
§1. An Approach to Algebraic Computation Lecture 12 Page 1

Lecture 12

CONSTRUCTIVE ZERO BOUNDS

This chapter describes some effective methods for computing lower bound on algebraic ex-
pressions. Two particular methods will be developed in detail: the measure bound and BFMSS
bound.

§1. An Approach to Algebraic Computation

Algebraic numbers that arise in practice are represented by expressions such as
√

2 +
√

3−
√

5 + 2
√

6 or
1− 100 sin(1/100). The critical question is to determine the sign of such expressions, or to detect when they
are undefined. Assume we can approximate any well-defined expression e to any desired absolute precision,
i.e., for all p ∈ N, we can compute an approximate value ẽ such that |e − ẽ| ≤ 2−p. If e 6= 0, then we can
compute ẽ for p = 1, 2, 3, . . . until |ẽ| > 2−p. At this point, we know the sign of e is that of ẽ. The problem
is that when e = 0, this iteration cannot halt. But suppose we can compute some bound B(e) > 0 with the
property that if e 6= 0 then |e| > B(e). In this case, we can halt our iteration when p ≥ 1 − lg B(e), and
declare that e = 0. In proof,

|e| ≤ |ẽ + 2−p ≤ 21−p ≤ B(e)

implies e = 0.
In general, an expression is a rooted DAG over some set Ω of real algebraic operators. A typical set is

Ω = {±,×,÷} ∪ Z. Note that constants such as n ∈ Z are regarded as 0-ary operators, and these appear at
the leaves of the DAGs. Let Expr(Ω) denote the set of expressions over Ω. There is a natural evaluation
function val : Expr(Ω) → R such that val(e) is the value denoted by e. In general, val is a partial function,
since some operators in Ω (like ÷) may be partial. We write val(e) =↑ in case val(e) is undefined; otherwise
we write val(e) =↓. A function B : Expr(Ω) → R≥0 is called a zero bound function if for all e ∈ Expr(Ω),
if val(e) =↓ then |val(e)| ≥ B(e). Since the lower bound is only in effect when val(e) =↓, we may call B(e)
a “conditional” lower bound.

We generalize the above observations to a general computational paradigm. This is basically the method
encoded in the Core Library. Each algebraic operation in Ω = {+,−,×,÷,

√·, . . .} is regarded as the
construction of a root of a DAG whose leaves are (say) integers. Thus, each node u of the DAG has an
implicit real value val(u) (which may be undefined). Moreover, assume that we store two quantities at
every node u of the DAG: a precision parameter pu ∈ N and a bigfloat interval Iu ∈ Z[12] (possibly Iu is
undefined). Inductively assume that val(u) ∈ Iu and w(Iu) ≤ 2−pu . Moreover, we assume algorithms which
can approximate each operation in Ω to whatever precision we wish. Suppose we want to approximate a
given expression e to some absolute precision p. Assume e = e′⋄e′′ where ⋄ ∈ Ω. The lazy approach says that
we just compute (using interval arithmetic) the value Ie := Ie′ ⋄Ie′′ and see if w(Ie) ≤ 2−pe . If not, we refind
the intervals Ie′ and Ie′′ and repeat. But in Core Library, we do this iteration more actively, by computing
the precision pe′ , pe′′ in e′ and e′′ that will ensure that Ie has precision pe. This is called “precision-driven
computation”. All this computation is relatively straightforward in interval arithmetic. What makes our
system unique is that we also compute a zero bound B(e) for each expression, and this allows us to decide
the sign of e. When w(Ie) ≤ B(e)/2, and 0 ∈ Ie, we conclude that e is zero.

We now focus on how to compute such B(e) bounds. Using the theory of resultants, we can define a
suitable zero bound function for expressions over Ω = {±,×,÷,

√·} ∪ Z. For instance, if e = e1e2, then we
know from resultants that a defining polynomial A(X) for e can be obtained from the definition polynomials
Ai(X)’s for ei (i = 1, 2). Moreover, if ht(ei) = hi then

ht(e) ≤ h := hm2

1 hm1

2

where mi = deg(Ai). From Cauchy’s bound (see previous Chapter), it is clear that we can define B(e) =
(1 + h)−1. There are similar relations for e = e1 ± e2, e = e1/e2, e = k

√
e1. Thus, if we maintain recursively,

c© Mehlhorn/Yap Draft November 15, 2006

§1. An Approach to Algebraic Computation Lecture 12 Page 2

for each node in e, an upper bound on the height and degree of the corresponding algebraic number, we can
recursive compute B(e) for any expression e. This is the degree-height bound, implemented in the first
system for such kind of numerical algebraic computation, Real/Expr [16] (cf. [15, p. 177]).

In this chapter, we describe several other zero bound functions in detail. The general feature of such
constructive bounds is illustrated by the degree-height bound. Two ingredients are needed: first, we need
a set of recursive rules to maintain a set

p1(e), . . . , pt(e)

of numerical parameters for an expression e. In the degree-height bound, t = 2 where p1(e) is a height
bound and p2(e) is the degree bound. The second ingredient is a zero bound function B(e) that is computed
obtained as a function β of these parameters, B(e) = β(p1(e), . . . , pt(e)). In the degree-height bound,
β(p1, p2) = (1 + p1)

−1.
Such recursive rules apply to a suitable set Expr(Ω) of expressions. For these notes, we mainly focus on

the following set
Ω2 := {±,×,÷,

√
·} ∪ Z.

We can slightly extend Ω2 to allow k
√· for integers k ≥ 2.

Let B(e) = β(p1(e), . . . , pt(e)) be a constructive zero bound over a class K of expressions. Suppose we
have another constructive zero bound C(e) = γ(q1(e), . . . , qu(e)) over K which is based on a different set of
parameters q1(e), . . . , qu(e) and bounding function γ(q1, . . . , qu). We would like to compare C(e) and B(e):
we say B is as efficient than C if for every e ∈ K, the time complexity of maintaining the parameters
p1(e), . . . , pt(e) and computing the function b(p1, . . . , pt) is order of the corresponding complexity for C. But
there is another way to compare B(e) and C(e): we say B(e) dominates C(e) if for all e ∈ K, B(e) ≥ C(e).
For instance, the degree-measure bound, to be described, dominates the degree-height bound. At least for
known constructive bounds, the efficiency issue is less important than having as large a lower bound as
possible. Hence we mainly compare zero bounds based on their domination relationship.

Degree Bound for Expressions. In all the zero bounds, we need to maintain an upper bound D(e) on
the degree of val(e). Consider an expression e having r radical nodes with indices k1, k2, . . . , kr. Then we
claim that the degree of e is at most

D(e) =

r∏

i=1

ki. (1)

In proof, suppose we topologically sort the nodes in e, beginning with a leaf node and ending in the node e.
Let the sorted list be (v1, v2, . . . , vs). Inductively, define d1, . . . , ds where d1 = 1 and di+1 is equal to kdi if
vi+1 is k-th root, and otherwise di+1 = di. It is clear that ds = D(e). Now it is clear that, by induction,
deg(vi) ≤ di. This proves our claim. It is also not hard to compute D(e). This method of bounding degree
extends to the “RootOf” operator (below) which introduces arbitrary real algebraic numbers.

§1.1. The Mahler Measure bound

Every algebraic number α has a unique minimal polynomial Irr(α) ∈ Z[X]. We can factor Irr(α) over C

as Irr(α) = a
∏m

i=1(X −αi) with a a positive integer. We may assume α = α1; each αi is called a conjugate
of α. Mahler’s measure of α is defined as

M(α) := a ·
m∏

i=1

max{1, |αi|}.

For instance, M(
√

2) = 2 because the minimal polynomial of
√

2 is X2 − 2 = (X −
√

2)(X +
√

2) and a = 1.
On the other hand, M(1 +

√
2) = 1 +

√
2 which is irrational.

In the following, it is convenient to define for any complex z,

max1(z) := max{1, |z|}. (2)

c© Mehlhorn/Yap Draft November 15, 2006

§1. An Approach to Algebraic Computation Lecture 12 Page 3

In general, if A(X) =
∑m

i=0 aiX
i ∈ C[X] is any polynomial, we define its measure as

M(A) := |am| ·
m∏

i=1

max1(αi),

where αi’s are the complex roots of A(X). This definition might appear unnatural but in fact M(α) can
also be defined by a natural integral (Exercise). In case A(X) ∈ Z[X], we see that M(A) ≥ 1.

In particular, M(α) ≥ 1 for non-zero algebraic α. It is also easy to see that if A(X), B(X) ∈ Z[X] then

M(AB) = M(A)M(B) (3)

and hence we conclude that
M(A) ≤ M(AB).

The basis for the degree-measure bound is the following theorem:

Lemma 1.
(i) |α| ≤ M(α).
(ii) If α 6= 0 then M(1/α) = M(α).
(iii) |α| ≥ 1

M(α) .

Proof. (i) is immediate from the definition of measure. For (ii), we observe that if the minimal polynomial
of α is A(X) =

∑m
i=0 aiX

i = am

∏m
i=1(X − αi) then a0 6= 0 and

B(X) = XmA(1/X) = a0

m∏

i=1

(X − 1/αi)

is (up to sign) the minimal polynomial of 1/α. Further,

a0 = am

m∏

i=1

αi (4)

Hence
M(1/α) = |a0|

∏
i max1(1/αi)

= |am|∏i |αi| · max1(1/αi) (by (4))
= |am|

∏
i max1(αi)

= M(α).

Finally, (iii) follows from (i) and (ii): 1/|α| ≤ M(1/α) = M(α). Q.E.D.

In other words, if e is any expression, and we maintain an upper bound m(e) on it’s Mahler measure,
then the B(e) ≥ 1/m(e). Let us now see how we can maintain such an upper bound. As in the case of
height, we see that we need to also maintain an upper bound on the degree of e. Such bounds were first
exploited by Mignotte [9] in the problem of identification of algebraic numbers.

In the following, we use the following elementary relations:

max1(αβ) ≤ max1(α)max1(β), (5)

max1(α ± β) ≤ 2max1(α)max1(β). (6)

The first inequality (5) is trivial in case |αβ| ≤ 1. Otherwise,

max1(αβ) = |α| · |β| ≤ max1(α)max1(β).

The second inequality is trivial in case |α ± β| ≤ 2. Otherwise, let |β| ≥ |α| and

max1(α ± β) ≤ |α| + |β| ≤ 2|β| ≤ 2max1(α)max1(β).

We have the following relations on measures [10]:

c© Mehlhorn/Yap Draft November 15, 2006

§1. An Approach to Algebraic Computation Lecture 12 Page 4

Lemma 2. Let α and β be two nonzero algebraic numbers of degrees m and n respectively. Let k ≥ 1 be an
integer.

(o) M(p/q) ≤ max |p|, |q|, p, q ∈ Z, q 6= 0
(i) M(α × β) ≤ M(α)nM(β)m

(ii) M(α/β) ≤ M(α)nM(β)m

(iii) M(α ± β) ≤ 2dM(α)nM(β)m, d = deg(α ± β)
(iv) M(α1/k) ≤ M(α)
(v) M(αk) ≤ M(α)k

Proof. For (o), it sufficient to assume p, q are relatively prime so that the minimal polynomial of p/q is
qX − p. Then M(()p/q) = |q|max1(p/q), which we can verify is equal to max |p|, |q|.

Let the minimal polynomials of α, β be A(X) = a
∏m

i=0(X−αi) and B(X) = b
∏m

j=0(X−αj), respectively.
For (i), we use the fact that the minimal polynomial of αβ divides anbm

∏
i

∏
j(X − αiβj) which we saw is

the resultant resY (A(Y), Y nB(X/Y)). Hence, by (3),

M(αβ) ≤ anbm
∏m

i

∏n
j max1(αiβj)

≤ an
∏

i b
∏

j max1(αi)max1(βj)

= an
∏

i max1(αi)
n

[
b
∏

j max1(βj)
]

= an
∏

i max1(αi)
nM(β)

= M(β)man
∏

i max1(αi)
n

= M(β)mM(α)n.

Part (ii) follows from (i), using the fact that M(1/β) = M(β) and deg(1/β) = n.
For (iii), we use the fact that the minimal polynomial of α ± β divides anbm

∏
i

∏
j(X − αi ∓ βj) which

we saw is the resultant resY (A(Y), B(X ∓ Y)). Let I ⊆ {1, . . . ,m}× {1, . . . , n} such that the conjugates of
α ± β is given by the set {αi ± βj : (i, j) ∈ I}. So deg(α ± β) = |I|.

M(α ± β) ≤ anbm
∏

(i,j)∈I max1(αi ± βj)

≤ anbm
∏

(i,j)∈I 2max1(αi)max1(βj)

= 2|I|anbm
∏

(i,j)∈I max1(αi)max1(βj)

≤ 2|I|anbm
∏

i

∏
j max1(αi)max1(βj).

The rest of the derivation follows as in part (i).
For (iv) and (v), use the facts that the minimal polynomials of α1/k and αk (respectively) divide A(Xk) =

a
∏

i(X
k − αi) and A(X)k. Q.E.D.

Using this lemma, we give a recursive definition of a function m(e), as shown in Table 1 under the column
with the heading “m(e)”. Thus is an upper bound on measure

M(e) ≤ m(e).

Hence we conclude from from Lemma 1 that the function

B(e) = 1/m(e)

is a root bound function.
Sekigawa [13] gave a refinement of these rules in the case an expression e is division-free. Let M0(A)

denote the leading coefficient of A, and define M1(A) by the equation

M(A) = M0(A)M1(A).

In case e is an expression and A is the minimal polynomial of val(e), we write M0(e) and M1(e) for M0(A)
and M1(A) (resp.). Sekigawa gave recursive definitions of two functions m0(e) and m1(e) which are upper

c© Mehlhorn/Yap Draft November 15, 2006

§1. An Approach to Algebraic Computation Lecture 12 Page 5

e m(e) m1(e) m0(e)

1. rational p/q max{|p|, |q|} max1(p/q) |q|
2. e1 ± e2 2d(e)m(e1)

nm(e2)
m m1(e1)

nm1(e2)
m 2d(e)m0(e1)

nm0(e2)
m

3. e1 × e2 m(e1)
nm(e2)

m m1(e1)
nm1(e2)

m m0(e1)
nm0(e2)

m

4. e1 ÷ e2 m(e1)
nm(e2)

m — —
5. k

√
e1 m(e1) m1(e1) m0(e1)

Table 1: Measure Bound Rules, including Sekigawa’s refinement

bounds on M0(e) and M1(e), respectively. These definitions shown in the last two columns of Table 1. Note
that we do not have rules for division. Thus, for division free expressions, the function

B(e) =
1

m0(e)m1(e)

serves as a root bound function.
The rules shown here is actually a slightly simplified version of his rules.

An Example. Consider the expression

e =
√

x +
√

y −
√

x + y + 2
√

xy (7)

where x = a/b, y = c/d and a, b, c, d are L-bit integers. Assume that
√

xy is computed as (
√

x)(
√

y). We will
determine the Measure Bound on − lg |e| (expressed in terms of L). We call any upper bound for − lg |e| a
zero bit-bound for e, because − lg |e| is the number bits of absolute precision that suffices to determine if
e = 0.

We fill in the entries of the following table, using our rules for bounding measure. Ignore the last column
for lg M0(e) for now. It is usually simpler to maintain bounds on lg M(e) instead of M(e) directly – so that
is what we show in the table. The first entry for lg M(x) is justified in an exercise: M(a/b) ≤ max{|a|, |b|}
for a, b ∈ Z.

No. e d(e) lg M(e) lg M0(e)

1 x, y 1 L L
2

√
x,

√
y 2 L L

3 x + y 1 2L 2L
4

√
x
√

y 4 4L 4L
5

√
x +

√
y 4 4L + 4 4L

6 2
√

xy 4 4L + 4 4L
7 x + y + 2

√
xy 4 12L + 8 12L

8
√

x + y + 2
√

xy 8 12L + 8 12L
9

√
x +

√
y +

√
x + y + 2

√
xy 8 80L + 64 80L

Since |e| ≥ 1/M(e), we conclude that − lg |e| ≤ lg M(e) ≤ 80L + 64. In line 4, the degree
√

x
√

y of 4 is
obtained from our rules, but it is clearly suboptimal.

Exercises

Exercise 1.1: (i) We have a rule for the measure of rational numbers p/q, and this is clearly tight in case p, q
are relatively prime. But show that our measure bound (using the multiplication rule) is sub-optimal
for rational input numbers.
(ii) Refine our measure rules for the special case of the division of two algebraic integers, similar to the
rule (i). ♦

c© Mehlhorn/Yap Draft November 15, 2006

§1. An Approach to Algebraic Computation Lecture 12 Page 6

e U(e) L(e)

1. rational a/b a b
2. e1 ± e2 U(e1)L(e2) + L(e1)U(e2) L(e1)L(e2)
3. e1 × e2 U(e1)U(e2) L(e1)L(e2)
4. e1 ÷ e2 U(e1)L(e2) L(e1)U(e2)

5. k
√

e1
k

√
U(e1)

k

√
L(e1)

Table 2: BFMS Rules for U(e) and L(e)

Exercise 1.2: Determine those algebraic numbers α whose Mahler measure M(α) are not natural numbers.
♦

Exercise 1.3: Determine the Mahler Bound for the expression in Equation (7) where x and y are L-bit
rational numbers (i.e., the numerator and denominators are at most L-bit integers). ♦

Exercise 1.4: (i) Determine the Degree-Measure bound for the expression (a +
√

b)/d where a, b, d are
(respectively) 3L-bit, 6L-bit and 2L-bit integers.
(ii) Do the same for the difference of two such expressions. ♦

End Exercises

§1.2. The BFMS bound

One of the best constructive zero bounds for the class of radical expressions is from Burnikel et al [5].
We call this the BFMSS Bound. However, we begin with the presentation of the simpler version known
as the BFMS Bound [4]. The bound depends on three parameters, L(e), L(e),D(e) for an expression e.
Since D(e) is the usual degree bound, we only show the recursive rules for L(e), L(e) in Table 2.

Conceptually the BFMS approach first transforms a radical expression e ∈ Expr(Ω2) to a quotient of
two division-free expressions U(e) and L(e).

If e is division-free, then L(e) = 1 and val(e) is an algebraic integer (i.e., a root of some monic integer
polynomial). The following lemma is immediate from Table 2:

Lemma 3. val(e) = val(U(e))/val(L(e)).

Table 2 should be viewed as transformation rules on expressions. We apply these rules recursive in a
bottom-up fashion: suppose all the children vi (say i = 1, 2) of a node v in the expression e has been
transformed, and we now have the nodes U(vi), L(vi) are available. Then we create the node U(v), L(v) and
construct the correspond subexpressions given by the table. The result is still a dag, but not rooted any
more. See Figure 1 for an illustration in case the operation at v is +.

The transformation e ⇒ (U(e), L(e)) is only conceptual – we do not really need to compute it. What
we do compute are two real parameters u(e) and l(e) are maintained by the recursive rules in Table 3. The
entries in this table are “shadows” of the corresponding entries in Table 2. (Where are they different?)

To explain the significance of u(e) and l(e), we define two useful quantities. If α is an algebraic number,
define

MC(α) :=
m

max
i=1

|αi| (8)

where α1, . . . , αm are the conjugates of α. Thus MC(α) is the “maximum conjugate size” of α. We extend
this notation in two ways:
(i) If e is an expression, we write MC(e) instead of MC(val(e)).

c© Mehlhorn/Yap Draft November 15, 2006

§1. An Approach to Algebraic Computation Lecture 12 Page 7

L(e1)

L(e2)U(e2)

U(e1)e1

e

e2

U(e) L(e)

×
√
·

× ×

+

×+

√
·

× ×

√
·

Figure 1: Transforming an expression e to L(e), U(e).

e u(e) l(e)

1. rational a/b |a| |b|
2. e1 ± e2 u(e1)l(e2) + l(e1)u(e2) l(e1)l(e2)
3. e1 × e2 u(e1)u(e2) l(e1)l(e2)
4. e1 ÷ e2 u(e1)l(e2) l(e1)u(e2)

5. k
√

e1
k

√
u(e1)

k

√
l(e1)

Table 3: BFMS Rules for u(e) and l(e)

(ii) If A(X) is any polynomial, we write MC(A(X)) for the maximum of |αi| where αi range over the zeros
of A(X). For instance, we have this connection with Mahler measure:

M(α) ≤ M0(α)MC(α)d

where d = deg(α). Using MC(α) and M0(α), we obtain a basic approach for obtaining zero bounds:

Lemma 4. If α 6= 0 and then
|α| ≥ M0(α)−1MC(α)−d+1

where d = deg(α).

Proof. Let d = deg(α). If the minimal polynomial of α is a
∏m

i=1(X − αi) then we have a
∏

i |αi| ≥ 1.
Thus, assuming α = α1,

|α| ≥ 1

a
∏d

i=2 |αi|
≥ 1

aMC(α)d−1
.

Q.E.D.

The following theorem shows the significance of u(e), l(e).

Theorem 5. Let e ∈ Expr(Ω2). Then u(e) and l(e) are upper bounds on MC(U(e)) and MC(L(e)),
respectively.

Proof. The proof amounts to justifying Table 3 for computing u(e), l(e). The base case where e is a
rational number is clear. In general, U(e) and L(e) are formed by the rules in Table 2. Consider the case
e = e1 ± e2 so that

U(()e) = U(()e1)L(()e2) ± L(()e1)U(()e2).

c© Mehlhorn/Yap Draft November 15, 2006

§1. An Approach to Algebraic Computation Lecture 12 Page 8

From the theory of resultants, we know that if α = β ◦ γ (◦ ∈ {±,×,÷}) then every conjugate of α has the
form β′ ◦ γ′ where β′, γ′ are conjugates of β, γ (resp.). Thus,

MC(U(()e)) = MC(U(()e1))MC(L(()e2)) + MC(L(()e1))MC(U(()e2)).

By induction, MC(U(()ei)) ≤ u(ei) and MC(L(()ei)) ≤ l(ei) (i = 1, 2). Hence, MC(e) ≤ u(e1)l(e2) +
l(e1)u(e2) = u(e). This justififies the entry for u(e) on line 2 of Table 3. Similarly, we can justify each of the
remaining entries of Table 3. Q.E.D.

Finally, we show how the BFMS Rules gives us a zero bound. It is rather similar to Lemma 4, except
that we do not need to invoke M0(e).

Theorem 6. Let e ∈ Expr(Ω2) and val(e) 6= 0. Then

(u(e)D(e)2−1l(e))−1 ≤ |val(e)| ≤ u(e)l(e)D(e)2−1. (9)

If e is division-free,
(u(e)D(e)−1)−1 ≤ |val(e)| ≤ u(e). (10)

Proof. First consider the division-free case. In this case, val(e) = val(U(e)). Then |val(e)| ≤ u(e) follows
from Theorem 5. The lower bound on |val(e)| follows from lemma 4, since M0(e) = 1 in the division-free
case.

In the general case, we apply the division-free result to U(e) and L(e) separately. However, we need to
estimate the degree of U(e) and L(e). We see that in the transformation from e to U(e), L(e), the number
of radical nodes in the dag doubles: each k

√· is duplicated. This means that deg(U(e)) ≤ deg(e)2 and
deg(L(e)) ≤ deg(e)2. From the division-free case, we conclude that

(u(e)D(e)2−1)−1 ≤ |val(U(e))| ≤ u(e).

and
(l(e)D(e)2−1)−1 ≤ |val(L(e))| ≤ l(e).

Thus |val(e)| = |val(U(e))/val(L(e))| ≥ (l(e)u(e)D(e)2−1)−1. The upper bound on |val(e)| is similarly
shown. Q.E.D.

Example. Consider the expression ek ∈ Expr(Ω2) whose value is

αk = val(ek) = (22k

+ 1)1/2k − 2. (11)

Note that ek is not literally the expression shown, since we do not have exponentiation in Ω2. Instead, the
expression begins with the constant 2, squaring k times, plus 1, then taking square-roots k times, and finally

minus 2. Thus u(ek) = (22k

+ 1)1/2k

+ 2 ≤ 5. The degree bound D(ek) = 2k. Hence the BFMS Bound says

|αk| ≥ u(ek)1−2k ≥ 51−2k

.

How tight is this bound? We have

(22k

+ 1)1/2k − 2 = 2
(
1 + 2−2k

)1/2k

− 2

= 2 · e2−k ln(1+2−2
k

) − 2

≤ 2 · e2−k2−2
k

− 2

≤ 2
(
1 + 2 · 2−k2−2k

)
− 2

= 22−k−2k

c© Mehlhorn/Yap Draft November 15, 2006

§1. An Approach to Algebraic Computation Lecture 12 Page 9

e mc(e) m0(e) REMARK

(i) a ∈ C mc(a) m0(a)

(ii) e′ ± e′′ mc(α) + mc(β) m0(e
′)d′′

m0(e
′′)d′

deg(e′) ≤ d′

(iii) e′ × e′′ mc(α)mc(β) m0(e
′)d′′

m0(e
′′)d′

deg(e′′) ≤ d′′

(iv) k
√

e′ k

√
mc(e′) m0(e

′)

Table 4: Measure-BFMS Rules using mc(e) and m0(e)

using ln(1 + x) ≤ x if x > −1 and e2 ≤ 1 + 2x if 0 ≤ x ≤ 1/2. We also have

(22k

+ 1)1/2k − 2 = 2 · e2−k ln(1+2−2
k

) − 2

≥ 2 · e2−k2−2
k
−1 − 2

≥ 2
(
1 + 2−k2−2k−1

)
− 2

≥ 2−k−2k

using ex ≥ 1 + x. Hence αk = Θ(2−k−2k

). This example shows that the BFMS bound is, in a certain sense,
asymptotically tight for the class of division-free expressions over Ω2.

§1.3. Improvements on the BFMS bound

The root bit-bound in (9) is quadratic in D(e), while in (10) it is linear in D(e). This quadratic factor
can become a serious efficiency issue. Consider a simple example: e = (

√
x +

√
y) −

√
x + y + 2

√
xy where

x, y are L-bit integers. Of course, this expression is identically 0 for any x, y. The BFMS bound yields a
root bit-bound of 7.5L +O(1) bits. But in case, x and y are viewed as rational numbers (with denominator
1), the bit-bound becomes 127.5L + O(1). This example shows that introducing rational numbers at the
leaves of expressions has a major impact on the BFMS bound. In this section, we introduce two techniques
to overcome division.

The Measure-BFMS Bound. The first technique applies division-free expressions, but where the input
numbers need not be algebraic integers (we can think of this as allowing division at the leaves). For instance,
the input numbers can be rational numbers.

The basic idea is to exploit Lemma 4. Hence we would like to maintain upper bounds on MC(α) and
M0(α). Let

Ω = {±,×, k
√
·} ∪ C (12)

where C is some set of algebraic numbers. Suppose e is an expression over Ω; so e is division-free. However C
may contain rational numbers that implicitly introduce division. We define the numerical parameters mc(e)
and m0(e) according to the recursive rules in Table 4.

Table 4, gives the recursive rules for computing mc(e),m0(e). Note that as the base case, we assume the
ability to compute upper bounds on MC(a) and M0(a) for a ∈ C.

Lemma 7. For any expression e over {±,×, k
√·} ∪ C, we have MC(e) ≤ mc(e) and M0(e) ≤ m0(e) where

mc(e) and m0(e) are given by Table 4.

Proof. We justify each line of Table 4. Line (i) is immediate by definition.
(ii) Let the minimal polynomial for α, β be a

∏m
i=1(X − αi) and b

∏n
j=1(X − βj), respectively. Then the

minimal polynomial of α ± β divides R(X) = anbm
∏

i

∏
j(X − αi ∓ βj). Thus each conjugate ξ of α ± β

has the form αi ± βj for some i, j. Thus |ξ| ≤ |αi| + |βj |. This proves MC(α ± β) ≤ mc(α) + mc(β). The

c© Mehlhorn/Yap Draft November 15, 2006

§1. An Approach to Algebraic Computation Lecture 12 Page 10

inequality M0(α ± β) ≤ anbm ≤ m0(α)nm0(β)m follows from the fact that the leading coefficient of the
minimal polynomial divides the leading coefficient of R(X).

The same proof applies for e = e1e2. For (iii), if A(X) is the minimal polynomial for α then the minimal
polynomial for k

√
α divides A(Xk), so MC(α) ≤ MC(A(Xk)). However, MC(A(Xk)) = k

√
MC(A(X)) =

k

√
MC(α). Finally, we have M0(k

√
α) ≤ a ≤ M0(α). Q.E.D.

By Lemma 4, we conclude that

e 6= 0 ⇒ |e| ≥ 1

M0(e)mc(e)D(e)−1
. (13)

Such a bound has features of Measure Bound as well as of the BFMS Bound; so we call it the “Measure-BFMS
Bound”.

The BFMSS Bound. Returning to the case of radical expressions, we introduce another way to improve
on BFMS. To avoid the doubling of radical nodes in the e 7→ (U(e), L(e)) transformation, we change the rule
in the last row of Table 3 as follows. When e = k

√
e1, we use the alternative rule

u(e) = k

√
u(e1)l(e1)k−1, l(e) = l(e1). (14)

But one could equally use

u(e) = u(e1), l(e) = k

√
u(e1)k−1l(e1).

Yap noted that by using the symmetrized rule

u(e) = min{ k

√
u(e1)l(e1)k−1, u(e1)}, l(e) = min{l(e1),

k

√
u(e1)k−1l(e1)},

the new bound is provably never worse than the BFMS bound. The BFMSS Bound also extends the rules
to support general algebraic expressions (Ω4 expressions). NOTE: in the absence of division, the BFMSS
and BFMS rules coincide.

Comparison. We consider expressions over a division-free set Ω of operators, as in (12). Two important
examples are:

• Expressions can have rational input numbers (in particular binary floats or decimal numbers). See
[Pion-Yap].

• Expressions where the leaves could have RootOf(P, i) operators. This is the case with Core Library
Version 1.6.

It follows that Theorem 5 is still true. However, what is the replacement for Theorem 6? Using Lemma 4
and Lemma 7 we can obtain more effective bounds.

Let us see how BFMS, BFMSS and Measure-BFMS Bounds perform for the expression (7). In Table 3,
we show the parameters u(e), l(e) as defined for the BFMS Bound. In the next two columns, we show their
variants (here denoted uu(e) and ll(e)) as defined for the BFMSS Bound.

The BFMS Bound gives

− lg |e| ≤ (d(e)2 − 1) lg u(e) + lg l(e) = 63(5L + 4)/2 + 5L/2 < 160L + 126.

But the BFMSS Bound gives

− lg |e| ≤ (d(e) − 1) lg uu(e) + lg ll(e) ≤ 7(4L + 2) + 4L = 32L + 14.

c© Mehlhorn/Yap Draft November 15, 2006

§1. An Approach to Algebraic Computation Lecture 12 Page 11

No. e d(e) lg u(e) lg l(e) lg uu(e) lg ll(e) mc(e)

1 x, y 1 L L L L L
2

√
x,

√
y 2 L/2 L/2 L L L/2

3 x + y 1 2L + 1 2L 2L + 1 2L L + 1
4

√
x
√

y 4 L L 2L 2L L
5

√
x +

√
y 4 L + 1 L 2L + 1 2L (L + 2)/2

6 2
√

xy 4 L + 1 L 2L + 1 2L L + 1
7 x + y + 2

√
xy 4 3L + 2 3L 4L + 2 4L L + 2

8
p

x + y + 2
√

xy 8 (3L + 2)/2 3L/2 2L + 1 2L (L + 2)/2
9

√
x +

√
y −

p

x + y + 2
√

xy 8 (5L + 4)/2 5L/2 4L + 2 4L (L + 4)/2

Table 5: BFMS and BFMSS on example

To apply the Measure-BFMS rule, we could use the fact that

MC(e) ≤ u(e) ≤ (5L + 2)/2

(by first column of Table
M0(e) ≤ 80L

(by last column of table in (i)). Hence

− lg |e| ≤ 7(5L + 2)/2 + 80L = 97.5L + 7.

But we can directly compute an upper bound on MC(e) using the rules in Table 3. This is shown in the
last column of Table . This gives MC(e) ≤ mc(e) ≤ (L + 4)/2. Then

− lg |e| ≤ 7(L + 4)/2 + 80L = 83.5L + 3.5.

In the next section, we consider the Conjugate Bound which is an extension of the Measure-BFMS approach:
for this example, it yields − lg |e| ≤ 28L + 60.

Exercises

Exercise 1.5: Show an expression e involving L-bit integers where the application of Theorem 5 is asymp-
totically better than that of measure or BFMSS bounds. ♦

Exercise 1.6: Prove that the BFMSS Bound is never smaller than BFMS Bound. ♦

End Exercises

§1.4. Eigenvalue Bound
This bound adopts an interesting approach based on matrix eigenvalues [12]. Let Λ(n, b) denote the set of
eigenvalues of n×n matrices with integer entries with absolute value at most b. It is easy to see that Λ(n, b)
is a finite set of algebraic integers. Moreover, if α ∈ Λ(n, b) is non-zero then |α| ≥ (nb)1−n. Scheinerman
gives a constructive zero bound for division-free radical expressions e by maintaining two parameters, n(e)
and b(e), satisfying the property that the value of e is in Λ(n(e), b(e)). These recursive rules are given by
Table 6.

Note that the rule for
√

cd is rather special, but it can be extremely useful. In Rule 6, the polynomial
P (x) is given by

∑d
i=0 |ai|xi when P (x) =

∑d
i=0 aix

i. This rule is not explicitly stated in [12], but can be

deduced from an example he gave. An example given in [12] is to test whether α =
√

2 +
√

5 − 2
√

6 −
√

3
is zero. Scheinerman’s bound requires calculating α to 39 digits while the BFMS bound says 12 digits are
enough.

c© Mehlhorn/Yap Draft November 15, 2006

§1. An Approach to Algebraic Computation Lecture 12 Page 12

e n(e) b(e)

1. integer a 1 |a|
2.

√
cd 2 max{|c|, |d|}

3. e1 ± e2 n1n2 b1 + b2

4. e1 × e2 n1n2 b1b2

5. k
√

e1 kn1 b1

6. P (e1) n1 P (n1b1)

Table 6: Eigenvalue Rules

§1.5. Conjugate Bound

The “conjugate bound” [8] is an extension of the Measure-BFMS bound above expressions with division.
This approach can give significantly better performance than BFMS in many expressions involving divisions
and root extractions. Because of division, we also maintain upper bounds tc(e), M(e) on the tail tail(e)
and M(e). Here the tail coefficient tail(e) is defined as the constant term of the irreducible polynomial
Irr(e).

Table 7 gives the recursive rules to maintain M0(e), tc(e) and M(e).

e lc(e) tc(e) M(e)

1. rational a
b |b| |a| max{|a|, |b|}

2. Root(P) |leadP | |tailP | ‖P‖2

3. e1 ± e2 lcD2

1 lcD1

2 MD2

1 MD1

2 2D(e) MD2

1 MD1

2 2D(e)

4. e1 × e2 lcD2

1 lcD1

2 tcD2

1 tcD1

2 MD2

1 MD1

2

5. e1 ÷ e2 lcD2

1 tcD1

2 tcD2

1 lcD1

2 MD2

1 MD1

2

6. k
√

e1 lc1 tc1 M1

7. ek
1 lck

1 tck
1 Mk

1

Table 7: Recursive rules for lc(e) (and associated tc(e) and M(e))

The upper bounds on conjugates, MC(e), are obtained through resultant calculus and standard interval
arithmetic techniques. It turns out that it is necessary to maintain a lower bound ν(e) on the conjugates at
the same time. The recursive rules to maintain these two bounds are given in Table 8.

e MC(e) ν(e)

1. rational a
b |ab | |ab |

2. Root(P) 1 + ‖P‖∞ (1 + ‖P‖∞)−1

3. e1 ± e2 MC(e1) + MC(e2) max{M(e)−1, (MC(e)D(e)−1lc(e))−1}
4. e1 × e2 MC(e1)MC(e2) ν(e1)ν(e2)
5. e1 ÷ e2 MC(e1)/ν(e2) ν(e1)/MC(e2)

6. k
√

e1
k

√
MC(e1)

k

√
ν(e1)

7. ek
1 MC(e1)

k ν(e1)
k

Table 8: Recursive rules for bounds on conjugates

Finally, we obtain the new zero bound as follows: Given an Ω3-expression e, if val(e) ↓ and e 6= 0, then
we obtain the lower bound from Lemma 4. This bound was implemented the Core Library and experiments
show that it can achieve significant speedup over previous bounds in the presence of division [8].

c© Mehlhorn/Yap Draft November 15, 2006

§1. An Approach to Algebraic Computation Lecture 12 Page 13

§1.6. The Factoring Method for Root Bounds

Pion and Yap [11] introduced a root-bound technique based on the following idea: maintain zero bounds
for an expression e in the factored form, b = b1b2 where bi (i = 1, 2) is a zero bound for ei and e = e1e2.
If bi is obtained using method X (X being one of the above methods), and the factorization is carefully
chosen, then b1b2 could be a better bound than what X would have produced for e directly. The catch is
the method has no advantage unless such a factorization for e exists and can be easily found. Fortunately,
there is a class of predicates for which this approach wins: division-free predicates (e.g., determinants) in
which the input numbers are k-ary rationals, i.e., numbers of the form nkm where n,m ∈ Z. This is an
important class as the majority of real world input numbers are k-ary rationals for k = 2 or k = 10. For
such expressions, we maintain bounds for the factorization e = e1e2 where e1 is division-free (but may have
square roots) and e2 = kv for some v ∈ Z. Our technique is orthogonal to the various zero bounds which we
already discussed because each of the root bounds can, in principle, use this factorization technique. This
has been implemented in the Core Library for the BFMSS Bound and the Measure Bound, resulting in
significant improvement for zero bounds in, for instance, determinants with k-ary rational inputs.

§1.7. Comparison of Bounds

Comparisons between various constructive zero bounds can be found in [4, 8]. In general, a direct
comparison of the above zero bounds is a difficult task because of the different choice of parameters and
bounding functions used. Following the tact in [8], we compare their performance on various special subclasses
of algebraic expressions. We should note that there are currently three zero bounds, the BFMSS, Li-Yap
and Measure Bounds, that are not dominated by any other methods. In particular, these three are mutually
incomparable.

1. For division-free radical expressions, the BFMS bound is never worse than all the other bounds.
Moreover, for this special class of expressions, Li-Yap bound is identical to the BFMS bound.

2. For general algebraic expressions, in terms of root bit-bound, Li-Yap bound is at most D · M where
D is the degree bound, and M is the root bit-bound from the degree-measure bound.

3. Considering the sum of square roots of rational numbers (a common problem in solving the shortest
Euclidean path problem), it can be shown that each of Li-Yap bound and the degree-measure bound can
be better than the other depending on different parameters about the expressions. But both of them are
always better than the BFMS bound.

4. Given a radical expression e with rational values at the leaves, if e has no divisions and shared radical
nodes, Li-Yap bound for e is never worse than the BFMS bound, and can be better in many cases.

5. A critical test in Fortune’s sweepline algorithm is to determine the sign of the expression e = a+
√

b
d −

a′+
√

b′

d′
where a’s, b’s and d’s are 3L-, 6L- and 2L-bit integers, respectively. The BFMS bound requires

(79L+30) bits and the degree-measure (D-M) bound needs (64L+12) bits. Li-Yap root bit-bound improves
them to (19L+9) bits. We generate some random inputs with different L values which always make e = 0, and
put the timings (in seconds) of the tests in Table 9. The experiments are performed on a Sun UltraSPARC
with a 440 MHz CPU and 512MB main memory.

L 10 20 50 100 200
NEW 0.01 0.03 0.12 0.69 3.90
BFMS 0.03 0.24 1.63 11.69 79.43
D-M 0.03 0.22 1.62 10.99 84.54

Table 9: Timings for Fortune’s expression

c© Mehlhorn/Yap Draft November 15, 2006

§1. An Approach to Algebraic Computation Lecture 12 Page 14

§1.8. Treatment of Special Cases

Root separation bounds. In both the Core Library and LEDA, the comparison of two expressions α
and β is obtained by computing the zero bound of α − β. However, more efficient techniques can be used.
If P (X) ∈ C[X] is a non-zero polynomial polynomial, sep(P) denotes the minimum |αi − αj | where αi 6= αj

range over all pairs of complex roots of P . When P has less than two distinct roots, define sep(P) = ∞.
Suppose A(X) and B(X) are the minimal polynomials for α and β, then |α− β| ≥ sep(AB). If we maintain
upper bounds d, d′ on the degrees of A and B, and upper bounds h, h′ on the heights of A and B, a root
separation bound for A(X)B(X) (which need not be square-free) is given by

|α − β| ≥
[
2(n+1)/2(n + 1)hh′

]−2n

(15)

where n = d + d′ (see Corollary 6.33 in [15, p. 176,173] and use the fact that ‖AB‖2 ≤ (n + 1)hh′). The
advantage of using (15) is that the root bit bound here is linear in d + d′, and not dd′, as would be the case
if we use resultant calculus. We compute α and β to an absolute error < sep(AB)/4 each, then declare them
to be equal iff their approximations differ by ≤ sep(AB)/2 from each other. Otherwise, the approximations
tell us which number is larger. Note that this approach not fit into our recursive zero bound framework (in
particular, it does not generate bounds for a new minimal polynomial).

Zero test. Zero testing is the special case of sign determination in which we want to know whether an
expression is zero or not. Many predicates in computational geometry programs are really zero tests (e.g.
detection of degeneracy, checking if a point lies on a hyperplane). In other applications, even though we need
general sign determination, the zero outcome is very common. For instance, in the application of EGC to
theorem proving [14], true conjectures are equivalent to the zero outcome. In our numerical approach based
on zero bounds, the complexity of sign determination is determined by the zero bound when the outcome is
zero. Since zero bounds can be overly pessimistic, such tests can be extremely slow. Hence it is desirable to
have an independent method of testing if an expression is zero. Such a zero test can be used as a filter for
the sign determination algorithm. Only when the filter detects a non-zero do we call the iterative precision
numerical method.

Yap and Blömer [3] observed that for expressions of the form e =
∑n

i=1 ai

√
bi (ai ∈ Z, bi ∈ N), zero testing

is deterministic polynomial time, while the sign determination problem is not known to be polynomial time.
Blömer [3, 1] extended this to the case of general radicals using a theorem of Siegel; he also [2] gave a
probabilistic algorithm for zero test. When the radicals are nested, we can apply denesting algorithms [6, 7].
Note that these methods are non-numerical.

Exercises

Exercise 1.7: Let a > 0. Show that amax{1, 1/a} = max{1, a} and (1/a)max{1, a} = max{1, 1/a} ♦

Exercise 1.8: Show the conjugates of α are distinct. ♦

Exercise 1.9: Show that M(A) = exp
[∫ 1

0
log |A(e(θ))|dθ|

]
. ♦

End Exercises

References

[1] J. Blömer. Computing sums of radicals in polynomial time. IEEE Foundations of Computer Sci.,
32:670–677, 1991.

c© Mehlhorn/Yap Draft November 15, 2006

§1. An Approach to Algebraic Computation Lecture 12 Page 15

[2] J. Blömer. A probabilistic zero-test for expressions involving roots of rational numbers. Proc. of the
Sixth Annual European Symposium on Algorithms, pages 151–162, 1998. LNCS 1461.

[3] J. Blömer. Simplifying Expressions Involving Radicals. PhD thesis, Free University Berlin, Department
of Mathematics, October, 1992.

[4] C. Burnikel, R. Fleischer, K. Mehlhorn, and S. Schirra. A strong and easily computable separation
bound for arithmetic expressions involving radicals. Algorithmica, 27:87–99, 2000.

[5] C. Burnikel, S. Funke, K. Mehlhorn, S. Schirra, and S. Schmitt. A separation bound for real algebraic
expressions. In 9th ESA, volume 2161 of Lecture Notes in Computer Science, pages 254–265. Springer,
2001. To appear, Algorithmica.

[6] G. Horng and M. D. Huang. Simplifying nested radicals and solving polynomials by radicals in minimum
depth. Proc. 31st Symp. on Foundations of Computer Science, pages 847–854, 1990.

[7] S. Landau. Simplification of nested radicals. SIAM Journal of Computing, 21(1):85–110, 1992.

[8] C. Li and C. Yap. A new constructive root bound for algebraic expressions. In 12th SODA, pages
496–505, Jan. 2001.

[9] M. Mignotte. Identification of algebraic numbers. J. of Algorithms, 3:197–204, 1982.

[10] M. Mignotte and D. Ştefănescu. Polynomials: An Algorithmic Approach. Springer, Singapore, 1999.

[11] S. Pion and C. Yap. Constructive root bound method for k-ary rational input numbers. In 19th SCG,
pages 256–263, San Diego, California., 2003. Accepted, Theoretical Computer Science (2006).

[12] E. R. Scheinerman. When close enough is close enough. Amer. Math. Monthly, 107:489–499, 2000.

[13] H. Sekigawa. Using interval computation with the Mahler measure for zero determination of algebraic
numbers. Josai Information Sciences Researches, 9(1):83–99, 1998.

[14] D. Tulone, C. Yap, and C. Li. Randomized zero testing of radical expressions and elementary geometry
theorem proving. In J. Richter-Gebert and D. Wang, editors, Proc. 3rd Int’l. Workshop on Automated
Deduction in Geometry (ADG 2000), volume 2061 of Lecture Notes in Artificial Intelligence, pages
58–82. Springer, 2001. Zurich, Switzerland.

[15] C. K. Yap. Fundamental Problems of Algorithmic Algebra. Oxford University Press, 2000.

[16] C. K. Yap and T. Dubé. The exact computation paradigm. In D.-Z. Du and F. K. Hwang, editors,
Computing in Euclidean Geometry, pages 452–492. World Scientific Press, Singapore, 2nd edition, 1995.

c© Mehlhorn/Yap Draft November 15, 2006

