
§2. THE Machine Lecture V Page 1

Lecture V
Toy Hardware and Operating System

§1. Introduction

For use in our OS projects, we introduce “THE Machine” where “THE” is
an acronym1 for Toy HardwarE. We also introduce an associated Toy Oper-

ating System (TOS). Both THE Machine and Toy OS are implemented as C
programs. The assembly language for THE Machine is called Simulated Toy

Machine Language (STML).
The Toy OS executes a single STML program at a time. Sample STML pro-

grams will be provided. All our OS projects are based on THE/TOS. One of your
first assignment is to modify the Toy OS is to introduce multi-programming.

The source files for THE/TOS are found in a CVS repository which you can
get access to. You are to store your projects in the CVS repository, which will
be team-based. In order to carry out these projects, you will learn need to learn
about using the CVS tool for developing software projects.

§2. THE Machine

• Hardware Specification: THE Machine has 1 MB of RAM, and this is
divided up into 256K of words where each word is 4 bytes. We can address
individual words in the RAM. Hence, the physical address space is 18 bits.

There are 16 registers, named R0, R1,..., R15. The register R0 is the PC
(program counter).

There are three special registers to support multiprogramming: a base
register, a limit register, and an program status word (a.k.a. error status
flag).

• There are 16 machine instructions. Thus each instruction can be repre-
sented by a 4 bit number. These 4-bit numbers are called OpCodes. The
operands of each instruction consists of at most one 18-bit address (AD),
and up to four registers (RA, RB, RC, RD).

• The following table describes these 16 instructions.

1THE is the namesake of a multi-tasking OS designed in 1965–6 by the pioneer Dutch

Computer Scientist, Edsger Dijkstra. ”THE” is an abbreviation of ”Technische Hogeschool

Eindhoven”, now the Eindhoven University of Technology.

c© Chee-Keng Yap December 5, 2007



§2. THE Machine Lecture V Page 2

Table of STML Instructions

OpCode Operation Operands Meaning

0 LOA RA, AD Load contents at location AD to RA
1 STO RA, AD Store contents of RA to location AD
2 CPR RA, RB Copy RB into RA
3 LOI RA, RB RB holds the address of AD. Load the value of AD into RA.

4 STI RA, RB RA holds the address of AD. Store the value in RB to AD.
5 ADD RA, RB, RC RC = RA + RB
6 SUB RA, RB, RC RC = RA - RB
7 MUL RA, RB, RC RC = RA * RB

8 DIV RA, RB, RC, RD RC = RA / RB, and RD = RA % RB.
9 ICR RA RA++

10 DCR RA RA--

11 GTR RA, RB, RC RC = (RA > RB)

12 JMP RA, AD Jump to AD. (RA is unused).
13 IFZ RA, AD If (RA == 0) then goto AD.
14 JMI RA RA holds the address of AD. Jump to AD.
15 TRP Trap to the kernel.

• Remark: the “I” in the instruction names LOI/STI/JMI suggests Indirect
Addressing, i.e., when the address is stored in a register or location, rather
than explicitly given. But the “I” in ICR and IFZ is just coincidence.

• Each STML instruction can fit into a machine word: the OpCode is laid
out in the lowest order 4 bits, followed by the arguments. This layout is
illustrated in Figure 1. Here, bit 0 is the lowest-order bit and bit 31 is the
highest-order bit.

08162431

LOA

4

RAAD

OPCODE

08162431

CPR

4

RA

OPCODE

RB

08162431

DIV

4

RA

OPCODE

RBRCRD

08162431

ADD

4

RA

OPCODE

RBRC

(a)

(b)

(c)

(d)

Figure 1: Formats for STML instructions

c© Chee-Keng Yap December 5, 2007



§3. The Assembly Language STML Lecture V Page 3

• For instance, in Figure 1(a), we see that the instruction

LOA RA, AD

uses bits 0–3 to specify the OpCode, bits 4–7 to specify the registor RA,
and bits 8–25 to specify the address AD. This uses up 4+4+18=26 bits.
The remaining bits 26–31 are unused.

Let us suppose that RA=3 and AD=10. Then the bit pattern for this in-
struction would be

(0000, 0000, 0000, 0000, 0000, 1010, 0011, 0000). (1)

• There are 6 distinct instruction formats, depending on OpCode. These
formats use at most 26 bits, and as few as 4 bits. Besides the four formats
in Figure 1, there are two others. (What are they?)

• We must discuss the TRAP instruction. Register 15 and possibly 14 and
13 will be used. The value of R15 indicates the nature of the system call:

– R15 = 0. Terminate. The process halts.

– R15 = 1. Integer Input. Read an integer from standard input. The
value of the integer read is returned to the process in register R14.
R13 is returned as 1 if an integer has been read and 0 if the end-of-file
is reached. Any non-integer value in standard input causes an error.

– R15 = 2. Integer Output. Print on a new line to standard output in
decimal the value of the integer held in register R14.

– R15 > 2. Future projects will involve defining other trap codes, for
forking and for manipulating semaphores, etc.

§3. The Assembly Language STML

• STML (Simulated Toy Machine Language) is the name of assembly lan-
guage for THE Machine.

• An STML source file is a text (ASCII) file that normally has the ”.stm”
extension. It has the following structure:

– Line 1: name of process

– Line 2: an integer, specifying the size of memory (in number of words)
for this process. This size includes space for code, data, variables,
etc.

– Line 3 onwards: 1 instruction or data item per line. Any line not be-
ginning with a number is ignored. Any item beyond the first number
in a line is ignored.

c© Chee-Keng Yap December 5, 2007



§3. The Assembly Language STML Lecture V Page 4

• Let us discuss the ASCII encoding for STML instructions. We view an
STML instruction an 32-bit word, which can be intepreted as an integer.
By convention, we set the unused bits to zero. With this convention, each
instruction is uniquely associated with a 32-bit integer. It is best to write
this integer in hexadecimal notation, using the 16 “hexadecimal digits”

0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E, F

We normally prefix a hexadecimal notation with the sequence 0x, to distin-
guish it from the standard decimal notation (which is unadorned). Thus,
0xA is 10 (in decimal) while 0x10 is 16. Again, 0xF is 15 is decimal, and
0x1F is 16 + 15 = 31.

Our main use of hexadecimal notation is, however, to denote STML in-
structions in a convenient way. For instance, the bit pattern in (1) can now
be simply written as 0xA30. The following table gives more illustrations:

Hexadecimal Notation Instruction Comments

0xF TRP Trap instruction, no explicit arguments
0xA9 INC R10 Increment register 10
0xE22 CPR R2 R14 Copy into register 2 the contents of register 14

• Let us go through a sample stm code, ”fraction.stm”.

fraction

33

% This program reads four integers A,B,C,D from standard input

% where A < B != 0. It prints in the standard output,

% successively, the first D "digits" of A/B in base C.

% E.g., if (A,B,C,D)=(1,3,10,5), it prints out "3 3 3 3 3"

% This code is from Professor Davies.

0x1CF0 0 LOA R15 ONE

0xF 1 TRP --- Read A

0xE12 2 CPR R1 R14 --- and save in R1

0xF 3 TRP --- Read B

0xE22 4 CPR R2 R14 --- and save in R2

0xF 5 TRP --- Read C

0xE32 6 CPR R3 R14 --- and save in R3

0xF 7 TRP --- Read D

0xE42 8 CPR R4 R14 --- and save in R4

0x512B 9 GTR R2 R1 R5 --- If A > B then fail.

0x195D A IFZ R5 EXIT

0x192D B IFZ R2 EXIT --- If B == 0 then fail.

0x1BA0 C LOA R10 ZERO --- R10 is the counter for the number of digits.

c© Chee-Keng Yap December 5, 2007



§4. The Toy OS (TOS) Lecture V Page 5

0x5A3B D GTR R3 R10 R5 --- If C <= 0 then fail.

0x195D D IFZ R5 EXIT

0x1DF0 E LOA R15 TWO --- The next series of traps will be prints.

LOOP

0x5137 10 MUL R3 R1 R5 --- print (A*C)/B;

0x76258 11 DIV R5 R2 R6 R7

0x6E2 12 CPR R14 R6

0xF 13 TRP

0x712 14 CPR R1 R7 --- A := (A*C) % B;

0xA9 15 INC R10 --- Increment digit counter and compare to D.

0x5A46 16 SUB R4 R10 R5

0x195D 17 IFZ R5 EXIT

0x100C 18 JMP LOOP

EXIT

0x1BF0 19 LOA R15 ZERO

0xF 1A TRP

0 1B ZERO --- this is essentially the beginning of the

1 1C ONE --- data segment!

2 1D TWO --- 1D (=29 in decimal) is last address

• Remarks about this code:

– Although all the instructions are in hexadecimal notation (indicated
by the prefix 0x), we also enter decimal numbers when convenient.

For instance, line 2 indicates that the program memory size is 33 in
decimal. Also, the last three lines of program contains just constants
(ZERO, ONE, TWO) written in decimal notation.

– Following each STML instructions, on the same line, we enter three
items of information in human-readable form. E.g., 0xF 3 TRP ---

Read B.

∗ STML instruction — 0xF.

∗ Line number — this is in hexadecimal notation, even though we
omit the 0x prefix.

∗ The corresponding instructions in “assembly language” — TRP

∗ Any comments — this trap corresponds to reading input B.

– Note that lines 1B, 1C, 1D are data sections (storing the constants
0, 1, 2).

– Can you see why we use 33 words for this process?

§4. The Toy OS (TOS)

We now describe the Toy OS for THE machine.

• The basic operation of THE/TOS is simply this:

c© Chee-Keng Yap December 5, 2007



§4. The Toy OS (TOS) Lecture V Page 6

– It reads a STML file and loads the program into memory (sequen-
tially).

– All addresses are relative: the physical address is equal to the base
register plus the relative address.

– It starts execution of the program starting at relative address 0.

• The compiled version the THE/TOS is called tos. To invoke tos, you
must give it a STML program to execute. Three other optional arguments
can be given under the following flags:

– -b n: Here n is a non-negative integer. This means that the program
will be loaded starting at the base address of n. Default value is
n = 0.

– -d n: Here n is 0, 1 or 2. It indicates the debugging level. The default
level is n = 0, indicating no debugging messages. At higher levels,
the Toy OS is increasingly verbose, printing out various diagnostic
messages.

– -m n: Here m is a positive integer, indicating the maximum number
of instructions in the STML program to be executed. This might be
useful to avoid infinite loops while you are still debugging a STML
program.

Example: to run a program called primes.stm for at most 99 instructions,
and at debugging level 1, you type

% tos -b 1 -m 99 primes.stm

• Program Status Word (PSW) and Error Status: THE Machine does not
implement a PSW but has a simpler error flag for the following conditions:

– Arithmetic errors: divide by 0 (ERR DIV BY 0) or overflow (ERR OVERFLOW).

– Address errors (ERR ADDR): address not in partition.

– PC increment error (ERR PC): incrementing the PC goes outside the
partition.

– I/O error: non-integer in input (ERR INPUT), or reading past End-of-
File (ERR OUTPUT).

• THE/TOS is useful as a pedagogical artifact. Nevertheless, it can be made
more realistic in several ways.

– There is no multiprogramming in the basic TOS.

– There is hardware support for multiprogramming.

– Having hardware support for a stack pointer would make it easily to
implement recursion.

c© Chee-Keng Yap December 5, 2007



§5. Procedure Calls Lecture V Page 7

– THE Machine does not model I/O devices which operates asyn-
chronously from the CPU. Thus timing is unrealistic. We would
need to simulate I/O blocking and interrupts.

– The OS is not resident in memory. This seems hardest to overcome.

Some of these shortcomings can be overcome in class projects.

§5. Procedure Calls

We want to extend TOS to support function calls. The standard way to do
this is to exploit a stack. We will need a new register SP (stack pointer) to
point to the top of this stack.

Sticking to simple THE Machine architecture, we cannot add any new reg-
isters to our current instruction set. So we propose to add the SP through the
Toy OS, and to implement new traps to access this register.

We will introduce six basic traps which are named

CALL, RET, PUSH, POP, GETSP, SETSP.

These traps are grouped into three pairs: CALL and RET are for calling
and returning from procedures. PUSH and POP is for adding and removing an
entry from the stack. Finally, GETSP and SETSP is for moving information
from memory to the stack, or vice-versa. The reason why GETSP and SETSP
are necessary is because SP is an implicit register which we cannot directly
manipulate except through traps.

These traps are viewed as user services, and we would like to distinguish
them from traps that perform system services. By definition, system traps will
automatically cause a context switch, but user traps do not. So we introduce a
convention for our trap vector. Traps 0 to 19 will be considered system traps.
Traps 20 and higher will be considered user traps.

In order to understand the way the stack works below, we must remember a
convention about how stacks are organize in the memory allocated to a process.

FIGURE: mem[0]... mem[LIMIT-1]
We think of the process memory as starting from address 0 to some upper

limit. Let mem[0.. LIMIT-1] denote this sequence of memory location. The
executable code of the process is loaded starting at mem[0]. After this, we allo-
cate memory for static variables, and also space for the heap (used in dynamic
memory allocation). The stack, however, begins at the mem[LIMIT-1], and
grows towards mem[0]. In the above figure, we draw mem[0] at the top, and
mem[LIMIT-1] at the bottom. In this sense, the stack is growing upwards.

When we load a process, we assume that SP is initialized to the value
LIMIT. To push a value X on the stack, we first decrement SP and then
set mem[SP]=X. Now, we are ready to describe the four new traps:

• TRAP 20: As usual, R15 contains the constant 20 but R14 will contain
either the number of a register (0-15) or an address (>15). In case of a

c© Chee-Keng Yap December 5, 2007



§5. Procedure Calls Lecture V Page 8

register, we assume that the register contains an address. In either case,
let the address be denoted ADDR. We expect ADDR to be the address or
entry point into a procedure. We will refer to this trap call as

CALL ADDR.

In fact, our assembler can easily be extended to accept this new syntax.
The result of this trap is that:

– Increment register R0 (the PC). Note this incremented value of R0
is the return address after the procedure call.

– Decrement the stack pointer SP.

– Store the value of R0 into mem[SP].

– Set R0 to the value ADDR. This means we jumped to ADDR for our
next instruction.

• TRAP 21: R15 contains the constant 21 and R14 contains some (small)
non-negative integer N. We will refer to this trap as

RET N.

The result of this trap is the sequence of actions:

– Set register R0 to the mem[SP]. Recall that mem[SP] holds the return
address after the procedure call.

– Increment the stack pointer SP.

– Further, add N to SP.

For now, assume N is 0. We will shortly why it is useful to have positive
values for N.

• TRAP 22: R15 contains the constant 22 but R14 will contain an address
ADDR. In order for this trap to be refer to registers we make a convention:
when ADDR is in the range 0-15, mem[ADDR] is actually referring to the
registers!

We will refer to this trap as

PUSH ADDR.

The result of this trap is the following actions:

– Decrement the stack pointer SP.

– Set mem[SP] to mem[ADDR].

• TRAP 23: R15 contains the constant 23. R14 will contain an address
ADDR. Again, if ADDR is in the range 0-15, mem[ADDR] refer to regis-
ters. We will refer to this trap as

POP ADDR.

The result of this trap is the following actions:

c© Chee-Keng Yap December 5, 2007



§6. Procedure Calls Lecture V Page 9

– Set mem[ADDR] to mem[SP].

– Increment the stack pointer SP.

• TRAP 24: R15 contains constant 24. R14 contains an ADDR, and R13
contains an offset N. This trap is known

GETSP N, ADDR

and its effect is to set mem[ADDR] = mem[SP+n]. As usual, if ADDR is
between 0 and 15, we are talking about registers.

• TRAP 25: R15 contains constant 25. R14 contains an ADDR, and R13
contains an offset N. This trap is known

SETSP N, ADDR

and its effect is to set mem[SP+n] = mem[ADDR].

Let now see how to use these traps.
Suppose your procedure uses local variables. We allocate space for these local

variables, on the stack. First assume that the procedure takes it arguments in
registers.

• Invoke the procedure by executing CALL ADDR.

• Save on the stack the values of any registers that might be used. Use
PUSH to do this.

• Allocate space for local variables by decrementing SP.

• Initiatize these local variables.

• Start executing the procedure.

In this procedure, whenever you need to refer to local variables, use
mem[SP+n] for suitable values of n.

• Cleaning up. First, deallocate the space for local variables (increment SP)

• Restore values of registers from the stack. Use POP to do this.

• Return to the caller by executing RET 0.

Passing arguments using registers is fine for most purposes. But there are
situations where we want to pass arguments to a procedure “directly”, by giving
the address of the argument. Another reason might be that we need to pass
more arguments than there are registers.

The method is as follows: the caller will push the address of the arguments
directly onto the stack before calling the procedure. Upon return, the procedure
will do the courtesy of popping the arguments off the stack by calling RET N for
some positive value of N.

APPLICATIONS: Using these function calls, we can now implement li-
braries. The OS can provide a list of standard libraries. We can keep all library
files in a special directory that the OS knows about. When called, it searches
this library and loads it. Such libraries are loaded in System space.

c© Chee-Keng Yap December 5, 2007



§6. Files Lecture V Page 10

§6. Files

To extend TOS to support file I/O, we introduce new traps.

Exercises

Exercise 6.1: What not allow TRAP’s to take arguments? Design a trap
instruction of the form TRAP R, ADDR where R is a register and ADDR
an address. ♦

Exercise 6.2: Write a STML program that takes as input three numbers a, b, n

and it prints the Fibonacci number fn where the Fibonacci sequence
{fi : i ≥ 0} is defined by f0 = a, f1 = b and fi+1 = fi−1 + fi. ♦

Exercise 6.3: The current I/O traps for THE/TOS only handle integers. We
would like to be able to handle general string I/O. To do this, we enhance
the original TRP 1 and TRP 2 as follows: Besides Registers 15, 14 and
13, we will now use Register 12. The value of R15 indicates the nature of
the system call:

• R15 = 1. Input.

If R12=0, then we read an integer from standard input, as before.
The value of the read integer read returned to the process in register
R14. R13 is returned as 1 if an integer has been read, and 0 if the
end-of-file is reached. Any non-integer value in standard input causes
an error and R13 would get a negative number.

If R12¿0, then we would read up as many characters as the value of
R12 indicates. There would be a buffer reserved in storage, starting
at the address stored in R14. After the reading in the characters, the
number of read characters would be stored in R13.

NOTE: this new TRP 1 is consistent with the old TRP because all
you need to do to modify an old program to the new one is to load
0 into R12.

• R15 = 2. Output.

If R12=0, then we will print on the screen the value of the integer held
in R14. if R12¿0, then we will print on the screen up to R12 many
ASCII characters. The string is stored in a buffer whose starting
address is stored in R14.

♦

Exercise 6.4: Implement the following six new user traps to support function
calls, based on the (hidden) register SP or Stack Pointer. ♦

Exercise 6.5: (a) Re-write the STML programs in our collection (sort.stm,
primes.stm, etc) so that these programs can be called a subroutines.
(b) We want to implement a library system using the function call traps.
Modify TOS to support this. ♦

c© Chee-Keng Yap December 5, 2007



§6. Files Lecture V Page 11

Exercise 6.6: Write a recursive version of fib.stm using these new function call
traps. ♦

Exercise 6.7: The OS should be able to run a batch system.

We can place jobs in files in a special directory, which the system checks.

Certain jobs can be run periodically, or can be specified to start at a
particular time.

For batch jobs, we need to arrange I/O to be done through files (via
redirection of the standard I/O). ♦

End Exercises

c© Chee-Keng Yap December 5, 2007


