Efficient Implementation of Exact Geometric Computations in CGAL

Sylvain Pion

INRIA Sophia-Antipolis

October 31, 2006
Plan

1. Introduction
2. Some algorithms and their primitives
3. Robustness issues
4. Arithmetic
5. Conclusion
Plan

1. Introduction
2. Some algorithms and their primitives
3. Robustness issues
4. Arithmetic
5. Conclusion
Computational Geometry

- Active research domain since 30 years
- Algorithms handle large number of geometric objects
- Emphasis on asymptotic complexity (Real-RAM model)

Application domains: CAD/CAM, GIS, molecular biology, medical imaging...
Examples

- Convex hulls, triangulations, Voronoi diagrams
- Surface reconstruction, meshing
- Boolean operations on polygons, arrangements
- Geometric optimization
- ...
Examples: applications

- Surface reconstruction and meshing
- Surface parameterization
- Surface subdivision
Since 1995: implement Computational Geometry algorithms.

- Criteria: adaptability, efficiency, robustness
- Contributions are reviewed by an Editorial Board
- Chosen language: C++ (generic programming)
- v3.2: 100 modules, 500,000 code lines, 10,000 downloads/year
- Open Source: LGPL and QPL (commercialized since 2003)
CGAL: *Computational Geometry Algorithms Library*

Since 1995 : implement Computational Geometry algorithms.

- **Criteria**: adaptability, efficiency, robustness
- **Contributions are reviewed by an Editorial Board**
- **Chosen language**: C++ (generic programming)
- **v3.2**: 100 modules, 500.000 code lines, 10,000 downloads/year
- **Open Source**: LGPL and QPL (commercialized since 2003)
CGAL: *Computational Geometry Algorithms Library*

Since 1995: implement Computational Geometry algorithms.

- Criteria: adaptability, efficiency, robustness
- Contributions are reviewed by an Editorial Board
- Chosen language: C++ (generic programming)
- v3.2: 100 modules, 500,000 code lines, 10,000 downloads/year
- Open Source: LGPL and QPL (commercialized since 2003)
CGAL: *Computational Geometry Algorithms Library*

Since 1995: implement Computational Geometry algorithms.

- Criteria: adaptability, efficiency, robustness
- Contributions are reviewed by an Editorial Board
- Chosen language: C++ (generic programming)
- v3.2: 100 modules, 500,000 code lines, 10,000 downloads/year
- Open Source: LGPL and QPL (commercialized since 2003)
CGAL: *Computational Geometry Algorithms Library*

Since 1995: implement Computational Geometry algorithms.

- Criteria: adaptability, efficiency, robustness
- Contributions are reviewed by an Editorial Board
- Chosen language: C++ (generic programming)
- v3.2: 100 modules, 500,000 code lines, 10,000 downloads/year
- Open Source: LGPL and QPL (commercialized since 2003)
General architecture: kernel, basic library, support library
Kernel of geometric primitives

Algorithms are logically split in:

- a **combinatorial** part (graph building)
- a **numerical** part (needs coordinates)

The later calls primitives gathered in the *kernel*:

- **Basic objects**: points, segments, lines, circles...
- **Predicates**: orientations, coordinate comparisons...
- **Constructions**: intersection and distance computations...
Kernel of geometric primitives

Algorithms are logically split in:
- a **combinatorial** part (graph building)
- a **numerical** part (needs coordinates)

The later calls primitives gathered in the *kernel*:
- **Basic objects**: points, segments, lines, circles...
- **Predicates**: orientations, coordinate comparisons...
- **Constructions**: intersection and distance computations...
Kernel of geometric primitives

Algorithms are logically split in:

- a **combinatorial** part (graph building)
- a **numerical** part (needs coordinates)

The later calls primitives gathered in the *kernel*:

- **Basic objects**: points, segments, lines, circles...
- **Predicates**: orientations, coordinate comparisons...
- **Constructions**: intersection and distance computations...

![Diagram with points and lines demonstrating positive and negative orientations.](image-url)
<table>
<thead>
<tr>
<th></th>
<th>Plan</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Introduction</td>
</tr>
<tr>
<td>2</td>
<td>Some algorithms and their primitives</td>
</tr>
<tr>
<td>3</td>
<td>Robustness issues</td>
</tr>
<tr>
<td>4</td>
<td>Arithmetic</td>
</tr>
<tr>
<td>5</td>
<td>Conclusion</td>
</tr>
</tbody>
</table>
Delaunay triangulation

Incremental algorithm in 2 stages: point location and update.

Point location: orientation\((p, q, r)\) predicate, sign of:

\[
\begin{bmatrix}
1 & px & py \\
1 & qx & qy \\
1 & rx & ry \\
\end{bmatrix}
=
\begin{bmatrix}
qx - px & qy - py \\
rx - px & ry - py \\
\end{bmatrix}
\]
Delaunay triangulation

Incremental algorithm in 2 stages: point location and update.

Point location: \texttt{orientation}(p, q, r) predicate, sign of:

\[
\begin{vmatrix}
1 & px & py \\
1 & qx & qy \\
1 & rx & ry \\
\end{vmatrix}
= \begin{vmatrix}
qx - px & qy - py \\
rx - px & ry - py \\
\end{vmatrix}
\]
Delaunay triangulation

Incremental algorithm in 2 stages: point location and update.

Point location: orientation(p, q, r) predicate, sign of:

\[
\begin{vmatrix}
1 & px & py \\
1 & qx & qy \\
1 & rx & ry \\
\end{vmatrix} = \begin{vmatrix}
qx - px & qy - py \\
rx - px & ry - py \\
\end{vmatrix}
\]
Delaunay triangulation

Incremental algorithm in 2 stages: \textit{point location} and \textit{update}.

Update: $\text{in}_{\text{circle}}(p, q, r, s)$ predicate, sign of:

\[
\begin{align*}
1 & \quad px & \quad py & \quad px^2 + py^2 \\
1 & \quad qx & \quad qy & \quad qx^2 + qy^2 \\
1 & \quad rx & \quad ry & \quad rx^2 + ry^2 \\
1 & \quad sx & \quad sy & \quad sx^2 + sy^2
\end{align*}
\]
Delaunay triangulation

Incremental algorithm in 2 stages: point location and update.

Update: `in_circle(p, q, r, s)` predicate, sign of:

\[
\begin{vmatrix}
1 & px & py & px^2 + py^2 \\
1 & qx & qy & qx^2 + qy^2 \\
1 & rx & ry & rx^2 + ry^2 \\
1 & sx & sy & sx^2 + sy^2
\end{vmatrix}
\]
Voronoi diagramms of points
Voronoi diagrams of segments
Voronoi diagrams of circles
One of the predicates of the Voronoi diagram of circles

Root comparison techniques

[Karavelas, Emiris: SODA’03]
Arrangements of line segments
Arrangements of line segments
Arrangements of circular arcs
Application: union of polygons in VLSI
Comparison of abscissa of curve intersections

Algebraic curves, comparisons of algebraic numbers
Robustness

Algorithms rely on mathematic theorems, like:

\[
\begin{align*}
\text{ccw}(s, q, r) \\
\text{ccw}(p, s, r) & \Rightarrow \text{ccw}(p, q, r) \\
\text{ccw}(p, q, s)
\end{align*}
\]
Robustness

Example where floating-point geometry differs from real geometry: orientation of almost collinear points.

[Kettner, Mehlhorn, Schirra, P., Yap, ESA’04]
Possible consequences on the algorithms

- The result can be slightly off
- The result can be completely off
 - The algorithm stops because of an unexpected impossible state
 - The algorithm loops forever
Possible consequences on the algorithms

- The result can be slightly off
- The result can be completely off
- The algorithm stops because of an unexpected impossible state
- The algorithm loops forever
Robustness: solutions

- Case by case handling: painful, error prone and not mathematically nice
- Use exact predicates (Exact Geometric Computing)

Remarks

- Floating-point computing fails on [nearly] degenerate cases.
- These cases happen often in practice.
Robustness: solutions

- Case by case handling: painful, error prone and not mathematically nice
- Use exact predicates (*Exact Geometric Computing*)

Remarks

- Floating-point computing fails on [nearly] degenerate cases.
- These cases happen often in practice.
Robustness: solutions

- Case by case handling: painful, error prone and not mathematically nice
- Use exact predicates (*Exact Geometric Computing*)

Remarks

- Floating-point computing fails on [nearly] degenerate cases.
- These cases happen often in practice.
Plan

1. Introduction
2. Some algorithms and their primitives
3. Robustness issues
4. Arithmetic
5. Conclusion
Number types

Geometric primitives are parameterized by the arithmetic.

- Multi-precision integers
- Multi-precision rationals
- Multi-precision floating-point
- Interval arithmetic (single or multi-precision bounds)

Algebraic numbers:
- Numeric evaluation with separation bounds
- Polynomials, Sturm sequences, resultants...

[GMP, MPFR, LEDA...]

[CORE, LEDA]

[CGAL, CORE, SYNAPS]
Number types

Geometric primitives are parameterized by the arithmetic.

- Multi-precision integers
- Multi-precision rationals
- Multi-precision floating-point
- Interval arithmetic (single or multi-precision bounds)

Algebraic numbers:
- Numeric evaluation with separation bounds
- Polynomials, Sturm sequences, resultants...

[CGAL, CORE, SYNAPS]

[CORE, LEDA]
Number types

Geometric primitives are parameterized by the arithmetic.

- Multi-precision integers
- Multi-precision rationals
- Multi-precision floating-point
- Interval arithmetic (single or multi-precision bounds)

Algebraic numbers:
- Numeric evaluation with separation bounds
- Polynomials, Sturm sequences, resultants...

[Arithmetic]

- GMP, MPFR, LEDA...
- CORE, LEDA
- CGAL, CORE, SYNAPS
Number types

Geometric primitives are parameterized by the arithmetic.

- Multi-precision integers [GMP, MPFR, LEDA...]
- Multi-precision rationals
- Multi-precision floating-point
- Interval arithmetic (single or multi-precision bounds)

Algebraic numbers:
- Numeric evaluation with separation bounds [CORE, LEDA]
- Polynomials, Sturm sequences, resultants... [CGAL, CORE, SYNAPS]
Generic programming

Parameterization using templates.

template class T >
T min (T a, T b)
{
 if (a < b)
 return a;
 else
 return b;
}

...

min(1, 2); // instantiates min() with T = int.
min(1.0, 2.0); // instantiates min() with T = double.
Generic programming in CGAL

Several levels of parameterization:

- **Algorithms parameterized by the geometry (kernel)**

  ```
  template < class Traits >
  class Triangulation_3;
  ```

- **Kernels parameterized by the arithmetic (number types)**

  ```
  template < class T >
  class Cartesian;
  ```

Plugging the 2 layers:

```
typedef CGAL::Cartesian<double> Kernel;
typedef CGAL::Triangulation_3<Kernel> Triangulation_3;
```
Generic programming in CGAL

Several levels of parameterization:

- Algorithms parameterized by the geometry (kernel)

  ```cpp
template < class Traits >
  class Triangulation_3;
  ```

- Kernels parameterized by the arithmetic (number types)

  ```cpp
template < class T >
  class Cartesian;
  ```

Plugging the 2 layers:

```cpp
typedef CGAL::Cartesian<double> Kernel;
typedef CGAL::Triangulation_3<Kernel> Triangulation_3;
```
Generic programming in CGAL

Several levels of parameterization:

- Algorithms parameterized by the geometry (kernel)

  ```cpp
  template < class Traits >
  class Triangulation_3;
  ```

- Kernels parameterized by the arithmetic (number types)

  ```cpp
  template < class T >
  class Cartesian;
  ```

Plugging the 2 layers:

```cpp
typedef CGAL::Cartesian<double> Kernel;
typedef CGAL::Triangulation_3<Kernel> Triangulation_3;
```
Filtered predicates

Speed-up exact predicates using a filter:

- floating-point evaluation with a certificate
- multi-precision arithmetic only when needed

Examples

- interval arithmetic (dynamic filters), [Burnikel, Funke, Seel – Brönnimann, Burnikel, P’98]
- or code analysis (static filters) [Fortune’93... Melquiond, P’05]

Implementation issues:

- automatic generation of filtered predicates
- cascading several methods
Filtered predicates : generic implementation

Predicates as generic functors:

template <class Kernel>
class Orientation_2
{
 typedef Kernel::Point_2 Point_2;
 typedef Kernel::FT Number_type;

 Sign
 operator()(Point_2 p, Point_2 q, Point_2 r) const
 {
 return ...;
 }
};
Filtered predicates: generic implementation

```cpp
template <class EP, class AP, class C2E, class C2A>
class Filtered_predicate
{
    AP approx_predicate;  C2A c2a;
    EP exact_predicate;   C2E c2e;

typedef EP::result_type  result_type;

    template <class A1, class A2>
    result_type
    operator()(A1 a1, A2 a2) const
    {
        try {
            return approx_predicate(c2a(a1), c2a(a2));
        } catch (Interval::unsafe_comparison) {
            return exact_predicate(c2e(a1), c2e(a2));
        }
    }
};
```

Something similar is done for constructions (harder) [P., Fabri’06]
Filtered number types

Directed Acyclic Graph (DAG) of operations in memory. Ex:
\[\sqrt{x} + \sqrt{y} - \sqrt{x + y + 2\sqrt{xy}} \]

Approximation and iterative precision refinement, on demand.
Filtered predicates: comparisons

Computation time of a 3D Delaunay triangulation.

<table>
<thead>
<tr>
<th></th>
<th>R5</th>
<th>E</th>
<th>M</th>
<th>B</th>
<th>D</th>
</tr>
</thead>
<tbody>
<tr>
<td>double</td>
<td>40.6</td>
<td>41.0</td>
<td>43.7</td>
<td>50.3</td>
<td></td>
</tr>
<tr>
<td>MPF</td>
<td>3,063</td>
<td>2,777</td>
<td>3,195</td>
<td>3,472</td>
<td>214</td>
</tr>
<tr>
<td>Interval + MPF</td>
<td>137.2</td>
<td>133.6</td>
<td>144.6</td>
<td>165.1</td>
<td>15.8</td>
</tr>
<tr>
<td>semi static + Interval + MPF</td>
<td>51.8</td>
<td>61.0</td>
<td>59.1</td>
<td>93.1</td>
<td>8.9</td>
</tr>
<tr>
<td>almost static + semi static + Interval + MPF</td>
<td>44.4</td>
<td>55.0</td>
<td>52.0</td>
<td>87.2</td>
<td>8.0</td>
</tr>
<tr>
<td>Shewchuk’s predicates</td>
<td>57.9</td>
<td>57.5</td>
<td>62.8</td>
<td>71.7</td>
<td>7.2</td>
</tr>
<tr>
<td>CORE Expr</td>
<td>570</td>
<td>3520</td>
<td>1355</td>
<td>9600</td>
<td>173</td>
</tr>
<tr>
<td>LEDA real</td>
<td>682</td>
<td>640</td>
<td>742</td>
<td>850</td>
<td>125</td>
</tr>
<tr>
<td>Lazy_exact_nt<MPF></td>
<td>705</td>
<td>631</td>
<td>726</td>
<td>820</td>
<td>67</td>
</tr>
</tbody>
</table>

Important criterium: failure rate of filters.
User interface in CGAL: choice of different kernels.
Filtered constructions

Additional difficulty: memory storage of geometric objects
Goal: regrouping computations, and less memory
Filtered constructions: benchmarks

Generate 2000 random segments, intersect them, compute all orientations of consecutive intersection points.

<table>
<thead>
<tr>
<th>Kernel</th>
<th>time</th>
<th>memory</th>
</tr>
</thead>
<tbody>
<tr>
<td>g++ 4.1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SC<\texttt{Gmpq}></td>
<td>70</td>
<td>70</td>
</tr>
<tr>
<td>SC<Lazy\texttt{exact_nt}<\texttt{Gmpq}></td>
<td>7.4</td>
<td>501</td>
</tr>
<tr>
<td>Lazy\texttt{kernel}<SC<\texttt{Gmpq}></td>
<td>3.6</td>
<td>64</td>
</tr>
<tr>
<td>(2) Lazy\texttt{kernel}<SC<\texttt{Gmpq}></td>
<td>2.8</td>
<td>64</td>
</tr>
<tr>
<td>SC<\texttt{double}></td>
<td>0.72</td>
<td>8.3</td>
</tr>
</tbody>
</table>
Plan

1. Introduction
2. Some algorithms and their primitives
3. Robustness issues
4. Arithmetic
5. Conclusion
Implementation of EGC

- WIP: Efficient treatment of curved objects of low degree
- WIP: Improvement of the treatment of geometric constructions
- WIP: Geometric rounding with guarantees
- ...

Questions?