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Lecture IX
Computational Geometry II: Window Queries

§1. Introduction

• Consider the following display problem: we have a large map which we want to display in a window.
Only a portion of the overall map may be displayed, and this is affected by the zoom factor. Besides
the ability to zoom in or out, the user can also “pan”, which corresponds to translating the window
view of the large map. Assume for our illustration that the map can be drawn as a set of edges (i.e.,
line segments.)

• A straightforward display would simply draw all the edges of the map, relying on the graphics hardware
or software to clip away any drawn portion that do not fall into the window view. Thus, each panning
motion will incur the same cost, regardless of the amount moved. Indeed, one can do just this using a
graphics API such as OpenGL. But it would be extremely slow as we need to traverse the entire set of
edges in the map.

• A better solution is as follows: most graphics systems including OpenGL offers the possibility of copying
a subimage to another part of the frame buffer. This operation is faster than drawing the map (edges)
into the buffer. When we pan at a reasonably smooth rate, most of the current image can be reused
in the next frame, just by copying.

• After copy a port of the buffer, the new buffer will generally have an L-shape strip of area that must
now be filled in with new map data. If we can perform an window query on the map to retrieve all
the edges that intersect a query rectangle, then we can obtain all the edges that intersect the L-shape
using just 2 window queries. See Figure.

[FIGURE OF L-Shape that needs to be re-drawn]

• This method is not only faster, but if the display system has a server-client architecture, this ability
to redraw only a few edges will also lead to greatly reduced bandwidth.

§2. Preprocessing Problems

• The window query problem in the introduction will be solved at the end of this lecture. Along the
way, we will introduce several techniques and data structures that are important in their own right.

• The class of problems we are concerned with are called preprocessing problems and they have the
following form. We are given a set S of objects to which queries from some family Q will be applied.

• For instance, S is a set points in R2. and Q is the family of rectangles in R2. Each q ∈ Q corresponds
to the query “list all points in S ∩Q.

• What makes this a preprocessing problem is that we want to precompute a data structure D(S) so
that all queries q are answered efficiently by using D(S). In other words, D(S) is computed before we
know what the sequence of queries might be.

• Suppose S has size n. The complexity of a solution to this problem is typically described by three
complexity functions:

1. Time T (n) is the complexity of constructing D(S).
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2. Storage S(n) the amount of space used for D(S).
3. Query Time Q(n) is the time for answering any query q ∈ Q. This Q(n) could be defined in the

worst case, amortized or expected senses.

• There are several additional features of the solutions to be described. First, in general, the structure
D(S) may by modified by the queries in Q. In our examples below, this is not the case. More
significantly, a query q typically outputs a list of items, and the size k = k(q) of this list can range from
0 to n. Since k is a lower bound on any specific query, the worst case query complexity is therefore
Q(n) = Θ(n) in this case. To avoid this trivial answer, we use a query time function Q(n, k) that
depends on this output parameter k as well. For instance, in many problems Q(n, k) = O(k + log n) is
generally regarded as optimal.

• The use of the parameter k is an important innovation in complexity analysis. The original view of
complexity is based on the input size parameters such as n only. But k is an output size parameter.
Algorithms that can take advantage output size parameters are said to be output sensitive

• The above formulation of preprocessing problem can be generalized as follows: the set S does not
change under the queries in Q. Such problems are said to be static. We can also imagine queries that
insert or delete members from S. Then the problems are dynamic (or semi-dynamic in case there
are no deletes).

§3. Window Query Problems

• This lecture will focus on three classes of static preprocessing problems, collectively called, window
query problems.

• A window will refer to a rectangle in R2 whose edges are aligned to one of the coordinate axes. More
generally, any line segment (simply called “segment”) is said to be aligned if it is parallel to one of
the axes. Thus aligned segments are either horizontal or vertical. Segments and windows are assumed
to be closed sets unless otherwise noted.

• Preprocessing problems are characterized by the nature of the input set S and nature of the query Q.
In the three problems below, Q is always the set of windows. Each query q ∈ Q amounts to Each
q ∈ Q asks for the list of all the objects in S that has non-empty intersection with q.

• What remains is to specify the nature of the set S:

Problem (I) S ⊆ R2 is a finite set of points. The problem is the orthogonal range query problem.
Problem (II) S is a finite set of aligned segments.
Problem (III) S is a finite set of segments, not necessarily aligned.

It is clear that these problems are in increasing order of generality.

§4. Orthogonal Range Searching

• We address Problem (I), the orthogonal range query problem. It should be noted that this problem
is actually a basic problem in the study of databases. For instance, consider a relational database of
employees where we store with each employee their date of birth and salary. Thus each employee can
be represented by a point in a 2-dimensional space. Suppose we want to support database queries
of the form “list all employees who are born between 1960 and 1969, and whose salary are between
$70,000 and $90,000”. To support such queries, the database would need some data structure for range
queries.
[FIGURE]
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• Before we solve the 2-dimensional problem, let us consider the 1-dimensional version. Here, S is just a
set of numbers in R, and a query q is just an interval [xmin, xmax] ⊆ R. Since S is static, we can simply
order the numbers in an array A[1..n]. To answer the query q, we perform binary search for the index
of the successor of xmin in the array, i.e., the smallest index i such that A[i] ≥ xmin. Starting from
A[i], we can check successive values of the array to see if each is ≤ xmin. If so, we output the value.
We terminate the first time we encounter a value that is > xmax.

• The above solution has T (n) = O(n log n), S(n) = O(n) and Q(n, k) = O(k +log n). These complexity
bounds are generally considered optimal.

• Another possible solution to the 1-D problem is to build a balanced binary tree on the set S. To
answer a query q = [xmin, xmax], we perform a “binary search” for the interval q. Initially, it will be
unambiguous as to which branch of a search node should be taken. Suppose v0 is the first node where
there is ambiguity. What this means is that the search key at v0 lies in the interval q. At this point,
we need to go down the left and right branch of v0. We call v0 the split node.

• By symmetry, consider the search in the left child of v0. Henceforth, at each search node u, we know
that the search key u.Key is less than xmax. So we only need to compare u.Key : xmin.

• There are two cases: (a) if u.Key > xmin then we only need to go down the right branch. This is
the “easy case”. (b) if u.Key ≤ xmin then we only need to go down both branches. But there is a
important new fact we can exploit: the right branch leads to a subtree whose nodes contains keys that
is guaranteed to be in the interval q. Suppose T (u) denotes subtree rooted at u and S(u) denotes the
set {x ∈ S : x ∈ Tu}. So, conceptually, we can “return” the right child u.Right to represent this set
T (u.Right). This ability will be important later. But for our present 1-D problem, we can simply do
a traversal of u.Right and output every element in this subtree.

• This second solution also has the same complexity as the first solution: T (n) = O(n log n), S(n) = O(n)
and Q(n, k) = O(k + log n). What have we gained? Nothing in some sense, and perhaps we have lost
something because it is more complicated than the first solution. What the second solution gain is
some additional flexibility that can be exploited when we go to 2-D.

• Let us recap some properties of the second solution: after the split node v0, the left and right searches
below v0 will visit at most O(log n) nodes of the easy type (case a), and at most O(log n) nodes of
the hard type. There are thus at most O(log n) nodes of the hard type overall. The output q ∩ S is
obtained as the union of all S(u) where u range over the hard nodes, as well as the individual keys
stored at the easy nodes (which has to be checked individually to see if they belong to q ∩ S).

• Now consider the 2-dimensional version. We can build on the second version of the 1-dimensional
solution, where we again set up a balanced binary search tree Tx, using only the x-coordinate of points
in S for this construction. To do the query

q = [xmin, ymin, xmax, ymax]

we can perform a search in Tx using the query qx = [xmin, xmax]. At the “easy nodes” we again do
an individual check to see if the point stored at such nodes lies in q, and to output them if so. The
difference is then when we get to the “hard nodes”, we no longer can assume to output everything in
the subtree.

• What we want to output at a hard node u ∈ Tx is to output all those points in S(u) whose y-coordinates
lies in the interval qy = [ymin, ymax]. [Why is this correct?]

• To support this operation at hard nodes, we construct an auxilliary search structure A(u) at every
node u ∈ Tx. This search structure is simply a 1-D search structure on the y-coordinates of the points
in S(u). Here, we can assume A(u) is our simpler solution to the 1-D problem, i.e., an array.
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• What is the complexity of this solution? We claim S(n) = O(n log n). Let nu be the number of points
in S(u). Then S(n) =

∑
u O(nu). But each point in S is the key of some node v and it can contribute

to only those S(u) where u lies on the path from v to the root. There are O(log n) sets.

Next we claim T (n) = O(n log n) as follows: Constructing A(u) takes time O(nu log nu). It follows
that T (n) =

∑
u O(nu log nu) = O(n log2 n). To improve this to the claimed bound, we construct the

auxialliary structures A(u) in a bottom up fashion. Assuming that the children of u are uL and uR,
suppose A(uL) and A(uR) have been constructed. Then we can construct A(u) in time O(nu), not
O(nu log nu).

Finally, we claim that Q(n) = O(k + log2 n). That is because we have to handle O(log n) hard nodes,
and each costs O(log n) time.

• The above data structure is also called a range tree.

• We can improve Q(n) to O(k+log n) as follows: For each element A(u)[i] in the array A(u), we assume
that we store two pointers, into its successors in the list A(uL) and A(uR), respectively. Recall that
A(u)[i] is really a point of S but we use its y-coordinate as the key. The successor here refers to these
y-coordinates. Note that A(u)[i] is actually an element in A(uL) of A(uR). These pointers can be
constructed as we do the bottom-up merge of the lists A(uL) and A(uR).

[FIGURE: A(u), A(uL), A(uR)]

• To exploit these successor pointers, we assume that as we visit each search node u in Tx, we always
maintain a pointer to the successor of ymin in the array A(u). In particular, at the root, we need to
perform an O(log n) search to find this pointer. But subsequently, we can update this pointer at O(1)
cost. This leads to the claimed complexity of Q(n) = O(k + log n).

• N.B. This improvement is sometimes called a trick of fractional cascading. The full blown concept of
fractional cascading is slightly more involved in general – but the goal is the same as that of ensuring
O(1) work to move from the solution to a query in A(u) to solution of the same query in A(uL).

§5. Interval Trees

• x

§6. Stencil Buffer: Filling Non-Convex Polygons

• x

§7. Tesselation

• x

§8. Proof of the Parity Theorem

• x
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§9. Pixmap Reading and Drawing

• x

§10. Pixel Formats and Types

• x

§11. Pixel Storage Mode

• x

•

§12. BitMaps

• x

THE END
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