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Lecture XI

Geometric and Geographic Simplification

This lecture introduces two related and very important topics. In visualization, the issue is how to
simplify geometric models. In GIS, the issue is how to simplify map data. They are clearly related, but the
relationship is not simple to describe.

We have already seen in our homework that displaying a map in all its details is too much for a dynamic
zooming display. What is needed is the ability to adjust the amount of details to be displayed at different
zoom levels.

§1. Introduction

In visualization, we are given a geometric model M to be displayed. This model can be a map (2-D) or
it can be a 3-D model. We assume that there is some measure of size of the model, denoted |M |. The main
issues of visualizing M arises becase |M | can be very large.

The next idea is that M might be approximated by other models M ′ where |M ′| < |M |. We assume
there is some measure of their difference, d(M, M ′) ≥ 0. Let δ ≥ 0 and σ ≥ 1. We will call M ′ a (δ, σ)-
simplification of M if d(M, M ′) ≤ δ and |M | ≤ σ|M ′|. We will also say M ′ is a δ-simplification of
M .

There are two ways to go defining M ′ for a given M : we could specify δ and then seek the smallest σ
such that M ′ is a (δ, σ)-simplification of M . Or we could specify σ and seek the smallest δ such that this
relation holds. Of course, finding the “smallest” is going to be a hard optimization problem. So we may be
content with some good heuristics.

Suppose δ > 0 is fixed, and we have an algorithm that for each Mi, create a new Mi+1 that is a
δ-simplification. This will allow us to construct a hierarchy of models,

M0, M1, . . . , Mk.

We can use this hierarchy for visualization: depending on the zoom level or desired level of detail, we use
the appropriate model Mi.

But how do we do simplification? We begin with two basic paradigms, called decimation and cluster-
ing, respectively. Let us illustrate them with the simplest kind of geometric model, where M is a polygonal
path. So M = (v0, v1, . . . , vn) where vi are points in the plane.

(1) Decimation: we can define M ′ = (v0, v2, v4, . . . , v2bn/2c). Thus, we simply drop every other point in
the path.

(2) Clustering: let us fix a grid G in the plane. View the grid as a discrete set of points, G ⊆ R
2. we can

define C(vi) to be the closest grid point to vi (breaking ties in some systematic way). Then we can replace
M by (C(v0), C(v1), . . . , C(vn)), and further dropping any C(vi) in case C(vi) = C(vi+1). The result is M ′.

The difference in these two points of views is that decimation guarantees reduction in the size |M | = n
while clustering guarantees a bound in the distance (or distortion) d(M, M ′).

§2. The Douglas Peucker Algorithm
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The Douglas Peucker (DP) Algorithm [2] is a method to simplify a polygonal path, originally designed
for simplifying map data. Psychological studies have suggested that it produces very good perceptual
representations of the original lines. It is a simple and natural algorithm, and so have been re-discovered
several times in other literature. See [3] for this and related literature.

The DP Algorithm solves the following problem: given a polygonal path p = (v0, v1, . . . , vn), n ≥ 2, and an
error bound ε > 0, compute a subsequence p′ = (v′

0, v
′
1, . . . , v

′
m) such that d(p, p′) ≤ ε, and v′

0 = v0, v
′
m = vn.

Note that “subsequence” means that p′ is obtained from p be omitting 0 or more vertices (so m ≤ n).
We define d(p, p′) as follows: if |p′| = 2, then d(p, p′) is just the maximum distance of any point vi from the
line v0vn. If |p′| > 2, then there is ome 0 < k < m such that p′ = p1; p2 (where ; denotes path concatenation)
where p1 = (v′

0, . . . , v
′
k) and p2 = (v′

k, . . . , v′
m) and recursively,

d(p, p′) = max{d(p, p1), d(p, p2)}.
To compute this distance measure, it is useful to recall that if a, b, c are three points, then the distance of c
from the line ab is

d(a, b, c) =
|∆(a, b, c)|
‖a− b‖ where

∆(a, b, c) = det




a.x a.y 1
b.x b.y 1
c.x c.y 1




Note that ‖a‖ =
√

a.x2 + a.y2 is the Euclidean norm.

A simple implementation of the DP Algorithm is as follows

DP Algorithm
INPUT: an array V of n vertices, and indices 1 ≤ i < j ≤ n

and ε ≥ 0
OUTPUT: A subsequence U of V [i, j] such that d(U, V [i, j]) ≤ ε
METHOD:
0. If j − i = 1 return (V [i], V [j]).
1. Find the vertex vf that is farthest from ViVj .

Let dist be this distance.
2. If dist ≤ ε

then Return U = (Vi, Vj)
3. Recursively,

Return DP (V, i, f, ε); DP (V, f, j, ε)

We assume that computing vf takes O(j − i + 1) time. It is not hard to see that this algorithm takes
Θ(n2) in the worst case. Hershberger and Snoeyink [3] shows how to improve this to O(n log n). They
further show that the theoretical bound of O(n log∗ n) is possible [4].

The DP Algorithm outputs a path p′ that may not preserve simplicity of the input path p. There are more
sophisticated algorithms that can preserve simplicity and achieve other additional properties. For instance,
we can compute the simplified p′ of minimum length (subject to d(p, p′) ≤ ε). Conversely, given a target
m < n, there are algorithms to give the best subsequence p′ of length m such that d(p, p′) is minimized.
Moreover, alternative measures of distortion that are different from d(p, p′) can be investigated.
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§3. The Douglas Peucker Hierarchy

The DP line simplification algorithm can be used to to generate an “integrated hierarchy” that can be
used in visualization. What we mean by integrated hierarchy is this: if (P0, P1, . . . , Ph) is a seqence of
simplifications of P0 (so Pi+1 is a simplification of Pi, then we call this a “simplification hierarchy”. But this
is not integrated yet. Here, we are assuming that simplication is by decimation.

Let P0 = (v1, . . . , vn) be a path with n vertices. A DP hierarchy for a path P0 is a binary tree H with
2n− 2 nodes. Each node u stores (1) a subpath of P0 denoted span(u) and (2) a split vertex v(u). If u is
a leaf, then v(u) is undefined and span(u) is a pair (vi, vi+1) (i = 1, . . . , n− 1) of consecutive vertices of P0.
If u is an internal node with uL, uR as left and right children, then span(u) = span(uL); span(uR), and v(u)
is the endpoint of span(uL) and the startpoint of span(uR). Note that P ; Q denotes concatenation of paths
P and Q and this is defined provided the endpoint of P equals the startpoint of Q and the resulting path is
just obtained by concatenating the correspond two sequences, after removing the startpoint of Q (to avoid
the obvious duplication). It is clear that the DP algorithm produces such a hierarchy.

An antipath is a sequence (u1, . . . , um) of nodes in T such that every path from the root of T to a leaf
must intersect this sequence. We say that H contains the hierarchy (P0, . . . , Ph) if each Pi can be extracted
as an antipath of H .

We can construct a DP hierarchy by calling the DP algorithm with ε = 0. The modifications to DP
algorithm are
(1) We assume he DP Algorithm now returns the root of a DP Hierarchy on the input (sub)path. We
construct the DP hierarchy as we go. Each time we find a split point vf , we create a new node u with
v(u) = vf , and make its results of the two recursive calls the children of u. (2) When j − i = 1 we simply
create a leaf node with no split nodes and with span (vi, vj).

How do we use a DP hierarchy H? Given a ε > 0, we can recursively compute the antipath Q in H such
that the d(P0, Q) ≤ ε.

Suppose this algorithm is called by Q = DPH(H, ε). This is easy: we decide to go below a node
u iff d(v(u), span(u)) > ε. If we do not go below u, we return Q = span(u). Otherwise, we return
Q = DPH(uL, ε); DPH(uR, ε) where uL, uR are the left and right children of u.

Extension. We can use this Hierarchy in other ways – as in “view dependent simplifications”. Suppose
p ∈ R is point and we want to simplify the path proportionally to its distance from p. In this case, we can
make our decision to go below a node u based on the distance of p from span(u) and v(u).

§4. What is a TIGER Map?

Simplifying real data is much more complex than line simplification. We want to address the TIGER
data set. Ken Been’s thesis [1] addresss this problem. But first we address a more general question: what
really is the mathematical model of a TIGER map? The answer to this question is important if we want
to understand simplification of such data. We propose to view the TIGER data as three overlaid geometric
structures:

(1) Planar Subdivision Σ: At the crudest level, this amounts to a subdivision of the map area into land and
water. This just means that we want to color the plane with 3 colors: blue for water, yellow for land,

c© Chee-Keng Yap April 30, 2003



§5. Extraction of TIGER Maps Lecture XI Page 4

and white for non-map areas. We can subdivide the land area into other classifications of interest later
(e.g., green or park areas, political boundaries, urban areas, special areas)

(2) Transportation Network Γ: This is a skeleton (i.e., a 1-dimensional network) representing the roads and
railway lines.

(3) Landmark Sitemap Λ: This is just a collection of points, representing landmarks. We observe that in
the TIGER data, the landmarks are of two types: point landmarks and area landmarks. We will ignore
the area landmarks (or replace them by points) for our purposes.

Henceforth, when we talk about a map (TIGER) M , we will mean such a triple M = (Σ, Γ, Λ). The fact
that we have three overlaid structures imposes considerable constraints on our map simplification. The first
two structures Σ, Γ may share common line features (e.g., a road can serve as a boundary between a park
and non-park areas).

You may ask: what is there to simplify in Λ? Well, in the context of zooming, we must have a means
to thinning out the set. The simplest method is just to drop landmarks as we zoom out. Alternatively, we
can cluster them into “super landmarks” as we zoom out. Actually, such a list can be further generalized as
follows: we can associate a zoom range with each point landmark. These points are only to be displayed
within its zoom range. As an example, suppose certain points represents cities: we will only display a
city-point when sufficiently zoomed out, but the city-point will vanish when we are too zoomed out.

§5. Extraction of TIGER Maps

Now that we know what we want (abstractly), we must proceed to extract this data from the real TIGER
data. We proceed in two steps:

DECOUPLING STEP: We must first decouple the Σ structure from the Γ structure, as this is mixed
up in the TIGER representation.

1. The Σ needs to extract all the polygons (and their boundaries). This can be quite complex processing
because of nesting. Recall that Tiger lines are in RT1 and RT2 files while polygons are represented
in RTA. The connection between them is in RTI. Basically, we need to join these 4 files. For each
polygon, we want a clockwise list of their bounding Tlines. For each Tline in this list, we also need to
determine a Boolean flag indicating a forward or backward traversal along the Tline.

2. For the Γ structure, we need to identify those Tlines that is part of this structure. The CFCC code in
RT1 will be used for this.

3. For landmarks Λ, we need RT7 which lists all landmarks. We only extract the point landmarks.

INITIAL MERGE STEP: (1) We want to merge polygons with the same type information. What
constitute ”type”? Assuming that each polygon is part of a geographic entity, we must go to RTC to get the
FIPS 55 Class Code and name of the geographic entity. We want to merge all polygons with the same code
and same name. Other information may also be needed – for instance, RTS tells you whether a polygon is
a water feature (lake, river, sea, etc).

The resulting (merged) polygons is given their own unique identifiers (it is normally inherited from one
of its constituent POLYID’s.
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(2) Similarly, each Tline has a CFCC code and a feature name. Again, we merge all Tlines with the same
code and name.

Note that (1) and (2) may now have diverged. In Been’s thesis, step (2) is made dependent on the merge
in (1) – the rule to merge two lines is simply based on their left- and right-polygons. This results in a simpler
model than what we propose. In particular, Been’s merging will ensuer that every merged line from (2) is
either a boundary between two merged polygons, or is contained inside a unique polygon.

Further Discussion. Call the results of the above merging the Σ-polygons and the Γ-lines. Among the
list of Σ-polygons, we need to determine their inter-relation. Polygons has containment structure. We say
polygon P is the parent of another polygon Q if P contains Q. So we want to store parent pointers as well
as a list of children polygons. The problem is that the polygon containment hierarchy may have depth more
than one. This is illustrated by the following example from Ken’s thesis.

Prince William County

Manassas

Manassas Park

Manassas Park

Figure 1: Schematic of Prince William County, Manassas and Manassas Park

Prince William County (PWC) in Virginia encloses two other counties, Manassas and Manassas Park.
Moreover, Manassas contains three ”islands” of land that belongs to Prince William County.

§6. Preprocessing Details

Let us consider in detail how this can be done in the context of a database system like Postgresql. We
will focus here on extracting the geometric information related to nesting of polygons. This is the task:

Let us emphasize that a polygon in the following discussion refers to a connected region of the plane. But
it need not be simply connected. Hence the boundary of a polygon can have several connected components
that we call loops. There is a unique loop that is called the outer loop. All other loops (if any) are inner
loops. Two polygons are adjacent if they share a common portion of a boundary (sharing isolated points
on the boundary do not count). We are given this adjacency information.

The task before us is to determine, for each polygon Q, its parent, i.e., the polygon that contains Q.
It is possible that Q has no parent. Why is this task necessary? That is because in our map display, it is
necessary to draw the parent of a polygon before we draw Q (otherwise the parent will cover up Q when
drawn).

Why is this task non-trivial? Because this information may not be directly obtainable from the adjacency
information – the parent of polygon Q need not be one of the polygons that are adjacent to Q. This is because
of the phenomenon of clusters, i.e., a maximally connected set of polygons that are external to each other.
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We assume that Tiger information is given to us in the form of two relations (tables):
(i) T lines(T lid, StartP t, EndPt, Detail, LPolyId, RPolyId, . . .)

There is an entry for Tiger line. Besides the shape of each line, it tells us the left and right polygons of
each Tiger line. The . . . indicate other information (mainly to do with the ”type information” of the line.
This will be important later for simplication.
(ii) TPolys(PolyId, BoundaryList, . . .)

The boundary list is just an unordered list of Tlids, corresponding to all the Tiger lines that bound this
polygon.

We shall construct the following intermediate relations in our processing:

• Loops(LoopId, T lidList, DirectionList, PolyId)

The LoopId is a unique identifier we can generate using Postgresql (see below)

• PolyBoundary(PolyId, Parent, ClusterRep, OuterLoop, InnerLoopList)

For each polygon, we want to remember its parent, its outer loop and list of inner loops.

We also have its cluster information – this is the field ClusterRep, which is basically another PolyId.
(Clusters are basically represented by a ”compressed tree” in the Union-Find data structure.) Each
cluster has a representative – the ClusterRep field is only a pointer to will ultimately lead us to the
representative. The ClusterRep field of the representative polygon is null – that is how we know we
have reached the representative. Initially, each polygon is its own cluster (so its ClusterRep field is
initially null).

In Postgresql, we can create a ”sequence object”. This object can give generate a sequence of unique
identifiers for use in, say, the LoopIds:

=> CREATE SEQUENCE MySeq;
=> INSERT INTO Loops VALUES
(nextval(’MySeq’), (123, 456, 789), (true, false, false));

The values returned by a sequence object is BIGINT. The sequence counter is automatically advanced. If you
do not want to advance the sequence counter, just use currval(’MySeq’) instead.

Clustering and Parent Algorithm.

1. The first step is to organize the list of edges on the boundary into loops. To do this, we iterate over
each TPolyId. For each boundary list, we partition it into loops. The outer loop is identified.

Note that this will populate the Loops and PolyBoundary tables described above. The parent of each
polygon is itself at this point.

2. For each outer loop, we go through its edges. For each edge in its outer loop, we check if it is also in
the outer loop of the adjacent polygon. If so, we “merge” their corresponding clusters.

3. At this point, we know the clusters. We need to set the Parent pointer for the each cluster. This is
relatively easy: for each inner loop, find one of the polygons and hence its cluster. The representative of
this will have its parent pointer fixed. All the other polygons in its cluster is (implicitly) now pointing
to this parent.
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§7. Simplification of TIGER Maps
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