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Abstract. In this paper, we describe a subdivision method for handling
algebraic implicit curves in 2d and 3d. We use the representation of poly-
nomials in the Bernstein basis associated with a given box, to check if
the topology of the curve is determined inside this box, from its points on
the border of the box. Subdivision solvers are used for computing these
points on the faces of the box, and segments joining these points are de-
duced to get a graph isotopic to the curve. Using envelop of polynomials,
we show how this method allow to handle efficiently and accurately im-
plicit curves with large coefficients. We report on implementation aspects
and experimentations on 2d curves such as ridge curves or self intersec-
tion curves of parameterized surfaces, and on silhouette curves of implicit
surfaces, showing the interesting practical behavior of this approach.

1 Introduction

In this paper, we address the problem of computing the topology of 3D curves
resulting from the intersection of two algebraic surfaces. Algebraic curves and
surfaces are compact representations of shapes, which can be complex and have
numerous advantages over parametric ones, such as easy determination of in-
side/outside of the surface. This is particularly useful when we have to apply
logical operations (union, subtraction, etc.) between two solid objects, defined
implicitly. In such problems, computing the intersection of two surfaces is a crit-
ical operation, which has to be performed efficiently and accurately. Implicit
curves and surfaces have also disadvantages such as difficulty in performing
graphical display, but the method that we propose in this paper is step towards
handling such problems, since it allows fast display of this implicitly 2d and 3d
curves. On the other hand, dealing with parameterized surfaces naturally leads
to the computation of implicit curves. Let us mention in particular, the com-
putation of the intersection curve of two surfaces, self-intersection curves, plane
sections and ridge curves (which are defined implicitly on these parameterised
surfaces, though they are usually approximated by parameterised curves). Such
problems reduce to the analysis of a curve defined by n−1 polynomial equations,
in a space of dimension n (here n = 2, 3, 4).

One major obstacle for adopting implicit representations instead of paramet-
ric representations concerns the piecewise linear approximation of such curves



or surfaces for visualization purposes. A brute force approach would be an ex-
haustive evaluation for approximating the zero level set, which is obviously very
inefficient. A typical alternative scenario is to adopt a divide-and-conquer ap-
proach. Larger undetermined domains are broken down to smaller predictable
domains in which the topological feature and eventually, the curve/surface itself
can be inferred efficiently. An objective of this paper is to describe an efficient
method, which allows us to capture the topology of an implicit curve, when this
curve is smooth1, but also to localize the singular points if they exist.

The problem of computing the topology of curves has been approach in dif-
ferent ways. A first family of methods is based on a sweeping approach. For 2D
planar algebraic curves, such approach has been studied in [GK97] and [GVN02].
It was later extended by Gatellier et al. in [GLMT05] to the 3D spatial curves
resulting from the intersection of two algebraic surfaces. See also [AS05]. These
methods use a conceptual sweeping line/plane perpendicular to some projection
axis, and detect the critical topological events, such as tangents to the sweep-
ing planes and singularities. The final output of these methods are a graph of
connected vertices complying to the topology of the original curves. A notable
problem of aforementioned approaches is that they relies of the computation of
sub-resultant sequences, which can be a bottleneck in many examples with large
degree and large coefficients (see Section 4.1).

Another family of methods are the subdivision based techniques, which uses
a simple criterion to remove domains which do not contain the roots. A cru-
cial problem involved here is how to efficiently and reliably deduce the root
information in a given interval (or a bounding box). In these methods, instead
of using monomial representation, we represent the equations using Bernstein
basis [Far93]. Among early attempts, Sederberg [Sed89] converted an algebraic
curve in to piecewise triangular Bernstein basis. See also [KCMK00] combin-
ing symbolic and numeric techniques to compute the topology of 2D curves.
The approach of [HFH+05] for computing the curves of intersection of two pa-
rameterised surfaces is also combining subdivision techniques with regularity
criterion, exploiting the properties of the intersection curve in the 2D parameter
domains.

The first problem of computing roots of univariate polynomials has been
analyzed for instance in [MRR05], where root information tests are by based on
Descartes’ Law of Sign and its variant in the Bernstein basis. This approach has
been extended to the approximation of isolated roots of multivariate systems. In
[SP93], the author used tensor product version of Bernstein basis and integrated
domain reduction techniques to speed up the convergence and reduce the number
of subdivisions. In [EK01], the emphasis is put on the subdivision process, and
stopping criterion based on the normal cone to the surface patch. In [MP05], this
approach has been improved by introducing pre-conditioning and univariate-
solver steps. The complexity of the method is also analyzed in terms of intrinsic
differential invariants.

1 The tangent vector space exists at every points



The application of subdivision methods for handling higher dimensional ob-
jects is not so well developed. In [JKGMS05] a method which subdivides up to
some precision level, and applies dual marching cube approach to connect points
on the curve or to mesh a surface is described. The variety is covered by boxes
of a given size, and the connectivity of these cells is used to deduce the piecewise
linear approximation. In [ACM05], a subdivision approach exploiting the sign
variation of the coefficients in the Bernstein basis in order to certify the topol-
ogy of the surface in a cell, is used for the purpose of polygonalizing an implicit
algebraic surface.

The work of this paper is in the spirit of this former approach. We apply a
subdivision approach also exploiting the properties of the Bernstein polynomial
representation. We describe a simple regularity test extending the criterion of
[ACM05] to curves, which allows us to detect easily when the topology of the
curve in a cell is uniquely determined from its intersection with the border of the
cell. This provides an efficient test for stopping earlier the subdivision process and
branching to path following methods if we are interested in a good geometrical
approximation of the curve.

We address the same question as in [GLMT05], but with this new methods,
we are able to solve the following problems already identified in this paper:

– To achieve higher numerical stability by operating on Bernstein basis instead
of monomial basis;

– Through subdivision on three principle directions, i.e. x, y, z (or x, y, z), to
isolate the domain containing the singularities from those containing regular
curve segments. This divide-and-conquer approach, in principle, should sim-
plify the graph building algorithm adopted in [GLMT05] where the whole
domain has to be considered.

However, for the treatment of singular points, we have to introduced a threshold
ε to stop the subdivision. Contrarily to [GLMT05], we do not certify the topology
at singular points, but computed boxes of size ε, containing these singularities.

On the contrary, we show that our approach is able to handle implicit curves
with large equation (of total degree about 80 with coefficients of bit-size 200),
which resultant-based techniques are not able to treat.

This paper is organized as follows: in Section 2, we will review some of the
relevant concepts and theorem required by our proposed algorithm; Section 3
is devoted to outlining our proposed algorithms and the details about how the
essential steps in our algorithm are handled. We will show the experiment re-
sults in Section 4 and conclude in Section 5 with the problems and possible
improvements over the currently proposed algorithm.

2 Fundamental ingredients

This section introduces the theoretical background of Bernstein polynomial rep-
resentation and how it is related to the problem we want to solve. For a do-

main D ⊂
�

n, we denote by
◦

D its interior, by D its closure. For a box D =



[a0, b0] × [a1, b1] × [a2, b2] ⊂
� 3, its x-face (resp. y-face, z-face) are its faces

normal to the direction x (resp. y, z).

2.1 Univariate Bernstein Basis

Given an arbitrary univariate polynomial function f(x) ∈ � , we can convert it
into the representation of Bernstein basis of degree d, which is defined by:

f(x) =
∑

i

biB
d
i (x), and (1)

Bd
i (x) =

(

d

i

)

xi(1− x)d−i (2)

where bi is usually referred as controlling coefficients. Such conversion is done
through a basis conversion [Far93]. The above formula can be generalized to an
arbitrary interval [a, b] by a variable substitution x′ = (b− a)x + a. We denote
by Bi

d(x; a, b)
(

d

i

)

(x−a)i(b−x)d−i(b−a)−d the corresponding Bernstein basis on
[a, b].

There are several useful properties regarding Bernstein basis given as follows:

– Convex-Hull Properties : Since
∑

i Bi
d(x; a, b) ≡ 1 and ∀x ∈ [a, b], Bi

d(x; a, b) ≥
0 where i = 0, ..., d, the graph of f(x) = 0, which is given by (x, f(x)), should
always lie within the convex-hull defined by the control coefficients [Far90].

– Subdivision (de Casteljau): Given t0 ∈ [0, 1], f(x) can be represented piece-
wisely by:

f(x) =

d
∑

i=0

b
(i)
0 Bi

d(x; a, c) =

d
∑

i=0

b
(d−i)
i Bi

d(x; c, b), where (3)

b
(k)
i = (1− t0)b

(k−1)
i + t0b

(k−1)
i+1 and c = (1− t0)a + t0b. (4)

Another interesting property of this representation is related to Descartes’s
Law of signs. The definition of Descartes’s Law for a sequence of coefficients
bk = bi|i = 1, ..., k is defined recursively:

V (bk+1) = V (bk) +

{

1, if bibi+1 < 0
0, else

(5)

With this definition, we have:

Theorem 1. Given a polynomial f(x) =
∑n

i biB
d
i (x; a, b), the number N of real

roots of f on ]a, b[ is less than or equal to V (b), where b = (bi), i = 1, ..., n and
N ≡ V (b) mod 2.

The theorem 1 enables a simple yet efficient test of the existence of real roots
in a given domain. This test is essential to our algorithm, as it serves as a key
criterion to classify whether a domain has certified topology, without actually
computing the curve. This allow the our algorithm to execute in reasonably short
time, as demonstrated in our experiments.



2.2 Generalization to Multivariate Case

The univariate Bernstein basis representation can be generalized to multivariate
ones. Briefly speaking, we can rewrite the definition (Eq. (1)) in the form of
tensor products. Suppose for x = (x0, ..., xn−1) ∈

�
n, f = (x) ∈ � [x] having

the maximum degree d = (d0, ..., dn−1) has the form:

f(x) =

d0
∑

k0=0

...

dn
∑

kn=0

bk1,...,kn
Bd0

k0
(x0)...B

d0

kn
(xn) (6)

For a polynomial of n variables, the coefficients can be viewed as a tensor of
dimension n.

The de Casteljau subdivision for the multivariate case proceeds similarly to
the univariate one, since the subdivision can be done independently with regards
to a particular variable xi.

Based on these properties, a subdivision solver which can be seen as an
improvement of the Interval Projected Polyhedron algorithm in [SP93], is de-
scribed in [MP05]. It uses the following operations: The multivariate functions
to be solved are enclosed in-between two univariate functions, for each variable.
For this purpose, the Bernstein control points of the functions are projected in
each direction and the upper and lower envelop are used to define these envelop-
ing univariate polynomials. A lower and upper approximation of the roots of
these univariate polynomials are used to reduce the domain. If the reduction is
not sufficient, the domain is split. These reduction operations are improved by
pre-conditioning steps. See [MP05] for more details.

3 Algorithmic ingredients

We consider the problem of computing the topology of the curve, denoted here-
after as C, resulting from the intersection of two known algebraic surfaces,
namely, f(x) = 0 and g(x) = 0 defined in

� 3, with f, g ∈
�

[x, y, z]. Our discus-
sion is confined to the case where f and g has no common divisor other than 1,
so that their intersection has dimension of 1. We assume moreover that (f, g) is
radical or equivalently that the resultant of f(x, y, z), g(x, y, z) with respect to
z after a generic change of coordinates, is square free.

3.1 Tangent Vector Field

The tangent vector on C serves as the key to our analysis of topology of the
curve. It serves as an important indicator of topological feature of C. While it is
computationally prohibitive to compute the tangent vector at each point on C,
we can reach some useful conclusion about the topology of the curve by looking
into the tangent vector field defined below:

t = tx(x)ex + ty(x)ey + tz(x) ez = 5f ∧5g =

∣

∣

∣

∣

∣

∣

ex ey ez

∂xf ∂yf ∂zf

∂xg ∂yg ∂zg

∣

∣

∣

∣

∣

∣

(7)



where ex, ey and ez are the unit vectors along the principle axis x, y and z,
respectively; tx, ty and tz are functions of x = (x, y, z).

Singularities on the curve can be easily characterized, as t vanishes at those
points. In [GLMT05], the author also tried to localize the point having a tan-
gent parallel to a virtual sweeping plane. They are connected together with the
singularities to form the final topological graph. In order to do this, the whole
curve is projected onto some principle projection planes. However, the projected
planar curve in many cases has a very different topology as C. In our proposed al-
gorithm, we exploit the subdivision along all three principle axes simultaneously
and the critical events are either reduced to regular case (such as for tangents)
or localized (such as for intersections). The topology graph can be built without
explicitly computing the exact position of the singularities.

3.2 Regularity Test

In this section, we are going now to describe how to detect boxes, for which the
topology of the curve can be determined. We will use the following notions:

Definition 1. We say that a curve C ∈
�

n is regular in a compact domain
D ⊂

�
n, if its topology is uniquely determined from its intersection with the

boundary D.

The aim of the method is to give a simple criterion for the regularity of a curve
in a box.

To form the topological graph for this domain, we only need to compute
the intersections between the curve and the boundary of this domain, and there
exists a unique graph to link these intersections so that this graph complies to
the true topology of the original curve.

2D case: For 2D planar algebraic curve C defined by a polynomial equation
f(x, y) = 0, and denoting the partial derivative of f w.r.t x by ∂xf , we have the
following direct property:

Proposition 1. If ∂yf(x, y) 6= 0 (resp. ∂xf(x, y) 6= 0) in a domain D =
[a0, b0]× [a1, b1] ⊂

� 2, the curve C is regular on D.

Proof. Suppose that ∂yf(x, y) 6= 0 in D. Then C is smooth, since its normal
vector is defined everywhere, and has no vertical tangents in D. By the implicit

function theorem, the connected components of C∩
◦

D are the graph of functions
of the form y = φ(x). The closure of such a connected component is called
hereafter a branch of C in D. As ∂yf(x, y) 6= 0 in D, for a given x ∈ [a0, b0]
there is at most one branch of C in D above x. Consequently, the connected

components of C∩
◦

D project bijectively onto non-overlapping open intervals of
[a0, b0].

Moreover, as there is no vertical tangent, each of these branches starts and
ends at a point on the border ∂D of D. Notice that two branches may share a



starting or ending point, when the curve is tangent (with even multiplicity) to
∂D.

Thus, computing the points of C ∩ ∂D, repeating a point if its multiplic-
ity is even, sorting them by lexicographic order such that x > y ((x0, y0) >

(x1, y1) if x0 > x1 or x0 = x1 and y0 > y1), we obtain a sequence of points
p1, p2, . . . , p2 s−1, p2 s such that the curve C in D is isotopic to the union of the
non-intersecting segments [p1, p2], . . . , [p2s−1, p2s]. In other words, the topology
of C is uniquely determined from its intersection points with ∂D and C is regular
on D. �

If ∂yf 6= 0 on D (resp. ∂xf 6= 0), we will say that C is x-regular (resp. y-regular).
A sufficient condition for f to be x-regular (respectively y-regular) is that the
Bernstein coefficients of the first derivative of f against y (respectively x) main-
tains a constant sign (see also [ACM05]). By Descartes’ law, this statement
implies that the sign variation in this direction should be at most 1.

To put it in another way, by solely studying the sign variations of the
tangential gradient vector of the curve (represented in Bernstein basis), i.e.
(∂yf(x),−∂xf(x)), we are able to detect when the curve is regular on D and to
determine uniquely the topological graph.

3D case: The 2D approach can be generalized to the 3D case where the tangen-
tial gradient vector of the curve C defined by the intersection of two algebraic
surfaces, namely f(x, y, z) = 0 and g(x, y, z) = 0, is given by t = 5(f) ∧ 5(g)
(see Eh. (7)). Similar to the 2D case, we can represent each component of t in the
Bernstein basis for a given domain (in cube shape) D = [a0, b0]×[a1, b1]×[a2, b2].
The sign change of the resulting Bernstein coefficients enables a simple regularity
test with minimal computation effort.

We describe a first and simple regularity criterion:

Proposition 2. The 3D spatial curve C defined by f = 0 and g = 0 is regular
on D, if

– tx(x) 6= 0 on D, and
– ∂yh 6= 0 (or ∂zh 6= 0) on D, for h = f or h = g.

Proof. Suppose that tx(x) 6= 0 and ∂z(f) 6= 0 on D. It implies that C is smooth
in D. Consider two branches of C in D and project them by πz onto a (x, y)-plane.
Their projection cannot intersect at an interior point. Otherwise, there would
be two points p1, p2 ∈ D, such that f(p1) = 0, f(p2) = 0 and πz(p1) = πz(p2),
which implies that ∂zf(p) vanishes for an intermediate point ∈]p1, p2[ in D. This
is impossible by hypothesis. Consequently, the branches of C project bijectively
onto the branches of πz(C). Their tangent vector is the projection (tx(x), ty(x))
of the tangent vector of C. By proposition 1, πz(C) is regular, so that the topol-
ogy of πz(C) , and thus of C, is uniquely determined by the intersection points
of C with the border of D. �

A similar criterion applies by symmetry, exchanging the roles of the x, y, z

coordinates.



Let us give now a finer regularity criterion, which is computationally less
expensive:

Proposition 3. If C is smooth in D and if for all x0 ∈
�

, the plane x = x0

plane has at most one intersection point with the curve C in D, then C is regular
on D.

Proof. Consider the projection πz(C) of the curve C in D along the z direction.
Then the components of C in D projects bijectively on the (y, z) plane. Other-
wise, there exist two points p0 and p1 lying on C such that πz(p0) = πz(p1) =
(x0, y0), then p0 and p1 belong to x = x0 which are functions of the form
y = Φ(x). Otherwise, there exist two points on πz(C) and (and on C ∩ D) with
the same x-coordinate. Consequently, for x ∈ [a0, b0] there is at most one branch

of πz(C) in D above x, and the connected components of C∩
◦

D project bijectively
onto non-overlapping open intervals of [a0, b0] as πz(C) does. We conclude as in
the 2D case (proposition 1), by sorting the points of C ∩ ∂D according to their
x-coordinates, and by gathering them by consecutive pairs corresponding to the
starting and ending points of branches of C ∩D. �

Proposition 4. The 3D spatial curve C defined by f = 0 and g = 0 is regular
on D, if

– tx(x) 6= 0 on D, and
– ∂yh 6= 0 on z-faces, and ∂zh 6= 0 and its has the same sign on both y-faces

of D, for h = f or h = g.

Proof. Let us fix x0 ∈ [a0, b0] where D = [a0, b0] × [a1, b1] × [a2, b2], let U =
{x0} × [a1, b1] × [a2, b2] and let Φx0

: (x0, y, z) ∈ U 7→ (f(x0, y, z), g(x0, y, z)).
We are going to prove that under our hypothesis, Φx0

is injective. The Jacobian
tx(x0, y, z) of Φx0

does not vanish on U , so that Φx0
is locally injective. We

consider the level-set f(x) = f0 for some f0 ∈ f(U). It cannot contain a closed
loop in U , otherwise we would have (∂yf, ∂zf) = 0 (and thus tx = 0) in U ⊂ D.
We deduce that each connected component of f(x) = f0 in U intersects ∂U in
two points.

Now suppose that Φx0
is not injective on U , so that we have two points

p1, p2 ∈ U such that Φx0
(p1) = Φx0

(p2).
If p1 and p2 are on the same connected component of the level set f(x) = f0

(where f0 = f(p1) = f(p2)) in U , then g reaches the same value at p1 and p2 on
this level set, so that by Role’s theorem, there exists a point p ∈ U in-between
p1 and p2, such that Jac(Φx0

)(p) = tx(p) = 0. By hypothesis, this is impossible.
Thus p1 and p2 belongs to two different connected components of f(x) = f0

in U . Consequently the value f0 is reached at 4 distinct points of ∂U , which
implies that f has at least 4 extrema on ∂U .

Now note that up to a change of variable z = a2 − z, we can assume that
∂zf > 0 on both y = a1, y = b1 faces. Then if ∂yf < 0 on z = a2, we have
f(x0, a1, b2) > f(x0, a1, a2) > f(x0, b1, a2) and (a2, a3) is not a local extrema.



Otherwise ∂yf > 0 and (b1, a2) is not a local extrema. In both cases, we do not
have 4 extrema, which proves that φx0

is injective and that the intersection of C
with the plane x = x0 in D is at most one point. So by proposition 3, we deduce
that C is regular in D. �

For more details on the injectivity properties, see [Pav04]. Here also, a similar
criterion applies by symmetry, exchanging the roles of the x, y, z coordinates.

If one of these criteria applies with ti(x) 6= 0 on D (for i = x, y, z), we will
say that C is i-regular on D.

From a practical point of view, the test that ti(x) 6= 0 or ∂i(h) for i = x, y

or z, h = f or g, is replaced by the stronger condition that their coefficients on
the Bernstein basis of D have a constant sign, which is straightforward to check.
Similarly, such a property on the faces of D is also direct, since the coefficients
of a polynomial, with a minimal (resp. maximal) x-indices (resp. y-indices, z-
indices) are its Bernstein coefficients on the corresponding face.

In addition to these tests, we also test whether both surfaces penetrate the
cell, since a point on the curve must lie on both surfaces. This test could be done
by looking at the sign change of the Bernstein coefficients of the surfaces with
regards to that cell. If no sign change occurs, we can rule out the possibility that
the cell contains any portion of the curve C, hence terminate the subdivision
early. In this case, we will also say that the cell is regular.

The regularity criterion is sufficient for us to uniquely construct the topo-
logical graph g of C within D. Without loss of generality, we suppose that the
curve C is x-regular in D. Hence, there is no singularity of C in D. Furthermore,
this also guarantees that there is no ’turning-back’ of the curve tangent along
x-direction, so the mapping of C onto the x axis is injective. Intuitively, the
mapped curve should be a series of non-overlapping line segments, of which the
ends correspond to the intersections between the curve C and the cell, and such
mapping is injective.

This property leads to a unique way to connect those intersection points, once
they are computed (see section 3.3), in order to obtain a graph representing the
topology of C. Here is how this graph is computed in practice: suppose C is
i-regular in the domain D, and that we have computed the set of intersection
points V = {vj} of the curve with the boundary of D. First, we sort the elements
in V comparing vectors by their i-th coordinates. Assuming the sorted points vj

are indexed by j = 0, 1, 2, ..., we form the edges vk,vk+1, for k = 0, 2, 4, ...

However, a special case has to be taken into account, that is when vj has a
multiplicity mi > 1, for instance, when C is tangent to the bounding domain D

at vi. In this case, we can treat vj conceptually as a multiple point which plays
the role of mi points. In this way, we proceed the connecting process in the same
manner as we do for the general case. To determine the multiplicity of a point
vj , we only have to evaluate the derivatives of C at this point.

3.3 Hierarchical subdivision

We adopted a hierarchical octree to partition the
� 3 space, for several reasons:



– each cell of the octree is equivalent to a cube-shaped domain D; which stores
the coefficients of the polynomials in the Bernstein basis of the corresponding
domain.

– we can take cares of faces shared by cells, to minimize the number of calls
to solvers;

– the hierarchical structure of octree allows us to terminate (stop further sub-
division) early when a cell is deemed regular or irrelevant.

We begin by setting a initial bounding domain D0 to a root cell. A cell is
subdivided if the curve C defined in the correspondent domain fails the regularity
test. For each subdivision, we result in several smaller domains in form of sub-
cells. For each of them, we repeat the regularity test and, if necessary, further
subdivides. The subdivision of a cell will terminate either when the curve within
is deemed regular, or the size of the cell is beyond a predefined precision ε.

There are several techniques to save computation efforts. As the sub-cells
share certain faces with their parent cell, the earlier computed intersections on
the parent cell’s faces are inherited directly by the sub-cells. In addition, sub-
cells split from the same parent cell do share some faces as well. Once again, the
shared faces should be computed exactly once.

Once a new face is introduced in the octree decomposition, the bivariate
solver described in section 2.2, is called directly with the Bernstein coefficients
of the polynomials on this face. The points we found are shared by neighbor
cells, connected to this face in the octree.

3.4 Symbolic-numeric approach

Some geometric operations such as computing the self-intersection curve or the
ridge curve of a parameterized surface leads to the computation of implicit curves
of high degree with coefficients of large size. This is either due to projection
techniques (see [GP05]), or to their definition through composed operations (see
[CFPR05]). In order to be able to handle such curve, the main difficulty is
to control the result, using approximate computation, since exact computation
though possible, would be prohibitive. We describe here the symbolic-numeric
approach that we have developed for this purpose.

We assume that the input equations are given with exact (large) rational (or
integer) numbers (even if the input is given with floating point numbers, we will
consider it as an exact input). In order to compute the topology of C in a domain
D, we convert its representation in the Bernstein basis of D, using exact rational
arithmetic.

Once this conversion is done, we normalize the equation, by dividing by the
coefficient of maximal norm. For each resulting rational coefficient c, we compute
the smallest interval [c, c] represented with floating point numbers and containing
c.

Then, the subdivision process is performed, using interval arithmetic. The
regularity criterion, which reduces to sign evaluations, is applied on these interval
coefficients. We use the following convention: a interval is < 0 (resp. > 0) if all



its elements are < 0 (resp. > 0). If the interval contains 0, we say that its sign
is indeterminate.

If the regularity test fails,

– either the sign of all the coefficients of the polynomial are indeterminate, and
we re-convert the exact polynomial to its representation on the corresponding
sub-domain and restart the approximation process.

– or we subdivide the domain, as in the usual case.

3.5 Algorithm Outline

The proposed algorithm for 3D curves is outlined as following:

Algorithm 31 Computing the topology of the curve C:
Input: f(x) and g(x) polynomials ∈ � [x, y, z], a tolerance ε and a list of bounding
domain D0 ← [a0, b0]× [a1, b1]× [a2, b2] (ai,bi

∈
�

).

– Step 0: (initialization step) domain list D ← D0; vertex list V ← NIL;
connectivity list E ← NIL;

– Step 1: compute t←5(f) ∧5(g) given by Eq. (7);
– Step 2: convert f , g and t into Bernstein basis representation;
– Step 3: while D is not empty, pick a D in D:
• Step 3.1: compute V the set of intersection points between the boundary

of the domain D and the curve C;
• Step 3.2: if the size of D is larger than ε:
∗ if the curve C within the domain D is regular (see section 3.2):
· sort and connect the points v ∈ V ; the connectivities are stored

in E;
∗ else if the domain D is not regular:
· subdivide D and append the subdivided domains into the domain

list D
• else if the size of D is not larger than ε:
∗ add the domain D as a ’box’ vertex into V ;
∗ this vertex is connected with all intersections v ∈ V of D; these

connectivities are also appended to E;
• Step 3.4: remove D from D and repeat Step 3;

Output: The graph represented by a set of vertices V , which are either 3D
points or boxes (with size less than ε) bounding the singularities, and a set of
connections E that are representing the edges of the resulting graph.

We do not describe the algorithm for 2D curves, which is basically a specializa-
tion of this one.

4 Experiments

Our proposed algorithm is implemented as a part of synaps (SYmbolic Numeric
APplicationS) library2. The experiments have been carried out on a 3.4GHz PC,
under Linux.
2 http://www-sop.inria.fr/galaad/software/synaps/



4.1 Planar curves of high degree with large coefficients

In this section, we report on the application of the 2d algorithm, in the case of
large integer coefficients. The first example is about ridge curve. Ridge curves
correspond to local extrema of curvature taken in the principal direction of the
surface, after some algebraic manipulations they can be obtained as implicit
curve (see [CFPR05]). See also [TG92] and [TG95] for other related approaches.
In the example it corresponds to a bicubic surface, the input polynomial is of
total degree 84, of multidegree (43, 43) with 1907 monomials. The coefficients are
integers encoded on at most 65 bits. For the precision ε = 10−3 which controls
the singularity localization, it takes 30 seconds. The topology is certified except
in tiny boxes (which contains the singularity points). Notice that a pure algebraic
approach, exploiting the specificity of problem and with a very efficient Gröbner
engine takes about 10 minutes to certify the topology (see [CFPR05]).

The second example is a projection of a self-intersection curve of bicubic
patch, computed by resultant techniques (see [GP05]). The input polynomial is
of total degree 76, of multidegree (44, 44) with 1905 monomials. The coefficients
are integers of at most 288 bits. It takes 5 seconds, for this example with the
same precision ε = 10−3.

(a) ridge curve (b) self-intersection curve

Fig. 1. Topological descriptions of high complexity curves

4.2 Intersection curves of implicit surfaces

This set of examples are from [GLMT05]. The computational time accompanied
is measured up to milliseconds (see Fig. 2):



1) f(x) = 0.85934x2 + 0.259387xy + 0.880419y2 + 0.524937xz − 0.484008yz +
0.510242z2− 1
g(x) = 0.95309x2 + 0.303149xy + 0.510242y2 − 0.200075xz + 0.64647yz +
0.786669z2− 1
time: 80 msec

2) f(x) = −0.125x2 − 0.0583493xy + 0.493569y2 + 0.966682xz − 1.5073yz −
0.368569z2− 0.865971x− 0.433067y− 0.250095z

g(x) = x2 + y2 + z2 − 2
time: 20 msec

3) f(x) = 2x2 + y2 + z2 − 4
g(x) = x2 + 2xy + y2 − 2yz − 2z2 + 2zx

time: 30 msec
4) f(x) = x4 + y4 + 2x2y2 + 2x2 + 2y2 − x− y − z

g(x) = x4 + 2x2y2 + y4 + 3x2y − y3 + z2

time: 130 msec

(a) Example 1 (b) Example 2 (c) Example 3 (d) Example 4

Fig. 2. Topological descriptions of the intersection curve for 4 pairs of low-order alge-
braic surfaces.

4.3 Silhouette curves of implicit surfaces

The following samples are taken from http://www-sop.inria.fr/galaad/surfaces/.
We intersect the surface with its polar variety in one direction (here the x direc-
tion). In other words, we intersect the surface with the surface defined by one of
its first order derivative (here ∂xf), to extract its silhouette. The surfaces that
we used are called respectively Tetrahedral, Q3, Q1 and Barth Sextic (see Fig.3):

5) f(x) = x4 +2x2y2 +2x2z2 +y4 +2y2z2 +z4 +8xyz−10x2−10y2−10z2 +25
g(x) = 4x3 + 4xy2 + 4xz2 + 8yz − 20x

time: 510 msec



6) f(x) = 5.229914547374508y2z2 + 3.597883597883598x2y2 + y4 + z4 − x4 −
19.49816368932737xyz + 5.229914547374508x2− 7.43880040039534y2

g(x) = −3.597883597883598z2+7.43880040039534z2x2−110.45982909yz2+
7.195767196x2y + 4y3 − 19.49816368932737xz− 14.87760080y

time: 330 msec
7) f(x) = x4+y4+z4−4x2−4y2z2−4y2−4z2x2−4z2−4x2y2+20.7846xyz+1

g(x) = 4x3 − 8x− 8xz2 − 8xy2 + 20.7846yz

time: 730 msec
8) f(x) = 67.77708776x2y2z2−27.41640789x4y2−27.41640789x2z4+10.47213596x4z2−

27.41640789y4z2 + 10.47213596y4x2 + 10.47213596y2z4 − 4.236067978x4 −
8.472135956x2y2−8.472135956x2z2+8.472135956x2−4.236067978y4−8.472135956y2z2+
8.472135956y2− 4.236067978z4 + 8.472135956z2− 4.236067978
g(x) = 135.5541755xy2z2−109.6656316x3y2−54.83281578xz4+41.88854384x3z2+
20.94427192y4x−16.94427191x3−16.94427191xy2−16.94427191xz2+16.94427191x

time: 4010 msec

(a) Example 5 (b) Example 6 (c) Example 7 (d) Example 8

Fig. 3. Topological descriptions of the silhouette curves of algebraic surfaces.

5 Discussion

The algorithm proposed in this paper offers a generic method for computing the
topological graph of spatial curves resulting from the intersection of two algebraic
surfaces. As demonstrated in the experiments, it is rather robust despite the
increase of the complexity of the curve.

The major weakness of this approach, however, is that certain apparently
simply situation could result in a lot of subdivisions, such as the curve with
parallel structures which are very close to each other.

As specified, in this method, the singular points are only isolated into small
boxes of size ε, and we do not certify the connection of the branches at these



points. An additional work would be necessary, to certify the singularity type.
We are currently investigating on this problem.

Another weakness of this approach is the memory consumption (as the stor-
age requirement is approximately cubic to the depth of the subdivision). This
problem however, can be mitigated by a divide-and-conquer approach and pure
programming techniques.
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