
§1. Regular Sets and DFA Lecture I Page 1

Lecture I

FINITE AUTOMATA

Lecture 1: Honors Theory, Spring’02, Yap

We introduce finite automata (deterministic and nondeterministic) and regular languages. Some general
concepts and notations are gathered at the end for easy reference.

§1. Regular Sets and DFA

We give an intuitive introduction to state diagrams using the example of an automatic door closer (see
figure 1(a)).

close

(a) (b)

open

front

neither

rear,both,neither front,rear,both

FRONTREAR

Figure 1: (a) Door Plan, (b) State diagram

The door can be in one of two states: open or close. There are two sensor pads, one in front and one
behind the door. The door opens towards the rear, allowing a person on the front pad to pass through the
door. There are 4 sensor inputs, corresponding to the presence or absence of pressure on the pads: front,
rear, neither and both. Note that front means “front pad only”, neither means “neither pad”, etc. The
state transitions are triggered by sensor inputs, and fully described in figure 1(b). From either state, there
is only one input that can trigger a state change: if in the close state, we can only change to open if the
input is front. In particular, we do not open the door if there is someone in the rear, as the door can
hit that person. Similarly, from the open state, only the neither input can trigger a state change. This
representation of the logic using a digraph with labels on edges is called a state diagram.

Another example of an smart card wallet.

State diagrams can also be formalized as finite automata, a term that emphasizes the finiteness of the
number of states. A deterministic finite automata (dfa) is a 5-tuple

M = (Q, Σ, δ, q0, F)

such that

• Q and Σ are finite sets, called the state set and the input alphabet (respectively).

c© Chee-Keng Yap February 14, 2002

§2. NFA Lecture I Page 2

• q0 ∈ Q is the start state.

• F ⊆ Q are the final states.

• δ : Q × Σ → Q is the transition function.

We want to associate a language with each dfa. But first we need a useful definition. Given δ, we define
the extended transition function

δ∗ : Q × Σ∗ → Q

as follows:

δ∗(q, w) =
{

q if w = ε,
δ∗(δ(q, a), w′) if w = aw′, a ∈ Σ, w′ ∈ Σ∗.

We also write δ∗(w) for δ∗(q0, w). Finally, the language accepted by M is defined to be the set

L(M) = {w ∈ Σ∗ : δ∗(w) ∩ F 6= ∅}.

If w ∈ L(M), we also say that M accepts w. A language is regular if it is accepted by some dfa.

Example. For the door closer dfa above, we have Q = {close, open} and Σ =
{front, rear, both, neither}. We also have δ(close, a) = open iff a = front, and δ(open, a) = close
iff a = neither. In this example, the start state and final states are hardly important. Nevertheless, since
our formalism requires it, we will arbitrarily let q0 = close and F = {open}. In state diagrams (see fig-
ure 1(b)), we indicate the start state by an arrow from nowhere that points to q0, and circle each final state
such as open.

We leave it as an exercise to formalize the notion of “deterministic state diagrams” that is to equivalent
to dfa’s.

§2. NFA

There are many possible variations in dfa’s: in some applications, we may not be interested in final states
but are only interested in the repetitive non-stopping behavior. This is true of the door closer example.
Another large class of such examples come from any GUI design in computer window interfaces. Sometimes
we are interested in output actions associated with states, or with transitions. The former are called Mealy
machines. We may even allow several simultaneous input strings. Perhaps the most important variation is
the introduction of nondeterminism. Nondeterminism is the property of machines that may have more than
one next course of action.

Formally, a nondeterministic finite automata (nfa) is a 5-tuple M = (Q, Σ, δ, q0, F} as in a dfa. The
only change is that δ is new a multivalued function in the sense that δ(q, a) has any number of next state
q′ ∈ Q. If we collect the set of these q′, we obtain a set that is possibly empty. Hence,

δ : Q × Σε → 2Q

where Σε is Σ ∪ {ε}.

The intuitive idea of nondeterminism is that the finite automata has choices in making its transitions.
There are two kinds of choices: (I) From state q, it can read the next input symbol (say a) and go to any
state in δ(q, a). (II) From state q, it can choose NOT to read the next symbol, and go to any state in δ(q, ε).
We say that the nfa accepts an input w if it can reach some final state by starting from q0, after reading all
the symbols of w.

c© Chee-Keng Yap February 14, 2002

§2. NFA Lecture I Page 3

To formalize this, we extend the function δ to a new function

δ∗ : 2Q × Σ∗ → 2Q.

For P ⊆ Q and w ∈ Σ∗, the set δ∗(P, w) is, intuitively, the set of all states that we can reach by reading w,
starting from any state of P . With such a definition, we can define the language accepted by an nfa M to
be

L(M) = {w ∈ Σ∗ : δ∗({q0}, w) ∩ F 6= ∅}.
Two preliminary steps will be helpful. First we can easily extend δ to

δ1 : 2Q × Σ → 2Q

where δ1(P, a) =
⋃

p∈P δ(p, a). Next, we write q
ε→ q′ if there is a finite sequence of ε-transitions from q to

q′. Then

δ∗(P, w) =
{ {q ∈ Q : (∃p ∈ P)[p ε→ q]} if w = ε,

δ∗(δ1(δ∗(P, w′), a), ε) if w = w′a, a ∈ Σ, w′ ∈ Σ∗.

Again, let δ∗(w) = δ∗(q0, w).

Theorem 1 (Rabin-Scott) NFA’s accept precisely the set of regular languages.

Proof. Clearly every regular language is accepted by an nfa, since a dfa is an nfa. Conversely, given a nfa
M = (Q, Σ, δ, q0, F), we construct a dfa M = (Q, Σ, δ, q0, F) such that L(M) = L(M). The idea is quite
simple: M must simulate all possible transitions of M simultaneously. This means for al w ∈ Σ∗, we want
the extension of δ to compute the set

δ
∗
(w) = { all the states in Q that can be reached from q0 by M after reading w}. (1)

Once we have this goal, it is natural to define the state set Q = 2Q, the start state q0 = δ∗(q0, ε) and the set
of final states to be F = {P ⊆ Q : P ∩ F 6= ∅}. Now it is easy to see that L(M) = L(M).

Thus it remains to define the transition function so that (1) is satisfied. For P ⊆ Q and a ∈ Σ, we define

δ(P, a) = ∪q∈P δ∗(q, a).

Note that δ(∅, a) = ∅. This completes our description of the dfa M . Q.E.D.

Two nfa’s are said to be be equivalent if they accept the same language. The preceding lemma proves
that nfa’s and dfa’s are equivalent. This equivalence is very useful, as illustrated in the following proof.

Theorem 2 Regular languagues are closed under union, intersection, complementation, concatenation and
Kleene-star. In particular, if A, B ⊆ Σ∗ are regular languages then so are

A ∪ B, A = Σ∗ \ A, A ∩ B, AB, A∗.

Proof. (a) Let us show that C = A ∪ B is regular. Assume that A and B are accepted by the nfa’s MA and
MB that are in the following “nice form”: Mi = (Qi, Σ, δi, q0i, Fi) where i = A, B. Also, q0i 6= qfi. It is easy
to put any nfa into this “nice form”.

We construct MC = (QC , Σ, δC , q0C , FC) to accept C = A ∪ B. Let QC = QA ∪ QB ∪ {q0C}, where q0C

is a new symbol. Let FC = FA ∪ FB , and define δC has all the transitions of δA and δB as well as the new
transition

δC(q0C , ε) = {q0A, q0B}.

c© Chee-Keng Yap February 14, 2002

§3. NOTATIONS AND TERMINOLOGY Lecture I Page 4

It is easy to see that L(MC) = A ∪ B.

(b) To show that C = A = Σ∗ \ A is regular, assume MA is a dfa that accepts A. We construct a nice
nfa MC to accept C: start state is a new q0C , final state set is FC = {qfC} where QC = QA ∪ {q0C , qfC}.
The transitions are those of MA together with δC(q0C , ε) = {q0A} and for each q ∈ QA \ FC (i.e., non-final
state q of MA),

δC(q, ε) = {qfC}.
This ensures that we accept the complement of A.

(c) Remaining cases. It follows that the intersection of two regular languages is regular: A∩B = A ∪ B.
Similar constructions will show AB and A∗. Q.E.D.

Note how we exploited the equivalence of nfa and dfa in this proof. When we want to show the “power”
of regular languages, it is easier to use nfa’s. E.g., the constructed automaton MC is always an nfa. And
in part (a), the automata can be assumed to be in “nice form” only because we assume an nfa. Conversely,
when we want to “limit” the power of regular languages, we can use a dfa. E.g., we started out with a dfa
MA in part (b).

REMARK: we can extend the concept of a dfa by defining it to be a nfa in which |δ(q, a)| ≤ 1 for all q, a.
Such a dfa can sometimes be “stuck” with no next state. The advantage of this is that when we draw state
diagrams, we can avoid drawing lots of extraneous edges and labels. The idea of “getting stuck” must be
distinguished from the idea of staying in the same state. For instance, one could introduce the convention
for state diagrams where, if there is no explicit rule for a transition from state q on input a, then the implicit
rule is δ(q, a) = q. The problem is that this convention means that we can never get stuck. See the exercise
for regular languages that requires fewer states if we allow the nfa to have stuck states.

§3. NOTATIONS AND TERMINOLOGY

This section is a handy reference for common notations.

Numbers. N is the set of natural numbers 0, 1, 2, Z is the set of integers 0,±1,±2, Q is the set
of rational numbers (ratio of two integers, where the denominator is non-zero). R is the set of real numbers.

Sets. If X is a well-defined set, we can introduce a new set by writing {x ∈ X : P (x)} where P (x) is
a predicate on X . For instance, {x : x ∈ N, x is even} denotes the set of even natural numbers. The size
|X | of X is the number of its elements. The empty set is denoted ∅ and thus |∅| = 0. If X =

⋃
i∈I Xi

and the Xi’s are pairwise disjoint, we indicate this fact by writing X =
⊎

i ∈ IXi, and call {Xi : i ∈ I} a
partition of X . The set of all subsets of a set X is the power set of X , denoted 2X . We have

∣∣2X
∣∣ = 2|X|.

A subset of X of size k is called a k-set. The set of all k-sets of X is denoted
(
X
k

)
. This recalls the

binomial function
(
n
k

)
= n!

k!(n−k)! . In fact, we have
∣∣∣(X

k

)∣∣∣ =
(|X|

k

)
. The Cartesian product of X and Y is

X × Y = {(x, y) : x ∈ X, y ∈ Y }. This can be generalized to X1 × X2 × · · ·Xn or
∏n

i=1 Xi (this notation
exploits the associativity of Cartesian product). In case X1 = X2 = · · · = Xn, we write Xn for

∏n
i=1 X .

Relations. An n-ary relation R is a subset of a Cartesian product
∏n

i=1 Xi where Si are sets. We say
“ the relationship R(a1, . . . , an) holds” in case (a1, . . . , an) ∈ R. If n = 1, R is also called a predicate on
S1. For a binary relation R, we may use an infix notation, and write write a1Ra2 instead of R(a1, a2). A
binary relation R ⊆ S2 is reflexive if aRa for all a ∈ S; symmetric if aRb imples bRa; and transitive if
aRb and bRc implies aRc. A partial order on S is a binary relation R ⊆ S2 that is reflexive, symmetric
and transitive. We usually write a ≤ b for aRb in case R is a partial order. If, in addition, we have either

c© Chee-Keng Yap February 14, 2002

§3. NOTATIONS AND TERMINOLOGY Lecture I Page 5

a ≤ b or b ≤ a for all a, b ∈ S, then R is called a total order. A total order A well order on S is a partial
ordering ≤ such that every subset A ⊆ S has a least element a ∈ A (i.e., for all b ∈ A, a ≤ b). Note that a
well order is a total order.

Functions. A function f has two associated sets D and R, called its domain and range respectively.
We write f : D → R to indicate this relationship. The function f specifies for each x ∈ D, a value in R
which we denote by f(x). A function f is an injection (or one-one) if x 6= y implies f(x) 6= f(y); it is a
surjection (or onto) if {f(x) : x ∈ D} = R; it is a bijection (or one-one onto) if it is both an injection
and a bijection.

Graphs. There are many varieties of graphs, but two varieties are important for us. A directed graph
or digraph is a pair G = (V, E) where V is any set and E ⊆ V 2. A undirected graph or bigraph (“bi” for
bidirectional) is a pair G = (V, E) where V is any set and E ⊆ (

V
2

)
. For both kinds of graphs, the elements

of V and E are called vertices and edges, respectively. We denote an edge by (u, v) where (u, v) ∈ E (if
digraph) or {u, v} ∈ E (if bigraph). A path is a sequence p = (v1, v2, . . . , vk) where (vi, vi+1) are edges for
i = 1, . . . , k − 1. We call p a path from v1 to vk.

Formal language theory. An alphabet Σ is a finite set of symbols, called letters. A word (or string)
w over Σ is a finite sequence of letters of Σ,

w = a1 · · ·an, (n ≥ 0)

where ai ∈ Σ. The length of w is n, denoted |w|. The empty word is denoted ε; thus |ε| = 0. We set of all
words over Σ is denoted Σ∗. Also, Σ+ := Σ∗ \ {ε} is the set of non-empty words over Σ. If a ∈ Σ, then define
the counting function #a : Σ∗ → N where #a(w) is the number of occurences of a in w. The ith symbol in
a word w is denoted w[i] where i = 1, . . . , |w|. Assume w[i] is undefined for i outside this range. The reverse
of a word w is denoted wR. Thus w[i] = wR[n − i + 1] where n = |w|. A palindrome is a word w such that
w = wR. Let Σ∗ denote the set of words over Σ. A language is a pair of the form (Σ, A) where A ⊆ Σ∗.
We usually refer to “A” as the language (so the alphabet Σ is implicit). The complement of a language
(Σ, A) is (Σ, Σ∗ \A), denoted co-A. If C is a class of languages, let co-C = {co-A : A ∈ A}. Occasionally, we
consider in infinite strings w = a0a1a2 · · · where ai ∈ Σ. Alternatively, w : N → Σ so w(n) = an. We call w
an ω-word (or omega-sequence) over Σ. Let Σω denote the set of ω-words over Σ.

Classes and Families. Above, we only allowed new sets to be constructed from known sets. Otherwise,
there is some danger in using the concept of “sets” too liberally, giving rise to various logical paradoxes.
For instance, the set of all sets will lead to such a paradox. In general paradoxes arise for “very large sets”
such as the set of all sets. Logicians are careful to introduce other terms like “classes” or “families” for such
large sets. We will use these terms informally (making no true distinction between them except for usage
convention) for certain large sets in our book. For instance, consider L, the “set of all languages”. This is
“large” because each language depends on an underlying alphabet, and there is no fixed1 set alphabet that
we wish to commit ourselves too. Hence, this set is not a mathematical set. It has many of the features of sets
– we can recognize members of it. Yet we never get into trouble because each particular use can be justified
or suitably circumscribed. Moreover, certain set operations such as power set ought not to be performed.
Two usage conventions: we consistently refer to a “large sets of languages” as a class of languages (or
class for short). Likewise, we refer to a “large set of machines” as a family of machines. For example, we
talk of the “class of polynomial-time languages” and the “family of deterministic Turing machines”.

1Later in the book, we will actually establish two acceptable conventions in which these “large sets” can be completely
rigorous. These are called conventions α and convention β respectively.

c© Chee-Keng Yap February 14, 2002

§3. NOTATIONS AND TERMINOLOGY Lecture I Page 6

NOTES

Finite automata was first studied in the 1950s. Most elementary books on the theory of computation have
a treatment of finite automata and regular languages. For instance, Sipser [4] and Lewis and Papadimitriou
[2]. The door closer example is from Sipser. The Rabin-Scott theorem appeared in [3]. An easy introduction
to set theory where some paradoxes of large sets are discussed is Halmos’ book [1].

Exercises

Exercise 3.1: Consider the following transformation: suppose M is a nfa with start state q0 and final states
F = {qf}. We transform it to M ′ by making F = {q0}, and adding the transition δ(ε, qf) = q0. This
is illustrated in figure 2. Prove or disprove: L(M ′) = L(M)∗. ♦

qfq0

M
M ′

qfq0

ε

Figure 2: M to M ′ transformation.

Exercise 3.2: For n ≥ 2, let Σn = {a1, . . . , an} be an alphabet with n letters and Ln = {w ∈ Σ∗
n : #ai(w) =

0 for some i = 1, . . . , n}.
(a) Show an nfa that accepts Ln with n + 1 states.
(b) Show a dfa that accepts Ln with 2n states.
(c) Show that every dfa that accepts Ln has at least 2n states. ♦

Exercise 3.3: Recall that our nfa can “get stuck”. Show that you need more than n + 1 states if the nfa is
not allowed to get stuck in part (a) of the previous question. ♦

Exercise 3.4: (a) Formalize the concept of deterministic state diagram using digraphs, and the language
that it accepts.
(b) Prove that your concept is equivalent to dfa’s: for each dfa, there is a deterministic state diagram
accepting the same language. Conversely, from any deterministic state diagram, there is a dfa for the
same language. ♦

End Exercises

c© Chee-Keng Yap February 14, 2002

§3. NOTATIONS AND TERMINOLOGY Lecture I Page 7

References

[1] P. R. Halmos. Naive Set Theory. Van Nostrand Reinhold Company, New York, 1960.

[2] H. R. Lewis and C. H. Papadimitriou. Elements of the Theory of Computation. Prentice-Hall Inc, Upper
Saddle River, New Jersey, second ed. edition, 1998.

[3] M. O. Rabin and D. Scott. Finite automata and their decision problems. IBM J. of Research and
Development, 3:114–125, 1959.

[4] M. Sipser. Introduction to the Theory of Computation. PWS Publishing Co, Boston, 1997.

c© Chee-Keng Yap February 14, 2002

