Introduction Some algorithms and their primitives Robustness issues Arithmetic

Efficient Implementation
of Exact Geometric Computations
in CGAL

Conclusion

Sylvain Pion

INRIA Sophia-Antipolis

October 31, 2006

° Introduction

e Some algorithms and their primitives

e Robustness issues

o Arithmetic
e Conclusion

° Introduction

g Some algorithms and their primitives

9 Robustness issues

0 Arithmetic
e Conclusion

«O>r «Fr <

Introduction Some algorithms and their primitives Robustness issues Arithmetic

Computational Geometry

@ Active research domain since 30 years
@ Algorithms handle large number of geometric objects
@ Emphasis on asymptotic complexity (Real-RAM model)

Application domains: CAD/CAM, GIS, molecular biology, medical imaging...

Conclusion

Introduction Some algorithms and their primitives Robustness issues Arithmetic Conclusion

Examples

@ Convex hulls, triangulations, Voronoi diagrams

@ Surface reconstruction, meshing

@ Boolean operations on polygons, arrangements
@ Geometric optimization

(*]

Introduction Some algorithms and their primitives

Examples : applications

@ Surface reconstruction and meshing
@ Surface parameterization
@ Surface subdivision

Robustness issues

Arithmetic

Conclusion

Introduction Some algorithms and their primitives Robustness issues Arithmetic Conclusion

CGAL: Computational Geometry Algorithms Library

Since 1995 : implement Computational Geometry algorithms.

@ Criteria : adaptability, efficiency, robustness

Introduction Some algorithms and their primitives Robustness issues Arithmetic Conclusion

CGAL: Computational Geometry Algorithms Library

Since 1995 : implement Computational Geometry algorithms.

@ Criteria : adaptability, efficiency, robustness
@ Contributions are reviewed by an Editorial Board

Introduction Some algorithms and their primitives Robustness issues Arithmetic Conclusion

CGAL: Computational Geometry Algorithms Library

Since 1995 : implement Computational Geometry algorithms.

@ Criteria : adaptability, efficiency, robustness
@ Contributions are reviewed by an Editorial Board
@ Chosen language : C++ (generic programming)

Introduction Some algorithms and their primitives Robustness issues Arithmetic Conclusion

CGAL: Computational Geometry Algorithms Library

Since 1995 : implement Computational Geometry algorithms.

@ Criteria : adaptability, efficiency, robustness

@ Contributions are reviewed by an Editorial Board

@ Chosen language : C++ (generic programming)

@ v3.2: 100 modules, 500.000 code lines, 10,000 downloads/year

Introduction Some algorithms and their primitives Robustness issues Arithmetic Conclusion

CGAL: Computational Geometry Algorithms Library

Since 1995 : implement Computational Geometry algorithms.

@ Criteria : adaptability, efficiency, robustness

@ Contributions are reviewed by an Editorial Board

@ Chosen language : C++ (generic programming)

@ v3.2: 100 modules, 500.000 code lines, 10,000 downloads/year
@ Open Source : LGPL and QPL (commercialized since 2003)

Introduction Some algorithms and their primitives

CGAL: Architecture

General architecture : kernel, basic library, support library

Robustness issues

Convex Hulls

Basic Library

Voronoi Diagrams
Spatial Searching

Triangulations

Geometric Optimization

Kernel

Support

Arithmetic

Conclusion

Algorithms are logically split in :

@ a combinatorial part (graph building)

o
o
Q

positive

orientation

@ anumerical part (needs coordinates)

The later calls primitives gathered in the kernel :

. points, segments, lines, circles...

: orientations, coordinate comparisons...

intersection and distance computations

negative

orientation

)

«0O)>» «F»

a

DA

Introduction Some algorithms and their primitives Robustness issues Arithmetic

Kernel of geometric primitives

Algorithms are logically split in :
@ a combinatorial part (graph building)
@ anumerical part (needs coordinates)

The later calls primitives gathered in the kernel :
@ Basic objects: points, segments, lines, circles...
@ Predicates: orientations, coordinate comparisons...
@ Constructions: intersection and distance computations...

Conclusion

Introduction Some algorithms and their primitives Robustness issues Arithmetic

Kernel of geometric primitives

Algorithms are logically splitin :
@ a combinatorial part (graph building)
@ anumerical part (needs coordinates)

The later calls primitives gathered in the kernel :
@ Basic objects: points, segments, lines, circles...
@ Predicates: orientations, coordinate comparisons...
@ Constructions: intersection and distance computations...

positive
orientation

negative
orientation

Conclusion

o Introduction

e Some algorithms and their primitives

9 Robustness issues

0 Arithmetic
e Conclusion

«O>r «Fr <

Incremental algorithm in 2 stages: point location and update

Point location: predicate, sign of:

1 px
A
1 X ry X—px =Py

«0O)>» «F»r « =

Incremental algorithm in 2 stages: point location and update.

Point location: orientation(p, g, r) predicate, sign of:

1 px py
1 ogx ay
1 rx

ry

_ | X —=px qy —py
T X —px ry —py

«0O>» «F>r « =

>

<

>

DA

Introduction Some algorithms and their primitives Robustness issues Arithmetic

Delaunay triangulation

Incremental algorithm in 2 stages: point location and update.

Point location: orientation(p, g, r) predicate, sign of:

Lo :‘qX—px ay — py
Y X —px ry —py

Conclusion

Incremental algorithm in 2 stages: point location and update.

& &

predicate, sign of:

1
1
1
1

Update:

8,8
gx
X
SX

py px2 4 py?
ay gx*+aqy?
ry rx24ry?
sy sx?2 4 sy?

«0O>» «F»r «

[
N)
0
i)

Introduction Some algorithms and their primitives Robustness issues Arithmetic

Delaunay triangulation

Incremental algorithm in 2 stages: point location and update.

Update: in_circle(p, g, r, s) predicate, sign of:

px py px>+py?
gx ay ax®+aqy?
X oty rx24ry?
sx sy sx24sy?

Y

Conclusion

Introduction Some algorithms and their primitives Robustness issues Arithmetic Conclusion

One of the predicates of the Voronoi diagram of circles

Root comparison techniques [Karavelas, Emiris: SODA'03]

o

Introduction Some algorithms and their primitives Robustness issues Arithmetic Conclusion

Arrangements of line segments

4

o

Introduction Some algorithms and their primitives Robustness issues Arithmetic Conclusion

Application: union of polygons in VLSI

[

R e
ot

- X%
My l
~EIIIm

Introduction Some algorithms and their primitives Robustness issues Arithmetic Conclusion

Comparison of abscissa of curve intersections

X(p) <?x(p") X

Algebraic curves, comparisons of algebraic numbers

o Introduction

g Some algorithms and their primitives

e Robustness issues

0 Arithmetic
e Conclusion

«O>r «Fr <

Introduction Some algorithms and their primitives Robustness issues Arithmetic

Robustness

Algorithms rely on mathematic theorems, like:

p

S
q 94 .
cew(s, g, 1)
cew(p, s, 1) => ccw(p,q,r)

cew(p, g, S)

Conclusion

Introduction Some algorithms and their primitives Robustness issues Arithmetic Conclusion

Robustness

Example where floating-point geometry differs from real geometry:
orientation of almost collinear points.

q (24, 24)

,x"’x:y

v (0.5 + ez, 0.5 + ¢y)
7' b (0.5, 0.5)

[Kettner, Mehlhorn, Schirra, P., Yap, ESA'04]

Introduction Some algorithms and their primitives Robustness issues Arithmetic Conclusion

Possible consequences on the algorithms

@ The result can be slightly off

@ The result can be completely off

Introduction Some algorithms and their primitives Robustness issues Arithmetic Conclusion

Possible consequences on the algorithms

@ The result can be slightly off

@ The result can be completely off
@ The algorithm stops because of an unexpected impossible state
@ The algorithm loops forever

@ Use

@ Case by case handling : painful, error prone and not mathematically nice

(Exact Geometric Computing)

@ Floating-point computing fails on [nearly] degenerate cases
@ These cases happen often in practice.

«0O0>» «F)>r « =

it
v

DA

@ Floating-point computing fails on [nearly] degenerate cases.
@ These cases happen often in practice.

>

<

>

@ Case by case handling : painful, error prone and not mathematically nice
@ Use exact predicates (Exact Geometric Computing)

DA

Introduction Some algorithms and their primitives Robustness issues Arithmetic Conclusion

Robustness: solutions

@ Case by case handling : painful, error prone and not mathematically nice
@ Use exact predicates (Exact Geometric Computing)

Remarks

@ Floating-point computing fails on [nearly] degenerate cases.
@ These cases happen often in practice.

o Introduction

9 Some algorithms and their primitives

e Robustness issues

o Arithmetic
e Conclusion

«O>r «Fr <

Introduction Some algorithms and their primitives Robustness issues Arithmetic Conclusion

Number types

Geometric primitives are parameterized by the arithmetic.

@ Multi-precision integers [GMP, MPFR, LEDA..]
@ Multi-precision rationals
@ Multi-precision floating-point

Introduction Some algorithms and their primitives Robustness issues Arithmetic Conclusion

Number types

Geometric primitives are parameterized by the arithmetic.

@ Multi-precision integers [GMP, MPFR, LEDA..]
@ Multi-precision rationals

@ Multi-precision floating-point

@ Interval arithmetic (single or multi-precision bounds)

Introduction Some algorithms and their primitives Robustness issues

Number types

Geometric primitives are parameterized by the arithmetic.

@ Multi-precision integers

@ Multi-precision rationals

@ Multi-precision floating-point

@ Interval arithmetic (single or multi-precision bounds)

Algebraic numbers:
@ Numeric evaluation with separation bounds

Arithmetic Conclusion

[GMP, MPFR, LEDA..]

[CORE, LEDA]

Introduction Some algorithms and their primitives Robustness issues

Number types

Geometric primitives are parameterized by the arithmetic.

@ Multi-precision integers

@ Multi-precision rationals

@ Multi-precision floating-point

@ Interval arithmetic (single or multi-precision bounds)

Algebraic numbers:
@ Numeric evaluation with separation bounds
@ Polynomials, Sturm sequences, resultants...

Arithmetic Conclusion

[GMP, MPFR, LEDA..]

[CORE, LEDA]
[CGAL, CORE, SYNAPS]

Introduction Some algorithms and their primitives Robustness issues Arithmetic Conclusion
Generic programming

Parameterization using templates.

template < class T >
T min (T a, T b)

if (@ < b)
return a;
else
return b;

min(1, 2); /I instantiates min() with T = int.
min(1.0, 2.0); // instantiates min() with T = double.

Introduction Some algorithms and their primitives Robustness issues

Generic programming in CGAL

Several levels of parameterization :
@ Algorithms parameterized by the geometry (kernel)

template < class Traits >
class Triangulation_3;

Arithmetic

Conclusion

Introduction Some algorithms and their primitives Robustness issues Arithmetic Conclusion

Generic programming in CGAL

Several levels of parameterization :
@ Algorithms parameterized by the geometry (kernel)

template < class Traits >
class Triangulation_3;

@ Kernels parameterized by the arithmetic (number types)

template < class T >
class Cartesian;

Introduction Some algorithms and their primitives Robustness issues Arithmetic Conclusion

Generic programming in CGAL

Several levels of parameterization :
@ Algorithms parameterized by the geometry (kernel)

template < class Traits >
class Triangulation_3;

@ Kernels parameterized by the arithmetic (number types)

template < class T >
class Cartesian;

Plugging the 2 layers:

typedef CGAL::Cartesian<double> Kernel;
typedef CGAL::Triangulation_3<Kernel> Triangulation_3;

Introduction Some algorithms and their primitives Robustness issues Arithmetic Conclusion

Filtered predicates

Speed-up exact predicates using a filter:

@ floating-point evaluation with a certificate
@ multi-precision arithmetic only when needed

Examples

@ interval arithmetic (dynamic filters),
[Burnikel, Funke, Seel — Bronnimann, Burnikel, P’98]

@ or code analysis (static filters) [Fortune’93... Melquiond, P’05]

Implementation issues:
@ automatic generation of filtered predicates
@ cascading several methods

Introduction Some algorithms and their primitives Robustness issues Arithmetic Conclusion

Filtered predicates : generic implementation

Predicates as generic functors:

template <class Kernel>
class Orientation_2

{
typedef Kernel::Point_2 Point_2;
typedef Kernel::FT Number_type;
Sign

operator()(Point_2 p, Point_2 g, Point_2 r) const

return ...;

Introduction Some algorithms and their primitives Robustness issues Arithmetic

Filtered predicates : generic implementation

template <class EP, class AP, class C2E, class C2A>
class Filtered_predicate
{

AP approx_predicate; C2A c2a;

EP exact_predicate; C2E c2e;

typedef EP:result_type result_type;

template <class Al, class A2>
result_type
operator()(A1 al, A2 a2) const

try {
return approx_predicate(c2a(al), c2a(a2));
} catch (Interval::unsafe_comparison) {
return exact_predicate(c2e(al), c2e(a2));
}
}
}

Conclusion

Something similar is done for constructions (harder) [P., Fabri’06]

Introduction Some algorithms and their primitives Robustness issues Arithmetic Conclusion

Filtered number types

Directed Acyclic Graph (DAG) of operations in memory. Ex:

VXY = VX Y+ 20Xy

Approximation and iterative precision refinement, on demand.

Introduction Some algorithms and their primitives Robustness issues Arithmetic

Filtered predicates: comparisons

Computation time of a 3D Delaunay triangulation.

Conclusion

| | RS] E[M| B| D]
] double H 40.6 \ 41.0 \ 43.7 \ 50.3 \ loops \
MPF 3,063 | 2,777 | 3,195 | 3,472 214
Interval + MPF 137.2 | 133.6 | 144.6 | 165.1 15.8
semi static + Interval + MPF 51.8 61.0 59.1 93.1 8.9

almost static + semi static
+ Interval + MPF 44.4 55.0 52.0 87.2 8.0

| Shewchuk’s predicates | 579 575 628] 71.7 | 7.2
CORE Expr 570 | 3520 | 1355 | 9600 173
LEDA real 682 640 742 850 125
Lazy exact nt<MPF> 705 631 726 820 67

Important criterium: failure rate of filters.
User interface in CGAL: choice of different kernels.

Introduction Some algorithms and their primitives Robustness issues Arithmetic Conclusion

Filtered constructions

Additional difficulty: memory storage of geometric objects
Goal: regrouping computations, and less memory

Point

Intersection

Segments

Construction

Points

Introduction Some algorithms and their primitives Robustness issues

Filtered constructions : benchmarks

Generate 2000 random segments, intersect them, compute all orientations of

consecutive intersection points.

Arithmetic

Kernel time memory
g++ 4.1
SC<Gmpg> 70 70
SC<lLazy_exact_nt <Gmpg>> 7.4 501
Lazy kernel<SC <Gmpg>> (2) 3.6 64
Lazy_kernel<SC <Gmpg>> 2.8 64
[SC<double > [0727 8.3 |

Conclusion

o Introduction

9 Some algorithms and their primitives

e Robustness issues

0 Arithmetic
e Conclusion

«O>r «Fr <

Introduction Some algorithms and their primitives Robustness issues Arithmetic Conclusion

Implementation of EGC

@ WIP : Efficient treatment of curved objects of low degree

@ WIP : Improvement of the treatment of geometric constructions
@ WIP : Geometric rounding with guarantees

o ..

Questions ?

	Introduction
	Some algorithms and their primitives
	Robustness issues
	Arithmetic
	Conclusion

