
§1. Context Free Languages and Grammar Lecture III Page 1

Lecture III

CONTEXT FREE LANGUAGES

Lecture 3: Honors Theory, Spring’02.

We introduce context free languages (CFL), context free grammar (CFG) and pushdown automata
(PDA). The pumping lemma for context free languages is used to show various languages to be non-CFL.

§1. Context Free Languages and Grammar

We have seen automatas (dfa, nfa) and expressions (regular) that can describe languages. We now intro-
duce “formal grammars” as another device for describing languages. The notion of grammars is motivated by
natural languages. Consider the structure of very simple English sentences. The following are “grammatical
rules”:

<Sentence> --> <Noun Phrase> <Verb Phrase>
<Noun Phrase> --> <Article> <Noun> | <Noun>
<Verb Phrase> --> <Verb> | <Verb> <Noun Phrase>
<Article> --> a | the
<Noun> --> boy | girl | ball | dog | ...
<Verb> --> caught | saw | took | ...

Note the use of “|” as alternatives. Thus we can “generate” sentences such as

Girl took the ball
The boy saw a girl
Dog caught ball
A ball saw the boy
...

The proof that the first sentence can be generated by the simple grammar amounts to giving a parse tree:

<Sentence>
/ \
/ \

<Noun Phrase> <Verb Phrase>
| / \
| / \

<Noun> <Verb> <Noun Phrase>
| | / \
| | / \

Girl took <Article> <Noun>
| |
| |

the ball

c© Chee-Keng Yap February 14, 2002

§2. Normal Form Lecture III Page 2

The grammatical rules or productions has a left-hand side and a right-hand side. Each side is a string of
variables (indicated by <...>) and terminals (such as boy, girl, etc). Using the rules, we generate sentence
which has only terminals.

We now formalize this. Let V, Σ be disjoint alphabets. A context free grammar (CFG) is a 4-tuple

G = (V, Σ, R, S)

where V is the set of variables, Σ the set of terminals, S ∈ V is the start symbol, and R is a finite set of
rules. A rule has the form form A → w where w ∈ (V ∪ Σ)∗. If u, v, w ∈ ∪Σ, define the produce relation
as the binary relation on words

u ⇒G v

(or simply, u ⇒ v) if u = u′Au′′, v = v′wv′′ and A → w is a rule in G. Thus A is replaced by w in
this produce relation. The derivation relation ⇒∗

G (or simply ⇒∗) is the reflexive, transitive closure of ⇒.
Thus, u ⇒∗ v iff there is a sequence

u0 ⇒ u1 ⇒ · · · ⇒ um (m ≥ 0) (1)

such that u = u0 and um = v. If m = 0 then u = v. We call (1) a derivation of um from u0. The language
generated by G is

L(G) = {w ∈ Σ∗ : S ⇒∗
G w}

A language is context free if it is generated by some CFG.

The derivation (1) is called a leftmost derivation if the variable being replaced at each step is the
leftmost variable. The order of replacing these variables is somewhat artificial in a derivation. One way to
remove this artificial ordering is to consider the parse tree of a derivation. This is defined in the natural
was to be an oriented rooted tree in which the internal nodes are variables and the leaves are terminals.
The root has the start symbol S and the children of an internal node A are labeled by the symbols on the
righthand side of some production, A → w. An example is the parse tree of the sentence “Girl took the
ball above.

E.g., Let the rules of G be be given by

S → 0S0|1S1|ε.
This generates the set of binary palindromes of even length. To generate all binary palindromes, add two
more rules:

S → 0|1.

Here is another example for simple arithmetic expressions:

<E> --> <id> | <num> | (<E>) | - <E> | <E> <op> <E>
<id> --> a | b | c | ... x | y | z
<num> --> <dig> | <dig><num>
<dig> --> 0 | 1 | ... 8 | 9
<op> --> + | - | * | /

§2. Normal Form

c© Chee-Keng Yap February 14, 2002

§3. Pumping Lemma Lecture III Page 3

There are two special forms for CFG’s: (i) A grammar G is in Chomsky Normal Form if every rule
has the form

A → BC, A → a

where A, B, C are variables, B, C is not the start symbol, and a ∈ Σ. In addition, we allow the special rule
of the form S → ε. (ii) We say G is in Greibach Normal Form if every rule has the form

A → aB1B2 · · ·Bm, (m ≥ 0)

where a ∈ Σ and Bis are variables. Every CFL can be generated by grammars in both normal forms. We
give the prove for Chomsky normal form:

Theorem 1 Every context-free language is generated by a CFG in Chomsky Normal Form.

Proof. Starting from a CFG G, we transform G into Chomsky Normal Form in five steps:

First ensure that S does not appear on the right hand side of any rule. To do this, replace all occurences
of S on the RHS of any rule by a new variable S′. Also, add the rule S → S′.

Second, remove each rule of the form A → ε and introduce, for any rule B → w where A occurs in w, a
new rule B → w[A/ε] (w[A/ε] means we replace each occurence of A in w by ε). If ε ∈ L(G), we also add
the special rule S → ε.

Third, we replace every rule of the form A → u1, . . . , uk (k ≥ 3) by the new rules: A → u1A1, Ak−2 →
uk−1uk, and k − 3 rules of the form

Ai → ui+1Ai+1, (i = 1, . . . , k − 3),

where A1, . . . , Ak−2 are new variables. The degree of a rule is the length of its RHS. At this point, any
remaining rules have degrees 1 or 2.

Fourth, we fix rules of degree 2. For each rule of the form A → bC, where b ∈ T and C ∈ V , we replace
it by A → BC and B → b (B is a new variable). We have a similar treatment for rules of the form A → Cb
or A → bc.

Fifth and finally, we fix rules of degree 1. If we have a derivation of the form A ⇒∗ B and A 6= B and
B → a or B → CD. Then introduce the rule A → a or A → CD (respectively). Moreover remove all rules
of the form A → B. This completes the proof. Q.E.D.

This is useful if we want to show that something cannot be context-free: we only have to attack grammars
in this special form. As exercise, try convert the CFG example above to Chomsky Normal Form.

§3. Pumping Lemma

As for regular languages, we are interested to know if there are non-context free languages. Which of the
following two languages are CFL?
DOUBLE = {ww : w ∈ 0, 1∗}.
PAL = {wwR : w ∈ 0, 1∗}.
To show it is something is context free, we construct an appropriate CFG or PDA. What if it is not context

c© Chee-Keng Yap February 14, 2002

§3. Pumping Lemma Lecture III Page 4

free? One basic technique is via a pumping lemma for CFL. Suitably formulated, this will be a generalization
of the corresponding pumping lemma for regular languages.

The idea of the pumping lemma for CFL is based on the following observation. Suppose T is a derivation
tree for a word w ∈ L. Let π = (A0, A1, . . . , An, a) be any path in T starting from the root A0 = S (the
start symbol). Here, the Ai’s are variables and a is a terminal. Suppose Ai = Aj for some 0 ≤ i < j ≤ n.
Then w can be decomposed as w = uvxyz where

• x is the word generated by the subtree rooted at Aj

• v (resp., y) is the word generated by the subtrees rooted at the left (resp., right) children of node in
the subpath (Ai, . . . , Aj).

• u (resp., z) is the word generated by the subtrees rooted at the left (resp., right) children of node in
the subpath (A0, . . . , Ai).

This is called the uvxyz-decomposition of w (“uvxyz” is pronounced“eu-vitz”). This is illustrated by fig-
ure 1(a). Now we can modify the tree T in two ways: (a) We may delete the subpath (Ai, . . . , Aj−1) and all

v x yu z

Ai

Aj

u

x

z

Ai

u

v x y

v y z

Ai

Figure 1: The uvxyz decomposition of w and two transformations of the parse tree.

the associated subtrees to the left or right, and produce a derivation tree for uxz, or (b) We may duplicate
the subpath (Ai, . . . , Aj−1) and all the associated subtrees to the left or right, and produce a derivation tree
for uv2xy2z. This shows that uxz, uv2xy2z ∈ L. In fact, we can repeat (b) as many times as we like to show
that uvixyiz ∈ L. We are now ready to prove the pumping lemma.

Theorem 2 (Pumping Lemma) If L is a CFL then there exists n > 0 such that for all w ∈ L, |w| ≥ n
implies that w = uvxyz such that
(i) |vy| > 0.
(ii) uvixyiz ∈ L for all i ≥ 0.
(iii) |vxy| ≤ n.

c© Chee-Keng Yap February 14, 2002

§4. PDA Lecture III Page 5

Proof. Assume L is generated by a grammar G in Chomsky Normal Form. Choose n = 2m where m is the
number of variables in G. If |w| ≥ n, then the derivation tree T (w) of w must have height h that is at least
m + 1 (this is because T (w) is a binary tree, and the last variable in any path that generates a leaf has
degree 1). But in any path (A0, A1, . . . , Ah−1, a) of length h ≥ m+1, there are at least m+1 variables (only
the last node can be a terminal). Hence some variable is repeated, say Ai = Aj where 0 ≤ i < j ≤ h − 1.
The above uvxyz-decomposition is therefore applicable. Moreover, both (i) and (ii) are clear. To see (iii),
we simply make sure that the subpath (Ai, Ai+1, . . . , Ah−1) has length ≤ m. Q.E.D.

We should note that there can be slight variations in the formulation of this lemma, but the underlying
proof technique is the same. Hence, if this version of the pumping lemma is inadequate for a situation, you
can sometimes use the underlying uvxyz-decomposition and argue directly.

§4. PDA

A pushdown automata (pda) is like an nfa except it has a linear storage structure called a pushdown
store which we also call1 a stack for brevity. The pda can read only the topmost symbol of the stack.
Depending on the transition rules, may replace the topmost symbol by a new symbol or ε (this means the
topmost symbol is popped); it may also place a new symbol on top of old topmost symbol (this “pushes” a
new symbol). This is illustrated in figure 2.

a1 a2 anai

a

b0

bt

b1

Bottom of stack

Top of stack

Figure 2: Illustration of a push down automata

For example, it is quite easy to design a pda to accept L1 = {0n1n : n ≥ 0}.

Formally, a pushdown automata (pda) is a 6-tuple

M = (Q, Σ, Γ, δ, q0, F)

where Σ, Γ are input and stack alphabets, q0 ∈ Q is the start state, F ⊆ Q the final states, and δ the
transition function

δ : Q × Σε × Γε → 2Q×Γε

The relation
(q′, b′) ∈ δ(q, a, b) (2)

represents a transition rule. Similar to grammars, we can write such a rule using the arrow notation:

(q, a, b → q′, b′).
1A “stack” is sometimes reserved for a generalization of pushdown store in which the automata could go below the topmost

symbol for the purposes of reading (but not changing) the store contents. Since we will not discuss such “stack automata”, our
current terminology should not be a source of confusion.

c© Chee-Keng Yap February 14, 2002

§4. PDA Lecture III Page 6

This rule says that if the current state is q, a is the current input symbol and b the top of stack, then we can
next go to state q′ and replace b by b′. Thus δ gives rise to a finite set of such rules, and conversely from any
such set there is a unique δ. We will use whichever viewpoint that is convenient. What makes the notion of
a pda transition slightly confusing is that a, b, b′ can independently be ε.

Our goal, as usual, is to define the language L(M) accepted by M . Towards this end, it is useful to
formalize the concept of a configuration or “current state” of the computation of a pda. A configuration
is simply an triple of the form

C = (q, w, v) ∈ Q × Σ∗ × Γ∗.

Intuitively, q is the current state, w is the rest of the unread input (with w[1] the current input symbol) and
v the stack contents (with v[1] the top of stack). If C′ = (q′, w′, v′) is another configuration, then the binary
relation

C `M C′

(or, simply, C ` C′) holds if C can reach C′ by applying a single transition rule of M . More precisely, (2) is
a transition rule of M and

w = aw′, a ∈ Σε

v = bu, b ∈ Γε

v′ = b′u.

Let `∗ denote the reflexive transitive closure of `. Thus C `∗ C′ iff there exists a finite sequence of the form

C0 ` C1 ` · · · ` Cm, m ≥ 0 (3)

where C0 = C and Cm = C′. We then say C derives C′ in m steps. We define L(M) to comprise all
w ∈ Σ∗ such that

(q0, w, ε) `∗ (q, ε, v)

for some q ∈ F and v ∈ Γ∗. We say M accepts w. An alternative definition of acceptance is to insist that
v = ε, in which case we say M accepts by empty store and denote the corresponding language by Lε(M).

Nondeterminism and Example. A pda in inherently nondeterministic in this definition. The nondeter-
minism in the above relation C = (q, w, v) ` (q′, w′, v′) = C′ arises in three ways:

• There may be several choices of (q′, b′) from the set δ(q, a, b).

• If w 6= ε then we have a choice of a = w[1] or a = ε.

• If v 6= ε then we have a choice of b = v[1] or b = ε.

To illustrate this nondeterminism, let us consider a pda to accept the language PAL = PAL2 = {w ∈
{0, 1}∗ : w = wR} of binary palindromes. We make a simple observation: if w ∈ PAL then w = uav for
some u, v ∈ {0, 1}∗ and a ∈ {0, 1, ε} and u = vR. The idea is to operate in two phases: in the first phase,
we just push u into the stack. In the second phase, we verify that the rest of the input (namely v) is equal
to to the stack contents (namely uR). But how do we know when we have reached the middle of the input,
namely, the position of a? We use nondeterminism! More precisely, our pda will have 4 states: start state
q0, phase 1 state q1, phase 2 state q2, and accept state qf . This pda is represented in the following state
diagram:

While nondeterminism in finite automata turns out to be inessential in some sense, the nondeterminism
of pda’s turns out to be essential. We can define the notion of a deterministic pda (dpda) and show that the
language PAL cannot be accepted by any dpda.

c© Chee-Keng Yap February 14, 2002

§5. PDA Characterization Lecture III Page 7

q0 q1

q2
qf

(ε, ε → $)

(ε, $ → ε)

(0, ε → 0)

(0, 0 → ε)

(1, ε → 1)

(1, 1 → ε)

(ε, ε → ε)

(0, ε → ε)

(1, ε → ε)

Figure 3: PDA to accept binary palindromes.

Pragmatics of pda’s. We can generalize the transition function δ slightly, by allowing transition rules of
the form

(q, a, u → q′, v) (4)

where q, q′ ∈ Q, a ∈ Σε, u, v ∈ Γ∗. We leave it as an exercise to show that this does enlarge the class of
languages accepted by pda’s. In state diagrams, the rule (4) appears as a label (a, u → v) of the edge from
q to q′.

Often, a pda need to act when its stack is empty. A standard way to achieve this is to provide only one
transition rule for the start state q0, namely

(q0, ε, ε → q1, $)

where $ is a special symbol that marks the bottom of the stack and q1 some new state.

§5. PDA Characterization

The main result in this section is that pda and CFG are equivalent. We split the proof into two parts.

Lemma 3 Every context free language is accepted by a pda.

Proof. Assume G = (V, Σ, S, R) is a grammar in Chomsky Normal Form. We will construct an equivalent
pda M = (Q, Σ, Γ, δ, q0, F). Let w be generated by G using the following leftmost derivation:

S ⇒ u1 ⇒ u2 ⇒ · · · ⇒ um = w.

Write ui = wiAivi where wi is a prefix of w and Ai a variable. Our pda will simulate this derivation in m
steps. In the ith step, M will have finished read wi and its stack contains Aivi (with Ai at the top of stack).
It remains to show how to proceed to the i + 1st step.

M has only three states Q = {q0, q1, qf} and each simulation step above is performed while in state q1.
There are only two kinds of rules for Ai:
(a) Ai → a. In this case, the pda has the transition rule (q1, a, Ai → q1, ε).
(b) Ai → BC. In this case, the pda has the transition rule (q1, ε, Ai → q1, BC).

It is clear that this achieves our step by step simulation. To start off the induction, we have the transition

(q0, ε, ε → S$)

c© Chee-Keng Yap February 14, 2002

§5. PDA Characterization Lecture III Page 8

where S is the start symbol of the grammar and $ is a special symbol to indiate the bottom of stack. To
terminate the simulation, we have the rule

(q1, ε, $ → qf , ε)

This is the only way to enter the final state qf . Q.E.D.

The reverse direction is slightly harder but not much more.

Lemma 4 Every language accepted by a pda is context free.

Proof. Given a pda M = (Q, Σ, Γ, δ, q0, F), we will construct a grammar G = (V, Σ, S, R). We may assume
that M accepts by empty stack, namely if it ever enters a state of F , then its stack is empty. In fact, we
can assume F = {qf}. Another simplification will be useful: each transition of M will either push a symbol
or pop a symbol from the stack. That is each rule (q, a, b → q′, b′) satisfies either b = ε and b′ 6= ε, or b 6= ε
and b′ = ε.

Let p, q ∈ Q. Define the language Lpq to comprise all words w ∈ Σ∗ such that (p, w, ε) `∗ (q, ε, ε). Our
grammar G will have variable Apq to generate precisely the language Lpq. To do this, consider a computation
path starting from configuration Cp = (p, w, ε) and terminating in Cq = (q, ε, ε). There are two cases.
(A) There is configuration Cr = (r, w′, ε) such that Cp `+ Cr `+ Cq. In this case, w = w′′w′ where w′′ ∈ Lpr

and w′ ∈ Lrq. Our grammar has the rule
Apq → AprArq

for every p, q, r. Hence, inductively we could generate w′′ and w′. What is the induction hypothesis at stage
n? It is that every word of length less than n in Lpq can be generated by our grammer, for all p, q ∈ Q.
(B) There is no such configuration Cr. We know that first and last step of this path be a push action and a
pop action, respectively. If the state after the push action (resp., before the pop action) is r (resp., s), then
let the corresponding transition rules be

(p, a, ε → r, b), (s, a′, b → q, ε).

But our grammar has, for every such pair of transitions, a rule of the form

Apq → aArsa
′.

Thus w = aw′a′ for some w′ ∈ Σ∗. Moreover, w′ ∈ Lrs. Again, by induction, we know that w′ can be
generated from Ars, and hence we are done. Q.E.D.

NOTES

The notion of context free grammars and pda’s were introduced by Chomsky (1956) and Oettinger (1961),
respectively. Context free grammars is closely related to the Backus Normal Form or Backus-Naur Form for-
mulation, described by John Bakus and Peter Naur in the late 1950’s. The dynamic programming algorithm
for recognizing context free grammars (Exercise) is from T. Kasami (1965).

In the 1950s, the study of formal languages led to considerable optimism in the ability of machines to
understand natural languages. In particular, machine translation (MT) was thought imminent. This turns
out to be misplaced optimism. As an undergraduate, my professor (M.L. Dertouzos) told us,

c© Chee-Keng Yap February 14, 2002

§5. PDA Characterization Lecture III Page 9

‘‘When I was a graduate student, my professor told
us that MT will be possible in a few years’’

He also gave anecdotal examples of what machines produced. Machine translating the sentence “The spirit
is willing but the flesh is weak” into Russian, and back again, produced “The vodka is strong
but the meat is rotten”. The sentence “Out of sight, out of mind” was translated into “Blind
idiot”. Considerable progress has been made today, especially in specialized domains. For instance, in
the European community (EC), official documents can be automatically translated quite accurately to all
the official languages of the EC. If formal languages turns out to be inadequate for natural languages, they
have great impact in the design and analysis of computer languages.

Exercises

Exercise 5.1: Recall the example of translating “The spirit is willing but the flesh is weak”, etc,
described in the Notes. Try to outdo these machine translations from the early days of MT. [It only
goes to prove that the machine translation is too hard for machines alone.] ♦

Exercise 5.2: Extend the simplistic English grammar in the introduction to generate slightly more complex
sentences.
(i) Allow nouns that are either singular or plural. So you will need new variables such as <NP
Singular>, <NP Plural>, etc.
(ii) Introduce simple tenses (past, present, future). ♦

Exercise 5.3: Prove that every CFL can be generated by grammar in Greibach normal form. ♦

Exercise 5.4: Show that we can allow pda’s with the more general rule of the form (4). ♦

Exercise 5.5: Prove or disprove that the following are context free:
(i) L1 = {w ∈ {a, b, c}∗ : #a(w) = #b(w) or #b(w) = #c(w) or #b(w) = #c(w)}.
(ii) L2 = {w ∈ {a, b, c}∗ : #a(w) 6= #b(w) or #b(w) 6= #c(w) or #b(w) 6= #c(w)}.
(iii) L3 = {w ∈ {a, b, c}∗ : #a(w) = #b(w) and #b(w) = #c(w) and #b(w) = #c(w)}.
NOTE: #a(w) counts the number of occurences of a in w. ♦

Exercise 5.6: Let L ⊆ {0}∗. Such a language is called a “sla language” (sla stands for “single letter
alphabet”).
(i) Show a sla language that is not context free.
(ii) Show that any sla language L that is context free must be regular. HINT: assume G is a Chomsky
Normal Form grammar for L. Try to construct an nfa to accept L. ♦

Exercise 5.7: Let A, B ⊆ Σ∗. The right quotient of A by B is defined to be

A/B :={w ∈ Σ∗ : (∃u ∈ B)[wu ∈ A]}.

(i) Show that if A is context free and B is regular, then A/B is context free.
(ii) Use part (i) to show that the language {0p1n : p is prime, n > p} is not context free. ♦

c© Chee-Keng Yap February 14, 2002

§5. PDA Characterization Lecture III Page 10

Exercise 5.8: We say that a pda M is nondeterministic if it has two distinct transition rules (q, a, b → r, c)
and (q′, a′, b → r′, c′) such that either (A) or (B) holds:

(A) a = a′, or a = εor a′ = ε,

(B) b = b′, or b = εor b′ = ε.

If M is not nondeterministic, we say it is deterministic. Call a language strongly deterministic
context free if it is accepted by some deterministic pda.
(i) Show that L1 = {0n1n : n ≥ 0} is strongly deterministic context free.
(ii) Show that L2 = {0n1m : m = nor m = 0} is not strongly deterministic context free. ♦

Exercise 5.9: (i) Construct an efficient algorithm that, on input 〈G, w〉 where G = (V, T, S, R) is a grammar
in Chomsky Normal Form and w a string, decide whether w ∈ L(G).
HINT: Use dynamic programming. For 1 ≤ i ≤ j ≤ n, let wij denote the substring ai · · · aj where
w = a1, . . . , an. Define Vij = {A ∈ V : A ⇒∗ wij}. How do you compute Vij if you know the sets
Vik, Vkj for all k = i, . . . , j?
(ii) What is the worst-case complexity of your algorithm, as a function of input sizes m = |G|, n = |w|?
There is an interesting low-level issue here: |w| and |G| must be suitably interpreted! Note that V, T
are arbitrary alphabets, but your algorithm must accept input with a fixed alphabet (say Σ). Hence
use the following convention: assume Σ contains the special symbols A, a, 0, 1 (among others), and
each symbol of V is encoded as a string of the form A(0 + 1)∗, and each symbol of T and w is encoded
as a string of the form a(0 + 1)∗. The definition of |G| can be taken to be the number of symbols in
writing down all the rules of G plus |V ∪ T |. Then each symbol in x has length equal to its encoding
as a string in L(a(0 + 1)∗)! Similarly, you need specify your encoding G over the fixed alphabet Σ and
tell us how to determine its length |G|. ♦

End Exercises

References

c© Chee-Keng Yap February 14, 2002

