν2(S) depends only on the final set S, and not on the
sequence of operations to reach S. We now show that ν2(S) depends only on the graph G(S).

Corollary 2 The number ν2(G) is well-defined for a planar graph G.

Proof. Let S be any embedding of G. We know that ν0(S), ν1(S), β(S) are functions of G alone, independent
of the choice of S. Thus Euler’s formula (2) for S implies that ν2(S) is also a function of G alone. Q.E.D.

Remark: We can equally develop this section by defining the “dual” of a construction sequence: We
may define a destruction sequence for any embedding S to be a sequence (S0, S1, . . . , Sm) where S0 = S,
and each Si+1 is obtained from Si by removing an arbitrary edge or by removing a vertex that is no longer
incident on any edge.

§3. Consequences of Euler’s Formula

Let G = (V, E) be a planar graph. Our first goal is to bound the average degree δ = δ(G) of vertices
in a planar graph:

δ =
1
ν0

∑

v∈V

d(v)

where d(v) is the degree of v, i.e., number of edges in E incident on v. Now
∑

v∈V d(v) can be regarded as
counting the number of (vertex, edge) incidences from the viewpoint of the vertices. We can count also these
incidences from the view point of the edges, and this number is 2ν1 since each edge is involved in two such
incidences. It follows that

δ =
2ν1

ν0
. (3)

In combinatorics, whenever we can count a quantity in two independent ways, we have a non-trivial relation
such as (3). Good, let us do this again. Why not count the number of (edge, region) incidences. The
difference is that we now only get bounds (upper or lower) on the desired quantity. From the viewpoint of
the edges, this count is exactly 2ν1. Actually, we have a technicality here: sometimes, an edge may have
the same region on both of its sides – do we count this as one or two incidences? If we count this as one
(edge, region) incidence, then 2ν1 is not exact, but an upper bound. But it turns out not to matter. From
the viewpoint of the regions, we get a lower bound of 3ν2 on the number of incidences. This lower bound is
the first time we actually exploit the fact that our embedded edges are linear curves, so that each region is
bounded at least three edges. Thus we have

2ν1 ≥ 3ν2. (4)

Thus the number of regions ν2 is at most 2ν1/3. Plugging this inequality into Euler’s formula to eliminate
ν2, we obtain

ν0 − ν1 +
2ν1

3
≥ 1 + β

ν0 ≥ 1 +
ν1

3
.

c© Chee-Keng Yap April 30, 2003

§4. Data Structures for Subdivisions Lecture V Page 4

Thus the average degree is less than 6:
2ν1

ν0
<

2ν1

ν1/3
= 6.

But at most half of the vertices has twice the average degree or more. Thus we have shown: In a plane graph
G with n nodes, at least bn/2c = bν0(G)/2c of its vertices has degree less than 12.

Let us summarize: In a plane graph with v vertices and e edges and r regions,

r ≤ 2e/3, e ≤ 3v.

Thus r ≤ 2v. Morever, at least bv/2c of the vertices have degree at most 11.

§4. Data Structures for Subdivisions

The information represented by an embedding (or a skeleton) needs to be rationally encoded to support
algorithms for such embeddings. Several data structures have been proposed in the literature, and we now
examine some of them.

The Problem with Holes. First some terminology: if f, f ′ are two adjacent faces, with f ′ contained
in the closure of f , then we say that f ′ bounds f . The dimension of f ′ will be less than the dimension
of f . The boundary of a region will in general be comprised of several boundary components, which
are pairwise disjoint simple polygons (=vertices and edges), For bounded regions, there is a distinguished
boundary component, namely, the the outermost boundary. The non-distinguished boundary components
can be seen to bound holes. Connected regions that do not have holes are said to be simply-connected.
Alternatively, for a non-empty skeleton, a region is simply connected iff it is bounded and has one boundary
component.

One way to convert bounded regions into simply-connected regions is to introduce an edge to connect the
boundary to each hold to the rest of the boundary. Such an edge (called an isthmus) is characterized by
having the same region on both sides of the edge. For simplicity, we often assume that the bounded regions
are simply-connected.

Requirements. Let S be a skeleton. What do we require from a data structures D(S) for Π(S)? Basically,
we expect to search from any face of Π(S) its adjacent faces quickly.

• Given a region R in Π(S), we expect to be able to visit each of its bounding edges and vertices in some
circular order at constant cost per edge or vertex.

• Given an edge e, we expect to locate the two incident regions and two incident vertices in constant
time.

• Given a vertex v, we expect to be able to visit each of the edges and regions that it bounds in some
circular order, at constant cost per edge or region.

Let us give an example of an operation that does not automatically fall out of such representations: given
a vertex, what is the edge (if any) that is vertically above it? This query cannot be obtained in constant
time using the above information.

c© Chee-Keng Yap April 30, 2003

§4. Data Structures for Subdivisions Lecture V Page 5

First Attempt: Augmented Adjacency Lists. To indicate that the correct data structure is not
entirely trivial, let us explore the reasonable suggestion to represent Π(S) by any efficient representation of
the graph G(S), augmented by additional information that arises from the embedding. One of the most
useful representations of graphs is the adjacency list representation: we have a vertex list and an edge
list; for each edge in the edge list, we store its pair of endpoints, and for each vertex v in the vertex list, we
store an adjacency list A(v) comprising the edges that are bounded by v. We now propose to represent
subdivisions by augmenting the adjacency list representation. The following additional information may be
provided.

• We need to store a list of regions. With region, we store a list of bounding edges, one edge from each
boundary component.

• With each vertex in the vertex list, we store its coordinates, (x, y),

• With each edge e in the edge list, we store the two (not necessarily distinct) regions that it bounds,

• The adjacency list A(v) must now be kept in some cylic order that reflects the cyclic ordering of the
edges around v.

Unfortunately, this data structure does not meet one of our above requirements. How do we traverse
around the boundary of a region efficiently? The adjacency does encode information to support this traversal,
but not in a form that is easily accessible. In particular, we cannot get from one bounding edge e to the
“next edge” e′ in constant time. It takes time proportional to the degree of the vertex that is incident to
both e and e′. Nevertheless, this simple “augmented adjacency list” structure may be useful if going around
the boundary of a region is not important.

An alternative solution would be to further augment our augmented adjacency list structure: store with
each face, a list of all the edges bounding the face. But this is duplicating information, which is sometimes
undesirable.

The DCEL Structure. There is no simple way to modify the augmented adjacency list representation
above. Instead we must take it apart: the problem lies in the the monolithic “adjacency lists” (inherited
from graphs). We will take the information in these lists and distribute this information among the edges.
Each edge is now given an arbitrary direction. This amounts to specifying one incident vertex of e as the
start and the other as the stop vertex. Relative to this direction, we have two faces called the left and
right faces of e. We define the left and right successors of of e to be the two edges that are incident on
the e.stop and which bound the left and right (respectively) faces of e. Similarly, we can define the left and
right predecessors of e; these are edges incident on e.start and bounding the left and right (respectively)
faces of e. See figure 1(a).

.

Half-Edge Data Structure. The DCEL Structure has one unsatisfactory feature, its arbitrary assignment
of direction to edges. We can remove this arbitrariness by splitting each edge into two half-edges. The
result data structure is the so-called half-edge data structure. So the two half-edges are really the same edge
with opposite orientations. Such a pair is called a twin. For each half-edge h, let h.twin be its twin. Thus,
h.twin.twin = h. The end points of h are h.start and h.stop and we consider h to be directed from h.start
to h.stop. Thus h.twin.start = h.stop and h.twin.stop = h.start. We view each half-edge as bounding a
single face, denoted h.face. This is the face that lies on the right side of the directed half-edge. We also have
h.succ, h.pred refering to the half-edges that bound h.face and incident on h.stop and h.start (respectively).

c© Chee-Keng Yap April 30, 2003

§4. Data Structures for Subdivisions Lecture V Page 6

e

e.start

e.stop

right face of e

left face of e

right successor

left successor

left predecesor

right predecessor

h

h.twin

h.pred
h.succ

(a) edge e (b) half-edge h

Figure 1: Successor and predecessor edges

This data structure will be our default data structure for plane subdivisions (and any general surface
mesh). For this reason, let us be explicit about our conventions for this data structure.

• We store three lists: vertices, half-edges and regions. Each region is assumed to he simply-connected
(so has only one boundary component). We allow edges which are isthmus.

• Each half-edge h stores pointers to three half-edges: its successor h.succ, predecessor h.pred, its twin
h.twin.

• The half-edge also points to two vertices: h.tail and h.head. The half-edge is directed from the tail
vertex to the head vertex.

• It has a pointer to the sole region that it bounds, h.region. This is the region which lies to its left.
Following the successor pointers of a half-edge will traver the boundary of h.region in a counter-
clockwise manner.

• Each vertex stores its geometric coordinates (x, y), and stores a pointer to one incident half-edge.

• Each region points to one bounding half-edge.

In applications, parts of this data structure may be omitted. For instance, if it is sufficient to traverse the
boundary of a face in only one direction, then we can drop the predecessor links for each half-edge. Often,
we may omit the list of faces and associated pointers.

What is the complexity of this representation? When it is O(ν0(S) + ν1(S) + ν2(S)) = O(n) where
n = ν0(S) is usually taken to be the size of this subdivision.

Variations. Some variants are called “winged edges data structures”, where the “wing” terminology is
suggested by the directions drawn on edges. Sometimes, redundant information may be provided to provide
constant speedup. In some applications, some of the links can be omitted. As noted above, we may often
drop all information related to the regions. If this is done, we may achieve significant improvement in

c© Chee-Keng Yap April 30, 2003

§6. Point Location and Kirkpatrick’s Structure Lecture V Page 7

performance (constant factor, of course). Another remark is that our skeletons allow “dangling edges” or
handles which do not appear essential. But one reason to allow them is that some incremental algorithms,
our data structre may pass through intermediate stages with such handles which will eventually be removed.

Quad-Edges Data Structure and Duality. The quad-edge data structure was introduced by Guibas
and Stolfi. Let us now restrict attention to regions that are simply connected. Then there is a dual graph
D(G) in which the regions of G are vertices of D(G), and the edges of D(G) are still the edges of D(G). In
general, D(G) may no longer be a simple graph – it may have multiple (or parallel) edges. See figure 2.

e

fR

fL

f1

f2

f0 v4

v3

v3

e

v4

f1

f2

f:

fR

f0

(b) dual(a) primal

Figure 2: Dual Graphs.

The quad-edge data structure for a skeleton S has the elegant symmetry between vertices and regions,
thus giving no preferences to the graph G(S) or its dual D(G(S)).

Remarks. For an in-depth discussion on designing a data structure for surfaces in a general geometric
library, we refer to Kettner [1].

§5. Triangulation of a Subdivision

A connected subset X ⊆ R
2 is y-monotone if every horizontal line H(t) intersects X in a connected set

H(t) ∩ X . Note that if H(t) ∩ X is empty, it is considered a connected set. Let Π be a subdivision of the
plane. We say Π is y-monotone if every bounded face of Π is y-monotone. We say Π is triangulated if
bounded region is triangulated. Note that

§6. Point Location and Kirkpatrick’s Structure

Let S be a skeleton. It induces a partition Π(S) of R
2 into disjoint sets which comprise the vertices

and edges in S, as well as the regions as defined before. Thus S ⊆ Π and the set of regions is Π \ S. Call
Π = Π(S) the called the planar subdivision induced by S. Each f ∈ Π is called a face of the subdivision.
Thus the faces are vertices (or 0-faces), edges (or 1-faces) or regions (or 2-faces).

c© Chee-Keng Yap April 30, 2003

§6. Point Location and Kirkpatrick’s Structure Lecture V Page 8

Now assume that the underlying graph G(S) is connected, i.e., β(G(S)) = 1). The planar point
location problem for S asks us to construct a data structure D(S) such that for any point q ∈ R

2, we can
use D(S) to efficiently determine the face f(q) of the subdivision Π(S) that contains q. Here q is called the
query point.

We now describe a beautiful datastructure D(S) of Kirkpatrick to solve the planar point location problem.
We assume that the subdivision Π(S) is triangulated (that is, each region, except for the infinite region, is
a triangle). A subset U ⊆ V (S) is called an independent set if no two vertices in U are connected by an
edge. Kirkpatrick defines a sequence (hierarchy)

S0, S1, . . . , Sh (5)

of embeddings where S0 is the original S, and Si+1 is obtained from Si be removing an independent subset
Ui ⊆ Vi(S). Thus

V (Si+1) = V (Si) \ Ui.

We now describe E(Si+1). This is obtained from E(Si) be removing any edge that is incident on a removed
vertex of Ui, and by re-introducing edges to re-triangulate the regions that are no longer triangulated.

It is instructive to understand this re-triangulation process. Say u is a removed vertex, and as a result,
we have to remove k edges that are incident on u. This create a “star-shaped region” that is centered at
u with k bounding segments. To re-triangulate this region, we only need to k − 3 new edges. Note that
because we assume U is an independent set, the star-shaped region for the points in U are pairwise disjoint.
Hence the re-triangulation for each u can proceed independently.

This completes the description of Si+1. Intuitively, Si+1 is a “simplified version” of Si. We step this
simplification process when |Si| is less than some constant. We may represent each Π(Si) using some standard
topological representation of subdivisions (e.g., half-edge data structure).

There is another important set of links in our hierarchical data structure: each face f ∈ Π(Si+1) points
to its “cause” in Π(Si): if f occurs as f ′ ∈ Π(Si), then f ′ is the “direct cause” of f . If not, f points to the
vertex u in Π(Si) whose removal led to the creation of f (in this case, f is an edge or a region). Here, u the
“indirect cause” of f . We have now completely describe D(S), except for one addition detail – how is the
independent sets Ui specified?

Let us see how we can use D(S) for point location: given a query point q, we locate the face f of Π(Sh)
that contains q. In general, when we have found the face fi+1 in Π(Si+1) that contains q, we can find the
face the face fi in Π(Si) that contains q as follows: follow “cause link” of fi+1 to some f ′ in Π(Si). If f ′ is
a direct cause then fi is simply f ′. Otherwise, we need to search the edges and regions in Π(Si) that are
incident on f ′ to find fi. How much time does this search take? This depends on the degree of f ′. We would
like this degree to be bounded.

Complexity of Kirkpatrick’s Solution. This brings us to the final detail: Kirkpatrick shows that we
can choose Ui so that

(a) Each vertex in Ui has degree at most 11, and

(b) |Ui| is at least |V (Si)|/24.

Can we find Ui with properties (a) and (b)? This is actually a simple consequence of our bound that about
half of the vertices has degree at most 11. We just pick vertices of degree at most 11 in any order, making
sure that no two picked vertices are adjacent. So, each picked vertex cause us to eliminate at most 12 vertices

c© Chee-Keng Yap April 30, 2003

§7. REMARKS Lecture V Page 9

from further consideration. Thus, we can continue this picking for at least n/24 times since at least n/2 of
the nodes must be eliminated before this process halts.

Let us deduce the computational significance of (a) and (b). From (b), it follows that the hierarchy (5)
is O(log |V (S)|) = O(lg n). In fact, it is at most

h ≤ log12/11 |V (S)|. (6)

From the bound ν1(S) < 3ν0(S) in the previous section, we are justified to define the size of S to be
n = ν0(S). From (a) we see that we can do point location for q in Si in constant time, given that we have
the answer to the query in Si+1. Combined with (6), we conclude that Kirkpatrick’s structure can answer
queries in O(log n) time.

Discussion. Unfortunately, this beautiful data structure does not appear to be useful in practice. There
are two reasons. One is that the hidden constant in the log n time performance seems to be too large. Let
the time be C lg n. Note that C depends linearly 1/ lg(24/23) + 11. We will next examine more practical
alternatives. The second is that the approach requires the subdivision be a triangulation. We will show how
to get around this problem.

Kirkpatrick’s result motivates the question: what other numbers can be used in place of the constants
(d, f) = (11, 24) in the above proof? It turns out that we can use (d, f) = (9, 35/2).

§7. REMARKS

Dynamic Maps. See Teillaud [2].

Consistency Problem. Given a half-edge data structure, how can we verify that it is consistent? In
practice, this is an important issue, since algorithms often construct erroneous structures because of numerical
roundoff errors.

Exercises

Exercise 7.1: Suppose G(S) is a connected graph and we want a construction sequence (S0, . . . , Sm) for S
with the property that each G(Si) is connected. In this case, we replace the operation of adding an
isolated vertex by an operation that simultaneously adds an isolated vertex and an edge that connects
it to the rest of the graph. Write a constructive geometry package supporting this set of operations.

♦

Exercise 7.2: Give a detail accounting of the space needs for our half-edge data structure. Compare this
to the quad-edge and the DCEL data structures. ♦

End Exercises

c© Chee-Keng Yap April 30, 2003

§7. REMARKS Lecture V Page 10

References

[1] L. Kettner. Using generic programming for designing a data structure for polyhedral surfaces. Compu-
tational Geometry: Theory and Applications, 13:65–90, 1999.

[2] M. Teillaud. Union and split operations on dynamic trapezoidal maps. Computational Geometry: Theory
and Applications, 17:153–163, 2000.

c© Chee-Keng Yap April 30, 2003

